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Introduction to the Thesis

The Subject Matter

Rewriting has been nicely and succinctly summarized in the following passage in

[TeR03]:

Rewriting is the theory of stepwise, or discrete, transformations of ob-
jects, as opposed to continuous transformations of objects. Since com-
putations in computer science are typically stepwise transformations of
objects, rewriting is therefore a foundational theory of computing.

Term rewriting is a specialization of rewriting where the objects under consider-
ation are terms. One of the most important problems within the world of term
rewriting is that of termination. In the main annual conference on term rewriting,
RTA (Rewriting Techniques and Applications), termination is usually the most
represented subject. Since 1993, a Workshop on Termination is also being orga-
nized on a regular basis.

Termination states that given some computation rules no infinite computation
sequence can occur and it is required in order to establish total correctness of a
program/algorithm. In term rewriting computation is expressed by means of a
term rewriting system (TRS). As term rewriting is Turing-complete, the termina-
tion problem for TRSs is undecidable.

Many methods have been devised to prove termination of term rewriting, some
of which will be presented in the coming chapters. Most of the work in this
area concentrates on proving termination of TRSs. However, as those can be
seen as a general framework for expressing computation, this opens up possibility
for applications to proving termination of programming languages. So far, there
has been work on applying term rewriting termination techniques to: functional

programs [Gie95, [GSSKT06] and logic programs [SKGST06, SKGSTO0S].
In recent years, the emphasis in this field is on automation of proving termination.
Many tools have been developed to fully automatically prove termination and
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an annual competition is organized where these tools compete on a large set of
problems.

The complexity of these tools and the proofs produced by them makes ensuring
their reliability a big challenge. Thus the need for certification of termination
proofs, which encompasses formal verification of termination proofs using a theo-
rem prover /checker.

Contributions

The contributions of this thesis, which we summarize below, can be divided into
two categories: new methods and refinements to existing methods for proving
termination of rewriting and contributions adding to the progress in the area of
certification of termination proofs.

Part I
Matrix-based termination methods (Chapter [2)

Formalization of the monotone algebras framework and  Section 2341
the matrix interpretation method [EWZ0S].

Extension of the arctic interpretation method (matrix  Section 22
interpretations over the max/plus arctic semiring) for

string rewriting [Wal07a] to term rewriting and general-

ization to arctic “below-zero” (integers allowed in place

of natural numbers).

Formalization of the two aforementioned variants of arc- Section 2.3.5
tic interpretations.

Termination methods based on semantic labeling (Chapter [3))

Automation of semantic labeling, in combination with  Section Bl
RPO, for infinite models over natural numbers.

SAT-based automation of predictive labeling over natu-  Section
ral numbers within the dependency pairs setting.

Automatic termination proving (Chapter M)

TPA (Termination Proved Automatically), first termina- ~ Chapter @
tion tool utilizing semantic labeling over infinite models;
capable of producing certified termination proofs.
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Application to proving liveness properties

by transformation to termination problems (Chapter [

Generalization of the results in [GZ03a] to liveness with  Section 1]
fairness.

An alternative transformation (from liveness properties  Section
to termination problems) to the one from [GZ03a].

Part II
Higher-order rewriting (Chapters [GH{3])

Formalization of multisets and two variants of a multiset Chapter [

ordering.
Formalization of the simply-typed lambda calculus. Chapter
Formalization of the computability predicate proof Section

method [Tai67].
Formalization of HORPO — the higher-order variant of  Section
the recursive path ordering [JR99].

Suggested Method of Reading

Parts I and IT are completely independent and can be read on their own.

In Part I, Chapter [ gives an introduction to term rewriting and to termination
methods. It defines the general notions used in the following chapters and serves as
a basis for this part of the thesis. ChaptersPlto[Hlare independent from each other
and can be read on their own, besides basic definitions that have to be recalled
from Chapter [l

In Part II, Chapter [ provides a general introduction and a road-map to this part
of the thesis. Chapters[7to@build on each other and, unless the reader is familiar
with some material, are best read sequentially.






Part 1

First-Order Term Rewriting






Chapter 1

Term Rewriting Systems

In this chapter we will introduce the notions of term rewriting with an empha-
sis on termination. We will present some general notions concerning relations in
Section [LIl Then we will introduce term rewriting in Section and termina-
tion of rewriting in Section Finally in Section [[.4] we present the concept of
certification of termination and introduce the ColLoR project.

1.1 Relations

Let & be an arbitrary set and — be an arbitrary binary relation over S, i.e.,
— C 8§ x 8. We write —* for the reflexive transitive closure of — and — ™ for its
transitive closure. Define < as the converse of >, that isa <b < b > a.

We introduce orders and a relation modulo.

Definition 1.1. We say that a relation > is a quasi-order if it is reflexive and
transitive.

A quasi-order > that is additionally antisymmetric is a partial order.

A relation > is a strict partial order if it is irreflexive and transitive (and hence

antisymmetric). o

Definition 1.2. Given two relations — and = we introduce a new relation
— /5 = 5% - which reads “— relative to 5”. So — / = denotes a num-
ber (possibly zero) of = steps followed by a single — step. o

We continue with the introduction of normal forms and the concept of termination
of a relation.
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Definition 1.3. [Normal forms] We define the set of normal forms of — as
NF(—) = {s€ S| —Ises s = s’} and the set of normal forms reachable from
agiven set Z S S as NF(Z, —) = {s € NF | Jez t —* s}. o

Definition 1.4. [Termination] We denote termination of reduction sequences
starting in Z by SN(Z,—), that is: SN(Z,—) = =34, 4, t1 € Z AV; t; = tit1.
Termination of a relation, indicating lack of infinite reduction sequences, is de-
noted by SN(—) and defined as SN(—) = SN(S, —). Note that SN(—) coincides
with well-foundedness of —. o

We define a lexicographic extension that lifts a relation on elements to a relation
on sequences of elements.

Definition 1.5. [Lexicographic extension] Let >1,...,>, be n relations on sets
Aq,..., Ay, for some fixed n. The lexicographic extension (>1,. .., > )iz 00 tuples
A1 x ... x A, is defined as:

(a1y..yan) (31,0 >n)iex (@, ... al) iff:

e a3 > a}, or

e a1 =af and (az,...,an) (>2,...,>n)iex (ah, ..., al) o
An important property of the lexicographic extension is that it preserves well-

foundedness.

Theorem 1.6. Let >4 and >p be two relations on sets A and B, respectively. If
>4 and >p are well-founded then (> a,>B)iex 18 well-founded. O

Now we will introduce the notion of well-founded induction.

Definition 1.7. [Accessibility] Let W be a set and > a relation on WW. We define
the accessible part of W, denoted as WA, inductively as follows:

Vy<z Y E Wﬁcc
x € WAce

Intuitively, WA contains all elements of W that initiate only finite sequences. It
easily follows that < is well-founded if and only if WA = W, so if every element
of W is accessible.

The following well-founded part induction principle will be crucial for the proof of
well-foundedness of multiset extensions in Section

Definition 1.8. [Well-founded part induction] Let P be a predicate over W. Then
we define the following well-founded part induction principle:
Voewaee (Vy<z Py)) = P(x)
vzeWﬁcc P(‘T)
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1.2 Term Rewriting

In this section we briefly introduce term rewriting. For more details we refer
to, for instance, [BNO8| [TeR03]. Here we restrict to first-order rewriting only;
higher-order rewriting will be addressed in Part II of this thesis.

A term rewriting system (TRS) consists of rewrite rules formed with terms. For
that we need to define terms, which essentially correspond to terms of first-order
predicate logic. They are defined over a first-order signature.

Definition 1.9. [Signature] A signature F is a non-empty set of function symbols,
equipped with an arity function, arity : F — N, indicating how many arguments
each function symbol expects. o

Now we are ready to define terms.

Definition 1.10. [Terms] The set of terms over function symbols F and over
an infinite set of variables V, disjoint from F, is denoted by 7 (F,V) and defined
inductively as:

e zeT(F,V), forzeV,
o f(t1,....tn) €T(F,V), for feF, arity(f) =n and t1,...,t, € T(F,V).

The subterm relation on terms is denoted by > and defined as the smallest relation
such that ¢t > ¢ and f(x1,...,t;,...t,) > ¢ for all f € Fand 1 < i < n =
arity(f). The strict subterm relation is denoted by > and defined as: t > u <
t>uAnt#u.

For a term ¢ we denote the set of function symbols occurring in it by Fun(t) and,
similarly, the set of variables by Var(t). If Var(t) = ¢J then ¢ is closed (ground).
If every variable occurs at most once in term ¢ then ¢ is called linear. The root
symbol of a term t is denoted by root(t) and we have root(f(¢1,...t,)) = f and
root(z) = x. o

Now let us define the notion of a rewrite rule.

Definition 1.11. [Rewrite rule] A rewrite rule is a pair of terms (I,r) with [,r €
T(F,V) and Var(r) € Var(l). A rewrite rule (I,r) is usually written as [ — r. o

So rewrite rules are pairs of terms, such that the left-hand side is not a variable
and every variable occurring in the right-hand side must also occur in the left-hand
side of a rule. Term rewriting system is simply a set of rules.

Definition 1.12. [Term rewriting system, TRS] A term rewriting system (TRS)
is a pair R = (F, R) of a signature F and a set of rewrite rules R. The signature
is usually left implicit and a TRS is identified with its set of rewrite rules.
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Given a TRS R and a function symbol f we define
Ry ={l—reR|root(l) = f}

that is Ry is the subset of R consisting of those rules that have f as the root of
the left-hand side.

For a TRS R and a relation > we define R, ={{l >reR |l > r}. o

An interesting sub-class of TRSs is that of string rewriting systems.

Definition 1.13. [String rewriting system, SRS] A TRS with all functions having
arity one is called a string rewriting system (SRS). For SRSs it is customary
to write terms as strings, hence aq(az(. .. (an(x))...)) becomes ajas---a, and
becomes €. o

Now we introduce the rewrite relation associated with a given TRS. For that we
need a notion of a substitution.

Definition 1.14. [Substitution] A substitution is a mapping from variables to
terms o : V — T (F,V). An application of a substitution ¢ to a term ¢ is written
as to and defined as follows:

xo = o(x)
flt1, ... tp)o = f(tro,... t,o) o

Definition 1.15. [Rewrite relation] For a TRS R the top rewrite relation ~x on
T(F,V) is defined by t 5% u if and only if there is a rewrite rule [ — r € R and
a substitution o : V — 7 (F,V) such that t = lo and u = ro.

The rewrite relation —x is a context closure of g ; that is it is the smallest
relation such that g S —g and if t; —g ¢ then f(t1,...,t; ..., tn) —r

fltr, ... th ... ty) for every f € F with arity(f) = n. If ¢ ->g u then we say
that there is a rewrite step from ¢ to u or, simply, that ¢ rewrites to u.

Note that we will often write — instead of —x if the TRS R is clear from the
context. S

Example 1.16. Let us present a very simple example of a TRS for addition of
natural numbers. Natural numbers are represented with a constant 0 and an unary
function symbol s for successor. We will define addition represented by a binary
plus operator. This gives us signature:

F = {0, s, plus}
the arity function:

arity(0) = 0 arity(s) = 1 arity(plus) = 2
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and the following two rewrite rules:

plus(0,y) =y
plus(s(x),y) — s(plus(z,y))

We also have the following sequence of rewrite steps:

plus(s(s(0)),s(s(0))) — s(plus(s(0),s(s(0)))) —
s(s(plus(0,5(s(0))))) — s(s(s(s(0)))

A

1.3 Termination of Term Rewriting

Termination is an important concept in term rewriting. Many methods for proving
termination have been proposed over the years, some of which we will introduce
in this section.

Recently the emphasis in this area is on automation and a number of tools have
been developed for that purpose. One of such tools, TPA [Kop06d], will be pre-
sented in Chapter @l Most of the termination methods require a number of pa-
rameters, giving rise to a (often large or even infinite) search space and the tools
aim at efficiently exploring (a finite part) of it. A recent trend in the field is to
use satisfiability solving (SAT) for that purpose. A proof search problem is then
encoded as a propositional formula in such a way that a satisfying assignment
can be translated back to the parameters required to successfully apply a given
method.

To evaluate termination tools and stimulate their improvement the annual Ter-
mination Competition [TC| is organized, where such tools compete on a set of
problems from the Termination Problems Database (TPDB), [TPD]. This compe-
tition has become a de-facto standard in evaluation of new termination techniques
and developments of termination tools.

All performance measures presented in this thesis will be performed on the TPDB.
Whenever possible, the selection of problems from version 4.2 of this database will
be used, consisting of 975 TRSs and 517 SRSs. This is the same selection as used
in the 2007 edition of the termination competition.

1.3.1 Definitions

We begin with definitions of termination and relative termination.

Definition 1.17. [(Relative) termination] A TRS R is called terminating iff there
is no infinite reduction t; »g to —>g - -, i.e., SN(—g).
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A TRS R is called terminating relative to a TRS S iff there is no infinite reduction
t1 »>Rrus t2 —@Rros - containing infinitely many —gx steps. Note that this
coincides with SN(—xz / —s).

We will write SN(R) instead of SN(—x) and SN(R/S) instead of SN(—r / —s).
We will also use Riop interchangeably with Sz.

We write SN for the subset of 7(F,V) consisting of all terminating terms and
7T, for the set of minimal non-terminating terms, i.e., non-terminating terms all
of whose arguments are terminating. o

Now we introduce the notion of F-algebras, that will play an important role in
interpretation-based methods for proving termination.

Definition 1.18. [F-algebra] A F-algebra, (A, {fa}er) consists of a non-empty
set A together with a map [fa] : A® — A for every f € F, where arity(f) =n. <

Definition 1.19. Given a F-algebra, (A, {fa}ter), we define the interpretation
of terms [-] for a given evaluation of variables av: V — A, as:

[Z]a = a(z) forzeV

[f(tla"wtn)]a = [fA]([tl]av"w[tn]a)- ©

Now we introduce the notion of reduction orderings and a theorem employing them
for proving termination.

Definition 1.20. [Reduction ordering] A Reduction ordering is a relation > on
terms that is:

e well-founded,

e closed under substitutions, i.e., if ¢ > u then to > uo for every substitution

o and
e closed under contexts, i.e., if ¢ > u then for all s1,...,s, and all f with
arity(f) =n, f(s1,..., b, 8n) > f(s1,.. U, ..., Sp). o
Theorem 1.21 ([Lan79]). A TRS R is terminating, SN(R), iff there exists a
reduction order > such that R € >. O

The notion of reduction pairs extends that of a reduction order and will be used

in Section [[L3.17

Definition 1.22. [Reduction pairs] A reduction pair (Z,>) consists of a quasi-
order = which is closed under contexts and substitutions and a well-founded order
> which is closed under substitutions such that the inclusion = - > € > or the
inclusion > - 2 € > holds.

We say that a reduction pair (2, >) is Cg-compatible iff c¢(x,y) 2 = and c(x,y) 2 v,
where c is a new binary function symbol. o
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Now we shortly introduce the notion of simple termination.

Definition 1.23. [Simple termination] A simplification order is a reduction order
>, that has the subterm property, i.e., > S >.

A TRS R is called simply terminating iff there exists a simplification order > such
that R € >. o

1.3.2 Termination with Weakly Monotone Algebras

Here we summarize the monotone algebra theory as presented in [EWZ08]. There
is one difference: in contrast to [EWZ08] we do not consider many-sortedness. The
reason for the more complex setup in [EWZ08§] is that it allows for an optimization
in the search for termination proofs using matrix interpretations. However, our
prime focus for monotone algebras will be their use for certification of termination
(see Section [[4] for introduction to certification) and not the implementation de-
tails. Since every proof in the many-sorted setting can be trivially translated to
the one-sorted setting, we opt for this simpler setup.

Definition 1.24. [Monotonicity] Let A be a non-empty set. A function f: A" —
A is monotone with respect to a binary relation — on A iff:

Val,...,ai,a;,...aneA a; _)ali == f(a/la"'aaiw"aan) g f(a/la"'aa{n"'aan) <&

Definition 1.25. [Weakly monotone F-algebra] Let R be a TRS over a signature
F. A well-founded weakly monotone F-algebra is a quadruple A = (A, {fa}rer, >,
2) such that:

o (A, {fa}ser) is a F-algebra,

e all algebra operations [f] for every f € F are weakly monotone, i.e., mono-
tone with respect to =,

e > is a well-founded relation on A, and

e relations 2 and > are compatible, that is: > -2 S >or 2 - > C >.

An extended monotone F-algebra (A,{fa}ser,>,2) is a weakly monotone F-
algebra (A, {fa}rer, >, 2) in which moreover for every f € F the operation [f] is
strictly monotone, i.e., monotone with respect to >. o

Definition 1.26. For a weakly monotone F-algebra A = (A, {fa}ter,>,2) we
extend the order = on A to an order = 4 on terms, as

t Z.A U <= Voz:V—»A [t]oz 2 [u]a

> is extended to > 4 in a similar way. o
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Up to presentation details the following theorem is the one-sorted version of the
main monotone algebras theorem from [EWZ08, Theorem 2].

Theorem 1.27. Let R, R',S,S’ be TRSs over a signature F.

(a) Let (A, {fa}rer,>,2) be an extended monotone F-algebra such that 1 2 4 r
for every rulel - r in Ru S and l >4 r for every rule l > r in R' v §'.

Then SN(R/S) implies SN(R U R'/S v §').

(b) Let (A, {fa}ser,>,2) be a weakly monotone F-algebra such that Il 2.4 r for
every rule | - r in R uS and l >4 r for every rule | — r in R’.

Then SN(Riop/S) implies SN(Riop U Rigp/S)- O

1.3.3 Polynomial Interpretations

Polynomial interpretation method [Lan79] is a well-known termination technique,
dating back to the late 70s. We will use it as an illustration for the monotone
algebra setting from the previous section.

To prove (relative) termination with Theorem [[L27] we need to:

1. provide a domain for the algebra, A,
2. provide two orders, >, 2, over the domain A,

3. check that the orders are compatible, i.e., > -2 S >or 2 - > < > and > s
well-founded,

4. fix a class of functions used for interpretation of symbols, [fa] : A™ — A,
for symbol f of arity n,

5. prove that this class of functions is weakly monotone, i.e., monotone with
respect to the chosen order =,

6. if proving termination by means of Theorem [[27h is intended then prove
that it is also strictly monotone, i.e., monotone with respect to >,

7. finally for application of Theorem [[L.27] we need to be able to compare in-
terpretations of terms with respect to >4 and 2 4, i.e., provide properties
ensuring that one interpretation is always greater (greater equal) than some
other interpretation, regardless of interpretations of variables.

We will now illustrate all those steps on the polynomial interpretation method.
We will wrap up this section with an example showing this method in practice.

For polynomial interpretations we:
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1. Fix the domain to natural numbers, N,
2. with the standard orders >, >y.
3. Compatibility of those orders is immediate and so is well-foundedness of >y.

4. An interpretation of an n-ary function symbol f is a polynomial over a vector
of variables ¥ = (x1,...,2,) € N” with natural numbers as coefficients,

P (7).

5. Such polynomials are clearly weakly monotone (coefficients are natural num-
bers).

6. To obtain strict monotonicity we must require that every variable occurs pos-
itively. So for a polynomial Py(Z) over a vector of variables ¥ = (z1,...,2,) €
N™ we require that it contains a monomial ¢ * z;, with ¢ > 0, for 1 <i < n.

7. Comparison of polynomials amounts to the positiveness check. Let ¥ =
(1,...,2pn). Suppose we want to compare polynomials Py(Z) and On(Z).
We can conclude

Vzenn Pn(7) = On(T)
iff:
Vzenn Pn(Z) — On(Z) =0

To compare polynomials strictly we simply consider the polynomial
Prn(Z) — On(F) — 1

in the above inequality. Note that we need to allow integer coeflicients to
properly define the difference operation on polynomials.

This problem is undecidable in general. There are however heuristics provid-
ing conditions under which we can conclude that such inequality holds. The
method of choice is usually the absolute positiveness check by the shifting
method of [HJ9]]. It states that evaluation of a polynomial is always greater
(resp. greater or equal) than 0 if all of its coefficients are non-negative and
the constant factor is positive (resp. non-negative).

When comparing two polynomials this amounts to the fact that the evalua-
tion of one polynomial is greater or equal than the evaluation of some other
polynomial if all the coeflicients of the first polynomial are greater or equal
than the respective coefficients in the second one. It is strictly greater if,
additionally, the constant factor is strictly greater.

Let us illustrate this method on an example.
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Example 1.28. Consider the TRS from Ezample 10 and the following polyno-
mial interpretation:

[plus(z,y)] =2z +vy [s(z)]=2+1 [0] =0
It gives us the following interpretations for the rules:

[plus(0, y)] = y=vy = [y]
[plus(s(x),y)] =2z +y+2 > 22 +y + 1 = [s(plus(z,y))]

The interpretations for the first rule are equal and we get a strict decrease for
the second rule — all coefficients are equal except for the constant which is bigger
for the left-hand side — so, according to Theorem [I.27] we can remove this rule.
Then the termination of the first rule alone is easy (for instance take polynomial
interpretation with [plus(z,y)] = v +y and [0] = 1. <

1.3.4 Recursive Path Order

Recursive path ordering (RPO) is an ordering introduced by Dershowitz [Der82]. It
extends a well-founded order on the signature, called a precedence, to a reduction
order on terms.

Definition 1.29. [RPO] Let F be any signature, possibly infinite. Let > be a
well-founded partial order on F (strict or non-strict), called a precedence. Let T be
a status function on F, i.e., 7 : F — {Lex,Mul}. The recursive path order (RPO)
on terms, >"° is defined as: s = f(s1,...,8,) > tiff:

e s, =tors; >t forsomeie{l,...,n}, or
o t=g(t1,...,tm), s > ¢; for allie {1,...,m}, and either

— f>g,or
— f=gand{s1,...,8,) >i'°((}) G 3

The >i‘°(‘}.) in the second case depends on the status of f. If 7(f) = Lex then

this becomes the lexicographic extension of >f*° — > as in Definition If
7(f) = Mul then the multiset extension >"° is used (see Definition [Z3] for the
multiset extension of a relation).

The lexicographic path order, LPO (resp. multiset path order, MPO) is defined
similarly to RPO only no status is given and 7(f) = Lex (resp. 7(f) = Mul) for
every f e F. o
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Note that in Definition we presented the lexicographic with the left-to-right
comparison of elements. A straightforward extension allows to permute elements
before comparing them, which requires extension of the RPO status, in the Lex
case, with such a permutation of function arguments. Also note that RPO is a
simplification order.

The main property of this order is the following:

Theorem 1.30 ([Der82]). Let R be a TRS over F and let > be a well-founded
precedence and T be a status function for F. If R € >, then SN(R). O

Let us illustrate an application of this theorem on an example.

Example 1.31. Let us consider the TRS from Ezample[I.10. Consider a prece-
dence with plus > s and the status function 7(f) = Lex for all f € F. Then
both rules of this TRS can be oriented with RPO hence proving termination of this
system. <

So for proving termination by RPO one has to find a well-founded precedence > and
a status function 7 such that [ >*° r for every rule [ — r. In tools this is typically
done by collecting constraints on > and checking whether these constraints give
rise to a well-founded precedence >. In this process usually many choices are
possible, both for the precedence and status function, which are typically handled
with back-tracking. The crucial algorithm required in this procedure is to check
whether a set of constraints on > gives rise to a well-founded precedence >. For
finite signatures this coincides with checking whether the corresponding graph is
acyclic.

1.3.5 Semantic Labeling

Semantic labeling is a transformational termination technique for TRSs due to
Zantema [Zan99, [Zan03]. The core idea is to interpret the function symbols in
some model and use this interpretation to label the system. After applying the
transformation some function symbols are equipped with a label and the resulting
TRS is terminating if and only if the original one is terminating. This approach
is often successful in the sense that proving termination for the labeled system
is easier than for the original one. Non-simply terminating systems are often
transformed to systems for which termination is easily proved by polynomials or
RPO — we will present one example of that by the end of this section.

First we recall the main theory of semantic labeling, presenting only its quasi-
model variant.

Definition 1.32. [Quasi-model] Let R be a TRS. A weakly monotone F-algebra
(A, {fa}ser,>, =) is called a quasi-model for R iff R € = 4. o
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Now we introduce the labeling, labeled signature and a function used to label a
TRS.

Definition 1.33. [Labeling] Let R be a TRS over F and let (A4, {fa}fer, >, )
be a quasi-model for R. A weakly monotone labeling L consists of a set of labels
L; € A together with a mapping £¢ : A™ — Ly for every function symbol f € F
with arity(f) = n, such that ¢; is weakly monotone in all coordinates. o

Definition 1.34. [Labeled signature, Fi.p] Let R be a TRS over F and let £ be
a labeling for R. The labeled signature Fi,, consist of n-ary function symbols f,
for every m-ary function symbol f € F and every label a € Ly together with all
function symbols f € F such that Ly = @. o

Definition 1.35. [lab,] Let R be a TRS over F and L be a labeling for R. We
extend an assignment of variables a: V — A to the mapping lab, : 7(F,V) —
T (Fiap, V) in the following way:

t if ¢ is a variable,
labo (t) = { f(laba(t1),...,laba(tn)) ift = f(t1,...,tn) and Ly = &,
fa(laba(t1),...,laba(ty)) ift = f(t1,...,tn) and Ly # @,

where a denotes the label £¢([t1]as-- -, [tn]a)- o

Finally we define the labeled system. But first we present the definition of the
so-called decreasing rules.

Definition 1.36. [Decgr] Let R be a TRS over F and L be a labeling for R. We
define the TRS Decr to consist of all rewrite rules

falz1, .. xn) = folxr, ... x,)

with f e F, arity(f) = n, a,b € Ly with a > b, and pairwise different variables
TlyeneyTp. <&

Definition 1.37. [Labeled TRS, Rib] Let R be a TRS, (A, {fa}ser,>,2) a
quasi-model for R and £ a labeling for R. We define the labeled TRS R, over
the signature Fi,p to consist of the rules:

laby, (1) — laby(7)
foralla:V — A and all rules ] — r € R. o

Now the main theorem of semantic labeling reads:

Theorem 1.38 ([Zan95]). Let R be a TRS over F, (A, {fa}rer,>,2) be a quasi-
model for R and L a labeling for R. Then SN(R) iff SN(Riap U Decr). O
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Let us apply this theorem on an example.

Example 1.39. Consider the SRS R consisting of the single rule:
aa—aba

This TRS is non-simply terminating. Suppose it was. Then there would be a
simplification order > such that aa > aba but then b > € as bl>e (note that e = x
and b = b(z) in the SRS notation) and > is a simplification order. Then > would
be a witness for termination of R u {b — €}, which is non-terminating:

aa—>aba—>aa— ...

This means that simplification orders, like RPO introduced in Section [1.57), will
fail to prove termination of this system. However it is easy to see that R is
terminating. We will show how termination can be proven with semantic labeling.

For the monotone algebra choose A = {0,1} with 1 > 0. Choose the interpretations

both constant and hence weakly monotone. This interpretation is a quasi-model

for R as
[aa], =1 = [aba],

for arbitrary «. For the labeling choose:
L,=A Ly=y

and
ly(z) =

We get the labeled signature
Fiab = {ag, a1, b}

and the decreasing SRS
Decr = {a1 — ag}

The labeled SRS Rap consists of two rules:

a1 ag —>a0ba0

al ag —>a0ba1

Termination of Riap v Decr can be proven with RPO with the precedence a; >
ag > b, hence, by application of Theorem [L.38, proving termination of R. <
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1.3.6 Predictive Labeling

Predictive labeling [HMO6] is a variant of semantic labeling where the quasi-model
condition is only demanded for a part of the system, namely for the so-called
usable rules, induced by the labeling.

Definition 1.40. Let R be a TRS. For function symbols f and g we write f>q4g
if there exists a rewrite rule [ — r € R such that f = root(l) and ¢ is a function
symbol in Fun(r).

For a set F C F we write F™4 for the set {g| f >} g for some f e F}. o

Definition 1.41. Let R be a TRS, ¢ be a labeling for R and ¢t a term. We define:

1% if ¢ is a variable,
Ge(t) = { Fun(t1)”3 U -+ U Fun(t,)”d ift = f(t1,...,t,) and Ly # @,
Ge(t1) U -V Ge(tn) ift = f(t1,...,t,) and Ly = @.

Furthermore we define:

G(R) = |J GelD) v Gulr)

l—>reR

and the set of usable rules for a labeling ¢ is defined as

UL) ={l > reR|root(l) e Ge(R)} o

The above definition was improved in [TM07] by showing that right-hand sides
of the rules can be ignored in the computation of G¢(R). For the purpose of this
thesis we will however stick to the above definition without this improvement, as

presented in [HMO6, [KMO7].

Typically, U(¢) is a proper subset of R. The point of predictive labeling is to
replace the quasi-model condition R € 2 4 of semantic labeling by the easier to
satisfy condition U(¢) € 2 4. We illustrate this on an example.

Example 1.42. Consider the following TRS from [TG05] (AProVE/rtal.trs in
TPDB [TPD)):

(1) plus(0,y) >y (5) plus(s(s(x)),y) — s(plus(z,s(y)))

(2) plus(s(0),y) »s(y)  (6) plus(z,s(s(y))) — s(plus(s(z),y))

(3) ack(0,y) = s(y)  (7) ack(s(x),s(y)) — ack(z, plus(y, ack(s(z),y)))
(4) ack(s(z),0) — ack(x,s(0))

Now suppose
Ls * J LO = Lplus = Lack =0J.
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Then applying the above definition gives
9e(R) = {plus,s}  U(() = {1,2,5,6}.

This means that for predictive labeling rules 3,4 and 7 can be ignored for checking
the quasi-model constraints. <

The weakly monotone algebras (A, {fa}rer, >, 2) used to determine the labeling
and to satisfy the quasi-model constraints in connection with predictive labeling
must satisfy one additional property.

Definition 1.43. [Weakly monotone w-algebras] Let (A,{fa}ser,>,2) be a
weakly monotone algebra. We call it a weakly monotone wi-algebra if for ev-
ery finite subset X C A there exists a least upper bound | | X of X in A (with
respect to >). o

The main theorem of predictive labeling can now be stated.

Theorem 1.44 ([HMO6]). Let R be a finitely branching TRS, (A, {fa}ser.>,3)
a weakly monotone u-algebra, and ¢ a weakly monotone labeling for R such that
UW) S Z24. If Riab v Dec is terminating then R is terminating. O

Due to the restriction to w-algebras, predictive labeling is less powerful than se-
mantic labeling in theory. However, since the algebras used in current termination
tools are Li-algebras, in practice predictive labeling is to be preferred as it has the
clear advantage of weakening the quasi-model condition; instead of all rules only
the usable rules need to be oriented, which brings improvements in proving power
as well as efficiency.

1.3.7 Dependency Pairs

The dependency pair method [AGOQ] is a powerful approach for proving termina-
tion of TRSs. The dependency pair framework [GTSKO04] is a modular reformu-
lation and improvement of this approach. We present a simplified version which
is sufficient for our purposes. For further information on dependency pairs and
more detailed explanation of the concepts introduced below the reader is referred

to [AGQO0, [GTSK0A, [GTSKE06, [HMO7).

Definition 1.45. [Dependency pairs] Let R be a TRS over a signature F. The
set of defined symbols is defined as Dg = {root(l) | | — r € R}. We extend a
signature F to the signature F* by adding symbols f*# for every symbol f € Dx.
If t € T(F,V) with root(t) € Dg then t* denotes the term that is obtained from ¢
by replacing its root symbol with root(t)¥.

If | - r € R and t < u with root(t) € Dg then the rule I* — t# is a dependency
pair of R. The set of all dependency pairs of R is denoted by DP(R). o



26 Chapter 1 Term Rewriting Systems

We illustrate this definition on an example:

Example 1.46. For the TRS presented in Example there are six dependency
pairs:

(8) ack®(s(z),0) — ack®(z,s(0))
(9)  plusi(s(s(x)),y) — plus(z,s(y))
(10)  plus®(z,s(s(y))) — plus(s(z), y)
(11) ackn(s(x),s(y)) — ackn(x,plus(y, ack(s(z),v)))
(12) ack®(s(z),s(y)) — plus*(y, ack(s(z), y))
(13) ack®(s(z),s(y)) — ack®(s(x), y) <

Definition 1.47. [DP problems| A DP problem is a pair of TRSs (P, R). The
problem is said to be finite if there is no infinite sequence

t1 =% 51 SOpty ok s2 Op e
such that all terms tq,to,... are terminating with respect to R. o

The main result underlying the dependency pair approach is the following;:

Theorem 1.48 ([AGO0]). Let R be a TRS. R is terminating iff the DP problem
(DP(R),R) is finite. O

The condition in Definition [[L47 that terms t1, o, ... are terminating with respect
to R corresponds to the so-called minimality flag in the dependency pair framework
[GTSK04]. Minimality will be important in Chapter Bl However when minimality
plays no role the above theorem can be stated in a simpler version.

Theorem 1.49 (J[AGO0]). Let R be a TRS. SN(R) iff SN(DP(R)top/R). O

Now we introduce the concept of DP processors, that is functions used to prove
finiteness of DP problems.

Definition 1.50. [DP processor] A DP processor is a function that takes a DP
problem as input and returns a set of DP problems as output.

A DP processor (P,R) — {(Pi,Ri)}ier is sound if finiteness of (P;, R;) for all
i € 7 implies that (P, R) is finite. o

Below we shortly introduce two key concepts of the dependency pair method that
will be important in later chapters: argument filtering and usable rules [AGO0,

[GTSKF06].
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Definition 1.51. [Argument filtering] An argument filtering is a mapping = that
assigns to every n-ary function symbol f an argument position ¢ € {1,...,n} or a
(possibly empty) list [i1, . . ., i, ] of argument positions with 1 < i1 < -+ < 4, < .
Every argument filtering 7 induces a mapping on terms:

t if t is a variable,
w(t) = w(t;) ift = f(t1,...,t,) and 7(f) =1,
fr(tsy), ..., m(ts,)) ift= f(tr,...,tn) and ©(f) = [i1, ..., im].

Given a binary relation > and an argument filtering 7, we write s >™ ¢ iff 7w(s) >
(2). o

Next we introduce the concept of usable rules modulo argument filtering.

Definition 1.52. [Usable rules] Let (P, R) be a DP problem and 7 an argument
filtering. We define the set of usable rules for (P, R) modulo 7 as

U(P,R) = | ) Un(t,R)

s—oteP

with U (t,R) = @ if ¢ is a variable and

Ur(t,R) =Ry v ] U R\Ry) U ] Uslti, R\Ry)
l>TeRy i w(f)=ivien(f)

ift = f(ty,... tn). o

We illustrate the concept of usable rules on an example.

Example 1.53. Consider the TRS R from Example[I{Z and its dependency pairs
P, as presented in Example [IZ0] Let the argument filtering be w(ackﬁ) =1 and
7(f) = [1,...,n] for the remaining symbols f € F*, where n is the arity of f.
Applying the above definition yields U, (P, R) = {3,4,7}. <

We now present the reduction pair processor.

Theorem 1.54 (Reduction Pair Processor, [GTSKF0G]). Let P and R be TRSs.
Let (2,>) be a Cg-compatible reduction pair and let m be an argument filter-
ing. If P = Pzx U Psr, and Uz(P,R) S 27 then the DP processor (P,R) —
{(P\Ps=,R)} is sound. O

1.4 ColLoR: Certification of Termination Proofs

In the previous section we introduced the research area of termination of rewriting.
We also mentioned the recent emphasis on automation and the annual termination
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TRS Termination proof

problem.trs| Termination | prf-xml (TPG) e Coq script
prover ‘ prf.v

Figure 1.1 Certifying termination with CoLoR.

Coq

competition for tools proving termination automatically. An important observa-
tion from the history of this competition is that every year both the termination
tools and the termination proofs produced by them are becoming more and more
complex. Therefore ensuring correctness of such tools is a challenging task. Indeed
every year we observe some disqualifications in the competition due to erroneous
proofs produced by some of the tools.

This was one of the motivations to start the CoLoR [COL] project, initiated by
Frédéric Blanqui in March 2004. The goal of the project is to use Coq [COQ)
BC04], a proof assistant/checker based on the Calculus of Inductive Constructions
(CIC) [PM93] (a very expressive logic supporting simple, inductive, dependant
and polymorphic types), to fully automatically verify results produced by tools
for proving termination. More information about the project can be found on its
web-page:

http://color.loria.fr/
ColLoR consists of three parts:

e TPG (Termination Proofs Grammar): a formal grammar for termination
proofs.

e ColLoR (Coq Library on Rewriting and Termination): a library of results on
termination of rewriting, formalized in Coq.

e Rainbow: a tool for transforming termination proofs in the TPG format into
Coq scripts certifying termination by employing results from ColoR.

The general approach to certifying termination with CoLoR is presented in Fig-
ure [[LTl For a given TRS R some termination prover is called. If it succeeds in
proving termination, it outputs a termination proof in the TPG format. Such an
encoding of a proof is given to Rainbow which translates it into a Coq script con-
taining a formal proof of the claim that R is terminating by using results from the
ColLoR library. Then Coq is executed on such a script to verify that the termination
proof found by the termination tool is indeed correct.
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It is worth noting that typically Coq is used as a proof assistant, where the for-
malization is built by a human interacting with the system. It is not so in this
application as the Coq script formalizing termination of a given system is generated
fully automatically by Rainbow from a proof description produced by some termi-
nation prover; again, automatically. However the proof assistance capabilities of
Coq are crucial for the development of CoLoR.

Concerning related work in certification, in the first place we should mention the
Coccinelle ﬂm library which uses an approach similar to the one employed
by CoLoR and also uses the Coq theorem prover. We will say more about it in a
moment in the context of the termination competition.

The recent work at the Technical University of Munich [BKNOT, [Kra07] is another
effort toward certified termination. It is different in several aspects. Its main aim
is to automatically generate certified termination proofs for recursive functions
used in the Isabelle/HOL theorem prover. However external termination provers
are not involved and the only termination technique supported by this method is
the size-change principle.

We already mentioned the termination competition [TC], the battlefield for termi-
nation provers. In 2007, for the first time, a new category of certified termination
has been introduced, showing the recognition for the importance of certification
efforts.

In this new category every claim made by a termination prover must be backed
up by a full formal proof expressed and checked by some well established theorem
prover (and not only by a textual informal description of such a proof, as is the
case in the standard category). This makes the results reliable with the highest
standards of reliability available in verification.

The combination of the CoLoR project (with Rainbow) and the termination prover
TPA (see Chapter []), was the winning entry in this newly introduced
category of the Termination Competition in 2007. We refer to Section for
more performance details.

In this competition TPA produced 354 certified proofs. For comparison we would
like to mention that in the standard category, which is run on the same set of prob-
lems, the scores ranged from 330 to 723. This shows that many proofs are beyond
reach of the certification at the moment, which is completely understandable. But
it also shows that for a substantial part of proofs we can not only produce them
with termination tools but also fully automatically ensure their correctness. We
believe this is a big step forward and a very promising future for the reliability of
termination results.






Chapter 2

Matrix & Arctic
Interpretations

One method of proving termination is interpretation into a well-founded algebra.
Polynomial interpretations (over the naturals) are a well-known example of this
approach (see Section [[33)). Another example is the recent development of the
matrix method that uses linear interpretations over vectors of
naturals, so functions of the shape (#1,...,%,) — Mi#1 + ... + M, %, + ¢. Here,
Z; are (column) vector variables, ¢'is a vector and My, ..., M,, are square matrices,
where all entries are natural numbers. We will shortly introduce this method in

Section 211

In [Wal07bl Wal07a] the matrix interpretations method was extended (for string
rewriting) to the arctic domain, i.e., on the max/plus semiring on {—o0} U N. Its
implementation in the termination prover Matchbox [Wal(4] contributed to this
prover winning the string rewriting division of the 2007 termination competition

[Tcy.
In Section P2 we will present a generalization of the arctic termination method to

term rewriting [KW08|]. We will use interpretations of the same shape as for the
matrix interpretation method, i.e., (&1,...,%,) » M1®%1 @ ... ® M,®%, @ C,

This chapter is based on: A. Koprowski, H. Zantema, Certification of Proving Termination of
Term Rewriting by Matrix Interpretations, In V. Geffert, J. Karhumaki, A. Bertoni, B. Preneel,
P. Navrat and M. Bielikova eds., Proceedings of the 34rd International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM ’08), Novy Smokovec, Slovakia,
volume 4910 of Lecture Notes in Computer Science, pp. 328-339, Springer-Verlag, January
2008 and A. Koprowski, J. Waldmann, Arctic Termination ...Below Zero, In A. Voronkov ed.,
Proceedings of the 19th International Conference on Rewriting Techniques and Applications,
(RTA ’08), Hagenberg, Austria, volume 5117 of Lecture Notes in Computer Science, pp. 202—
216, Springer-Verlag, July 2008.
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but now all the entries of vectors and matrices are arctic numbers, and operations
(®, ®) are understood in the arctic semiring.

Since the max operation is not strictly monotone in single arguments, we obtain
monotone interpretations only for the case when all function symbols are at most
unary, i.e., string rewriting. For symbols of higher arity, arctic interpretations
are weakly monotone. These cannot prove termination, but only top termination,
where rewriting steps are only applied at the root of terms. This is a restriction but
it fits with the framework of the dependency pairs method [AGOQ] that transforms
a termination problem to a top termination problem (see Section [[37).

The second extension is a generalization from arctic naturals to arctic integers,
i.e., {—o0} U Z. Arctic integers allow for example to interpret function symbols
by the predecessor function and this matches the “intrinsic” semantics of some
termination problems. There is previous work on polynomial interpretations with
negative coefficients [HMO04], where the interpretation for predecessor is also ex-
pressible using ad-hoc max operations. Using arctic integers, we obtain verified
termination proofs for 10 of the 24 rewrite systems Beerendonk/* from TPDB,
simulating while loops. Previously, they could only be handled by the method of

Bounded Increase [GTSSKOT].

All those methods were formalized in the CoLoR project and we will address those
formalizations in Section [Hin04l, [KZ08, [KW08]. We will begin by presenting
the formalization of the monotone algebras framework (Section 23] and the
general purpose library on matrices (Section[Z3.2)) and then we will look in turn on:
polynomial interpretations (Section Z3.3]), matrix interpretations (Section 2:34)
and arctic interpretations (Section 2.3.3]).

This chapter is organized as follows. We recall the theory of matrix interpreta-
tion in Section 2.Jl Then we present the development of arctic interpretations in
Section Finally, in Section we shortly introduce formalizations of those
methods in ColLoR.

2.1 Matrix Interpretations

In this section we recall the theory of matrix interpretations [EWZ08]. Matrix
interpretations can be seen as an instance of monotone algebras (Section [[3:2))
with A = N? for some fixed dimension d. Now we define interpretations and their
evaluation:

Definition 2.1. [Matrix interpretation] An (n-ary) matriz linear function (with
linear factors My, ..., M, and an absolute part ¢) is a function of the following
shape:

f(fl,...,fn) = MiZ1+ -+ M, 7, +¢

where 1, ...,%,, €€ N¢ and My, ..., M, € N¢xd,
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A matrixz F-interpretation is an interpretation assigning an n-ary matrix linear
function to every symbol f € F of arity n. o

Note that a composition of matrix linear functions yields again a matrix linear
function. This is an important property as now an interpretation of an arbitrary
term is a matrix linear function.

We fix a monotone algebra with A = N?, interpretations [-] defined as above and
we use the orders on algebra elements defined as follows:

Definition 2.2. [Matrix orders| We define orders = and > on A = N as follows:

(ul,...7ud)2(vl,...7vd) — Vl uiZNvi
(’Lbl,...,Ud)>(’Ul,...,Ud) - (ulv"'vud)Z(vlv"'vvd)/\ul >N U1
We also make a point-wise extension of the order = to matrices. For B,C € Ndxd

write:
B Z C «— Vlgi,jgd B[’L,]] Z C[’L,]] <&

One easily checks that (A, {fa}rer, >, 2) is a weakly monotone F-algebra. For an
extended weakly monotone algebra, we need strict monotonicity and for that we
need some restrictions on the interpretations. It is easy to see that we get strict
monotonicity if for every f € F with arity(f) = n we require that their upper left
elements M;[1,1] are positive for all matrices M; for i =1,...,n.

The following lemma provides a decision procedure for comparing matrix linear
interpretations, as needed for an application of Theorem

Lemma 2.3 ([HWQ6]). Let [-] be a matriz interpretation, l,r € T(F,V) and
T1,...,Ty be the variables occurring in l,r. Then the interpretations of | and r
are matriz linear functions.

[[,a] = MiZy + ...+ MpZ, +¢
[r.a] = N\ +...+ NoZp +d

where a(x;) = &; fori=1,...,n. Then we have:

e [ 21T Ech/\vi M; =z N;, and
o l> 17 & >dAY; M; = N;. O
The following two theorems are the instantiation of the monotone algebras Theo-

rem [[27] to matrix interpretations and provide the termination criterion for (rel-
ative) termination and (relative) top termination, respectively.

Theorem 2.4 ([HW06]). Let R, R',S,S" be TRSs over a signature F and [-] be
matriz interpretation. If:
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for all f € F with arity(f) =n, M;[1,1] >0 fori=1,...,n and

lZar forall rulesl -1 in R uS,
L>ar forall rulesl - r in R 8 and

SN(R/S),

then SN(RUR'/S v §'). O

So the approach for proving SN(R/S), using Theorem 2.4]is as follows (for proving
SN(R) this coincides with choosing § = ¢F):

e Fix a dimension d.

e For every symbol f € F choose a vector ¢ € N and matrices M; € N¢x4
for i = 1,...,n where n = arity(f), such that the upper left elements of all
matrices are positive.

e Check that for every rule [ — 7 in R U S we have [ Z 4 r using the criterion
from Lemma 23

e Remove all rules from R and S moreover satisfying [ > 4 7.

o If the remaining R is empty we are finished since SN(/S) trivially holds,
otherwise the process is repeated for the reduced TRSs R, S.

Theorem 2.5 ([HWO06]). Let R,R',S be TRSs over a signature F and [-] be

matriz interpretation. If:

e [ Zar forall rulesl > r inRuUS,
o [ > 71 for all rulesl — r in R’ and

e SN(Riop/S),
then SN(Riop U Riop/S)- O

For proving termination of a TRS R by dependency pairs according to Theo-
rem we have to prove SN(DP(R)top/R). For this we apply Theorem A
similar scheme as the one for full termination, sketched above, is used, with the
following difference:

e Since we only require to have a weakly monotone algebra, we may choose
arbitrary matrices M; € N¢*¢ without the restriction of positiveness of the
upper left element M;[1,1].

o For proving SN(DP (R )¢op/R) only rules from DP(R) are removed until noth-
ing remains, and all rules from R are kept.
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2.2 Arctic Interpretations

In this section we introduce the termination method of arctic interpretations. We
begin by introducing semirings in Section 2221l Then we will present the arctic
method for proving full termination (restricted to string rewriting; Section [2.2.2))
and top termination (Section [Z23]) and we will present extension of the method
to arctic integers (Section 2.2.3)).

2.2.1 Semirings

A commutative semiring [Gol99] consists of a carrier D, two designated elements
do,dy € D and two binary operations on D: @ (semiring addition) and ® (semiring
multiplication), such that both (D, dy, ®) and (D, d;, ®) are commutative monoids
and multiplication distributes over addition: Y, y .ep 2®@(y@z) = (2Qy) D (r®z).

One example of a semiring are the natural numbers with the standard operations,
i.e., natural numbers addition and multiplication. We will need the arctic semiring
(also called the maz/plus algebra) [GPIT] with carrier Ay = {—o0} U N, where
semiring addition is the max operation with neutral element —oo and semiring
multiplication is the standard plus operation with neutral element 0, so:

T@Y =y if v = —o0, r®y=—-0w ifx=-—0wory=—o0,
Ty =2x if y = —o0, r®y=x+y otherwise,

r @y = max(x,y) otherwise.

We also consider these operations for arctic numbers below zero (ie. arctic inte-
gers), that is, on the carrier Az = {—o0} U Z.

For any semiring D, we can consider the space of linear functions (square matrices)
on n-dimensional vectors over D. These functions (matrices) again form a semiring
(though a non-commutative one), and indeed we write @ and ® for its operations
as well.

A semiring is ordered [Fuc62] by > if > is a partial order compatible with the
operations: Vy y. 22y = 2@z2y@zand V, .22y = 2Q2z2yR®-=z.

The standard semiring of natural numbers is ordered by the standard > relation.
The semiring of arctic naturals and arctic integers is ordered by =, being the

reflexive closure of > defined as ... > 1 >0 > —1 > ... > —oo. Note that
standard integers with standard operations form a semiring but it is not ordered
in this sense, as we have for instance 1 > 0 but 1 #(—1) = -1 0=0=#(—1).

We remark that > is the “natural” ordering for the arctic semiring, in the following
sense: ¥ =y <= x = x@y. Since arctic addition is idempotent, some properties
of > follow easily, like the one presented below.
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Lemma 2.6. For arctic integers ay,az,b1,ba, if ay = as Aby = by, then a1 @by >
CLQ(‘BbQ anda1®b1>a2®b2. O

Arctic addition (i.e., the max operation) is not strictly monotone in single argu-
ments: we have, e.g., 5 >3 but 56 =6 3% 6 = 3P6. It is, however, “half strict”
in the following sense: a strict increase in both arguments simultaneously gives a
strict increase in the result, i.e., a3 > by and as > by implies a1 @ as > by @D bs.
There is one exception: arctic addition is obviously strict if one argument is arctic
zero, i.e., —o0. This is the motivation for introducing the following relation:

a»b < (a>b)v(a=b=—m0)
Below we present some of its properties needed later:

Lemma 2.7. For arctic integers a,aq,as, b1, ba,

1. ifal > a2 A bl > bg, then ay @bl > a9 @bg
2. ifal > az N bl = bg, then ay ®b1 > a9 ®bg

3. Zfbl > b2, then a®b1 > a®b2.

Proof. By simple case analysis (whether an element is —o0 or not) and some prop-
erties of addition and max operations over integers. O

Note that properties 2l and [ in the above lemma would not hold if we were to
replace » with >.

An arctic natural number a € Ay is called finite if a # —oo. An arctic integer
a € Ag is called positive if a > 0 (that excludes —oo and negative numbers).

Lemma 2.8. Let m,n € Ay and a,b € Az, then:

1. if m is finite and n arbitrary, then m @ n is finite.
2. if a is positive and b arbitrary, then a @ b is positive.

3. if m and n are finite, then m ® n is finite.

Proof. Direct computation. O

2.2.2 Full Arctic Termination

In this section we present a new method for proving termination of rewriting. In
Section 2Tl we briefly introduced the matrix interpretations method [EWZ08]. The
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main difference here is that we want to use the arctic semiring for the underlying
algebra operations.

We will consider vectors of arctic numbers. They form a monoid under component-
wise arctic addition. Now we will construct a monotone algebra over such arctic
vectors. So, for the algebra domain we choose vectors of arctic naturals, A%, for
some fixed dimension d. We define orders on arctic vectors and matrices by taking
a point-wise extension of the orders » and > introduced in Section 22211 We will
use the same notation, 7.e., » and >, for those lifted orders. Now we take the
vector extension of » and > as, respectively, the strict and non-strict order of the
algebra. Note that they are compatible, i.e., » - > € ». However with this choice
we do not get well-foundedness of the strict order as —oo » —oo. Therefore we will
restrict first components of vectors to finite elements (i.e., elements different than
—o0, as introduced at the end of Section [ZZT]). Effectively our algebra becomes
(N x AZE A fatrer, », ).

To express functions over arctic vectors we will use arctic matrices, for which we
define arctic addition and multiplication as usual. Square matrices form a non-
commutative semiring with these operations. F.g. the 3 x 3 identity matrix is

0 -0  —00
—00 0 —00
—00 —0 0

A square matrix M then maps a (column) vector Z to a (column) vector M ® &
and this mapping is linear: M @ (Z@Y) = M Q7 ® M ®F.

We still need to describe the class of functions used for interpretations. For that we
will use linear functions such as those used for the matrix interpretation method,
but now over some arctic domain, instead of natural numbers, and with the under-
lying operations understood in the arctic semiring; compare with Definition 211

Definition 2.9. Let A be an arctic domain (so either arctic naturals Ay or arc-
tic integers Az). An (n-ary) arctic linear function (over A) (with linear factors
My, ..., M, and an absolute part ¢) is a function of the following shape:

f@,..., %) = Mi®%1 @ ... M, Q%, ® ¢

So an arctic linear function over column vectors 771, . .., Z, € A% is described by a
column vector ¢ € A% and square matrices My, ..., M, € A?*%

We will refer to an interpretation assigning an arctic linear function for every

f € F, as an arctic F-interpretation. S

Note that for brevity from now on we will omit the semiring multiplication sign
® and use the following notation for arctic linear functions:

@, &) =M% @ ... ® M,Z, ®C
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Example 2.10. Consider a linear function:

Lo 1 —ow0) | —00 —00\ —o0
wa-(; 2)re (3 eo ()

Evaluation of this function on some exemplary arguments yields:

f(—oo 1)_1—00 —oo@—oo—oo 1@—00_—00
0 ) \~o)" " \0 —o/\ 0 0 1 )\~w o) \1
<
We will consider arctic linear functions over the domain of our algebra so we must
make sure that evaluation of those functions stays within the domain, i.e., that

the first vector component is finite. The following definition and lemma address
this issue.

Definition 2.11. An n-ary arctic linear function
f@,...,&8,) =MiZ1 @ ... ® M,,@,, ®C
over Ay is called somewhere finite if:
e C[1] is finite, or
e M;[1,1] is finite for some 1 < i < n. S

—

Lemma 2.12. Let f be an n-ary arctic linear function over Ay, Z1,...,Tn €
N x Agfl and U = f(&1,...,Zp). If [ is somewhere finite then ¥[1] is finite.

Proof.
f(@,. . @[] = (Midy)[1] @...® (M,Z,)[1]) & [1] (2.1)

Since f is somewhere finite we have, either:

e C[1] is finite, or

e for some 1 <@ < n, M;[1,1] is finite but then (M;Z;)[1] = M;[1,1]Z;[1] @
... @® M;[1,d]#;|d], which is finite by Lemma [Z8 as M;[1,1] is finite.

In either case one of the summands in Equation 2] is finite, making the whole
expression finite by Lemma O

To apply the monotone algebra theorem, Theorem [[L27 we will need to compare
arctic linear functions, i.e., we will need some properties ensuring that, for ar-
bitrary arguments, one arctic function always gives a vector that is greater (or
greater equal) than the result of application of some other arctic functions to the
same arguments.
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Definition 2.13. Let f, g be arctic linear functions over A:
f(@,..., %) = Mhidh®...® M, Z,®C
9@, .. Tn) = NMF1LD...® NoZ ®d

We will say that f is greater (resp. greater equal) than g, notation f » g (resp.
f=xg)iff:

e ¢ »d (resp. ¢ =d) and

° VlsiSn Ml > Ni (resp. Mi = Nl) <

We will justify the above definition in Lemma [2.T5], but first we need an auxiliary
result:

Lemma 2.14. Let M, N € A™? and %, € A?.

1. If M » N and & = ij then MZ > Ny.

2. If M = N and & > i then MZ > Ny.

Proof. Immediate using Lemma 2.6land the first two properties of Lemma27 [

Lemma 2.15. Let f,g be arctic linear functions over A and let T1,...,%, be
arbitrary vectors.

o If f»xg then f(&1,...,%n) » g(&1,...,%).

o If [ =g then f(&1,...,%,) = g(&1,..., 7).
Proof. We will prove only the first case — the other one is analogous.

F(E, ... Tn) = MhZ1®...® M,Zn®C
9(F1, .. Tn) = NMF1LD...® NoZ ®d

We have ¢ » d and Vi<isn M; » N; as f »x g and hence M;¥; » N;T; by
Lemma 214l So every vector summand of the evaluation of f is related by » with
a corresponding summand of g and we conclude by Lemma 2.6 [l

This finally gives us a way to compare arctic interpretations of two terms, as
required in an application of Theorem [[L271 This result is given by the following
lemma, which is the arctic counter-part of the absolute positiveness criterion used
for polynomial interpretations [HJ9§]. Also compare it with the equivalent result
for matrix interpretations, Lemma
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Lemma 2.16. Let [-] be an arctic F-interpretation, l,r € T(F,V) and x1,...,2n
be the variables occurring in l,r. The interpretations of I and r are arctic linear
functions.

[l,a] = My + ...+ M,y +¢
[r.a] = i@y +...+ NoZp +d

where a(x;) = @; fori=1,...,n. Then we have:

o If[l,a] »x[r,a] thenl >4 7.

o If[l,a] =A[r,a] thenlZ 4.
Proof. Immediate using Lemma [2.15 O

Clearly arctic linear functions are weakly monotone (because so is the max oper-
ation, i.e., arctic addition) and we establish this property in the following lemma.

Lemma 2.17. Every arctic linear function f over A is monotone with respect to
>,

=

Proof. Let x; = x. We have:

K2

f@, . T By) = MiZ1®... OMZ® .. @M%, ® ¢
(@, T ) = MUT1®. .. O M, ®... ® M7, ® C

All the summands are equal except for the one corresponding to the i’th argument,
where we have M;#; > M;#}, by Lemma 2.14] and we conclude

F@Ey o B ) 2 f(F T )

by Lemma O

However, to obtain an extended weakly monotone algebra, and prove full termi-
nation using it, we need strict monotonicity. As remarked in Section 2211 arctic
addition is not strictly monotone. Hence functions introduced in Definition
are strictly monotone only if the @ operation is essentially redundant; for instance
it is immediately lost for functions of more than one argument. This essentially
restricts our method to unary rewriting [TZGSKOS]; a proper extension of string
rewriting. As such, it was described in [Wal07a] and was applied by Matchbox in
the 2007 termination competition. The following theorem provides a termination
criterion for such systems. In the next section we will look at the top termination
problems, which will allow us to lift this restriction and consider arbitrary TRSs.

Theorem 2.18. Let R,R',S,S" be TRSs over a signature F and [-] be an arctic
F-interpretation over Ay. If:
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e cvery function symbol has arity at most 1,
e cvery constant a € F is interpreted by [a] = ¢ with C[1] finite,

o cvery unary symbol s € F is interpreted by [s(Z)] = M ® & with M][1,1]
finite,

o [{] = [r] for every rule t > reRUS,
o [(] »x [r] for every rule { > reR uS" and

e SN(R/S).
Then SN(RuUR'/Su ).

Proof. By Theorem [[:227h. Note that, by Lemma[ZT5] [¢] =, [r] (resp. [£] »x [r])
implies [¢] >, [r] (vesp. [(] »4 [r]). So we only need to show that (Nx A%, [-], »
, =) is an extended monotone algebra. The order » is well-founded on this domain
as with every decrease we get a decrease in the first component of the vector, which
belongs to N. Arctic functions are always weakly monotone by Lemma 217 and
it is an easy observation that, due to the first three premises of this theorem, the
interpretations that we allow here are strictly monotone. Finally we stay within
the domain by Lemma [Z12] as the interpretation functions [f] that we restrict to
are somewhere finite (again by the first three assumptions). O

We now present an example illustrating this theorem.

Example 2.19. The relative termination problem SRS/Waldmann/r2 is
{cac — ¢, aca—al /e—cl}

In the 2007 termination competition, it was solved by Jambox [End05] via “self
labeling” and by Matchbox via essentially the following arctic proof.

We use the following arctic interpretation

0 0 —o 0 —0  —00
[a]() =10 0 —owo |z [c](@) = | -0 - 0 |z
1 1 0 —00 0 —00

It is immediate that [c] is a permutation (it swaps the second and third component
of its argument vector), so [c]? = [c]* is the identity and we have [e] = [c]*. A
short calculation shows that [a] is idempotent, so [a] = [a']. We compute

0 —oo 0 1 1 0 0 0 —oo
[cac](@)=|1 0 1]|&[acal@=|[1 1 o|Z[a'|@=[0 0 —owo|Z
0 —oo 0 2 2 1 1 1 0
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therefore [cac](Z) =i [€](¥) and [aca](Z) »\ [a](F). Note also that all the top
left entries of matrices are finite. This allows us to remove the strict rule aca — a*
using Theorem[2.18. The remaining strict rule can be removed by counting letters
a. <

2.2.3 Arctic Top Termination

As explained earlier, there are no strictly monotone, linear arctic functions of
more than one argument. Therefore in this section we change our attention from
full termination to top termination problems, where only weak monotonicity is
required. This is not a very severe restriction as it fits with the widely used de-
pendency pair method that replaces a full termination problem with an equivalent
top termination problem, see Section [[L3.7]

The monotone algebra that we are going to use is the same as in Section 2Z2.2]
i.e., (N x A%fl, {fa}ser,»,>). However now for proving top termination we will
employ the second part of Theorem [[L27 so we only need a monotone algebra,
instead of an extended monotone algebra. This allows us to consider arbitrary
TRSs, as without the requirement of strict monotonicity we can allow arctic linear
functions of more than one argument. The following theorem allows us to prove
top termination in this setting:

Theorem 2.20. Let R,R',S be TRSs over a signature F and [-] be an arctic
F-interpretation over Ay. If:

o for each f € F, [f] is somewhere finite,

o [(] = [r] for every rule l > reR LS,

o [(] »x [r] for every rule { — r e R’ and

® SN(Riop/S).
Then SN(Riop U Riop/S)-

Proof. By Theorem [[27b. By the same argument as in Theorem [ZI8 (N x
Agfl, [-],», =) is a weakly monotone algebra. So we only need to show that the
evaluation stays within the algebra domain which follows from Lemma and
the first assumption. O

We will illustrate this theorem on an example now.
Example 2.21. Consider the rewriting system secret05/tpa2:
(1) £(s(x),y) = £(p(s(z) —y),p(y —s(z))) )  pls(x) —»=
(2) f(z,s(y)) = f(p(x —s(y), p(s(y) —x))  (4) r=0—u
(5) s(z) —s(y) »z—y
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It was solved in the 2007 competition by AProVE [GTSKFO0J] using narrowing
followed by polynomial interpretations and by TyTy [KSZM] using polynomial in-
terpretations with negative constants.

After the DP transformation 9 dependency pairs can be removed using polynomial
interpretations leaving the essential two dependency pairs:

(1%) £ (s(2), y) — £F(p(s(x) — ), ply — s(2)))
(2%) £ (a,5(y)) = £ (p(z = 5()), P(s(y) — )

So now, according to the dependency pair Theorem [I.49, we need to consider the
relative top termination problem SN(Riop/S), where R = {(1¥),(2%)} and S =
{(1),(2),(3),(4),(5)}. For that consider the following arctic interpretation

[f“(:w)1=<:z j)f@(_io _;) 7o (_;) [01=®
e-n=(o )ee (S ) (o) wer=(p Z2)ee ()
1@, )] = (g _‘10>f@ (3 _°w> 7o <_°w> [5(2)] = (2 ‘1)>x@ (g)

which is somewhere finite and removes the second dependency pair:

[F(7, ()] = (‘OO ‘“) F® ( P ) T < ’ )
—00 —00 —00 —0 —00
[ (p(@ — (), p(s(7) — )] = (jz :z) F® (_OOO _OOO> T <_OOO>

It is also weakly compatible with all the rules. The remaining dependency pair can
be removed by a standard matriz interpretation of dimension two. <

2.2.4 ...Below Zero

In this section we will boldly go below zero: we extend the domain of matrix and
vector coefficients from Ay (arctic naturals) to Ay (arctic integers). This allows
to interpret some function symbols by the “predecessor” function z — x — 1, and
so represents their “intrinsic” semantics. This is the same motivation as the one
for allowing polynomial interpretations with negative coefficients [HMO04].

We need to be careful though, as the relation » on vectors of arctic integers is
not well-founded. We will solve it in a similar way as in Sections 2.2.2] and 2.2.3]
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that is by restricting the first component of the vectors in our domain to nat-
ural numbers, which restores well-foundedness. So we are working in the (N x
ALY A fa}rer, », =) algebra.

Again we need to make sure that we do not go outside of the domain, i.e., the first
vector component needs to be positive. This is ensured by the following property:

Definition 2.22. An n-ary arctic linear function
f(@,... %) = Mi®%1 @ ... M, ®%, ®C
over Agz is called absolutely positive if ¢[1] is positive. o

—

Lemma 2.23. Let f be an n-ary arctic linear function over Az, ¥1,...,Z, €
N x .A%f1 and U = f(&1,...,Z,). If [ is absolutely positive then ¥]1] € N.
Proof. Immediate, as ¢[1] positive by the definition of absolutely positive function.

T[] = f(&1,...,%)[1] = max(e[1],...) = 0 O

We can now present the main theorem of this section.

Theorem 2.24. Let R,R',S be TRSs over a signature F and [-] be an arctic
F-interpretation over Ag. If:

for each f e F, [f] is absolutely positive,

[(] = [r] for every rule { > re R US,

] >y [r] for every rule £ — r € R' and
[€] »x [r] f Y

SN(Rtop/S)-

Then SN(Riop U Riop/S)-

Proof. By Theorem [[27b. We proved that (N x Agfl, {fa}rer,», =) is a weakly
monotone algebra in Theorem — now the domain is extended from arctic
naturals to arctic integers but all the properties carry over easily. The fact that
we respect the algebra domain is ensured by the first property and Lemma@223 O

We now illustrate this theorem on an example.

Example 2.25. Let us consider the Beerendonk/2.trs TRS from the TPDB [TPD],

consisting of the following six rules:

cond(true, z,y) — cond(gr(z,y),p(x),s(y))  gr(s(z),s(y)) — gr(z,y)
gr(0,x) — false gr(s(z),0) — true
p(0) — 0 p(s(x)) —

This is a straightforward encoding of the following imperative program
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while x > y do (x, y) := (x-1, y+1);

with x,y € N and the predecessor of x, i.e., x — 1, defined on this domain, so
0—1=0. This program is obviously terminating. However ils encoding as the
above TRS posed a serious challenge for the tools in the termination competition.
Only AProVE could deal with this system (as well as a number of others coming
from such transformations from imperative programs) using a specialized bounded
increase method [GTSSKOT]. We will now show a termination proof for this system

using the arctic below zero interpretation.

We begin by applying the dependency pair method and obtaining four dependency
pairs, three of which can be easily removed (for instance using standard matriz or
polynomial interpretations) leaving the following single dependency pair:

cond*(true, z,y) — cond(gr(z,y), p(x),s(y))

Now, consider the following arctic matriz interpretation of dimension 1, so a de-
generated case where arctic vectors and matrices simply become arctic numbers:

[cond?(7, 7. )] = (0)7 @ (0)7@ (—0)7@(0)  [0] = (0)
[cond(#, 7. 2)] = (0)F® (2)§ @ (—0)7@ (0) [false] = (0)
[x(@ )] = (~)F @ (—0)7 @ (0) [true] = (2)
[b(@)] = (-1)7® (0) [s(@)] = ()7 (3)

This interpretation is absolutely positive, gives us a decrease for the dependency
pasr

[cond*(true, &, 7)] = ( 0)T® (—0)7® (2)
[cond® (gr (7, §), (&), 5(§))] = (~1)7 ® (—0)§ @ (0)
and all the original rules are oriented weakly. <

We discuss a variant that looks more liberal, but turns out to be equivalent to the
one given here. We cannot allow Z x A%_l for the domain, because it is not well-
founded for ». So we can restrict the admissible range of negative values by some
bound ¢ > —o0, and use the domain Azs. x A%_l where Az>.:={be Az | b > c}.
Now to ensure that we stay within this domain we would demand that the first
position of the constant vector of every interpretation is greater or equal than c.

Note however that this ¢ can be fixed to 0 without any loss of generality as every
interpretation using lower values in those positions can be “shifted” upwards.
For any interpretation [-] and arctic number d construct an interpretation [-]* by
[t] := [t] ® d. This is obtained by going from [f] = M1Z1 @ ... MyZy @ € to
[f] = MiZ1 @ ... M@, @ ¢®d. (A linear function with absolute part can be
scaled by scaling the absolute part.)
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2.2.5 Implementation

The implementation in Matchbox follows the scheme described in [EWZ08|. The
constraint problem for the arctic interpretation is translated to a constraint prob-

lem for matrices, for arctic numbers and, finally, for Boolean variables. This is
then solved by Minisat [ES03].

An arctic number is represented by a pair a = (b;vo,v1,...,v,) where b is a
Boolean value and vy, ..., v, is a sequence of Booleans (all numbers have fixed
bit-width). If b is 1, then a represents —oo, if b is 0, then a represents the binary
value of vg, ..., v,.

To represent integers, we use two’s complement representation, i.e., the most sig-
nificant bit is the “sign bit”.

Note that implementation of max/plus operation is less expensive than standard
plus/times: with a binary representation both max and plus can be computed (en-
coded) with a linear size formula (whereas a naive implementation of the standard
multiplication requires quadratic size and asymptotically better schemes do not
pay off for small bit widths).

It is useful to require the following, for each arctic number a = (b,v): if the
infinity bit b is set, then v = 0. Then (b,v) @ (V',v") = (b A b/, max(v,v")). For
(b,v) ® (V/,v") we compute ¢ =b vV, u = (ug,...,u,) = v+ and the result is
(¢;—C A gy ..., —C A Uy).

To represent arctic integers, we use a similar convention: if the infinity flag b is
set, we require that the number v represents the lowest value of its range.

The following table lists the numbers of certified proofs that we obtain with the
DP transformation (without the SCC decomposition, see below) and the following
matrix methods: (s)tandard, (a)rctic, below (z)ero. For comparison, we give the
scores of the winners in a corresponding category of the 2007 termination compe-
tition, including, where applicable, the winner of the certified division (as all our
proofs are certified). It is worth noting here that the emphasis of the arctic method
is not to provide termination proofs where none were known before, but rather to
provide certified (and often conceptually simpler) termination proofs where only
uncertified proofs were available up to now.

Runs were executed on a single core of an Intel X5365 processor running at 3GHz.
All proofs are available for inspection at the Matchbox web page [Wal04]. In all
cases we used standard matrices of dimension 1 and 2 to remove rules before the
DP transformation, and then matrix dimensions d from 1 up; with numbers of bit
width 3, and a timeout of 1 + d? seconds for each individual attempt.

It should be noted that TPA 2007 additionally used (non-linear) polynomial in-
terpretations, and that Matchbox 2007 also used additional methods (e.g., RFC
match-bounds) and was running uncertified.
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problem time number of proofs 2007 winner
set found by the method overall certified
S sa Sz saz
975 TRS | 1 min 361 | 376 | 388 | 389 723 354
10 min 365 | 381 | 393 | 394 AProVE TPA
517 SRS 1 min 178 | 312 | 298 | 320 337 N/A
10 min 185 | 349 | 323 | 354 Matchbox

Table 2.1 Performance of the matrix interpretation methods.

Here, we count only verified proofs, so we are missing about 3 to 5 proofs where
Coq does not finish in reasonable time. (This happened—for exactly the same
problems—also in 2007.)

For a SRS R we consider reverse(R) = {reverse(l) — reverse(r) | (I — r) € R}.
It is obvious that this transformation preserves termination both ways. Half of
the allotted time is spent for each of R and reverse(R). This increases the score
considerably (by about one third).

The dependency pairs transformation is often combined with a decomposition
of the resulting top termination problem into independent subproblems; analyz-
ing strongly connected components of the estimated dependency graph [GAOQ2].
Currently, CoLoR provides only a simple graph approximation by top symbols of
dependency pairs, but at the moment it is not efficient. Our current implementa-
tion therefore does not do decomposition. However, with only this simple graph
approximation, this does not decrease power: note that an interpretation that
removes rules from a maximal component in the DP graph (with no incoming
arrows) can be extended to the complete graph by assigning constant zero to all
top symbols not occurring in this component.

2.2.6 Discussion

Arctic naturals form a sub-semiring of arctic integers. So the question comes up
whether Theorem subsumes Theorem Note that the prerequisites for
both theorems are incomparable. Still there might be a method to construct from
a somewhere-finite interpretation (above zero) an equivalent absolutely positive
interpretation (below zero). We are not aware of any. Experience with implemen-
tation shows that it is useful to have both methods, especially for string rewriting.
Naturals are easier to handle than integers because they do not require signed
arithmetics. So typically we can increase the bit width or the matrix dimension
for naturals. Our implementation finds several proofs according to Theorem 220
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where it fails to find a proof according to Theorem [Z.24] and vice versa.

It is interesting to ask whether the preconditions of Theorems 2 I8 20224 can
be weakened. We discussed one variant at the end of Section 2.2.4l In general,
a linear interpretation [-] with coefficients in Ay (Az respectively) is admissible
for a termination proof if for each ground term ¢, the value [¢] is finite (positive,
respectively). This is in fact a reachability problem for weighted (tree) automata.
It is decidable for interpretations on arctic naturals, but it is undecidable for
arctic integers (follows from a result of Krob [Kro92] on tropical word automata).
In our setting, we do not guess an interpretation and then decide whether it is
admissible. Rather, we have to formulate the decision algorithm as part of the
constraint system for the interpretation. Therefore we chose sharper conditions
on interpretations that imply finiteness (positiveness, respectively) and have an
easy constraint encoding.

Another question is the relation of the standard matrix method to the arctic ma-
trix method(s). Performance of our implementation suggests that neither method
subsumes the other, but this may well be a problem of computing resources, as we
hardly reach matrix dimension 5 and bit width 3.

As for the relation to other termination methods (e.g., path orderings), the only
information we have is that arctic (and other) matrix methods can do non-simple
termination, while path orders and polynomial interpretations cannot; and on
the other hand, the arctic matrix method implies a linear bound on derivational
complexity, which is easily surpassed by path orders and other interpretations.

Max /plus polynomials have been used by Amadio [Ama05| as quasi-interpretations
(i.e., functions are weakly monotone), to bound the space complexity of deriva-
tions. Proving termination directly was not intended.

2.3 Certification with CoLoR

In this section we will present the formalizations of the interpretation based ter-
mination methods developed in this chapter. The formalizations are developed
within the CoLoR project, see Section [[.4] for introduction to CoLoR.

The formalization of monotone algebras, the basic framework for interpretation
based methods introduced in Section [[L3.2] is presented in Section 2311 To deal
with matrices we had to develop a Coq library of matrices; this is the subject of
Section Then we present instantiation of the monotone algebras framework
to the methods of: polynomial interpretations (Section 2.3:3)), matrix interpreta-
tions (Section 2234 and two variants of arctic interpretations (Section 2Z3.3]).
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2.3.1 Monotone Algebras

While doing the formalization of the matrix interpretations method we faced a
number of design choices. The essential question was whether to simply formalize
matrix interpretations as they are or to try to make the development as general
as possible, such that hopefully (parts of) it could be reused for other techniques
and also extensions to the technique itself would be feasible. We opted for the
latter. Hence we formalized monotone algebras in their full generality and only
later instantiated them to matrix interpretations; as in the theory presented in
Section 21 This design choice paid off as this framework of monotone algebras
was immediately used for polynomial interpretation and, later on, for arctic inter-
pretations.

To achieve such a generic formalization we found the module mechanism of Coq
especially useful. It allows for mass abstraction by encapsulating a number of
declarations and definitions in modules. Such modules can be parameterized by
means of functors, that is functions from modules to modules. For instance we
formalized monotone algebras in Coq as a functor, which takes as an argument
a structure describing a weakly monotone F-algebra instance, consisting of the
components listed in Definition

For the formalization there is however one more thing that we need in order to be
able to deal with concrete examples. For an application of Theorem we need
to check for arbitrary terms [ and r whether [ 2 4 7 and [ >4 r. Our first approach
was to require the relations > 4 and 2 4 to be decidable, that is to require a proof
that for two arbitrary elements the relation between them either holds or not.
Such decidability results proven in the constructive logic of Coq provide a decision
procedure. By making proofs transparent and hence allowing to reduce associated
proof terms, one effectively obtains an algorithm for checking whether two given
terms can be oriented with the given relation.

This approach however has one limitation: we require a decidability proof, so in-
deed the relations in question must be decidable. This is the case for matrix inter-
pretations due to the characterization of Lemma 2.3 but it is not so for instance for
non-linear polynomial interpretations. Therefore to make our development more
general we actually require two decidable relations > and > such that > S >4
and > € > 4 and those relations are used in application of Theorem [[.27 to check
whether a rule can be (weakly) oriented. The fact that they are subsets of >4
and = 4 ensures soundness of this approach. But there is no completeness require-
ment allowing to use some heuristics in cases where the intended relations are not
decidable, such as in case of polynomial interpretations.

To give a feeling of how such theorems are stated in the theorem prover we present
the Coq equivalent of Theorem [L.27h.

Lemma ma_relative_termination:
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let S_gt := partition part_succ S in
let S_ge := partition part_succeq S in
let R_gt := partition part_succ R in
let R_ge := partition part_succeq R in

monotone I succ ->

snd R_ge = nil >

snd S_ge = nil ->

WF (red_mod (snd S_gt) (snd R_gt)) —->
WF (red_mod S R).

Let us try to explain the components of this statement. To begin with partition
P 1is a function that given a predicate P and a list 1, splits this list into two parts
and returns them as a pair 11, 12, such that P holds for every element of the list
11 and does not hold for every element of 12.

Now part_succ and part_succeq are predicates for the partition function, cor-
responding to the relations succ (>) and succeq () lifted to terms (resultin,

in relations >4 and = 4). We demand succ to be monotone, monotone I succﬂg.
Now we require the second component of the pair R_ge to be empty, hence all
the rules of R must be weakly oriented. Finally this theorem states that we can
conclude WF (red R) if, on top of all the other requirements that we mentioned,
we can prove WF (red (snd R_gt)) so of the TRS consisting of the rules from
R that could not be oriented strictly. Stating this problem in such “operational”
style allows us to easily apply it for concrete instances of termination problems.

The monotone algebra module also contains Coq tactics allowing to deal with
proving termination for concrete examples. This means that for using a monotone
algebra approach one only needs to provide a monotone algebra instance and as a
result one obtains all the results and a full machinery for proving termination. In
the following sections we will sketch how we instantiated monotone algebras for
the following methods:

e polynomial interpretations, Section [2.3.3]
e matrix interpretations, Section 2.3.4], and

e two variants of arctic interpretations, Section 2.3.5]

2.3.2 Matrices

To begin with, the sole fact that we had to formalize matrices may be surprising —
one would expect such a general notion to be readily available in a well-established

IThis is a requirement of extended weakly monotone algebras, however in the formalization
we decided to define only weakly monotone algebras and explicitly require strict monotonicity in
places where extended weakly monotone algebras are expected.
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theorem prover. But it is not present in the Coq standard library. Moreover at the
time of this formalization we could find only one Coq development where matrices
were used: the contribution by Nicolas Magaud [Mag03], where he proves ring
properties of square matrices. We decided not to use this formalization for the
reasons that we discuss at the end of this section.

To implement matrices we used a generic approach by allowing entries in the
matrices to be arbitrary elements from some semiring structure. For that firstly
we expressed a semiring as a module type. Then we defined matrices as a functor
taking as its argument such a semiring structure and as a result producing the
structure of matrices of arbitrary size with entries from the semiring domain.

Internally we represent matrices as vectors of vectors. Vectors are defined in the
standard library of Coq (Coq.Bool.BVector) with the type vector A nrepresenting
a vector of n elements of type A. Apart from this definition the Coq standard
library provides only few basic properties and operations on this type. But on
the other hand, building on that, the CoLoR project provides a rich set of results
about vectors that were further extended in the course of this development. Here
we informally define some of these functions, which we will need later on in the
presentation:

Vuth [a1;...an] 1 = a;
Viold left f[a1;...an]b= fai (f...(fand)...)
Vmap f [a1;...a,] =[fa1;... fan]
Vmap2 f [a1;...an] [b1;...bn] = [fa1b1;... fanby]

The ability to reuse those results was our main motivation to represent matrices
in the following way:

Definition matrix (m n : nat) : matrix m n := vector (vector A n) m.

Then a number of operations on matrices was defined and some of its properties
proven. The library is by no means complete and contains little more than the
results needed for certification of matrix based methods presented in this chapter.
The provided operations include: matrix creation (given matrix size and a function
providing values for all matrix entries), several accessor functions to retrieve ma-
trix elements, columns and rows, conversions from vectors to 1-row and 1-column
matrices and few standard matrix operations such as transposition, addition and
multiplication. To show how reusing results about vectors substantially eased our
task we present below the definition of multiplication.

First we need a few auxiliary functions on matrices. We begin with three accessor
functions: get_row, get_col and get_elem to retrieve, respectively, the i’th row,
the j’th column and the element at position (i, j) of a given matrixE

?Note that variables m, n, i and j below do not have type annotations as their types can be
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Definition get_row m n (M : matrix m n) i (ip : i < m)

Definition get_col mn (M : matrix mn) j (ip : j < n)
Vmap (fun v => Vnth v ip) M.

Definition get_elem mn (M : matrix mn) i j (ip : i <m) (Jp : j < mn) :=
Vnth (get_row M ip) jp.

Vnth M ip.

Note that those functions are partial as indexes i and j must be within the bound-
aries of a matrix M. In Coq all functions are total and to deal with this we use
additional arguments for those functions, the so-called domain predicates, which
ensure that the arguments are within the domain of the function.

Next we introduce the mat_build function, which constructs a m x n matrix from
two natural numbers m and n, and a function £ which, given a matrix position,
returns the value of a matrix element to be placed at that position. Again, this
function £ is partial as it is defined only for coordinates 4, j such that 0 < i <m
and 0 < j < nf Defining function mat_build explicitly is not an easy task due
to the presence of domain predicates and dependent types. Therefore we use Cog
proving capabilities to prove existence of such a function using its specification

Definition mat_build_spec m n (gen : forall i j, i <m -> j < n -> A),
{M: matrix mn | forall i j (ip : i <m) (jp : j < mn),
get_elem M ip jp = gen i j ip jp }.
Proof. [...] Defined.

and we extract the computational content from the above constructive proof to
obtain the required mat_build function.

Having all those auxiliary, general purpose functions on vectors and matrices defin-
ing matrix multiplication is fairly straightforward. First we introduce a dot prod-
uct of two vectors as:

Definition dot_product (n : nat) (1 r : vector A n) : vector A n :=
Vfold_left Aplus A0 (Vmap2 Amult 1 r).

where A0 is the zero element of the domain (the additive identity of the semiring)
and Aplus is the addition. Then multiplication becomes:

Definition mat_mult m n p (L : matrix m n) (R : matrix n p) :=
mat_build (fun i j ip jp => dot_product (get_row L ip) (get_col R jp)).

As can be seen from this example abstracting away natural operations on vectors
and matrices and then using them for more complex constructs has big advantages.

inferred by Coq and hence can be omitted. In this case all those variables range over natural
numbers as a careful reader can easily check.

3We index matrix rows and columns starting from 0.

4Please note that we are using the Coq mechanism of implicit arguments to skip arguments
that can be inferred by Coq due to type dependencies. So for the function get_elem M i j ip
jp arguments i and j can be inferred from the domain predicates ip and jp.
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Not only the definitions became significantly simpler but also reasoning about
them, as one can first prove properties about such auxiliary functions and then
use them to reason about more complex constructs.

In fact this was the main reason against using the development by Nicolas Magaud,
mentioned at the beginning of this section. It provides nice results by proving the
ring properties for square matrices. But the fact that it is stand-alone and does
not provide this kind of separation as mentioned above, made it difficult to use
in our setting. For instance a function for matrix addition is realized there by
a relatively complex Fixpoint construct (which is 16 lines long), whereas we can
simply write

Definition vec_plus n (L R : vector A n) := Vmap2 Aplus L R.
Definition mat_plus m n (L R : matrix m n) := Vmap2 (@vec_plus n) L R.

and use all CoLoR properties of Vmap2 to prove properties of matrix addition. Sim-
ilarly other operations could be expressed easily and concisely by using operations
and properties of vectors available in ColLoR.

2.3.3 Polynomial Interpretations

Polynomial interpretations were contributed to the ColLoR library by Sébastien
Hinderer [Hin04]. By using his results we could easily construct a monotone al-
gebra instance corresponding to polynomial interpretations method and use the
monotone algebras machinery for proving termination with this method. This has
the following advantages:

e Before, it was not possible to prove termination step-wise. So in order to
prove termination one had to find a polynomial interpretation such that all
the rules could be oriented strictly and then one could conclude termination
of the whole system. The approach of monotone algebras on the other hand
allows to orient strictly only some rules and, provided that the remaining
rules can be weakly oriented, those strict rules can be removed and one may
continue with proving termination for this simpler system. This brings a big
improvement in the proving power of the method and corresponds to the
way it is used in automatic termination provers.

e The development of polynomial interpretations supported only termination,
SN(R). The setting of monotone algebras supports also relative termina-
tion, SN(R/S), and relative-top termination, SN(Rtcp/S). So by expressing
polynomial interpretations as an instance of the monotone algebra approach
we obtained the support for treating those more general problems for free.

Instantiating the monotone algebra results for the method of polynomial interpre-
tations was straightforward. We achieved it in mere 117 sparse lines of code and



54 Chapter 2 Matrix & Arctic Interpretations

with very minor modifications to the development of Sébastien Hinderer (essen-
tially to get the relation for orienting rules weakly).

2.3.4 Matrix Interpretations

Now we will explain how monotone algebras are instantiated for the matrix inter-
pretation method, so we will develop the Coq counter-part of the theory described
in Section 2.1l First we introduce a data type representing a matrix interpretation
of a function symbol:

Variables (A : Set) (matrix : nat -> nat -> Set)
(Sig : Signature) (f : symbol Sig) (dim : nat).

Record matrixInt (argCnt : nat) : Type := mkMatrixInt
{

const : vector A dim;
args : vector (matrix dim dim) argCnt

}.

So matrixInt n is a type of matrix interpretation for a function symbol of arity
n, defined as a record with two fields: const being a constant vector of the inter-
pretation of size dim and args representing coeflicients for the arguments with a
dimxdim matrix per argument. Comparing with Definition 2.1 const represents
the fvector and args the list of matrices Fy,---, F,.

Now we enclose all the parameters required for the application of Theorem [2.4] in
a module type:

Module Type TMatrixInt.

Parameter sig : Signature.

Parameter dim : nat.

Parameter dim_pos : dim > O.

Parameter trsInt : forall f: sig, matrixInt nat nat_matrix dim (arity ).
End TMatrixInt.

So we take a signature sig, dimension for matrices (dim; d in Section 1), a proof
that dimension is positive (dim_pos) and interpretations for all function symbols
of the signature, with respective arities (trsInt).

Given those parameters we construct the respective monotone algebra. The most
difficult property was actually decidability of algebra relations > and 2 lifted to
terms. This corresponds to proving the ‘<=’ parts of Lemma Note that we
did not prove the ‘=’ parts of that theorem, which state completeness of this
characterization and which are not needed for the correctness of the approach.
Proving the ‘<’ part required performing linearization of the computation of a
matrix interpretation, such as in Lemma 2.3l Then we proved that evaluating this
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MatrixBasedInt ‘

MatrixInt ArcticBasedInt

L

ArcticInt ArcticBZInt

Figure 2.1 Hierarchy of different matrix-based methods in ColLoR.

linearized expression leads to the same result as simply evaluating this expression
without any simplifications beforehand. Performing those two steps in Coq requires
a substantial effort. For more details we refer to [KZ08].

2.3.5 Arctic Interpretations

The formalization of arctic interpretations was developed one year after the matrix
interpretations. It turned out that a big part of the latter formalization, described
in the previous sections, could be reused for arctic interpretations.

The framework of monotone algebras was used without any changes at all. Vec-
tors and matrices were already formalized for arbitrary semirings, however all
the results involving orders were developed for the fixed usual orders on natural
numbers, as used in the matrix interpretations method. So the first step in the
certification of arctic interpretations was to generalize the semiring structure to a
semiring equipped with two orders (>, >) and to adequately generalize results on
vectors and matrices. Then the arctic semiring was developed in this setting.

As for the technique itself it has a lot in common with the technique of matrix in-
terpretations. Therefore the previous formalization of matrix interpretations was
re-factored and the common parts were extracted to a module MatrixBasedInt,
which was then specialized to the matrix interpretation method (MatrixInt) and
to a basis for arctic based methods (ArcticBasedInt), which was narrowed down
to the methods of arctic interpretations (ArcticInt) and arctic below-zero inter-
pretations (ArcticBZInt). This hierarchy is depicted in Figure 211

The parameters that must be provided to prove termination with arctic interpre-
tations are enclosed in the following module:

Module Type TArcticInt.
Parameter sig : Signature.
Parameter dim : nat.
Parameter dim_pos : dim > O.
Parameter trsInt : forall f: sig, matrixInt AN matrix_AN dim (arity f).
Parameter trsIntOk : forall f: sig, somewhere_finite (trsInt f).
End TArcticInt.
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This module is the same as for matrix interpretations except that the domain
of the interpretations (trsInt) is different and there is an additional component
ensuring that the interpretations are somewhere finite. The module for the arctic
below-zero method is analogous; again the domain is changed appropriately and
the interpretations are required to be absolute positive.

Considering the extension of the proof format in Rainbow it was minimal. The
format for arctic interpretations is the same as that for matrix interpretations,
except that:

e it indicates which matrix-based method is to be used, denoted by different
XML tags,

e the entries of vectors and matrices are from a different domain.

2.4 Conclusions

In this chapter we presented the arctic interpretation method for proving ter-
mination of term rewriting. It is based on the matrix interpretation method
[EWZ08] where the usual plus/times operations on N are generalized to an arbi-
trary semiring, in this case instantiated by the arctic semiring (max/plus algebra)
on {—oo} UN.

We also generalized this to arctic integers. This generalization allowed us to solve
10 of Beerendonk/* examples that are difficult to prove terminating and thus far
could only be solved by AProVE with the Bounded Increase technique [GTSSK07],
dedicated to such class of problems coming from transformations from while loops.

Our presentation of the theory is accompanied by a formalization in the Coq proof
assistant. Both matrix and arctic interpretations have been formalized and by
becoming part of the CoLoR project allow us to formally verify termination proofs
involving those methods. With this contribution CoLoR can now certify more than
half of the systems that could be proven terminating in the 2007 competition in
term rewriting and essentially all (and some more) systems in the string rewriting
category.

This allows us to fully automatically certify termination of non-trivial rewrite
systems, such as the Zantema/z086 SRS from the TPDB [TPD]:

aa—cb bb —ca cc—ba

Until recently termination of this innocent looking system was an open problem
[RTAL Problem 104] and now not only it can be automatically proven terminating
by termination tools but also that result can be warranted by Coq.
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The natural way of continuing work on certification of termination is to formalize
further termination techniques. Although matrix interpretations provide a very
powerful base ordering, they do not subsume other orders. Consider for instance

the following system:
f(s(x),a) — f(x,f(s(x), b))

which can be easily proven terminating with the lexicographic path order (LPO).
By a simple argument one can show that matrix interpretations are not applicable
here. Even more advantageous would be a formalization of the dependency pair
framework [GTSK04], a modular, powerful approach to proving termination, em-
ployed by most, if not all, successful modern termination provers. This is on-going
work.






Chapter 3

Semantic Labeling over
Infinite Models

Semantic labeling is a transformational technique for proving termination of TRSs
[Zan98, [Zan03]. We introduced it in Section L35l In this chapter we will look in
more detail into automation of this method for infinite models.

Automation of semantic labeling can be done straightforwardly if the models con-
tain only finitely many elements, typically 2 or 3. For instance, this technique
is used by the tools AProVE [GTSKF04], Jambox[End05], TORPA [Zan04] and
TeParLa. However, if we consider labeling with infinite sets of labels, like natural
numbers, some complications show up. The main difficulty is the fact that then
the labeled system typically has an infinite signature and contains infinitely many
rules. For that reason such variants of semantic labeling were regarded as not
feasible for automation and were not used in termination tools before 2005.

A first approach to proving termination with semantic labeling over an infinite
model of natural numbers was proposed in [KZ06]. A method for automation
of the search for labelings and for RPO proofs for labeled, infinite systems was
presented there.

This approach has later been extended and generalized in [KMOQ7], practically
subsuming the approach of [KZ06| but we present it here for historical reasons as

This chapter is based on: A. Koprowski, H. Zantema, Automation of Recursive Path Ordering
for Infinite Labelled Rewrite Systems, In U. Furbach and N. Shankar eds., Proceedings of the
3rd International Joint Conference on Automated Reasoning (IJCAR ’06), Seattle, WA, USA,
volume 4130 of Lecture Notes in Computer Science, pp. 332-346, Springer-Verlag, August 2006
and A. Koprowski, A. Middeldorp, Predictive Labeling with Dependency Pairs using SAT, In F.
Pfenning ed., Proceedings of the 21st Conference on Automated Deduction (CADE ’07), Bremen,
Germany, volume 4603 of Lecture Notes in Computer Science, pp. 410-425, Springer-Verlag, July
2007.
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it was the first technique to yield an automatic termination proof for the following
system.

Example 3.1. Consider the following TRS:

(1) AMz)oy = Azo(lx(yol))
(2) (wxy)oz—(roz)x(yoz)
(3) (woy)oz—zo(yos)

(4) idoxr —

(5) loid — 1

(6) 10 id > 1

(7) lo(z*xy)—=x

(8) to(wvy)—y

This system, named 0o in [CHRIZ] and essentially equivalent to system SUBST
in [HL86Y describes the process of substitution in the combinatory categorical logic
with ‘A’ corresponding to currying, ‘o’ to composition, id’ to identity, *’to pairing
and ‘17 and 7’ to projections.

Termination of this system (implying termination of the process of explicit substi-
tution in un-typed A\-calculus) is non-trivial and was the main result of [CHR92]
and [HL86Y]. However in [Zan93, [Zan03)] a very simple proof was given using only
semantic labeling with natural numbers followed by an application of RPO on the
transformed system. <

Ability to reproduce this proof completely automatically (and making this ap-
proach fruitful in general) was the main motivation of the work in [KZ06]. The
method was implemented in TPA. We will present this approach in Section Bl

The work of [KZ06] was followed by the development of predictive labeling [HMOG],
introduced in Section[[Z3.6] which aims at improving semantic labeling by weaken-
ing the quasi-model constraints — it allows to consider only usable rules instead of
all rules of the rewrite system under consideration when checking the quasi-model
condition and it requires semantics only for the relevant part of the signature.

This was the starting point for [KMQO7] which extends the approach of [KZ06] in a
number of ways. Firstly the power of predictive labeling is enhanced by incorpo-
ration into the framework of dependency pairs [AGOQ, [GTSKO04]; see Section [[.3.7]
for introduction to dependency pairs. This requires an extension of the theory of
predictive labeling which in [HMOG] was presented for ordinary termination only.
Furthermore, since labeling with natural numbers produces infinite systems over
infinite signatures, powerful ingredients of the dependency pair method like usable
rules with argument filterings, Theorem [[L54] are not directly applicable.

The second extension is a replacement of semantic labeling with predictive labeling.
This is not completely straightforward due to the fact that apart from choosing
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semantics for function symbols one now also needs to decide which symbols to
label which in turn influences the set of usable rules. This greatly enlarges the
search space.

Finally the implementation has been carried out in a different way. The corre-
sponding search space is much larger as, instead of a small pool of predefined
functions, arbitrary polynomials over natural numbers and linear functions over
vectors of natural numbers are used for the semantics. Therefore, instead of a di-
rect approach, the TPA implementation of this technique uses encoding into SAT.
This means that it transforms the corresponding search problem to propositional
formulas and hands them over to a SAT solver. This allows to efficiently explore
much greater search space.

The approach of [KZ06] will be presented in Section Bl All the aforementioned
extensions and the resulting termination method [KMOQT7] will be addressed in
Section We will conclude in Section

3.1 Automation of Semantic Labeling with Nat-
ural Numbers

In Section [[L34] we introduced RPO and explained that its implementation essen-
tially consists of collecting requirements on the RPO precedence needed to orient
all rules and then checking whether such precedence is well-founded — this corre-
sponds to checking acyclicity in the corresponding graph.

For the infinite signatures, as we consider in this chapter, it is more involved, but
the basic frame of the algorithm remains the same. We will concentrate on the
question of how to construct a well-founded precedence satisfying a given collection
of constraints.

We introduce semantic labeling with natural numbers in SectionB.T.Tland present a
way of automating RPO for infinite labeled system in Section[3.1.2] In Section[3.1.3]
we present practical evaluation of this techniques along with two examples.

3.1.1 Semantic Labeling with Natural Numbers

Semantic labeling was introduced in Section [[.3.5 In this section we focus on the
case where A = N, the natural numbers. We also fix the identity labeling, i.e.,
Ly =A" and l¢(z1,...,2,) = (21,...,2y) for every f e F with arity(f) = n.

The approach is as follows: for a TRS R for which we want to prove termination,
search for interpretations in A such that (A, {fa}ser, >, 2) is a quasi-model, and
next try to prove termination of the infinite TRS R, U Decr by means of RPO.
If this succeeds, then according to the main property of semantic labeling we have



62 Chapter 3 Semantic Labeling over Infinite Models

proved termination of R. In case (A, {fa}ser,>,2) happens to be a model, i.e.,
for all rules we have equality, then we choose = on A = N to be equality, by which
Decr is empty. In the other case we choose > and = to be the usual orders on N.
In this case Decg is not empty, but we may and shall restrict Dec to all rules of
the shape

fa1 ..... an('r17"'7xn)_)fb1 ..... bn(xla--~7xn)

for f e Fand ay,...,an,b1,...,0by, satisfying a; = b; +1 for some ¢ and a; = b; for
all j # 4. This is valid since if a; > b; then a; can be obtained from b; by taking
the successor a number of times, so the rewrite relation —}__ is not changed by
this modification of Dec.

ec

Example 3.2. As an example, we apply this approach to the TRS R from Exam-
ple 31 and the following interpretation in N:

A(z) =z +1 [1]=0
[+](z,y) = max(z, y) 1]=0
[e](z,y) =z +y [id] =0

This interpretation is a quasi-model and after application of semantic labeling we
obtain Ry consisting of the rules

(1) Ai(@) 0iv1,5y = Nigj(zoij (Lxoj (y 050 1))
(2a) (%5 y)oik 2 = (T ok 2) %k jrk (Y Ohk 2) fori>=j
(2b) (% y) ojk 2 — (T ok 2) *ixkjrk (Y O4k 2) fori<j
() (zoi;Y)Citjkz = T 4k (Y 05k 2)
(4) idogz — x
(5) logpid =1
(6) T o0 id—1
(Ta) Log; (x*ijy) > fori>j
(70)  logj(z*ijy) > fori<j
(8a) 100 (T*i;y) =y fori>j
(8b) Too  (Txijy)—y fori<j
and Decr consisting of the rules
(D1)  Aiga(z) = Ai(2)
(D2a) @ 0i41,y = T0ijy (D3a)T *ip1,5 Y = T *ij Y
(Da2p) w011y —>T0;y (D3p)x *ij1y = T *ij Y.

where variables i, j, k run over N. <
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The goal now is to represent such an infinite labeled system R, U Decr in such a
way that we can search systematically for a suitable RPO proving its termination.
Before doing so first we say something about the search for (quasi-)models.

As long as all basic interpretations are polynomials, checking whether this in-
terpretation is a model coincides with checking whether [l]o = [r]s for all rules
Il — r and all a. This is simply checking whether polynomials are equal. Check-
ing whether an interpretation is a quasi-model coincides with checking whether
[[]a 2 [r]a; this can be done along the lines of the standard way of checking for
polynomial interpretations as described in [CLS87, [HJ9S].

In early versions of TPA as a initial step symbols of arity > 2 were transformed
to a number of binary symbols, so no symbols of arity > 2 would occur anymore.
Then in the basic setting the functions used as interpretations for constant, unary
and binary symbols, respectively, were as followdl:

0, 1)
{Az.0, A\x.1, Ar.x, Av.x + 1, A\x.max(0,x — 1), \x.2z, A\x.7x}
{Ary.0, Azy.l, Meyx+y, \eyx+y+3, \zy.zy,
Azy.z, \xy.y, Azy. max(0,z —y), \ry.max(z,y), Azy. min(z,y)}

So we may also want to use non-polynomial functions like min or max. Checking
whether the required (in-)equalities hold is accomplished by first removing min
and max functions by simple case analysis and then using the standard approach
for polynomials.

Note however that while doing this case analysis we introduce side conditions, just
like in Example Let & = (z1,...,2,). So now the problem of comparing
polynomials from the standard one Yzenn P(Z) = 0 changes to Vaenn {Qi(%) =
O}iez = P(Z) = 0, where the premise is a set of side conditions introduced
by case analysis. This problem is undecidable as it is a generalization of poly-
nomial comparison which is already undecidable. TPA uses a very simple and
naive approximation of this problem and concludes the above iff Vz P(Z) = 0 or
diez Vz P(Z) — Q;(Z) = 0.Recently a more systematic and general way of dealing
with polynomials with min and max was developed in ﬂm We illustrate
our approach on an example.

Example 3.3. Consider comparison of function symbols o; j; and o; 1 in rule (2a).
It may require comparing polynomials i + k and j + k. For that we may use the
side condition of this rule, i = j. We cannot conclude i +k = j + k in general but
by using side condition and subtracting i from the left hand side of this inequality
and j from the right hand side we get i + k —i > j + k — j which is trivially
satisfied. <

INote that, for technical reasons, TPA actually used A = N\{0, 1} not A = N hence the actual
functions being used are slight variants of those presented here.
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3.1.2 RPO for Infinite Labeled Systems

In this section we describe how RPO can be adapted to deal with labeled systems,
more precisely, for infinite systems over infinite signatures obtained by labeling
with natural numbers. In fact we do not change the definition of RPO, but we
restrict the search space for possible precedences on the labeled symbols in such a
way that this search can be automated and we have algorithms checking whether
constraints on the precedence give rise to a well-founded precedence or not.

We begin by presenting the theoretical foundations of those results and then con-
tinue with discussion of the algorithmic approach for searching for a precedence
satisfying a given set of constraints.

Well-foundedness of a Precedence

The final precedence > we search for will be of the following shape:

Definition 3.4. [Precedence description] A precedence description consists of:

e functions ¢5 : N — N for every f € F with arity(f) = n (we will call those
functions label synthesis functions) and

e function pd: F x F — {L,>,> T}.
These ingredients give rise to the following relation >:

Thivokn > Gyl = pd(f,9) =T v
(pd(f7g) == A ¢f(klu 7kn) = (bg(lla"'v

(pd(fag) => A ¢f(k15 e 7kn) > (bg(llv R
So pd(f, g) indicates when we can conclude fi, . k., > g1,,...1,, with: L indicating
that this can never be the case; T that it is always the case regardless of the
labels of f and g; and > (resp. >) allows us to conclude fx, . k., > qi, if
¢5(ki,... k) is greater equal (resp. strictly greater) than ¢g(l1,...,In).

Typically this relation > will not be an ordering as it may not be transitive but
then it may be replaced by its transitive closure so by abuse of terminology we
will call it a precedence.

We need some criteria under which, in the above setting, we can conclude well-
foundedness of >. If these criteria hold then termination of the labeled system,
and hence of the original TRS, can be concluded if [ >%° r for all rules [ — r
in the labeled system. So our approach can be summarized as follows: collect
constraints on pd and the label synthesis functions ¢y from the requirement that
[ >®"° r for all rules I — r, and then check whether this gives rise to a well-founded
precedence >.
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This well-foundedness criterion is captured by the following theorem. A function
pd: F x F — {L,> > T} gives rise to a precedence graph having F as its set of
nodes, and having three kinds of directed edges:

e an unconditional edge from f to g if pd(f,g) = T, denoted by a double arrow

e a strict edge from f to g if pd(f,g) = >, denoted by a single arrow —— ;

e a non-strict edge from f to g if pd(f,g) = =, denoted by a dotted arrow

........... >

We can state the theorem capturing the conditions required for > to be a well-
founded precedence.

Theorem 3.5 (Well-foundedness of a precedence). In the above selting a prece-
dence description pd gives rise to a well-founded precedence > if every cycle in the
corresponding precedence graph

(1) contains no unconditional edges, and

(2) contains at least one strict edge.

Proof. Suppose that the precedence is not well-founded. This means that there
is an infinite sequence fx, .. k., > 91,...1,, > .... Every step in this reduction
corresponds to an edge in the precedence graph. Since this sequence is infinite it
must traverse some cycle in the precedence graph (which is finite) infinitely often.
Every cycle contains only strict and non-strict edges due to (1), which gives rise
to the inequalities on ¢ functions as depicted below.

f g

= ok, kn) = oyl ) =l

Due to (2) at least one of those inequalities is strict which gives rise to a de-
creasing weight along a cycle. Hence no cycle can be traversed infinitely often.
Contradiction, we conclude well-foundedness of >. O

To make the approach feasible, but still applicable to interesting examples, it
is natural to restrict the choice for the label synthesis functions. In TPA the
choice has been made to choose ¢ to always be identity for unary symbols. For
binary symbols ¢ is chosen to be one of the three functions: summation +, left
projection 7 and right projection me. This set of synthesis functions may seem
quite restricted but it works reasonably well in practice whereas a bigger set would
lead to a bigger search space.
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Example 3.6. One of the constraints implied by the rule
Ai() cig1y = Aigj(xoig (1xo; (y 50 1))

where i, j run over the naturals, will be 0,11 ; > Xiyj;, for alli,j. Since ¢y is fived
to be the identity, according to the definition of > this gives three possibilities:

1 pd(e,A) = T,
2. pd(o,\) == Ado(i+1,75) =i+ foralli,j,
3. pd(o,\) => A¢o(i+1,5)>i+7 foralli,j.

By re-using the algorithm for comparing polynomials it can be determined that
amonyg the three possibilities for ¢o cases 2 and 3 only hold if po = + and case 3 is
preferred since by Theorem[3 strict edges are preferred over non-strict edges. <

Algorithm for Computing a Well-founded Precedence

In general for every pair (f, g) the RPO constraints will give rise to a list of cases.
Each case consists of a choice for pd(f, g) being T, > or >, and in case this is not
T, also a choice for ¢ and ¢,. Now the question is whether for every pair (f, g)
a choice can be made in such a way that conditions of Theorem are satisfied
so that this choice gives rise to a well-founded precedence. Note that for every
f € F in a precedence there is a single, global function ¢; corresponding to it.
However in the search procedure we do not know what this ¢ should be and hence
during the search we allow using different functions for comparison with different
symbols and only at the end we conclude which one should be chosen for every
function symbol. We will express all those choices for ¢ and pd, in, what we call,
a precedence description scheme.

Definition 3.7. [Precedence description scheme]

We define a precedence description scheme as a function from pairs of function
symbols to a set of possible implementations of ordering description on these func-
tion symbols which is either L or T or one of >, > accompanied with ¢ functions
to be used for comparing those two symbols.

pds(f,9) € {1} U ({> 2} x N x N") u (T}
where arity(f) = n and arity(g) = m.

Now we will say that a precedence description ({¢f} rer, pd) is compatible with a
precedence description scheme pds if:

pd(f,9) =T = T e pds(f,g)
Viger  pd(f,9) === (=,97,9y) € pds(f,g)
pd(f,g9) = > = (>,¢5,¢,) € pds(f,g)
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Let us illustrate the notion of precedence description scheme on an example.

Example 3.8. Consider the labeled system from Example[3.2 A possible branch-
ing of an application of RPO to that system gives the following sets of constraints
for respective rules; note that for o a lexicographic left-to-right status is essential.

(1) {oit1,5 > Aitjy Qi41,5 > iy Oit1,j > *o0,5,

Oi+1,5 > 1, 0541, > 050, %ig1,; >T}

(2a)  {oik > *itk,j+k, Oik = Ojk} Withi>j
(2b) {0k > *itk,j+ks Ojk = Oik} Withi <j
(3) {oitjk = %ijtks Oitjk > Ojk)
(D1)  {Xiv1 > i}
(D2a) {0i41,j > 04}
(D2p) {05 41 >0}
(D3a)  A*it1,5 > *ij}
)

{*ij+1 > *ij}
5J »J

Now with a finite set of label synthesis functions, transformation of those constrains
to a precedence description scheme can be easily accomplished. For instance for
pds(o, x) we need to consider the following three constraints:

Oj41,5 > *0,5 04k > *iyk j+k With i > j Ojk > Xk jt+k Withi <j

Given a finite set of label synthesis functions we can consider all possible com-
binations of synthesis functions for o and x and analyze the resulting polynomial
constraints. In TPA the set of label synthesis functions for binary symbols consists
of m1, ma and +. If o always bigger than x then we trivially have those inequalities,
so T € pds(o, ). For remaining conditional cases we easily observe that only + is
possible as a label synthesis function for o whereas only projections are allowed for
*. We get (=,+,m1) € pds(o, x) because (i+1)+7 = m1(0,7), i+k = m(i+k,j+k)
andi < j = j+k = m(i+k,j+k). Similarly (=, +,m2) € pds(o, x). Continuing
such analysis we end up with the following precedence description scheme. For all
f and g for which pds(f, g) is not listed in the table below we have pds(f,g) = {L}.

pds(o,1) = {T} pds(o, A) = {(>,+,id), T}

pds(o, 1) ={T} pds(o,x) = {(=, +,7m1), (=, +,7m2), T}
pds(o,0) = {(>, +, +)} pds(A\, A\) = {(>,id,id)}

pds(x, *) = {(>,+, +)} 4

To summarize our approach: given some TRS find an interpretation that is a
(quasi-)model and label the system. Now find a RPO termination proof for that
system. This proof gives rise to a number of constraints on precedence that can
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be transformed to a precedence description scheme pds as in Example Now
our task is to find a precedence that satisfies those constraints and is well-founded.
That is we are looking for a precedence description pd which is: (a) compatible
with pds and (b) satisfies conditions of Theorem [3.1]

Before presenting an appropriate algorithm we first observe that a simpler problem
of finding any precedence description compatible with a given precedence descrip-
tion scheme is NP-complete.

Theorem 3.9. Suppose at least three different ¢ functions are allowed. Then
given a precedence description scheme pds, the problem of finding a precedence
description pd compatible with pds is NP-complete.

Proof. We show a reduction from the 3-coloring problem of graphs. Given undi-
rected graph G = (V, E) problem of 3-coloring of G is to decide whether there
exist:

[:V —={1,2,3} suchthat VY, ,ep f(u)# f(v)
This problem is well-known to be NP-complete.

By assumption we have (at least) three different ¢ functions, let us call them as
o1, P2 and ¢3 and define @ = {¢1, P2, Pp3}. Let G = (V, E) be an undirected graph
from 3-coloring problem. We will build precedence description scheme pds in such
a way that finding a precedence description compatible with pds will be equivalent
with 3-coloring of G.

For every vertex v € V we introduce a function symbol f, in F. For every undi-
rected edge u — v we require:

pds(fu, fo) = pds(fv, fu) = {(>.¢,¢") | ¢ # ¢ € D}

This ensures that two function symbols corresponding to connected vertices in
G get different ¢ functions. If we can find a precedence compatible with this
precedence description scheme then the assignment of ¢ functions to function
symbols easily translates to the assignment of colors to graph vertices satisfying
3-coloring problem constraints. O

Before we present the algorithm let us put the problem in a more practical light
by discussing it in the context in which it occurs in TPA. As mentioned before
TPA uses precisely three different ¢ functions for binary symbols meaning that we
are on the border of conditions posted in Theorem [3.9l If it had two the problem
would correspond to 2-coloring which can be solved in polynomial time. But we
believe that all three functions are important and we do not want to get rid of
any of them. Moreover we are about to describe an algorithm that in practice
performs very well and takes negligible time in the whole search procedure.
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First let us observe that from the precedence description scheme pds we can already
determine the structure of the precedence graph for a precedence description pd
compatible with pds. Let us note that due to the construction of the precedence
description scheme for any f and g we either have pds(f,g) = {L} or T € pds(f,g)A
1 ¢ pds(f,g). Now if pds(f,g) = {L} then we can simply choose pd(f,g) = L and
hence there is no edge from f to g in the precedence graph. Otherwise f and g
are connected with an edge although at this point we do not know yet what is the
type of this edge.

The key to get an efficient algorithm is the observation that we can detect strongly
connected components (SCCs) in the precedence graph and treat them separately.
Since precedence graphs are typically spare, meaning that SCCs are small, by
doing so we increase the efficiency greatly. Note that all the edges between f and
g belonging to different SCCs do not lie on any cycle and hence cannot violate
conditions of the Theorem [3.5l Thus they can safely be changed to unconditional
edges (as then T € pds(f, g)). On the other hand there cannot be an unconditional
edge connecting two nodes from the same SCC since all the edges within SCC
belong to some cycle, so all such options can be dropped from the precedence
description scheme.

So now we can localize further reasoning to a single SCC and we can limit to strict
and non-strict edges only. We still need to find ¢ functions for all function symbols
and the appropriate ordering of those symbols.

Firstly for all function symbols we compute their predecessors and successors in
the precedence graph:
INt = {g | pds(g, f) # {L}, ¢ in the same SCC as f}
OUTy = {g | pds(f,g) # {L}, g in the same SCC as f}

Now we can compute possible label synthesis functions for every function symbol:

PSF; = [ {oér|(=/> 0r.0,) €pds(f.9)} N

gEOUTf

() {651 (=/ >, ¢4, ¢1) € pds(g, )}

_(]EINf

If for any f, PSFf = & then we can finish with a negative answer. Otherwise we
refine ps in the following way:

pdsl(f, g) = {(2 / >7¢f7 ¢q) € pds(f,g) | (bf € PSFfv ¢9 € PSF!]}

We continue this procedure as long as there are some changes in the refinement
of pds. If at any point for any f and g, pds(f,g) = & we finish with negative
answer. Hopefully we arrive at pds with all entries being singletons in which case
we have only one potential solution; otherwise we need to consider all the possible



70 Chapter 3 Semantic Labeling over Infinite Models

choices. At the end we check whether condition (2) of Theorem is satisfied
that is whether there are no cycles containing non-strict edges only.

The summary of the whole procedure follows.
Definition 3.10. [Algorithm for finding a precedence description compatible with
given precedence schemal

(1) Compute SCCs in the precedence graph. Refine pds in the following way:

{T} if f and g belong to different SCC

pds'(f,g) == { {sepds(f,g)|s#T} otherwise

(2) If for any pair f and g, pds(f,g) = & answer NO and stop.

(3) For every function symbol f compute:

INy ={g | pds(g, f) # {1}, g in the same SCC as f}
OUTy = {g | pds(f,g) # {1}, g in the same SCC as f}

(4) For every SCC:

(4a) Compute possible label synthesis functions for every function symbol:

PSFr = [ {¢s|(=/> ¢5. ¢9) € pds(f,9)} N

gEOUTf

() {65 | (=/ > 0. ¢r) € pds(g. f)}

g€IN
(4b) Refine pds:
pdsl(f,g) = {(2 / >, ¢f7¢g) € pds(f, g) | (bf € PSFfv (b(] € PSF!]}

(4c) If for any f and g, pds'(f,g) = & answer NO and stop the whole
procedure.

(4d) If pds’ # pds set pds := pds’ and go to (4a), otherwise continue with
(de).

(4e) Consider all possible precedences compatible with pds and for each one
of them check whether it complies with condition (2) from Theorem [3.3]
If none does, answer NO and stop. Otherwise continue with step (4)
with the next SCC or with step (5) if there are no more SCCs.

(5) Combine solutions for all SCCs to get a precedence description compatible
with pds giving rise to a well-founded precedence. o
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3.1.3 Examples

The technique of semantic labeling with natural numbers has been implemented in
TPA. For more information on the tool itself and the experimental results obtained
with it we refer to Chapter[dl Below we present two examples and show that using
our approach both those systems can be easily proved terminating. Indeed in the
termination competition of 2006, TPA succeeded in producing termination proofs
for them whereas, at that time, no other termination tool could deal with those
systems.

But first we would like to evaluate the claim made in Section T2l namely that
typically SCCs in the precedence graph are small and hence our algorithm is
efficient. On a collection of 115 TRSs for which semantic labeling with natural
numbers was applicable we calculated the size of the biggest SCC occurring in the
analysis of a system (note that often many different labelings are tried resulting
in many applications of the algorithm from Definition [3I0). The average of those
values was less than 5 confirming the claim that in practice SCCs are very small.
Also the time spent on the execution of the algorithm in question on average
summed up to less than 1% of the total running time of TPA.

Now we will finish the analysis of the SUBST system introduced in Example [31]
Example 3.11. Let us continue with Example [3.8, where we presented a prece-

dence description scheme for the SUBST system. Below we depict the precedence
graph corresponding to this scheme.

*7<A

Using algorithm from Definition[Z 10 we first observe that all nodes are in separate
SCCs. So first we replace all edges between different nodes by unconditional edges.
Then we are left with no choice and we end up with the following precedence:
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which can be written down as:

055 > Ak for alli,j, k 04 > Ok ifi+j>k+1
0jj > *g1  foralli,j,k,l i > A ifi >k

05 >1 for all i, j *i G > Kk ifi+j>k+1
055 >1 for alli,j

One can easily check that all the rules of the labeled SUBST TRS, see Example[3.3
can be oriented using RPO with this precedence. This is also essentially the same

solution as presented in [Zan03].

It is worth noting that recently a new, conceptually simpler proof was presented
n [EGM* 08]. It does not use the technique of semantic labeling but only polyno-
maial interpretations extended with the min and max operations. It also presents a
more systematical way of dealing with the constraints arising from an analysis of
interpretations involving those functions. <

We present one more example: a very natural TRS for which our technique suc-
ceeds.

Example 3.12. Consider the following TRS describing a GCD (Greatest common
divisor) computation in a straightforward way.

min(z,0) — 0 max(z,0) —
min(0,y) — 0 max(0,y) —
min(s(z),s(y)) — s(min(z,y)) max(s(z),s(y)) — S(maX(SE Y))
ged(s(x),0) — s(x) x—0—>2x
ged(0, s(y)) — s(y) s(z) —s(y) >z —y
ged(s(z),s(y)) — ged(max(z,y) — min(z, y), s(min(z, y)))

Consider the following interpretation of function symbols in N:

[s](x) =2z +1 [0]=0
[min](z,y) = min(z,y) [max](z,y) = max(z,y)
[—1(z,y) ==z [ged](z,y) =2 +y

This interpretation is a quasi-model and after application of semantic labeling it
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gives the following TRS:

min; o(x,0
ming ;(0,y
y)) — s;(min; ;(2,y)) fori>j
— s;(min; ;(z,y)) fori<yj

ming 1 j11(8:(2),8;

ming 1 j11(8:(2),8;

— s;(max; j(z,y)) fori=j
— s;(max; ;(2,y)) fori<yj

max;i1 j+1(8:(7),s;

max;i1 j+1(8:(7),s;

8i(T) —it1,5+18;(y

ngi+1,j+1(Si(I)a sj(y)) — ged,_j 5 (max; j(z,y) —ij min; j(z,y), fori=j
s;(min; ;(z,y)))

ged;y i 41(8i(2),85(y)) — ged;_; ;(max; (2, y) —;,; min, j(z,y), fori<j

s;(min; j(z,y)))

Termination of the union of the above rules and decreasing rules can be proved with
RPO. This time the description scheme leaves more choice for the label synthesis
functions for different symbols but again all nodes are in separate SCCs and our
algorithm produces the following precedence graph:

and the following label synthesis functions:

¢min =T ¢s =id
¢mam =T (b* =id
(bgcd =+
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Those choices correspond to the following well-founded precedence:

min; ; > ming; if 1 >k ged, ; >gedy,  fit+j>k+I
min; j > sj, for alli,j, k ged, ; > ming;  for all i, j, k,1
max; ; > maxy,; if 1>k ged, ; > s for alli,j, k
max; ; > Sg foralli,j,k ged, ; > maxy,;  for all i, j, k,l

—ij > —k|l ifi >k ged; ;> =k, foralli,j, k1l <

3.2 Automation of Predictive Labeling with De-

pendency Pairs using SAT

In Section Bl we have presented a direct approach for proving termination with
semantic labeling over natural numbers, involving infinite systems. In this section
we will extend this approach in several ways:

o we will use predictive labeling instead of semantic labeling (see Section [[L3.3]

and Section [[30 for introduction to semantic and predictive labeling) to
weaken the quasi-model constraints,

to improve the power of the method we will incorporate predictive label-
ing to the dependency pairs setting (see Section [[L3.7] for introduction to
dependency pairs),

instead of a preselected (small) pool of basic functions used for symbol se-
mantics, we will use generic polynomials with arbitrary (bounded) coeffi-
cients,

apart from polynomials over natural numbers, used for symbol semantics
in labeling, we will also use linear functions over vectors of natural numbers
(corresponding to the matrix interpretation method, presented in Chapter[2]),

instead of a direct approach we will use encoding to a satisfiability problem
in order to boost performance and deal with much larger search space.

3.2.1 Predictive Labeling and Dependency Pairs

Predictive labeling was introduced in Section [[3.6l In this section our goal is to
extend it for the dependency pairs setting.

Before presenting this extension we state a straightforward generalization of the
semantic labeling method, introduced in Section [L35] to DP problems. The only
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observation is that interpretations of dependency pair symbols do not contribute
to labels so by choosing them to be the same constant we get the quasi-model
constraints for DP rules for free. We omit the easy proof.

Theorem 3.13. Let R be a TRS, (A, {fa}rer,>,2) a weakly monotone quasi-
model for R and L a weakly monotone labeling for R. The DP problem (DP(R), R)
is finite iff the DP problem (DP(R)iab, Riab U Dec) is finite. O

The following theorem provides a DP processor for predictive labeling and consti-
tutes the main theoretical result of this section.

Theorem 3.14. Let R be a TRS over a signature F and P be a TRS over FuFiop,
such that all the non-variable terms consisting rules of P have a symbol from Fiop
as a root and only symbols from F below the root.

Let (A, {fa}ser,>,2) be a weakly monotone Li-algebra and £ a weakly monotone
labeling for R such that U(L) S Z4. If R is finitely branching then the DP
processor

(’P, R) = {(,Plab, Rlab ) 'Dec)}

is sound.

Before presenting a proof sketch, we make some clarifying remarks. The conditions
on P ensure that the root symbols of the rules in P occur nowhere else. This implies
that we do not have to worry about the semantics of the rules of P and thus U(¢)
will be a subset of R. Nevertheless, the symbols from F., can be labeled and
this may influence the usable rules. Note that this condition is trivially satisfied
it P € DP(R), which will be the case in our applications of this theorem. It
follows that the definition of U(¢), Definition [LAT], has to be slightly modified:
UW) ={l > reR |root(l) € Go(PuR)}. The Dec rules are computed for all
labeled symbols in Fiop U F.

Proof sketch. Suppose the DP processor (P, R) = {(Plab, RiabuDec)} is not sound.
So the DP problem (Pap, Riab U Dec) is finite whereas (P, R) is not. Hence there
exists an infinite sequence

€ €
ty =% up —p ty =% ug —p -

such that the terms ¢y, to, ... are terminating with respect to R. Let o be an
arbitrary assignment. We recall the following definitions from [HMOG].

e Let t € SN. The interpretation [a]%(¢) is inductively defined as follows:

a(t) if t is a variable,
[e]4(t) = § fa([eli (), .. [el4(tn)) ift = f(t1,....tn) and f € Gy,
U{[a]:’z(u)ﬁ—ﬁ%u} ift = f(t1,...,tn) and f ¢ Go.
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e Let t € SN UT,.. The labeled term lab (¢) is inductively defined as follows:

t if t is a variable,
labk(t) = < f(lab%(t1),...,lab%(t,)) if Ly =,
fa(labZ(t1), ... labk(t,)) if Ly # @

where a = Cf([a]%(t1), ..., [a]% ().

e Given a substitution o such that o(z) € SN for all variables z, the assign-
ment o} is defined as [a]% o o and the substitution oy,px as lab o 0.

We will apply lab(-) to the terms in the above sequence. Fix i > 1. Repeated
application of Lemma 17 in [HMOG] yields laby (t;) —%  pec laba(ui). We have
u; = lo and t;41 = ro for some | — r € P. We use Lemma 15 in [HMO06] to obtain

Iabz (lU) _)7.*700 labaf (l)olabi‘ .

Since lab,x (1) — lab,x(r) € Prab, labx(1)o,px P lab, s (7)0japx. A variation
of Lemma 16 in [HMOG] gives lab,x (r)oy,px = labj(ro). Putting things together
yields lab; (t:) =% pec - =P, 1abj(tir1). Hence, the above infinite sequence is
transformed into

* * € * * €
Iaba(tl) “RiuDec T P Iaba(tQ) “RipuDec " " Puab T

If we can show that the terms lab (¢1), labX (t2), - - are terminating with respect
t0 Riab U Dec then the DP problem (Piap, Riap U Dec) is not finite, providing the
desired contradiction. Suppose lab¥(¢;) for some i admits an infinite reduction
with respect to Rjp U Dec. Because Dec is a terminating TRS, there must be
infinitely many Rj.p-steps in this sequence. If we remove all labels, the Dec-steps
disappear and the Rjp-steps are turned into R-steps. It follows that ¢; is not
terminating with respect to R. This completes the proof. O

After labeling we want to apply the reduction pair processor of the dependency
pairs framework, see Theorem [[Lh4l However, originally this processor is stated
only for finite TRSs and labeled systems will usually be infinite. Therefore below
we present an extension to infinite, but finitely branching systems.

Theorem 3.15 (Reduction Pair Processor). Let P and R be (possibly infinite)
TRSs. Let (2,>) be a Cg-compatible reduction pair and let ™ be an argument
filtering. If R is finitely branching, P = Pz~ U P==, and U(P,R) S 2™ then the
DP processor (P,R) — {(P\P>~,R)} is sound.

Proof sketch. In [GTSKF06] the above theorem is stated and proved for finite
TRSs P and R. A careful inspection of the proof in [GTSKEQ0G] as well as the
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proofs of related statements in [HMOT7] reveals that it is sufficient that R
is finitely branching. The reason is that then the sets {t | s =% t} of reducts of
terminating terms s are still guaranteed to be finite. O

3.2.2 SAT Encoding

We start this section by giving an outline of the main steps of our termination
proving procedure. Afterwards we explain which parts are encoded in SAT and
how this is actually achieved.

1.

First the dependency pairs of R are computed. Then the strongly connected
components (SCCs) in an over-approximation of the dependency graph of R
are determined.

In the next step the subterm criterion [HMO7] is applied in connection with
the recursive SCC algorithm [HMO05]. The purpose of this step is to quickly
remove components that can be solved in an easier way.

At this point we deal with a number of problems of the form (P, R) where
P is a set of dependency pairs of the original TRS R. Both P and R are
finite systems over a finite signature. Each of these problems is subjected to
the following steps.

Predictive labeling (Theorem B.14) transforms (P, R) into (Plap, Riab v Dec).
This new problem generally consists of infinite systems over infinite signa-
tures.

Next we apply the reduction pair processor with argument filtering (Theo-
rem B.T5). In our implementation this step is mainly specialized by taking
LPO, however we also try polynomial and matrix interpretations (see Sec-
tions and 2] respectively), as the underlying reduction order. In order
to make progress, there must be at least one rule in P with the property that
all its labeled versions in Py, are strictly decreasing.

In the next step we return to the problem (P, R) and remove those rules from
‘P that were identified in the preceding step. Then we repeat the algorithm
on the resulting problem from step 2l onward.

We illustrate this procedure on an example.

Example 3.16. Consider the TRS R from Example[I.}2 and its dependency pairs
P, as presented in Example[T.70l The estimated dependency graph
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has two SCCs: {(8),(11), (13)} and {(9),(10)}. The former is taken care of by two
applications of the subterm criterion, first with projection ﬂ'(ackﬁ) = 1 and then
with w(ack®) = 2. So in step 3 the problem (P, R) with P = {(9), (10)} and R =
{(1),...,(7)} remains. We will label function symbol plus?, so Go(P U R) = {s}
and thus Us(R) = @. Taking the successor function as semantics for s together
with the labeling function (), (x,y) = x +y produces in step [{| the DP problem
(Prabs Riab w Dec) with Py consisting of the rules

plus§+j+2(s(s(;v)), y) — plus§+j+1(x7 ()

S
plus!, ; (x,5(s(y))) — plust, ., (s(2),y)

for all i,j7 2 0, Riapb = R, and Dec = {plusg(x,y) - plusg(x,y) |« > j > 0}.
The DP problem (Piap, Riab U Dec) is taken care of in step 5 by the argument
filtering ﬂ'(plusg) =[] for alli in combination with the well-founded LPO precedence
plusg > plus§ whenever © > j. Note that the rules in Rip are ignored as they are
not usable. Since all rules in Piap are strictly decreasing, there is nothing left to
do in step 6. <

We use SAT for steps Ml and [ of our algorithm. The starting point of our en-

coding is the approach to semantic labeling with natural numbers and LPO from

[KZ06], see Section B, and the encoding of specific instances of Theorem [[L54] in
[ZHMOT]. The main challenges are the encoding of

e the search for interpretations f4 and labeling functions ¢y,

e the choice of function symbols to be labeled and the corresponding compu-
tation of usable rules,

e the induced quasi-model constraints,

e the precedence constraints over the infinite signature of the labeled system,
and

e the finite branching condition in Theorem [B.13

To address the first problem we adapt the SAT encoding of matrix interpretations
from [EWZ0S].

For the second problem we introduce a new propositional variable Ly for every
function symbol f that will indicate whether Ly # @. Given those variables
we need to compute the set of usable rules for predictive labeling according to
Definition [[L41l To this end we introduce propositional variables Uy for every
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defined symbol f of R indicating whether the rewrite rules defining f are usable.
For a DP problem (P, R) the encoding of usable rules is expressed as:

wor(P,R) = A\ (Lf — A Ug)

feFt gEA (P, R)*
where

A¢(P,R) = U {g € Fun(t) | root(t) = f and ¢t <l or t Jr}.
l->rePUR

Now the encoding of quasi-model constraints can easily be expressed as

wou(R) = /\ (Uf — A Taza [T]A’)-

fEDR l—)T‘ERf

Here "..." converts inequalities into formulas. For that we need to be able to com-
pute term interpretations in the algebra A4 and compare them by = 4. To that
end we can use any technique following the weakly monotone algebra approach
from Section [[3.2] like polynomial interpretations [Lan79] or matrix interpreta-
tions [EWZO08] (see Section 2I]). In our implementation we use matrix interpreta-
tions with dimensions 1 (which correspond to linear polynomial interpretations)
and 2. The reader is referred to for details on how the corresponding
constraints can be encoded. We note that both polynomial and matrix interpre-
tations give w-algebras, which is required for the soundness of predictive labeling

(Theorem BI4).

Note that we encode quasi-model constraints for R but not for P. The reason is
that every DP problem (P, R) encountered during the execution of our algorithm
has the property that the root symbols of the left- and right-hand sides of rules
in P are dependency pair symbols, which do not occur elsewhere in the problem.
Hence they are not part of Go(P U R) and consequently no rule from P is usable.

The next question is how to restrict the spectrum of possible precedence relations
for infinite labeled TRSs in such a way that they have finite representation, can
be searched for easily, and ensuring their well-foundedness is feasible. We answer
this question in the following definition:

Definition 3.17. [Precedence] For every f € F introduce two natural numbers:
fL, the level of f and fs, the sublevel of f. This assignment induces a precedence
>r., as follows:

i > Fip i L>gevifi=gni>j)vI(fL=9LAtXJA fsL>gsL
fi > — fL> /i > /i > fsL >

Note that >z, is well-founded since it is obtained as the lexicographic comparison
of three well-founded orders. o
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The straightforward encoding of the (strict) precedence comparisons is presented
below. For the computation of labels and their comparison with > 4 and = 4 we
may use any approach following the weakly monotone algebra framework.

fu>ngL v (rfL =ngL ALpAalgna (i>ag v

("iZaj A'fsL >n gsﬂ)))

rfi >]:Iab 9]1

fi>Fw fit = Lpati>ag

The use of sublevels allows us to represent more precedences on the signatures of
infinite labeled TRSs, which increases the termination proving power with only a
small reduction in efficiency.

A natural question is how this setting for precedences compares to the one from
Section Bl Tt is easy to observe that every precedence from Definition [3.17] has
a counterpart in the setting from Definition 34l The converse is also true. More
precisely, for every well-founded precedence >z, obtained from some precedence
description, see Definition B4l there exists a precedence >’]_-|ab induced by the level
and sublevel mapping from Definition BT (well-founded by definition), such that
>F & >-l7:lab' So the expressive power of the two approaches is the same.

The last challenge that we address is the requirement of Theorem that the
TRS Riap is finitely branching. For the type of infinite but well structured, pa-
rameterized TRSs obtained by labeling finite TRSs this is easy to check. The only
source of violation may be a parameterized (labeled) rule where a single labeled
instance of a left-hand sides has infinitely many corresponding labeled right-hand
sides. In the case of weakly monotone polynomial interpretations this means that
a variable must be present in some labels in the right-hand side but not in any
label in the corresponding left-hand side. So we define

wrsR) = N\ N\ (2.0) = @.(0))
l—>reR zeVar(r)
with
o, )= \/ Linra>0
Ft1,e.tn)<t

Here a is the coefficient of x when (symbolically) computing the label of f in
flte, ..., tn). So @,(t) evaluates to true when the variable z occurs in some label
in term ¢. Thus wrp(R) expresses that if the value of z is used for obtaining the
label of a function symbol occurring in r then this must also be true for a function
symbol occurring in [, for every rule [ — r € R and every variable x occurring in
r.

When using matrix interpretations instead of polynomial interpretations we obtain
a similar formula wpp(R), only now variables are interpreted as finite vectors of
natural numbers. So in addition to z we must also propagate the position in the
vector on which the label depends. We omit the straightforward details.
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Combining all ingredients gives us now the final formula for executing steps [l and
of our termination procedure simultaneously:

wur(P,R) Awom(R) A wrs(R) A wras(P,R) A wLpo(P,R)

Some clarifying remarks are in order.

The subformula wy,ag(P, R) takes care of computing the labels for all occurrences
of all function symbols. (Since the choice of which symbols will be actually labeled
is left to the SAT solver, the calculation of labels needs to be encoded for all
symbols.) This is very similar to the encoding of the algebra computations in
wqum(R) and actually we can share most of the code.

The subformula wypo (P, R) is the encoding of the specialization of Theorem B4
to LPO. We adopt the encoding given in ﬂm but since we deal with infinite
systems we use as basic building blocks the precedence comparisons sketched on
page We compute usable rules with respect to original (unlabeled) system and
assume that all labeled versions of a usable unlabeled rule are usable. This gives
a correct over-approximation of the usable rules of the labeled TRS.

One thing that seems to be missing in the above formula is the treatment of the
rules in Dec. Indeed they are not part of the formula in any way and that is
because in the present setting they can be ignored. Regardless of the argument
filtering and the precedence (within the constraints of the level /sublevel encoding),
the rules in Dec are all (weakly) oriented, do not contribute to the computation
of usable rules, and cannot make the system infinitely branching.

The above formula is given to a SAT solver. Three things can happen as a result:

e the SAT solver returns a satisfying assignment, which is translated back to
obtain concrete parameters required to execute steps Ml and [ of our algo-
rithm, or

e the SAT solver returns “unsatisfiable”, in which case we know that our ap-
proach is not applicable, or

e the SAT solver runs out of time or other resources, in which case we give up
without being able to conclude anything.

3.2.3 Experimental Results

We implemented the technique described in the preceding section in the termi-
nation prover TPA 2007 (see Chapter [ for introduction to the prover), using the
MiniSat SAT solver [ES0O3]. In this section we evaluate our method on a number of
examples from the TPDB [TPD]). All experiments involving TPA were performed
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technique tool ‘ yes ‘ time ‘ timeout
. ) Jambox 505 | N/A N/A
matrix interpretations
TPA 2007 | 498 | 3541 30
LPO AProVE 380 193 0
TPA 2007 | 372 191 0

Table 3.1 Comparison to other tools.

on a machine equipped with an Intel® Pentium®) 4, 3.00 GHz processor. Experi-
mental data for other termination tools are taken from the respective publications
(due to the difficulty of obtaining those tools in the configuration required for our
experiments).

A very natural benchmark for our approach would be the comparison with results
from Section Bl Unfortunately the substantial difference in the approach to
semantic labeling with natural numbers makes any decent comparison difficult.
We are convinced however that the direct approach from Section B would be
absolutely infeasible for exploring the much larger search space resulting from
using arbitrary interpretations with bounded coefficients instead of only a small
number of predefined interpretations.

We begin by evaluating two basic ingredients of our implementation, matrix inter-
pretations and LPO with argument filtering (both without semantic or predictive
labeling), against reference implementations: in Jambox [EWZ0§| for the former
and in AProVE [CSKL*06] for the latter. Both implementations use more or less
the same setup: dependency pairs with usable rules and subterm criterion. The
results in Table 3] are based on TPDB ver. 2.0, more precisely on the 773 TRSs
from the termination category of this database. We use on an older version of
the database for this experiment as we cannot obtain those tools in a required
configuration and hence we need to rely on figures published in [EWZ0§| and

The columns “yes”, “time”, and “touts” indicate the number of successful termi-
nation proofs, the total time (in seconds) spent on the TRSs in the problem set
and the number of timeouts that occurred. We used a 60 seconds time limit.

The experiments for matrix interpretations use 2 x 2 matrices, 2 bits for the matrix
entries, and 3 bits to represent the values of intermediate results. The slightly
lower score of TPA compared to Jambox is probably due to a more sophisticated
approximation of the dependency graph in the latter. No timing information is
given in [EWZ08| but the authors write “[...] we took the time limit of 1 minute
[...] this time was hardly ever consumed [...] average computation time for all
proofs is around 1 second”. This suggests that our implementation is far from
optimal. Indeed, we did not invest much time in optimizing the encoding. This
seems to be a good starting point for improving the results for predictive labeling
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‘ 60 seconds timeout 10 minutes timeout
technique ‘ ‘ yes ‘ time ‘ touts yes ‘ time ‘ touts

SL 409 3063 22 415 5325 2

1x1 PL 428 2927 16 433 5166 2
PL’ 397 2234 15 401 3858 2

SL 464 8960 70 477 26194 23

2%x2 PL 495 8985 68 506 26293 23
PL’ 489 6113 44 497 16022 11

Table 3.2 Experiments with TPA on TPDB version 4.0.

presented below.

The slightly higher score of AProVE in the LPO experiments is likely due to a
different graph approximation algorithm. The execution speeds are almost the
same but one needs to keep in mind that the results were obtained on different
machines and hence cannot be compared directly.

Table [3.2] summarizes the experiments performed with TPA on the 975 TRSs from
TPDB ver. 4.0. All experiments were performed with time limits of 60 seconds and
10 minutes. The first group of results is based on semantic/predictive labeling
with matrix interpretations of dimension 1 (equivalent to linear polynomials) used
for both interpretations and labels:

e SL means semantic labeling (Theorem BI3]) where all symbols are labeled
and all rules are considered for the quasi-model requirement,

e PL stands for predictive labeling (Theorem BI4]) and corresponds to the
approach described in the preceding sections,

e PL’ is a variant with a simple heuristic for the choice of labeled symbols;
instead of leaving this decision to SAT all dependency pair symbols are
labeled and only them.

A first observation is that predictive labeling is more powerful than semantic
labeling—it proves termination of an additional 19 TRSs — without almost any
difference in execution speed. The heuristic brings a considerable speedup at the
expense of termination proving power.

For the second group of results we use the same methods as for the first group but
now 2 x 2 matrices are used for interpretations and labels. Again predictive labeling
is more powerful than semantic labeling, without being slower. It is interesting
to observe that the price in termination proving power of the heuristic is much
less than for dimension 1. This can be intuitively explained by the more powerful
algebraic structure used for the labeling functions, which makes it possible to put
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more information in the labels and hence counter the reduced flexibility in the
choice of function symbols to label. A similar line of reasoning could lead to
the belief that in this case it is also easier to satisfy quasi-model constraints and
thereby diminishing the improvement of predictive labeling but the difference of
31 TRSs between SL and PL proves this hypothesis wrong. It is worth noting that
even for the slowest variant (PL with matrices of dimension 2 x 2) the average time
for successful proof is around 4 seconds.

3.3 Conclusions

In this chapter we presented a direct way of automating semantic labeling with
natural numbers. For the semantics we used a small fixed set of functions over
natural numbers — few polynomial functions extended with min and max for
binary symbols. After applying semantic labeling, for the infinite, labeled systems
termination proofs are obtained using RPO. This technique was implemented in
the 2005 version of TPA and allowed to solved the challenging SUBST TRS.

Later on we presented a new, improved approach extending the theory of predictive
labeling to a dependency pairs setting. We also presented the ideas behind the SAT
based implementation of this technique in the 2007 version of TPA. Experimental
results confirm the feasibility of this technique. The advantages over the old
approach can be summarized as:

e the quasi-model restriction is relaxed by using predictive labeling,
e the integration with dependency pairs makes the approach more powerful,

e the SAT encoding enables the use of unrestricted polynomial and matrix
interpretations for function symbols, instead of the, previously used, small,
fixed set of functions.

The only disadvantage compared with the old approach is that we fail to cover the
possibility of using min and max in interpretations. This is essential, for instance to
deal with the SUBST TRS; hence this new approach fails for this system. However,
there is a recent work [FGMT08| on extending polynomial interpretations with
max, in a systematical way (our treatment of those functions was rather ad hoc).
Those new results should be applicable in the setting of predictive labeling and
incorporating them to this method and evaluating the results is our future work.

An important theoretical question is whether the finite branching condition in
Theorem is essential. Disabling the wpp(R) conjunct in our encoding allows
to “prove” the termination of two more TRSs from the TPDB. One of these TRSs
is presented below.



3.3 Conclusions 85

Example 3.18. Consider the following TRS (Thiemann/factoriall.trs) computing
the factorial function:

plus(0, z) — plus(s(z),y) — s(plus(p(s(z)),y))
times(0,y) — times(s(z), y) — plus(y, times(p(s(z)), y))
p(s(0)) = p(s(s(z))) = s(p(s(x)))
fac(0,x) —» x fac(s(x),y) — fac(p(s(x)), times(s(z), y))
factorial(z) — fac(z, s(0))

There are ten dependency pairs and the estimated dependency graph contains four
single node SCCs. Only one of them, consisting of the dependency pair

fach (s(z),y) — facn(p(s(:t)), times(s(x),y))

is problematic. It could be solved using matrices of dimension 2 by labeling s
and p, but it is essential that the interpretation of plus depends on its second
arqgument. Then the label of the root symbol of the right-hand side of the rule
plus(s(z),y) — s(plus(p(s(x)),y)) depends on the assignment to y whereas in the
left-hand side there is only one labeled s symbol with x as its argument so its label is
necessarily independent of the value of y. This makes Riap non-finitely branching
and hence the termination proof is out of reach with our approach. <

In the proof sketch of Theorem B.I5we remarked that it relies on the finite branch-
ing condition. The key idea in the proof goes back to a modularity result for
termination of Gramlich [Gra94], in which the same finite branching condition
is required. By using a much more complicated construction, Ohlebusch
showed that the finite branching condition in the modularity result is not essential.
It is worthwhile to investigate whether the proof technique in [OhI94] can be used
to generalize Theorem






Chapter 4

(T)TPA: (Trusted)
Termination Proved
Automatically

In recent years the research on methods for proving termination focused on the
automation of this process. Tools are developed to automatically (dis)prove termi-
nation of TRSs and their efficiency is tested in an annual termination competition.

Termination methods usually involve a large, often infinite, search space. Restrict-
ing this space to make the search feasible, without loosing too much proving power,
and then efficiently exploring it, is a big challenge. Recently, reduction to SAT
problems and employment of efficient SAT solvers is often a method of choice.

Modern termination provers rely not on one but on a (sometimes large) number
of termination techniques. Combining them in an effective manner, to maximize
proving power while remaining efficient, is yet another challenge.

Finally, with this growing complexity ensuring reliability of the tools is not an
easy task. In this thesis we try to address one way of handling this problem:
certification of the results produced by termination provers with the use of a
formal proof assistant/checker. We have introduced this concept in Section [[4l

In this chapter we will present the termination prover TPA. It started as a pro-
totype to investigate feasibility of using semantic labeling over infinite models for
automatically proving termination. Later it grew into a tool of its own, participat-

An earlier version of a part of this chapter appeared as: A. Koprowski, TPA: Termination
Proved Automatically, In F. Pfenning ed., Proceedings of the 17th International Conference on
Rewriting Techniques and Applications (RTA ’06), Seattle, WA, USA, volume 4098 of Lecture
Notes in Computer Science, pp. 257-266, Springer-Verlag, August 2006.
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ing regularly in the termination competition. Recently its focus shifted towards
certified proofs and in 2007 it won the first edition of the certified competition.

We will give an overview of TPA and its evaluation in Section 1] and we will
present some ideas for future development of the tool in Section 2

4.1 TPA — Termination Proved Automatically

4.1.1 Motivation

Before the development of TPA started, a number of tools for proving termination
automatically was available, hence it is natural to ask why creating another one.
There are three main reasons why TPA has been developed and they are listed
below in no particular order.

e Semantic labeling with natural numbers
Semantic labeling was introduced in Section[[L35 Its variant with the model
over two or three element sets was used in some tools preceding TPA. However
the infinite model variants were so far considered not to be suitable for
automation. We believed that this could be accomplished and the theoretical
framework for automation of semantic labeling with natural numbers, and,
later, predictive labeling, was presented in Chapter Bl The need to evaluate
those ideas in practice was the driving force for the first prototype of TPA.

e Relative termination

Relative termination was introduced in Section [[3l Prior to TPA there
was no support for relative termination in tools for proving termination of
TRSs. However, it is a natural concept occurring in practice. In Chapter
we will present the extension of the work of Giesl and Zantema on meth-
ods for verification of liveness properties using rewriting techniques [GZ034].

Extending their framework with the notion of fairness naturally leads to
the notion of relative termination. Lucas and Meseguer conducted research
on termination of concurrent systems under fairness assumptions [LMO§]. In
their setting they again use the notion of relative termination to establish the
property of fair-termination. They use TPA for proving relative termination.

e Certified termination
We introduced the CoLoR project and the idea of certification of termination
proofs in Section [[L4l The success of this project requires cooperation be-
tween the tool authors and CoLoR developers. While being involved in the
CoLoR project, also having our own tool was helpful in bridging the gap be-
tween those two communities and propagating the idea of formal verification
of termination proofs. Indeed this idea has been recognized by the com-
munity. In 2007 the termination competition was extended with a special
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category of certified termination and in 2007 and 2008 the first two editions
of the “Workshop on Certified Termination” were organized [WSd].

4.1.2 Overview and Experimental Results

TPA is implemented in Objective Caml (OCaml) [OCA], making its byte code
version available for all major platforms (with a native version for Linux). It is
equipped with command line interface. The first version of the tool was developed
in 2005 and supported the following methods for proving termination:

e polynomial interpretations [Lan79] (Section [L3.3),
e recursive path order [Der82] (Section [[34]),
e semantic labeling [Zan95] (Section [L3.5),

e dependency pairs [AG0O0] (Section [[3.7),
e dummy elimination [FZ95] and

e reduction of right hand sides [Zan03].

It was first developed to evaluate feasibility of the technique of semantic labeling
with natural numbers, presented in Section Bl Then, a few more techniques were
added and TPA took part in the termination competition in 2005. In the standard
rewriting category it was third, out of the six participating tools, solving 407 out
of the 773 termination problems. The winner, AProVE, produced 576 successful
proofs and T7T was second with the score of 509.

After some minor modifications TPA took part in the termination competition of
2006 and again took the third place (with six participating tools) solving 422 out
of the 865 problems, coming after AProVE (638) and Jambox (626). Using the
method of semantic labeling with natural numbers it was the only tool capable
of proving termination of the SUBST TRS (see Example BI). The automatic
proof produced by TPA (after minor modifications for presentation purposes) is
presented in Figure 1

All the aforementioned methods were implemented in TPA using some direct
search procedures (involving exhaustive inspection of some finite part of the search
space). After the competition of 2006 many of those techniques were instead re-
implemented using an encoding into SAT, in accordance with the prevailing trend
in this area. Moreover the tool was extended with the following termination tech-
niques:

e matrix interpretations [EWZ0§| (Section 2.1I),
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TPA v.1.1
Result: TRS is terminating

Default interpretations for symbols are not printed. For polynomial
interpretations and semantic labelling over N\{0,1} defaults are 2

for constants, identity for unary symbols and x+y-2 for binary symbols.
For semantic labelling over {0,1} (booleans) defaults are O for constants,
identity for unary symbols and disjunction for binary symbols.

[1] TRS as loaded from the input file:
(1) a(lambda(x),y) -> lambda(a(x,p(1,a(y,t)))) (5) a(x,y) —> x

(2) a(p(x,y),z) -> p(a(x,z),a(y,z)) (6) a(x,y) —>y
(3) ala(x,y),z) -> a(x,a(y,z)) (M plx,y) -> x
(4) lambda(x) -> x @) plx,y) >y

[2] Label this TRS using following interpretation over N\{0,1}:
[lambda(x)] = x + 1, [p(x,y)] = max(x, y), rest default

This interpretation is a quasi-model and yields following TRS:
(1) af{i + 1,j}Qambda{i}x),y) ->
lambda{j + i - 2}(af{i,jr(x,p{2,j}(1,a{j,2}(y,t))))
(2<) a{i,k}({i,jr&x,y),z) ->
plk +1i - 2,k + j - 2}(a{i,k}(x,2),a{j,k}(y,2z)) for i >= j
(2>) a{j,k}{i,jr&x,y),z) ->
plk + i - 2,k + j - 2}(a{i,k}(x,2),a{]j,k}(y,z)) for j >= i
3 ) a{j +1i - 2,k¥(a{i,jrx,y),2z) -> af{i,k + j - 2}(x,a{j,k}(y,2))
(4 ) lambdaf{i}(x) -> x
(5 ) afi,jrx,y) -> x
(6 ) afi,jrx,y) >y
(7<) p{i,jrx,y) -> x for i >= j (8<) p{i,j}(x,y) -> y for i >= j
(7>) p{i,jrx,y) > x for j >= 1 (8>) p{i,j}(x,y) -> y for j >= i
(D1) lambda{i + 1}(x) ->= lambda{i}(x)
(02) a{i + 1,j}(x,y) ->= a{i,jrx,y) @4 p{i + 1,j}(x,y) ->= p{i,jrx,y)
(D3) afi,j + 1} (x,y) ->= afi,jr(x,y) @5 p{i,j + 1}(x,y) —>= p{i,jrx,y

[3] Using RPO with the following precedence:
Status:

a: lexicographic, left-to-right
Precedence:

a_{i,j} >/=/< a_{k,1} if i + j >/=/< k + 1
a_{i,j} > lambda_{k}

a_{i,j} > p_{k,1}

a_{i,jr > 1

a_{i,jr > t

lambda_{i} >/=/< lambda_{k} if i >/=/< k

p_{i,j} >/=/< p_{k,1} if i + j >/=/< k + 1

the following rules can be oriented and removed:
(d1)-(D5), (H)-(6), (1), (2<), (2>), (3), (7<), (7>), (8<), (8>)

Figure 4.1 The termination proof of the SUBST system produced by TPA
in the termination competition of 2006
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e argument filtering [AGOQ] (Section [L3.7),
e predictive labeling in the dependency pair setting [KMOT] (Section B.2)).

TPA was supposed to take part in the 2007 competition equipped only with the
technique of predictive labeling, as presented in Section[3:2l Unfortunately, due to
some last minute changes, a flaw was introduced and the tool had to be withdrawn
from the contest.

In 2007 the focus of TPA shifted towards certified proofs (introduced in Sec-
tion [[4]). That year the new category of certified termination was introduced
in the competition. The combined entry of TPA, as the termination prover, and
ColLoR, as the certification back-end, was the winning entry in this new category.
It achieved the score of 354, meaning that for 354 out of the total 975 TRSs used in
the competition, TPA could find a termination proof and, using CoLoR, correctness
of this proof could be verified by Coq.

The techniques used by TPA were constrained by the techniques available in CoLoR
and Rainbow at that time and consisted of:

e the basic theorem of dependency pairs (Theorem [[L49]),
e polynomial interpretations (Section 2.3.3) and
e matrix interpretations (Section 2] and Section 223.4)).

Arctic interpretations (Section 2:33.3) were not yet available at that time.

Due to the fact that this category was introduced only that year there were only
two other participants. The termination prover C/IME [CMMU] using the Coccinelle
[CCE*07] library to certify termination results got the second place with a score
of 317. The third participating tool was the entry of T1Ty [KSZM]| again using
ColLoR as the certifying back-end with a score of 289.

In Table [£1] we present performance of all the versions of TPA mentioned above,
evaluated on the same TPDB 4.0 used in the termination competition of 2007 and
consisting of 975 TRSs. For completeness we also include the TPA 2007 version
with predictive labeling (without the aforementioned flaw), even though in the end
it did not participate in the competition. The second part of the table presents
performance of the version of TPA capable of producing verifiable proofs, which
participated in the certified competition of 2007. The first row, “TPA 2007 (cert.)”,
shows performance for proof search performed by TPA and the second one, “+
CoLoR”, the performance of CoLoR verification applied to the set of proofs found
in the first step. Identical timeouts were used, separately, for those two steps.

All the runs were performed on an Intel® Pentium® 4, 3.00 GHz machine with
a 60 seconds and 10 minutes timeouts. The columns “yes”, “time”, and “touts”
indicate the number of successful termination proofs, the total time (in seconds)
spent on the TRSs in the problem set and the number of timeouts that occurred.
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‘ 60 seconds timeout 10 minutes timeout
tool version H yes ‘ time ‘ touts yes time touts
TPA 2005 366 34302 558 379 329096 538
TPA 2006 370 29306 230 383 39235 8
TPA 2007 495 8985 68 506 26293 23
TPA 2007 (cert.) 354 32416 472 361 190588 258
+ ColLoR 352 2383 2 359 3454 2

Table 4.1 Performance of successive versions of TPA on TPDB ver. 4.0.

4.2 TIPA — Trusted Termination Proved Auto-
matically

TTPA, for Trusted Termination Proved Automatically, is the successor of TPA. Tt
tries to address two challenges that we think are very important in the area of
proving termination of term rewriting, namely:

1. reliability of the produced results, which is becoming a problem due to the
complexity of the tools and their proofs,

2. a very high effort required to build a new tool or even a prototype, as a
(successful) tool needs to have a large number of techniques at its disposal
and one typically is not interested in re-implementing those.

Those two challenges will be, to some extend, addressed by TTPA by means of:

1. Changing focus to certified proofs. This change in philosophy is reflected in
the new name of the tool indicating its main objective: producing termina-
tion proofs certifiable with CoLoR. For that the primary focus of the tool
will be on the termination methods formalized and supported in ColLoR.

2. TTPA is written from scratch. One of the goals in the development process
is to produce a clean, well documented code. The tool is open-source which
will hopefully make it possible for others to benefit from, or even reuse, parts
of its code. This, in combination with the first point, will hopefully enable it
to serve as a “reference implementation” for certifiable termination provers.

The development of the tool is work in progress.



Chapter 5

Application: Proving
Liveness Properties

Usually, liveness is roughly defined as: “something will eventually happen” and it
is often remarked that “termination is a particular case of liveness’. In [GZ03a]
the relationship between liveness and termination was investigated in more detail,
and it was observed that conversely liveness can be seen as termination of a mod-
ified relation. Since various techniques have been developed to prove termination
automatically, some of them discussed in previous chapters, an obvious goal is to
apply these techniques in order to prove liveness properties. In [GZ03a] a method
for transforming a class of liveness problems to problems of termination of TRSs
has been proposed. For a slightly different setting another approach was proposed

in [GZ03D)].

In [GZ03a] two transformations were given. The first one, sound and complete,
even for extremely simple liveness problems results in complicated TRSs for which
proving termination, especially in an automated way, is very difficult. That was the
motivation for a, much simpler, transformation, which is sound but not complete.

In this chapter this approach is extended in two ways. First we extend the basic
framework to fair computations. That means that we do not restrict to the basic
notion of liveness stating that any computation eventually reaches a good state, but
we do this for fair computations which contain some essential computation steps
infinitely often. Fairness has been studied extensively in [Fra86]. In applications,
one is often interested in the behavior of fair computations rather than of arbitrary

An earlier version of this chapter appeared as: A. Koprowski, H. Zantema, Proving Liveness
with Fairness using Rewriting, In B. Gramlich ed., Proceedings of the 5th International Workshop
on Frontiers of Combining Systems (FroCoS ’05), Vienna, Austria, volume 3717 of Lecture Notes
in Computer Science, pp. 232-247, Springer-Verlag, September 2005.
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ones. For instance, in a waiting line protocol one may want to prove that eventually
all initial clients will be served. If it is allowed that infinitely many new clients
come in, one may think of an infinite computation in which this does not hold:
infinitely many new clients come in but no client is ever served. However, if serving
of clients is defined to be the essential computation step, in a corresponding fair
computation it can be proved that eventually all old clients will be served. It turns
out that just like liveness corresponds to termination, liveness in fair computations
corresponds to relative termination. So combining liveness and fairness is a main
contribution of the work presented in this chapter.

The second extension is the following. It turns out that the simple transformation
presented in [GZ03a] often results in non-terminating TRSs, and therefore is not
applicable, also in liveness problems not involving fairness. Therefore, we propose
an alternative transformation. Our transformation is slightly more complicated
than the simple transformation from [GZ03a], but much simpler than the sound
and complete transformation from [GZ03a]. However, assuming some mild condi-
tions, in this chapter we show that our transformation is sound and complete too.
Moreover, we show in two examples that our transformation results in TRSs for
which (relative) termination can be proved fully automatically. In particular we
consider the classical readers-writers synchronization problem, in which the prior-
ity of access is controlled in an obvious way. The desired liveness property states
that every process in the system eventually gets access to the resource. Using our
technique we succeed in automatically proving this liveness property with the TPA
termination prover (see Chapter Hl). Both examples involve infinite state spaces
and hence the standard model checking techniques are not applicable to them.

This chapter is organized as follows. In Section [B.] the general framework from
[GZ03a] is extended in order to deal with liveness with fairness. Next, in Section
(2 the new transformation is introduced and the corresponding theorems on
soundness and completeness are given. Finally, in Section 5.3, two examples are
presented in which this new approach has been applied. We conclude in Section (.41

5.1 Liveness with Fairness Conditions

5.1.1 Liveness in Abstract Reduction

First we present the framework as described in [GZ03a] with no more than neces-
sary details to understand its extension given later. For a more elaborate descrip-
tion we refer to the original article.

We give the model of the system that should be verified in the framework of
abstract reduction. We assume a set of states H and a binary relation on states
expressing computation steps, - S ‘H x H. We call a reduction sequence maximal
if it is either infinite or its last element is in NF(—).
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With respect to a set of initial states 7 € H and a set of good states G = H,
we say that the liveness property Live(Z, —, G) holds if all maximal —-reductions
starting in Z contain an element from G. More precisely:

Definition 5.1. [Liveness] Let H be a set of states, > € H x H; G,Z € H. Then
Live(Z, —, G) holds iff

L] Vt17t21___ tl ISTAUN (Vz ti d ti+1) —— Elz ti € g, and

o Viitot, 11 €L Aty €NF(—) A (Vigi<n—1 ti = tit1) = Ji<i<n ti €G.

Furthermore we define the restricted computation relation
—g={(s,t) | s >t As¢ G} o

The following theorem relates liveness to termination of —¢.

Theorem 5.2 ([GZ03a]). If NF(Z,—) € G then Live(Z, —,G) iff SN(Z, —¢g). O

5.1.2 Liveness with Fairness in Abstract Reduction

In liveness we are mainly interested in the behavior of infinite reduction sequences,
or shortly, infinite reductions. However, in many applications one is not interested
in arbitrary infinite reductions but in infinite fair reductions, defined as follows.
Instead of a single rewrite relation — we have two relations —, >C H x ‘H. An
infinite reduction in — o = is called fair (with respect to —) if it contains
infinitely many —-steps. Finally we say that liveness for fair reductions starting
in Z with respect to —, = and G holds, denoted as Live(Z, —, >, G), if any fair
— U — reduction starting in Z contains an element of G. Note that all fair
reductions are infinite, hence in investigating liveness with fairness we are only
interested in systems with infinite behavior.

Definition 5.3. [Liveness with fairness] Let H be a set of states, —, >C H x
H; G,Z < H. Then liveness for fair reductions with respect to Z, —, - and G,
Live(Z, —, =, G), holds iff

Vt1,t2,... i1 AN (Vl t; — ti+1 \ ti = ti+1) AN (Vz E|j>i tj — tj+1) - 31' ti € g <

Our definition is based on the notion of relative termination (see Section [[1]). The
result of the next theorem gives us a method of verifying liveness with fairness
requirements.

Theorem 5.4. Live(Z,—,—,G) holds iff SN(Z, —¢g |/ >¢g).
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Proof. (=) Assume that Live(Z, —,—,§G) holds and SN(Z, —»¢g / —¢) does not
hold. From the latter we get that there is an infinite, fair reduction sequence
t1,to,... witht; € Z and V; t; —¢ ti+1 vt; =g tir1. From the definition of —¢ all
t; ¢ G. But then this reduction sequence is a counter-example for Live(Z, —, =, G).

(<) SN(Z, —¢g / —g), so in every infinite, fair - U = reduction starting in 7
there is an element from G (which blocks further —g U =g reductions) and that
is exactly what the definition of Live(Z, —, =, G) calls for. O

5.1.3 Liveness with Fairness in Term Rewriting

In previous sections we described the transition relation by means of abstract re-
ductions, and related liveness of — to termination of —g. Our goal is to employ
techniques for proving termination of rewriting in order to prove liveness proper-
ties. To that end a transformation is required since usually —¢ is not a rewrite
relation even if — is a rewrite relation.

Now we will represent the computation states by terms, so H becomes 7 (F, V) and
Z,G <€ T(F,V). Abstract reduction relations — and = now correspond to two
TRSs over the same signature F: R and R., respectively. As before we write —
as a shorthand for -»% and = for —x_. Just like it is usual to write SN(R) rather
than SN(—x), we will write Live(Z, R, R~,G) rather than Live(Z, »r, —r_,G).

Now, again after [GZ03a], we will introduce the notion of top TRSs, which we are

going to use to model liveness problems.

Definition 5.5. [Top TRSs| Let F be a signature and top be a fresh unary symbol
in this signature, that is top ¢ F. A term ¢t € 7 (F v {top}, V) is called a top term
if it contains exactly one instance of the top symbol, at the root of the term. We
denote the set of top terms over F and V as Tyop(F, V).

A TRS over F u {top} is called a top term rewrite system (top TRS) if for all its
rules [ — r one of the following holds:

e Both [ and r are top terms. Then we call this rule a top rule.

e Both [ and r do not contain an instance of top symbol. Then the rule is
called a non-top rule. o

Clearly for top TRSs every reduction starting in a top term only contains top
terms. In the reminder we restrict ourselves to liveness with respect to

e reduction relations described by top TRSs,

e the set of initial states consisting of all top terms, and
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e the set of good states of the form:
G(P) = {t € Trop(F,V) | =3pep, o, ¢ t = Clpol}

for some set P € T (F,V), that is G(P) represents top terms not containing
an instance of any of the terms from P.

So we are going to investigate liveness properties of the form:
Live(Ziop (F, V), R, R~,G(P))

for some top TRSs R and R.. This is equivalent to proving that every infinite
fair reduction of top terms contains a term which does not contain an instance of
any of the terms from P.

As we will show later this type of question can be transformed to a relative ter-
mination question of an ordinary TRS. This allows us to employ the techniques
for proving relative termination for TRSs to verify liveness properties. Also, while
quite restricted, this setting seems to be general enough to be able to cope with
some interesting and practical examples, two of which will be presented at the end
of this chapter.

5.2 An Alternative Transformation

5.2.1 Motivation

We are seeking a transformation with the property that relative termination of the
transformed pair of systems implies that the liveness property in question holds
(even better if we can have equivalence). In [GZ03a] two such transformations were
proposed: the first one sound and complete (equivalence between termination and
liveness holds) and the second one only sound (termination implies liveness but
not the other way around) but significantly simpler. Experiments with them show
that the former is so complex that, although it is a nice theoretical result, in
practice it leads to TRSs far too complicated for present termination techniques
to deal with, especially in an automated way. The sound transformation does not
have this disadvantage but in several examples it is not powerful enough, leading
to non-terminating TRSs, while the desired liveness property does hold.

In this section we propose an alternative transformation avoiding the aforemen-
tioned problems. But before we do that we will shortly introduce the sound trans-
formation LS from [GZ03a] where P = {p}. As in our presentation also LS can be
easily generalized to allow P to contain more than one element, as remarked in

[GZ03a].
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Definition 5.6. [LS] Let R be a top TRS over F u {top} and p € T(F,V). We
define LS(R, p) to consist of the following rules:

I —>r for all non-top rules [ — r in R
top(l) — top(check(r)) for all top rules top(l) — top(r) in R
check(f(z1,...,2,)) — f(z1,...,check(z;),...,zn)
for all f € F, 1< < arity(f)

check(p) — p ©

While LS(R,p) is sound, it is not complete. This is illustrated in the following
example.

Example 5.7. Consider the TRS consisting of the following two rules:

top(f(z, b)) — top(f(b, b))

a—b

Normal forms do not contain symbol a and in every infinite reduction after finitely
many steps only term top(f(b, b)) occurs, so liveness for p = a holds. However,
LS(R,p) admits an infinite reduction, namely:

top(check(f(b, b))) 2 top(f(check(b),b))

The reason why things go wrong here is that the idea of the transformation is that
when p does not occur in a term then every application of top rule produces check
symbol that cannot be removed. It can only be propagated downwards in the term
and the hope is that this will block further reductions and hence infer termination.
But in the above example and in the examples that we will see in Section[2.3, this
is not the case, and hence LS fails for them. <

5.2.2 Definition of the Transformation

We give a transformation inspired by the sound and complete transformation pre-
sented in [GZ03a] but significantly simpler so that obtained systems can still be
treated with tools for automatic termination proving. It can deal with a much
broader class of liveness problems than the sound transformation from [GZ03a]
and, although somehow more complicated, it is still suitable for automatic termi-
nation provers. We present it for only one unary top symbol but generalization to
more top symbols and/or different arities is straightforward.

Definition 5.8. [LT] Let R and R~ be top TRSs over Fu{top} and P € T (F, V).
The transformed systems LT(R) and LT~ (R, P) over F u {top, ok, check} are
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defined as follows:

LT(R)
[l —>r for all non-top rules I — r in R
top(ok(l)) — top(check(r)) for all top rules top(l) — top(r) in R
LT=(R~,P)
[l —>r for all non-top rules I — r in R

tOp(Ok(l)) d top(check(r)) for all top rules top(l) — top(r) in R~

check(p) — ok(p) for all p € P
flxy, .. 0k(xg), ..o yxn) — ok(f(x1,...,@y,)) forall feF, 1<i< arity(f)
check(f(x1,...,2n)) — f(x1,...,check(z;),...,zn)
for all feF, 1< 1< arity(f) o

The idea behind this transformation is that the presence of an ok symbol at the
root of the term is intended to indicate existence of an instance of p € P. Every
time a top rule is applied this ok symbol is transformed to a check symbol. This
check symbol can traverse toward the leaves and upon reaching an instance of
some term p € P is transformed back into an ok symbol. This ok symbol can move
up again and allow further top reductions upon reaching the root of the term.

Few remarks concerning the transformation:
e For readability concerns we will write —1 instead of —LT(R) and ST
instead Of _)LT=(RN,P)'

e In order to apply automatic techniques the set P should be finite, otherwise
the TRS LT™(R ., P) is infinite.

e If the liveness problem does not involve fairness, so it is modeled by a single
TRS R, then we define the result of the transformation to be also a sin-
gle TRS, namely LT~ (R, P) and proving liveness comes down to showing
termination, instead of relative termination, of the transformed system..

5.2.3 Soundness

Now we show soundness, that is relative termination of the transformed system
implies liveness of the original one.

Theorem 5.9 (Soundness). Let R,R. be top TRSs over F v {top}, let P <
T(F,V). Then:

SN(LT(R)/LT=(R~,P)) = Live(Tiop(F,V),R, R, G(P))
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Proof. Assume that SN(LT(R)/LT~(R~, P)) holds and Live(Ziop(F, V), R, R~,
G(P)) does not hold. Then, by Theorem [5.4, SN(Z;op(F, V), =g / —¢g) does not
hold as it is equivalent to the liveness problem in question. That means that there
is an infinite —g / =g reduction of top terms. We will show that this infinite

reduction can be mapped to an infinite - / =17 reduction, thus contradicting
SN(LT(R)/LT~(R~, P)). For that purpose it is sufficient to show that:

top(t) =g / =g top(u) == top(ok(t)) —ur /—=ur top(ok(u))

that is that any step in —¢g / =g can be mimicked by a step in -1 / Spp. It
easily follows if we can show that:

(i) whenever top(t) —¢ top(u) then top(ok(t)) —rr / =1 top(ok(u)), and
(ii) whenever top(t) =g top(u) then top(ok(t)) Sr1p top(ok(u)).

To show (i) first observe that if top(t) —¢g top(u) by the application of a non-
top rule I — 7 then the same rule is present in LT(R) so we trivially have

top(ok(t)) —rr / =T top(ok(u)).

If on the other hand top(t) —¢ top(u) by application of a top rule then from the
definition of top TRSs we have that ¢t = [0 and u = ro for some substitution o
and some rule top(l) — top(r) from R. Note that top(u) is part of an infinite
—¢ / =¢ reduction so top(u) —¢g top(w) or top(u) —¢ top(w) for some term w.
Then from the definition of —g we get that top(u) does contain an instance of
some p € P which means that we have u = C[py] for some context C' and some
substitution «. Then we have:

top(ok(¢)) = top

= top(ok(u))

The reasoning for (ii) is similar, except that the first step is from =) instead
of _)LT(R) . O

5.2.4 Completeness

In the previous subsection we proved that our approach is correct, that is that
the proposed transformation is sound. Now we will try to address the question of
its power. First in the following theorem we show that any liveness problem that
could be dealt with using LS can also be dealt with using LT. Then we show that
under some restrictions our approach is even complete.
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Theorem 5.10. Let R be a top TRS over F u {top} and p € T(F,V). Then
SN(LS(R,p)) implies SN(LT™ (R, {p})).

Proof. Assume SN(LS(R,p)) and not SN(LT™ (R, {p})). Then there is an infinite
reduction sequence in LT~ (R, {p}). It follows easily from the definitions of LT~
and LS that by dropping all ok symbols from terms in this reduction we obtain a
valid reduction sequence in LS(R,p). Only applications of

flay, ..o 0k(xg), ..., xn) = ok(f(z1,...,2n))

become equalities but since this rule itself is terminating, in that infinite reduction
there must be infinitely many steps not using this rule. So in this way we map
an infinite reduction in LT~ (R, {p}) to an infinite reduction in LS(R,p), thus
contradicting SN(LS(R, p)). O

Note however that there is no ‘if and only if’ in Theorem [5.10, which means that
LT may succeed in case LS fails, as illustrated in the following example:

Example 5.11. Consider the TRS

top(f(z, b)) — top(f(b, b))

a—b

from Ezample[5.7, where we concluded that LS(R, p) applied on this example yields
a not terminating TRS. However it is not difficult to see that LT~ (R, {p}) is ter-
minating. Two more compler and practical examples will be presented in Sec-
tion [2.3 <

There is a good reason why the sound and complete transformation presented in
[GZ034] is so complicated, so clearly enough we cannot hope that a transformation
as simple as LT would be complete. The best we can hope for is completeness
under some additional restrictions on the shape of TRSs modeling the liveness
problem. Indeed that is the case. First we present three such requirements along
with examples showing that if they do not hold completeness is lost. However, for
the setting of liveness problems, these requirements are quite mild. Then we will
prove completeness for the restricted set of systems for which they do hold.

Example 5.12. Let us begin with a very simple example, namely:

top(a) — top(b)

b—a

Consider liveness with P = {a}, meaning that in every reduction eventually a term
without a is reached. It is an easy observation that in every infinite reduction of
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this TRS its two rules have to be applied interchangeably, so after at most one step
the term without a is reached and liveness holds. But the transformation yields:

LT(R) = {top(ok(a)) — top(check(b)), b — a}
LT=(R~, P) = {check(a) = ok(a)}
The above system allows an infinite >y / =17 reduction, namely:
top(ok(a)) —rr top(check(b)) -1 top(check(a)) =1 top(ok(a)) =iy ...

The reason why things go wrong here is that some term from P (being a in this
case) can be created, that is there are reductions from terms not containing an
instance of p (for any p € P) to terms containing an instance of p (for some
p € P). We can mend that by forbidding this kind of behavior. Let us note that
this means restricting to liveness problems for which if the desired property holds
at some point it will hold from that point onwards. <

From now on, for readability concerns, we will assume that rules from R are given
as | — r and rules from R. as | = r and, following the notation introduced in
Section [[.2] we will just present a set of rules leaving the separation to R and R
implicit. Now we will show another property that can destroy liveness.

Example 5.13. Consider the following TRS over {f, g, top, a, b}:
top(g(z,y,a)) — top(f(x))
f(z) - g(z, 2, x)

In any infinite top reduction the second rule is applied infinitely often, and a
straightforward analysis shows that after applying the second rule in a top re-
duction, no infinite reduction from a term containing the symbol b is possible. So
liveness with P = {b} holds. The transformed system reads:

(1) top(ok(g(z, y,a))) — top(check(f(x)))

—_

)
(2) f(z) — g(z,z, x)
(3) check(b) = ok(b)
(4) check(f(z)) = f(check(x))
(5) check(g(z,y, z)) = g(check(z),y, z)
(6) check(g(x,y, 2)) = g(x, check(y), 2)

(
(8
(
1

(
(11
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and allows an infinite reduction, namely:
(6)
top(check(f(ok(a)))) (—taop(check(g(ok(a), ok(a),ok(a)))) =

(11)
top(g(ok(a), check(ok(a)),ok(a))) = top(ok(g(ok(a),check(ok(a)),a))) W

top(check(f(ok(a)))) — ...
In this example completeness was harmed by the presence of duplicating rules in
the original system. <
Example 5.14. Finally consider the simple TRS over {a,b,f} consisting of the
following two rules:
f(a) > b
b—b
Clearly liveness with P = {a} holds but after transformation we obtain:
fla) > b
b—b
check(a) = ok(a)

being non-terminating since b rewrites to itself.

This gives rise to the third, and last, requirement, namely that the signature of the
TRS for which we consider liveness problem must contain at least one symbol of
arity = 2. The precise reason for this requirement will become clear in the proof of
Theorem [5Z1. For now, note only that if a symbol g of arity 2 was present in our
example then liveness would be lost as the term g(a,b) rewrites to itself forming
an infinite reduction containing a. Note that this is a weak requirement: we only
require presence of a symbol of arity = 2 in the signature; it is not required that
this symbol occurs in the rewrite rules. <

Now we will prove that if all three above restrictions are satisfied, that is there
are no duplicating rules, terms from P cannot be created and F contains some
symbol of arity > 2, then the completeness holds.

Before we state the completeness theorem we need some auxiliary results. First let
us denote by % the term ¢ after removing all occurrences of ok and check symbols.

Definition 5.15. Let ¢ be an arbitrary term over F u {check, ok}. We define the
mapping to a term ¢ over F as follows:

T=x
check(t) =t
ok(t) =1

S, o tn) = f(t1,...,tn) for f ¢ {check,ok} o
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We need two lemmas. First we will show that the reduction steps in a transformed
system can be mimicked in the original system after removing extra ok and check
symbols.

Lemma 5.16. Given two TRSs R and R~ over the same signature F and arbi-
trary terms t,u, we have the following implications:

(Z) t - u = t—u
(ZZ) t ST U = f;*ﬂ

Proof. (i) It follows from an easy observation that for any rule [ — r € LT(R) we
have l - T € R.

(ii) Similarly if [ — r € LT~ (R~, P) then either [ — 7 € R or [ = 7, but in any
way § > 1. O

Later on we will need the following lemma stating that extending TRS with ad-
ministrative rules for check and ok preserves termination.

Lemma 5.17. Given two TRSs R and R~ over F (top,ok,check ¢ F). Let S
consist of the following rules:

check(p) — ok(p) for allpe P
check(f(x1,...,2n)) = f(x1,...,check(z;),...,xy) forall feF,

1 < i < arity(f)
flze, ..o 0k(xy), ..., xn)) = ok(f(z1,...,2,)) for all f € F,

1 <@ < arity(f)

Now if SN(R/R~.) then SN(R/(R~ v S)).

Proof. Assume SN(R/R.) and not SN(R/R. u S). So there is an infinite —z
/ @®r. U —g reduction. Because both R and R. do not contain top symbol
then R = LT(R) and R. uS = LT (R~,P). So with the use of Lemma .10l
we can map this infinite >z / —rr-(=_ P) reduction to infinite - / —r_
reduction which contradicts SN(R/R.). O

Now we will present the theorem stating that for non-duplicating TRSs relative
termination on top terms is equivalent to relative termination on arbitrary terms.
We start by an example showing that non-duplication is essential for that.

Example 5.18. Let us consider the following TRS:

top(f(z)) — top(a)
f(x) = g(f(2), f(z))
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Here relative termination on top terms follows from the observation that any —-
step on any top term always yields the normal form top(a). However, this system
admits the following fair reduction:

f(top(f(z)) = g(f(top(f(z)), f(top(f(z))) — g(f(top(a), f(top(f(z))) = ---. <
witial term

Next we prove that in case of non-duplication the above mentioned equivalence
does hold. First we need a simple lemma.

Lemma 5.19. Let R be a non-duplicating top TRS over F. Let C,D be n-
hole contexts not containing the symbol top, and let t1, ..., ty, u1, ..., u, be terms
possibly containing top for which

top(C[top(t1), ..., top(tn)]) —= top(D[top(u1),...,top(u,)])

Then either

e C =D and top(t;) »r top(u;) for some i and t; = u; for all j #1, or

o top(Clzx,...,z]) = top(D[z,...,z]) and the multiset {top(t1),...,top(t,)}
is equal to the multiset {top(u1),...,top(u,)}.

Proof. The top symbol can occur only as a root of the R rules, hence —% reduction
step can occur only in one of the n holes of the context, or in the context itself (it is
not possible for the redex to overlap between the context and its holes). If it is in
the 7’th hole, then the first bullet is satisfied, as indeed we have top(¢;) == top(u;)
and the remaining holes and the context remain unchanged. If, on the other hand,
the reduction is in the context then indeed top(C|z,...,z]) »r top(D[z, ..., z])
and the multisets {top(t1),...,top(t,)} and {top(u1),...,top(u,)} are equal, as
all the terms occurring in those multisets must be in the substitution part of the
rule application, both contexts have n holes and R is non-duplicating. [l

Now we formulate the theorem stating equivalence of relative termination on top
terms with relative termination on arbitrary terms for non-duplicating TRSs.

Theorem 5.20. Let R, R~ be non-duplicating top TRSs over F Then we have:

SN(T(F,V),R/R.) += SN(Tiop(F,V),R/R.)

Proof. The (=>)-part is trivial. For the (<«=)-part assume we have an arbitrary
infinite fair reduction; we have to prove that there is also an infinite fair top
reduction. By putting a top symbol around all terms we force that all terms in
the infinite fair reduction have top as the root symbol. Next among all infinite
fair reductions having top as the root symbol we choose one in which the number
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N of top symbols occurring in the initial term is minimal. Due to non-duplication
in every term in this reduction at most N top symbols occur; due to minimality
of N we conclude that each of these terms contains exactly N top symbols. Write
top(C[top(t1), ..., top(t,)]) for the initial term in the reduction for a context C' not
containing the symbol top. Since the number of top-symbols remains unchanged
every term in the reduction is of the same shape, having the same number n of
holes in the context. Due to minimality every infinite — U = reduction of top(¢;)
contains only finitely many —-steps, for ¢ = 1,...,n. Due to Lemma[5.T9 all steps
are either in the context or in descendants of top(t;). Since the descendants of
top(t;) allow only finitely many —-steps and there are infinitely many —-steps in
total, we conclude that there are infinitely many —-steps in the contexts. More
precisely, we arrive at an infinite top reduction of top(C[z,...,z]) containing
infinitely many —-steps, contradicting SN(Ziop (F, V), R/R~). O

Now we formulate the theorem which states that, under the three extra require-
ments introduced before, the transformation defined in Section 5.2.2] is complete.

Theorem 5.21 (Completeness). Let R, R~ be top TRSs over F v {top}. If the
following conditions are satisfied:

(i) if u contains an instance of some p € P and t — w or t = u then t also
contains an instance of p,

(ii) both R and R~ are non-duplicating,

(iii) there is at least one function symbol of arity = 2 in F.

Then:

Live(Tiop(F, V), R, R, G(P)) —> SN(LT(R)/LT=(R~, P))

Proof. Assume that Live(Ziop(F,V), R, R~,G(P)) and conditions (i)-(iii) hold
and SN(LT(R)/LT~(R~, P)) does not hold. Then there is an infinite —»yr / Sr7
reduction. Due to non-duplication of R and R, LT(R) and LT~ (R, P) are also
non-duplicating and by application of Theorem (.20 we get that there is an infinite
top —rr / =1 reduction, call it w.

Assume infinitely many terms in w contain instances of terms from P. By the
observation that an instance of p occurs in C[pd], Lemma applied to w gives
rise to an infinite top reduction in R/R . having infinitely many terms containing
instances of p € P. Due to (i) all terms in this infinite reduction contain instances
of p € P contradicting Live(Ziop(F, V), R, R~,G(P)). Hence only finitely many
terms in w contain instances of terms from P. So removing this finite prefix of
w yields an infinite top —pr / =1 reduction w’ in which no instance of p € P
occurs at all.
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Note that non-top rules of R are relatively terminating to non-top rules of R..
Assume they are not. Then there is an infinite — / = reduction sequence obtained
using non-top rules of R and R.. Let f € F be a function symbol of arity > 2
(its existence is ensured by (iii)). Put the infinite — / = reduction in context
top(f(p,d,...)). This yields an infinite, fair top reduction containing p and thus
contradicting Live(Ziop(F, V), R, R~, G(P)). Now, by application of Lemma [5.17]
we conclude that non-top rules of LT(R) are relatively terminating to non-top
rules of LT~ (R, P).

In o’ top rules are applied infinitely often as non-top rules of LT(R) are relatively
terminating to non-top rules of LT~ (R, P). Note that because of (ii) the only
way to create an ok symbol is by application of the rule check(p) = ok(p). Every
top reduction removes one occurrence of the ok symbol, so the aforementioned
rule should be applied infinitely often. But since p does not occur in w’ this rule
is not applicable which leads to a contradiction and ends the proof. [l

Examples (.12] 513 and EI4] show that conditions (i)-(iii) of this theorem are
essential.

5.3 Examples

In this section we present two examples illustrating the applicability of the pro-
posed transformation. None of them could be treated with the use of the LS
transformation described in [GZ03a]. Both relative termination proofs of the trans-
formed systems were found completely automatically by TPA.

Example 5.22. [Cars over a bridge] There is a road with cars going in two di-
rections. But on their way there is a bridge which is only wide enough to permit
a single lane of traffic. So there are lights indicating which side of the bridge is
allowed to cross it. We want to verify the liveness property, namely that every car
will eventually be able to cross the bridge. For that clearly we need some assump-
tions about the lighting system. We want to be as general as possible so instead
of assuming some particular algorithm of switching lights we just require them to
change in a fair way, that is in the infinite observation of the system there must be
infinitely many light switches (or equivalently: no matter when we start watching
the road after some, arbitrary, time we will see the change of lights). Also we
assume that before a light switches, if there are cars waiting at least one of them
will pass (otherwise liveness is lost as lights can change all the time without any
cars passing).

We model the system with a unary top symbol whose arguments start with a binary
symbol left or right indicating which side has a green light. The arguments of left
and right start with unary symbols new and old representing cars waiting to cross
the bridge. The constant bot stands for the end of the queue. New cars are allowed
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to arrive at the end of the queue at any time. What we want to prove is that finally
no old car remains.

(1) top(left(old(z)),y) — top(right(z,y))
(2)  top(left(new(x)),y) — top(right(z,y))
(3)  top(right(z,0ld(y))) — top(left(z,y))
(4) top(right(z,new(y))) — top(left(z, y))
(5) top(left(bot, y)) — top(right(bot, y))
(6) top(right(x, bot)) — top(left(x, bot))
(7) top(left(old(zx),y)) = top(left(x, y))
(8)  top(lefs(new(), y)) = top(lefs(z, y))
(9)  top(right(z, old(y))) = top(right(z,y))
(10) top(right(x,new(y))) — top(right(z,y))
(11) bot = new(bot)

We have the following semantics of the rules:

Rules Semantics

1) —(4) Car passes and the light changes.
5) — (6) No car waiting, light can change.
(7) — (10) Car passes, light remains the same.

(11) New car arriving.

Using the transformation as described in Sect. with P = {old(z)} we obtain:

top(ok(left(old(z),y))) — top(check(right(z,y))) bot = new(bot)
top(ok(left(new(x),y))) — top(check(right(z,y))) new(ok(z)) = ok(new(x))
top(ok(right(z, old(y)))) — top(check(left(z,y))) old(ok(z)) = ok(old(x))
top(right(z, new(y))) — top(check(left(z,y))) left(ok(z), y) = ok(left(z, y))
top(ok(left(bot, y))) — top(check(right(bot,y))) left(z, ok(y)) = ok(left(x,y))
top(ok(right(z, bot))) — top(check(left(x, bot))) right(ok(x), y) = ok(right(z, y))
top(ok(left(old(z),y))) = top(check(left(z,y))) right(z, ok(y)) — ok(right(z, y))
top(ok(left(new(z),y))) = top(check(left(z,y))) check(old(z)) = ok(old(z))
top(ok(right(x, old(y)))) = top(check(right(z,y))) check(new(z)) = new(check(x))
top(ok(right(x, new(y)))) — top(check(right(z,y))) check(left(x, y)) — left(check(z),y)

check(left(z, y)) = left(z, check(y))
check(right(z, y)) = right(check(z), y)
check(right(z, y)) = right(x, check(y))
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All requirements of Theorem [5.21] are satisfied which means that by answering,
either positively or negatively, the question of relative termination of the above
TRS we can, respectively, prove or disapprove the liveness property.

It is an easy observation that the following procedure is termination-preserving:
if for every rule the number of occurrences of some symbol is bigger or equal in
the left hand side than in the right hand side, then remove the rules for which
it 1s strictly bigger. This approach, already presented in [GZ03d|, corresponds to
proving termination with polynomial orderings with successor as interpretation for
symbol begin counted and identity for all the other symbols.

The proof of relative termination can be given as follows. First count occurrences of
old to remove four rules. Then apply semantic labeling over {0, 1} taking constant
1 for old, identity for remaining unary symbols, disjunction for all binary symbols
and constant 0 for bot. In the resulting system repeatedly apply counting argu-
ment to remove all the — rules thus proving relative termination. The detailed,
automatically generated relative termination proof can be found in [KZ05). <

The next example we investigate is commonly known as “the readers-writers prob-
lem” and goes back to Courtois et al. [CHPTI]. Tt is considered as a classical
synchronization problem.

Example 5.23. [The readers and writers problem] Some resource is to be shared
among a number of processes. There are two types of processes: “readers”, which
perform only reading operation and “writers” which can perform both reading and
writing. The safety requirement is that writers must have exclusive access to the
resource (that is when a writer has access to the resource no other process can have
it) whereas readers can share the access (as long as there is no writer active at the
same time).

It is usual in literature ([SGGO4], [RB8G]) to concentrate only on safety require-

ments and propose a solution with priority for readers (writers) which can clearly
lead to starvation of writers (readers). In a fair solution to this problem
has been proposed. We will present another variant of this starvation-free solution,
where the access to the resource is controlled in a first-come first-served manner
and we will verify that indeed starvation is not possible, corresponding to liveness.

To achieve that we introduce a flag indicating which group of processes (either
readers or writers) has priority. If only one group claims the resource it is simply
allowed to use it. But in case of a conflict, that is two groups interested in the
use of the resource, the group having priority is allowed to access it and then the
priority is changed. Without adding this priority flag obviously the desired liveness
property does not hold.

As in Example [5.29 we distinguish between old and new processes and verify that
finally there are no old processes in the system. We model reader processes by unary
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function symbols: RAO, RAN, RIO, RIN where the second character indicates
whether the reader is currently Active (performs reading) or Inactive (waits for
access to the resource) and the third character indicates whether the reader is
Old or New. The argument is used to organize processes into lists. Similarly for
writers we have WAO, WAN, WIO, WIN. However WAO and WAN are constants
as there can be at most one active writing process at a time and there is no need
to keep a list of such processes.

The whole system is then modelled by means of binary function symbols PR or
PW indicating priority for readers or writers respectively. The first argument
describes all readers in the system and the second one models writers. Readers
are modelled by a binary operator read whose first argument contains the list of
active processes terminated by constant RT and the second argument contains the
list of processes waiting for the resource terminated by constant RB. Similarly, the
binary operator write describes writers processes. Ils first argument can be either
WT (no active writer), WAO (active old writer) or WAN (active new writer).
The second argument describes a list of inactive writers.

Let us take a look at the following term tree:

PR

T

read write

/\ N
RAO RIN WT WIO

| | |
RAN RB WB

|
RT

It describes a system with two processes currently performing reading; one of them
is old and the other is new. There is also one new reader waiting for the resource.
There are mo processes performing writing but there is one old writing process
waiting for the resource. The priority is set for readers.

Due to using lists to represent active processes, we make one additional restriction
that simplifies the modeling substantially, namely we assume that reading processes
free the resource in the same order as they got access to it. It corresponds to the
situation when the reading operation always takes some fized interval of time. Now
we are ready to present the model of the system.

(1) RB > RIN(RB) (4) RAN(RT) —» RT
2) WB 5 WIN(WB) (5) WAO —» WT
(3) RAO(RT) — RT (6) WAN - WT

—
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(7) top(PR(read(r1, RIO(r2
(8) top(PW(read(r1, RIO
(9)  top(PR(read(ry, RIN

WT, WB))) = top(PR(read(RAO(71), r2), write(WT, WB)))
WT,WB))) & top(PW(read(RAO(71)7r2), write(WT, WB)))

WT,WB))) > top(PR(read(RAN(71), r2), write(WT, WB)))
WT,WB))) > top(PW(read(RAN(r1), r2), write(WT, WB)))

)), write
r2)), write
),

r2)), write

(
(
(
(

—~ o~~~

(10)  top(PW (read(ri, RIN(r2)), write

(11)  top(PR(read(RT, RB), write(WT, WIN(w)))) = top(PR(read(RT,RB), write(WAN, w)))
(12)  top(PW(read(RT, RB), write(WT, WIN(w)))) > top(PW (read(RT, RB), write(WAN, w)))
(13)  top(PR(read(RT, RB), write(WT, WIO(w)))) = top(PR(read(RT, RB), write(WAO, w)))
(14) top(PW (read(RT, RB), write(WT, WIO(w)))) = top(PW(read(RT, RB), write(WAO, w)))
(15) top(PR(read(r1, RIO(r2)), write(WT, w))) = top(PW (read(RAO(r1), r2), write(WT, w)))
( )

( )

( )

e

16) top(PR(read(ry, RIN(r2)), write(WT, w
17)  top(PW(read(RT,r2), write(WT, WIO(w)
18) top(PW (read(RT, r2), write(WT, WIN(w)

top(PW (read(RAN(ry), r2), write(WT, w)))
> top(PR(read(RT, r2), write(WAO, w)))
> top(PR(read(RT, r2), write(WAN, w)))

The meaning of the rules is as follows:

Rules Semantics

(1-2) New inactive process appears in the system and is queued to wait
for the resource.

(3-06) Active process finishes reading/writing.

(7—10) Nobody is writing nor waiting for write access — inactive read-
ing process is allowed to start reading; priority does not change
(11 —14) Nobody is reading nor waiting for read access and nobody is
writing — writer is allowed to start writing; priority does not
change.

(15 —16) Nobody is writing and priority is for readers — reader is allowed
to start reading; priority is switched.

(17 —18) Nobody is reading nor writing and priority is for writers —
writer is allowed to start writing; priority is switched.

What we want to prove is that finally no old process remains in the system.
This corresponds to verifying liveness with the set P = {RAO(x), RIO(z), WAO,
WIO(x)}. Application of the transformation yields a pair of TRSs R,R~ con-
taining 42 rules in total. The corresponding relative termination problem can be
solved by TPA thus proving the liveness property for the readers-writers problem.
For a more detailed description of the transformed system and the related relative
termination proof we refer to [KZ05). <

5.4 Conclusions

This chapter describes a technique to transform some liveness problems with fair-
ness to the problems of proving relative termination of a transformed TRS. In a
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number of examples the latter could be done fully automatically. The only hu-
man activity in this approach is modeling the original problem in the language
of term rewriting. Typically, finding the proof of relative transformation of the
transformed TRS may be a hard job, and the computer generated proofs may be
complicated, and of a shape that it is unlikely that they are found by a human.

Typically, the liveness problems that we consider involve infinite state spaces in
two ways: they are not about a single set of initial states but involve infinitely
many possible sets of initial states, and even for a single set of initial states, the
set of reachable states is infinite. Due to these properties standard model checking
techniques are not applicable for this kind of liveness problems.
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Chapter 6

Introduction

In this chapter we introduce part II of this thesis. This part is based on the work
on formalization of the higher-order version of the recursive path ordering (RPO),
introduced in Section L34l We give a broad overview of this work in Section [G.1]
and its motivation in Section Section describes main parts constituting
this formalization and is followed by the short discussion of the history of this
project, Section [6.4] and of related work, Section

6.1 Overview

The recursive path ordering (RPO) goes back to Dershowitz [Der82]. It is a well-
known reduction ordering for first-order term rewriting systems (TRSs). Jouan-
naud and Rubio generalized this ordering to the higher-order case thus creating

the higher-order recursive path ordering (HORPO) [JR99, [JROT [TR0O6, [TRO7].

This part of the thesis describes the formalization of this ordering with the proof
of its well-foundedness. The first version of the ordering, as presented in [JR99],
has been formalized along with some results from [JROI] [JRO7]. The variant of
higher-order rewriting used for this work is the format of the algebraic-functional
systems (AFSs), as introduced by Jouannaud and Okada [JO91].

The formalization has been carried out in the theorem prover Coq BCO4,
which is based on the calculus of inductive constructions. All the proofs in the
formalization are constructive and make heavy use of dependent types, a feature
provided by the intuitionistic type theory of Coq (version 8.1 of the prover has
been used).

The higher-order terms used in this work were modeled by terms of the simply
typed lambda calculus (A7). Therefore part of the development, actually by far
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the biggest one, is devoted to the formalization of A\, with termination of the
[-reduction relation as a main result.

The multiset extension is used in HORPO for comparison of function arguments.
Hence finite multisets and two variants of multiset extensions are part of this
formalization.

Finally the last part of the formalization is the computability predicate proof
method due to Tait and Girard [GTL89, [Tai67], which is used in the proof of
well-foundedness of HORPO.

This work is now part of the CoLoR [COL library, the Coq library on
rewriting and termination, which gathers results concerning termination of term

rewriting, formalized in Coq (see Section [[4] of this thesis for more details on
ColLoR).

This part of the thesis contains an explanation of the theory being formalized as
well as some remarks on the formalization, including Coq snippets. We tried to
separate the two. The details of the formalization follow the explanation of the
theory at the end of selected sections, denoted in the text as follows:

Coq » ...some formalization details . .. <

Hence the reader interested only in the content of the work and not in the way it has
been carried out in Coq can safely skip the formalization details. Please note that
the presentation of Coq scripts is slightly simplified for the sake of readability. The
interested reader is encouraged to compare with the actual Coq scripts. Moreover
the details of the Coq formalization are given only for the crucial definitions or
to illustrate an interesting point. For a more detailed description we refer to

[KopOG6h].

6.2 Motivation

This work was motivated by the following concerns:

e Verification of the proof.

Traditionally, trust in a mathematical proof is achieved by thorough checks
done by the community. Complicated proofs that are little known inevitably
contain small slips that remain unnoticed. Identification of such flaws and
verification of the results justify the formalization effort. Indeed in the course
of formalization we were able to detect a small flaw, concerning the use of
multiset extension of an arbitrary relation, that could be easily repaired (we
will discuss it shortly in Sections [[22.0] and @0.33). In general [JR99, [JROT]
turned out to be a very favorable subject for formalization and the structure
of the proofs could be followed to the letter in the formalization process

1Obviously providing formal proofs requires to be more explicit and to include all the results
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e Contribution to the CoLoR [COL, project.
ColoR is a project aiming at proving theoretical results from the area of term
rewriting in the theorem prover Coq. Such theoretical results are used to
transform termination proof candidates, produced by termination tools, into
formal Coq proofs certifying termination. This development was contributed
and became part of the CoLoR library.

e Improving proof assistants technology.
In the future, technology will depend on critical systems. These systems will
need to be proven correct before they are deployed. Theorem proving is still
a rather laborious task and for the advancements in this area case studies
are needed.

6.3 Contributions

The contribution is the Coq formalization of the proof of well-foundedness of
HORPO [JR99]. Tt can be divided into the following parts:

e Auxiliary results (generally not discussed here)

— Many operations and properties concerning lists and relations that were
not present in the Coq standard library.

e Multisets and multiset extensions of a relation (Chapter [1).

— Multisets as an abstract data-type (Section [T1]).

— Concrete implementation of multisets using lists.

— Definitions of two variants of a multiset extension of a relation (Sec-
tion [C2]0]).

— Multiset extensions preserve orderings (Section [[.2.3)).

— Multiset extensions preserve well-foundedness (Section [7.3).
e Simply typed lambda calculus (Chapter [)).
— Definition of simply typed lambda terms over an arbitrary signature

with constants and typing & la Church (Section [B).

— Properties of environments, subterm relation and many further defini-
tions and results (Section [8.2).

Typing properties: uniqueness of types, decidability of typing (Sec-
tion B2.2).

— Many-variable, typed substitution (Section [B3)).

that in normal presentation would be omitted as considered to be straightforward or irrelevant.
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A convertibility relation on typed terms extending the concept of a-
convertibility to free variables (Section [84]).

B-reduction and its properties (Section [B3]).

e HORPO (Chapter [)).

Higher-order rewriting in the format of algebraic functional systems

(AFSs) introduced in [JO91] (Section B.1]).

The computability predicate proof method by Tait and Girard and some
computability properties used in the proof of well-foundedness of the
union of HORPO and [-reduction (Section [02).

The definition of HORPO along the lines of [JR99] (Section @.3.7]).
Proofs of some properties of HORPO including its decidability (Sec-

tion [0:322).
Proof of well-foundedness of the union of HORPO and S-reduction (Sec-

tion [@33).

Coq » Figure[6.1] depicts relative sizes of those four parts measured by the size of
Coq scripts; precise figures are given in Table <

imgs/devsize.eps

Figure 6.1 Relative size of different parts of the Coq formalization.

Part of No. of Lines Total

the development files  of code files size
Auxiliaries 6 2,780 70,455
Multisets 6 4,432 130,554

Simply typed lambda calculus 17 13,951 440,295
HORPO 4 3,027 100,239

TOTAL 33 24,190 741,543

Table 6.1 Size of different parts of the Coq formalization.

6.4 History

The development started in early 2004 as a Master Thesis [Kop04], supervised by
Femke van Raamsdonk. After six months of full-time work it was completed and
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reported during the informal meeting of the Dutch Proof Tools day. The proofs
were all finished, only the computability properties were assumed as axioms.

In the second phase of the project the goal was to prove all the computability
properties. This turned out to be a very involved task and easily the most difficult
part of the whole project. It required refinements to the theory developed so far
and called for many new results. After completion the formalization tripled in
size but was finally axiom-free. The part concerning HORPO (Section of this
thesis) was reported in with the extended version available as a technical

report [Kop0O6b.

6.5 Related Work

Simply typed lambda calculus and (first-order) RPO have been subject to many
formalization efforts to date. However to the best of our knowledge our contri-
bution is the first formalization of the higher-order variant of the recursive path
ordering. Below we list a few somehow related formalizations. We begin with
some formalizations of typed lambda calculi.

e Berger et al. in their recent work [BBLS06| proved strong normalization of
A7 in three different theorem provers, including Coq, and from those proofs
machine-extracted implementations of normalization algorithms. Their for-
malization is closely related to our formalization of A™. They used, just as
we do, terms in de Bruijn notation and typing a la Church and their nor-
malization proof also relies on Tait’s computability predicate proof method,
however their terms do not contain constants. The main difference between
their formalization and the part of the formalization presented in Chapter [8
is the fact that their prime goal was extraction of a certified normalization
algorithm, whereas for us a somewhat more complete formalization of A\~
was required with the application to HORPO in mind.

e Another source of formalizations of lambda calculi is the POPLMARK chal-
lenge ﬂm: a set of benchmarks for measuring progress in the area
of formalizing metatheory of programming languages. Among numerous
submissions to POPLMARK there are even few using Coq and de Bruijn rep-
resentation of terms. The comparison however is difficult: although the
benchmark is designed for a richer type system (System F..) it focuses on
completely different aspects.

e Other formalizations include strong normalization proofs for calculi like: Cal-

culus of Constructions [Bar99, [ATt93b]; System F [AIt93al; typed A-calculus

with co-products [ADHS0I] and A-calculi with weak reduction strategies

[SDBOG]-
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There are also some formalizations of RPO that are worth mentioning here.

e Murthy [Mur90] formalizes a classical proof of Higman’s lemma, a specific
instance of Kruskal’s tree theorem, in a classical extension of Nuprl 3. The
classical proof is due to Nash-Williams and uses a minimal bad sequence
argument. The formalized classical proof was automatically translated into
a constructive proof using Friedman’s A-translation.

e Berghofer [Ber04] presents a constructive proof of Higman’s lemma in Ts-
abelle. The constructive proof is due to Coquand and Fridlender.

e Persson [Per99] presents a constructive proof of well-foundedness of a general
form of recursive path relations. This proof is very similar to, and indepen-
dently obtained, of the specialization to the first-order case of the proof of
well-foundedness of HORPO by Jouannaud and Rubio [JR99]. The proof in
[Per99) is extracted from the classical proof using a minimal bad sequence
argument by using open induction due to Raoult [Rao8§|. Persson presents
an abstract formalization of well-foundedness of recursive path relations in
the proof-checker Agda.

o Leclerc [Lec95] presents a formalization of well-foundedness of the multiset
path ordering (MPO) in Coq. The focus is on giving upper bounds for
descending sequences.

e De Kleijn in her Master Thesis [KIe03|] shows well-foundedness of RPO in
Coq. Her development however is not complete and contains a number of
axioms.

e Coupet-Grimal and Delobel [CGDOG] have provided a full development of
well-foundedness of RPO in Coq. In their formalization they use multisets
and a multiset extension of a relation that are part of the formalization which
is the subject of this part of the thesis and which are described in Chapter [7l

The rest of this part of the thesis is organized as follows. In Chapter [ finite
multisets and two variants of a multiset extension of a relation are introduced.
Chapter [B presents simply typed lambda calculus. Chapter [@ introduces: higher-
order rewriting, the computability predicate proof method and HORPO along with
the proof of well-foundedness of its union with G-reduction of A7
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Finite Multisets

7.1 Multisets

Multisets extend the notion of a set by relaxing the condition that all elements
are pairwise different. So in a multiset an element may occur a finite number of
times and the number of its occurrences will be called a multiplicity of the element.
Formally a multiset over a given domain A is represented by a function assigning
a natural number (multiplicity) to every element of the domain. This function is
a multiset counterpart of a characteristic function for sets. In the following we fix
a set A.

Definition 7.1. [Multisets] A multiset M is a function M : A — N.

A finite multiset is a multiset for which there are only finitely many x such that
M (z) > 0. We denote the set of finite multisets over A by My4. o

In this work we focus on finite multisets only. Although some theory about mul-
tisets extends to infinite case, the parts we are interested in do not: only finite
multisets can be treated as a data-type and the crucial property of a multiset
extension of a relation, preservation of well-foundedness, does not hold if we allow
multisets to contain infinitely many elements.

Coq » We continue with showing how multisets can be defined in Coq. We use
the Coq module mechanism to develop an abstract specification of multisets. We
create a module type parameterized by a set A equipped with a decidable equality
This module declares a Multiset data-type and the crucial function, mult, which
given a multiset and an element returns the multiplicity of the given element in

IDecidability of equality will be required to prove decidability of the multiset extension (as
we shall see in Theorem [T77)), which in turn will be needed to prove decidability of HORPO (see

Theorem [0.22]).
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that multiset:

Parameter Multiset : Set.
Parameter mult : Multiset -> A -> nat.

Note that this is a very generic approach. The mult function is required, that for an
arbitrary multiset must give a function from A to natural numbers, corresponding
to the mathematical model of multisets as in Definition [[.Jl But the Multiset
type is not constrained in any way, allowing for any possible representation of this
data—typeH

Further the specification calls for the existence of an empty multiset and of the fol-
lowing operations on multisets: equality, construction of a singleton multiset and
union, intersection and difference of multisets. The summary of those operations
with the corresponding Coq declarations is presented in Table [[Il The specifica-
tion of those operations is given in terms of the mult function and is presented in
Table For the detailed list of Coq statements expressing such specifications

we refer to [KopO6bl p. 13].

Operation Coq declaration Coq notation
M(x) mult: Multiset -> A -> nat x/M
M =N meq: Multiset -> Multiset -> Prop M =mul= N
(%) empty: Multiset empty
{{I}} singleton: A -> Multiset {{ X }}
Mo N union: Multiset -> Multiset -> Multiset M+ N
Mn N intersection: Multiset -> M#N
Multiset -> Multiset
M\N diff: Multiset -> Multiset -> Multiset M-N

Table 7.1 Primitive operations on multisets.

Note that those operations are not completely independent. For instance intersec-
tion can be defined using the difference operator as:

M AN := M\(M\N)

20bvious representation as a function from A to N is just one of the possibilities. Note however
that, if the domain A is infinite, with such representation enumerating all elements of a given
multiset is impossible (just as in any functional programming language).
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Operation Specification
M =N M =N < V, M(x) =N(x)
%) J(x) =0
{{zf(z) =1
fieh o) =0z y
MuN (M u N)(x):= M(x) + N(x)
MnN (M n N)(x) := min{M(x), N(z)}
(M\N)(z) := M(z) = N(x)
M\N m-—n ifm>=n
where: m —n :=
0 otherwise

Table 7.2 Specification of primitive operations on multisets.

Both operations have been kept for efficiency reasond but the above definition
has been proven to realize the specification of the intersection operation.

One more additional requirement is the validity of the following inductive reasoning
principle for multisets (P being an arbitrary proposition over multisets).

P Viema, aca P M = P (M v {{a}})
Vaem, P M

So if we can prove that a property holds for an empty multiset and if assuming it
holds for M we can prove that it also holds for M u {{a}} (for an arbitrary a) then
it holds for every multiset. It is stated in Coq as follows:

Axiom mset_ind_type: forall P : Multiset -> Type,
P empty -> (forall Ma, PM -> P (M + {{a}})) ->
forall M, P M.

Using those primitives some additional operations are defined. For details we again
refer to [KopO6b].

Then a simple list implementation of multisets has been provided. Multisets are
represented as lists, the equality of multisets corresponds to the permutation pred-
icate on lists, the union operation is realized by list concatenation and all other
operations are implemented in a fairly straightforward way.

31t may be possible to provide a more efficient implementation for computing intersection
of two multisets than by the above computation. Thanks to this choice our development of
multisets can be reused also in a context where multisets are treated as a data-type and where
efficiency is an issue.
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Also a number of simple properties about multisets have been proven. They de-
pend only on the axiomatic specification. This ensures that given another imple-
mentation of multisets, say, a more efficient one, those results carry over auto-
matically. The same holds for all the rest of the multiset theory presented in the
following sections so all the results are independent of the actual implementation
of the multiset data-type. <

7.2 Multiset Extensions of a Relation

7.2.1 Definition

In this section we present two rather standard definitions (see for instance [BN98])
of an extension of a relation on elements to a relation on multisets of elements.
It is usual to define those extensions for orderings, however we define them for
arbitrary relations and only in Section we study some properties valid only
in case the underlying relation is an ordering. Having multiset extension of an
arbitrary relation will be useful in Section where we will use a multiset
extension of HORPO, without proving its transitivity (more complex versions of
HORPO are not even transitive).

The intuition behind the subsequent definition is as follows: to prove that a mul-
tiset M is bigger than N we are allowed to remove an arbitrary element a from M
and any number of elements from N that are smaller than a. If by repetition of
this process we can make those two multisets equal (in particular: empty) then we
have proven that M is bigger than IN. The single step of this process is captured
in the following definition by the notion of the multiset reduction and since we
may use more than one step the actual multiset extension of a relation is just a
transitive closure of that multiset reduction.

Definition 7.2. [Multiset extension of a relation, >,,.,] Let > be a relation on
A. We define the multiset reduction relation >,,,, on My as:

Ix yeMa:aea such that:

Mo, Nif 4~ M=Xuid
— N=XvuY
— Vyey a>y

We will say that a proves (or: is a witness for) X u {a}} = M >,. N =X o Y[

Now the multiset extension of a relation (>,,.,) is defined to be the transitive
closure of the multiset reduction, so >,,,,= >+ o

maul”®

4Note that X and Y can be reconstructed as: X = M\{{a}}, Y = N\X.
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Another way of defining a multiset extension is to combine together the “small
steps” from the above definition and obtain a “big steps” variant as presented
below.

Definition 7.3. [Multiset extension of a relation, >,,;,] Let > be a relation on
A. We define the multiset extension of a relation >,,,, as a relation on My:

E‘X,Y,ZEMA such that:

— Yy
M>u, Nif { — M=XuY
— N=XvuZ

- vzEZ ElyEY y>z

We will say that Y proves (or: is a witness for) X Y = M >, N =X u Z.
Sometimes for clarity we will mention the whole triple (X,Y, Z) as a witness for
M > MUL N. <&

First let us remark that for > being an arbitrary relation >,,,, and >,,,, do differ
as illustrated on the following example.

Example 7.4. Take A = {a,b,c} and > = {(a,b), (b,c)}, then {a} >,.. {c}
because {a} >, {b} and {b} >>,... {c}, but not {a} >, {c}. <

If > is transitive (particularly, if it is an ordering) then the definitions of >,,,, and
> v coincide as we will see in Section [7.2.3]

Coq » Coq variants of Definitions and are straightforward; for details we
refer to [KopO6b]. <

7.2.2 Properties of Multiset Extensions of a Relation

As remarked in the previous section >,,,, and >, differ for non-transitive rela-
tions. For now we will prove that >, is a subset of >,,,;. We will use this result
in Section to prove equivalence of >,,,; and >, for orderings and also to
conclude well-foundedness of >,,,, from well-foundedness of >,,,, in Section
We begin with an auxiliary result.

Lemma 7.5. Let X, Y e My and a € A. If Vyey pexogfay © > y then there exist
multisets Yx and Y, such that:

e Y =Y, uYy,
e Vyey, a >y,

L4 Verx E‘meX Tr>y.
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Proof. Easy induction on Y’ for details see [Kop06bj. O

Lemma 7.6. Yy nemiy M >y N = M >, N.

Proof. We have M = X 0Y >,,, X uZ = N with Y being the witness. We
prove X vY >, X u Z by induction on the multiset Y. The base case is easily
discarded as Y # ¢ by the definition of >, .

For the induction step we have X v Y u {{a}} >y, X U Z proven by Y u {{a}}
and we need to show X uY u {a}} >,... X u Z. We distinguish two cases:

e YV =¢. Then a proves X uY v {{a}} >,... X U Z.

e Y # . By Lemma [[.5] we split Z into Z, and Zy such that Z = Z, u Zy,
Veez, a >z and V.ez, Jyey ¥y > 2. Now we will continue with showing that
XuYuf{al} >, XuZy u{{a}} >,... X uZ which by transitivity of >,,.,
will complete the proof.

- XvYu{{al} > X uZy u {{a}} by application of the induction
hypothesis. For that we need to show X v Y u {{a}} >y X U Zy U
{a}} which is proven by Y as both Y # & and V.cz, Jyev y > 2z by
assumption.

— X uZy u{{a}} > X U Z is easily proven by a. O

Clearly >, is decidable provided we can decide > as we will show in the following
theorem. We will need this result to prove decidability of HORPO in Section [0.3.21

Theorem 7.7. If > is a decidable relation then >, s also decidable.

Proof. To decide whether M >,,,, N we need to search for a witness Y. Since
Y € M there are only finitely many potential witnesses and we can consider all
of them. (The Coq proof and, as a consequence, an algorithm, is slightly more
involved. See notes on the Coq implementation below). O

Let us conclude this section with a simple property of >,.., and >,;,, stating
that every element in a smaller multiset is a reduct of some element in a bigger
multiset.

Lemma 7.8.

(i) If M >,... N then Ypen Imen m >* n.

(ii) If M > 50 N then Vopen Jmenm m = n.

Proof. (ii) is immediate from the definition of >,,,. For (i) first let us note
that if M >,,., N then V,en Jmermsr m = n. The main goal easily follows as
> =% O

mul
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Note that the conclusion in case (i) of the above lemma being m >* n and not
m = n is essential and for non-transitive > makes a difference. This property in
this wrong form was (implicitly) stated in [JR99, (page 407, case 3 in the proof
of Property 3.5)]. Although there it is only a very minor flaw that can be very
easily repaired, it shows that one needs to be careful with reasoning about multiset
extensions of non-transitive relations.

Coq » We would like to make a short comment on the proof of decidability of
the multiset extension >, (assuming decidability of >). Since the proof is con-
structive it provides a decision procedure for the problem: “given two multisets M
and N does M >, N hold?”. At the moment the used algorithm is suboptimal
and it essentially considers all possible ways of splitting M into X and Y such
that X € N and Y is not empty and then for every element z € Z = N\ X looks
for y € Y such that y > z by examining all elements in Y. Note however that it
would do to restrict X to the biggest set such that X € M and X © N, so we
can take X = M n N. Then Y = M\X and Z = N\X. This observation leads to
a more efficient decision procedure. The proof, however, will be more complex as
we need to show that it is enough to consider only this single, potential witness.
This improved procedure is not yet implemented in Coq. «

7.2.3 Multiset Extensions of Orderings

In this section we investigate properties of multiset extensions in case > is an
ordering. We will prove that then multiset extensions are also orderings and
therefore in that context are often called multiset orderings. We will also show
that >, and >, coincide if > is transitive (so in particular if it is an ordering).

We begin by proving transitivity of >,,, . For that we first introduce two auxiliary
lemmas.

Lemma 7.9. YV, yaqen [ +7 =u+d = r=min{r,d} + (u=1)

Proof. By case analysis with inequalities v > [ and r > d using definitions of min
and =. O

Lemma 7.10. V. pupemy LOUR=UUD = R=(RnD)u (U\L).
Proof. Immediate from [ for an alternative direct proof, see [Kop06b]. O

Lemma 7.11. Let > be a transitive relation. Then >, . is also transitive.

Proof. We have M >,,;,, N >, P with (X1,Y1,Z1) proving M >, N and
(X9,Y5, Z5) proving N >,,,, P. We claim that then (X7 n X5, Y7 U (Y2\Z1), Zo U
(Z1\Y2)) proves M >, P as:
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e Yiu(Yo\Z1) #Jas Y1 # J.

e M =X,0Y1 = (X1nX2)u(Y2\Z1)uY;. First equality is due to M >,,,, N
with (X3,Y7,7Z1). The second one is by Lemma as Xy uZ; =N =
X2 ) ng

e N=X10Z; =(X1nX2)u(Z1\Y2)uZs. Analogously to the above case. O

Now we can prove equivalence of >,..,, and >,,,, for transitive relations.

Theorem 7.12. Let > be transitive then Yy nemy M >, N < M >, N.

Proof. (=) Inductionon M >,,,, N. Either Mt>,,,, N with a but then M > ,,,, N
with {a}}; or M >, M' > .., N but then M >,,,, M' >,,,, N by the induction
hypothesis and we conclude by transitivity of >,,,, (Lemmal[lII} note the use of
transitivity of > here).

(<) By Lemma [7.6 O

Now we continue with showing that if > is a strict ordering then so are >,,,, and
> .- We need an auxiliary lemma first.

Lemma 7.13. VM,N,PEMA M >MUL N — MUP>MUL NuP

Proof. Observe that for arbitrary R,S € My, if R >,,,, S then it is proven by
Rn S. Hence M >,,,, N is proven by M n N it M v P >,,,, N u P is proven
by Pu (M n N). O

Theorem 7.14. If > is a strict ordering, then >, and >, are also strict
orderings.

Proof. By Theorem [T T2 for orderings >, = >,.... We continue by proving that
> v 18 a strict ordering. We get transitivity by Lemma [ TIl For irreflexivity,
by Lemma [[13] we get M >, M = & >, & but by definition & is a
minimal element of >, . |

7.3 Well-foundedness of Multiset Extensions of a
Relation

In this section we will prove that the two variants of multiset extension introduced
before preserve well-foundedness, so a multiset extension of a well-founded relation
is again well-founded. The proof that we give is due to Buchholz and closely follows
the presentation by Nipkow [Nip9§]. It proceeds by well-founded part induction,
see Definition [L])).
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We will abbreviate M A‘gf:ul by MQ‘“. By <,... we denote the converse of >,,,;
similarly for <,,,, and <,,, .. We begin with a simple auxiliary lemma considering
qTnul'

Lemma 7.15. Let M,N € Mis. If N <,,.. M v {{a}} then there exist a multiset
M’ e My such that:

N =M v {{a}} N=MuM
v
M <0 M Voemr © < a
Proof. Easy from the definition of <,,,, (see [Kop04] for a detailed proof). (|

Lemma 7.16. Let M, € Mé“ and a € A. Then:

(1) Vi<, MeMAee Mu{{bl} e Mécc

Acc
(2)  Varanum, MU {a}} € MAee } = My v {{a}} e MZ

Proof. By the definition of M4°¢ we need to show N € M4¢ for N <1,,.,, Mo u {{a}}.
By Lemma [T there are two possibilities for N <,,., Mo v {a}}:

e N =M v {{a}} for some M <,,,, My. Then N € M4 by (2).

e N =Myu K and Yipex k < a. We proceed by induction on K. For base
case if K = ¢ then N = M, € MQ‘CC by assumption. For induction step
K = Ko u {{k}} and Ko € M4 by the induction hypothesis. So N € M#4¢
follows from (1) as k < a. O

Lemma 7.17. ¥, prepace M U {b}} € MG™ = Vyrepace M U {{a}} € MG

Proof. Follows immediately from Lemma by well-founded part induction on
M. O

Acc
Lemma 7.18. V,cgace premace M U {{al} € MG

Proof. Follows immediately from Lemma [[. 17 by well-founded induction on a. O

Lemma 7.19. Vyem, M e M4

Proof. By induction on M. For base case & € M‘;‘cc as there is no multiset N
such that N <,,.,, &. The induction step follows from Lemma [T.T8 O

Theorem 7.20. If < is a well-founded relation then its multiset extensions <,,.
and <,y are also well-founded.
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Proof. <,,., is well-founded as it is a transitive closure of <,,,, which is well-
founded by Lemmal[7.J9 Then well-foundedness of <,,,, follows from Lemma [7.6l
O

Coq » Nipkow remarked that the variant of a proof of well-foundedness of the
multiset extension from [Nip98| is particularly well suited for theorem provers.
Indeed this proof went quite smoothly in Coq and it is rather short. <



Chapter 8

Simply Typed A-calculus

In this chapter we will present the simply typed lambda calculus (A7) that was
introduced by Church in 1940 [Chu4(]. For a more detailed introduction of A~ we
refer to, for instance, [Bar92, [Chu4(]. For some standard and/or easy theorems
we omit the proofs, but they are clearly part of the formalization and they can be

found in |[KopO6b).

We will define terms in Section [B.1] then we will introduce some further definitions
and results in Section Section [B3 will be devoted to the definition of a many-
variable, typed substitution and Section [84] to the development of an equivalence
relation on terms that extends the concept of a-convertibility to free variables.
Finally Section introduces the (-reduction relation along with its properties.

8.1 Terms

We assume a set of sorts (ground types) and we define simple types.

Definition 8.1. [Simple types, 75| Assume a set of sorts S. We inductively define
a set of simple types Tg as follows:

o for any 0 € S, 0 € Ts (base type),

o if 0,7 € Ts then 0 — 7 € Ts (arrow type).
We will denote simple types by o, 7, p. o

Now we can define a notion of a signature.
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Definition 8.2. [Signature, ¥] We assume a set of constants F and we define a
signature (X) to be a set of typed constants declarations, that is pairs f:o with
feFand o€ Ts.

We will usually refer to typed constants as function symbols and we will denote
them by f, g etc. o

For the rest of the presentation we assume a set of sorts S and a signature X to
be fixed and we assume a fixed set of variables V, disjoint from X.

We define environments to hold declarations for free variables.

Definition 8.3. [Environment, Env] The environment (Env) is defined as a finite
set of distinct variable declarations, that is: Env < V x 75 such that for every

environment I' : Env, I' = {z1:01,...,2,:0,} for all 1 < 4,5 < n: z; # x; for
i # j. The domain of the environment is defined as Var(T') = {z1,...,2,}.
We will denote environments as I', A etc. o

Now we define un-typed terms.

Definition 8.4. [Un-typed terms, Pt] A set of un-typed terms is defined by the
following grammar:

Pt =V |3 ]| QPt,Pt)| \V:1s.Pt o

The grammar rules for terms define respectively: a variable, a function symbol, an
application and an abstraction. Application is left-associative and we will write
Q(t,u,s) for @(Q(¢,u),s). Also an application headed by a function symbol we
will write as f(t1,...,t,) abbreviating Q(f,t1,...,t,).

Now we proceed with presenting typing judgements: a typing discipline that our
typed terms will follow.

Definition 8.5. [Typing judgements] We will write typing judgements of the form
I't: A to denote that in an environment I' a term ¢ has type A. They respect
the rules of the following inference system:

x:oel fioeX
F'+z:0 I'f:o
F'—t:io—-r F'Fu:o Fvf{z:ot-t:r
' Q(t,u): 7 '-Xe:iot:o—T ¢

Definition 8.6. [Typed terms, A] Typed terms (A) are triples (T',t, ) consisting
of an environment I', an un-typed term ¢ and a type o, such that I' ¢ : ¢ holds.
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Such triples will be identified with their corresponding typing judgements. We
also define:

env(lt:0)=0, teem(I'+~t:0)=1t, typel'+t:0)=0

We will denote typed terms by letters ¢, u etc. Often we will omit the environments
and write ¢:0 instead of I' - ¢ : o or even only ¢ if the type is irrelevant. o

Now we will define fully applied terms, that is terms where function symbols are
applied to all its arguments.

Definition 8.7. [Fully applied terms, A] Fully applied terms (A) are typed terms
that respect the following inference rules, where we speak about typed terms but
for readability omit environments and types where not needed:

teA
reAN Az:otel
teA uedl tielh,....theNoeS
Q(t,u)e A flt1, .. ty) o€l

So for fully applied terms we admit all variables, we push the property through
abstraction and application and, in the last rule, for an application headed by a
function symbol, we demand full application resulting in a base type of a term. ¢

Coq » The development of A~ in Coq is structured using Coq’s module mechanism.
Firstly in the file TermsSig.v the module type SimpleTypes is defined containing
definition of simple types parameterized by the set of ground types. Then the
module Signature, representing a signature, contains definition of constants along
with the function f_type mapping them to their types. All further development
concerning A7 is done within functors taking such signature as their argument.
In the file TermsDef.v the definition of typed terms is given.

Note that we use de Bruijn indices [Bru72] to represent terms in order to avoid
having to explicitly deal with a-conversion. Due to that fact the environments
could simply be represented by lists of simple types. However, later on we will
introduce a lifting operation on terms that renames variables, which in case of
de Bruijn indices corresponds to increasing their numerical values. This leaves
some variables with lower indexes undeclared and to express that fact we need
dummy variables. So environments are lists of SimpleType optiorﬂ7 and not Sim-
pleType, with None representing dummy variables. This will lead to some small
complications as we will explain in Section We will also use the notation

"Where option is a standard type in Coq, with option A being a type constructed by either
providing a value z of type A (Some x) or indicating absence of such value (None); this can
be thought of as a type-safe way of introducing null values, known from most programming
languages.
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E |= x := A to denote that the variable x in the environment E has type A and
E |= x :! to denote that the variable x is undeclared in the environment E and
A --> B for the type A — B.

We continue with a straightforward definition of un-typed terms. Note that vari-
ables are natural numbers representing their index in de Bruijn notation. We
introduce a number of notational conventions to make representation of terms
more readable.

Inductive Preterm : Set :=
| Var (x: nat)
| Fun (f: FunctionSymbol)
| Abs (A: SimpleType) (M: Preterm)
| App (M N: Preterm).

Notation "~ f" := (Fun f) (at level 20).

Notation "% x" := (Var x) (at level 20).

Infix "@Q@" := App (at level 25, left associativity).
Notation "s [ x 1" := (s @@ x) (at level 30).
Notation "s [ x, y 1" := (s @@ x @@ y) (at level 30).
Notation "\ A => M" := (Abs A M) (at level 35).

Next we present typing judgements. They will be written in Coq in the form
E |- M := A representing typing judgement £ — M : A. It is easy to recognize
the inference system from the Definition in the following inductive definition,
where A [#] E is the environment E extended with a declaration of A.

Reserved Notation "E |- Pt := A" (at level 60).
Inductive Typing : Env -> Preterm -> SimpleType -> Set :=
| TVar: forall E x A,
El= x :=
E |- %x :
| TFun: forall E f,
E |- °f := f_type f
| TAbs: forall E A B Pt,
A [#] E |- Pt :=B —>
E|-\A=>Pt :=A-->B
| TApp: forall E A B PtL PtR,
E |- PtL := A --> B ->
E |- PtR := A ->
E |- PtL @@ PtR := B

A >
A >

where
"E |- Pt := A" := (Typing E Pt A).

Finally we give the definition of a typed term.

Record Term : Set := buildT {
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env: Env;

term: Preterm;

type: SimleType;

typing: Typing env term type
}.

Definitions introduced in this section are very crucial as we will constantly work
with them while formalizing the content of the following sections. One may wonder
whether it would not be more convenient to use a single dependent inductive
definition of typed terms that would combine the definition of term structure with
its typing judgement and that could look as follows:

Inductive Term : Env -> SimpleType -> Set :=

| TVar: forall E x A,
El=x :=A->
Term E A

| TFun: forall E £,
Term E (f_type f)

| TAbs: forall E A B

Term (A [#] E) B —>
Term E (A --> B)

| TApp: forall
Term
Term
Term

E A B,

E (A -->B) —>
EA >

E B.

At first sight this definition looks very attractive but although having some advan-
tages, it also has a serious drawback: the structure of terms is embedded within
its typing judgement. As we shall see later the great part of the proofs of equality
of two terms will use the observation, that is to be proven in Section B2.2] that
two terms with equal structure and equal environments are equal. Such proofs
essentially split the reasoning into the reasoning about term structure (un-typed
A-terms) and about environments. This is very convenient to do with the use of
the first proposed definition as it requires only dealing with two very simple defi-
nitions (Env and Preterm) as opposed to the second approach where one needs to
constantly work with a complex dependent type. Moreover in this way all the rea-
soning about term structures gives us some results about the theory of un-typed
A-calculus. <

8.2 Further Properties and Definitions of \™

8.2.1 Environment Properties

We start with some simple operations on environments:
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Definition 8.8. [Environment operations] For any environments I, A we define
the binary operations of composition and subtraction of environments.

e I'"A=Avu{z:cel |z ¢ Var(A)}
e MA={z:0el|x¢ Var(A)} o

We also introduce a notion of compatibility of environmentsf]

Definition 8.9. [Environment compatibility] For environments I', A we say that
they are compatible iff for any variable v if they both declare it, they declare it
with the same type. We will denote the fact that I" is compatible with A by
I'= A. So we have:

F'e=A = Voev, orers Ti0 el AziTEAN = o=17 o

Coq » All the definitions and results concerning environments can be located in
the file TermsEnv.v. Here we skip the definitions which are rather standard; for

details we refer to [KopO6b].

We already indicated in Section[81] while introducing terms, that allowing dummy
variables in environments (which will be useful in SectionB3] in particular in[83.2)
leads to problems. Those problems come from the fact that in this way we loose
unique representation of environment. For instance, the empty environment can
be represented by the empty list (nil) but also by a list with only a single declara-
tion for dummy (None: :nil). This problem was solved by providing equality for
environments, different than Coq’s Leibniz’ equality, that takes those subtle repre-
sentation issues into account. It is defined via a subset predicate for environments,
thatis’=A < I'C AAACT.

Definition envSubset E F :=
forall x A, E |[=x := A ->F |=x := A.
Definition env_eq El E2 := envSubset E1 E2 /\ envSubset E2 El.
Notation "E1 [=] E2" := (env_eq E1 E2) (at level 70). <

8.2.2 Typing Properties

Now we will look into some properties of the type system of the simply typed
A-calculus. The first two properties ensure that every term has a unique type and
that type derivations are unique.

Theorem 8.10 (Uniqueness of types). Suppose I' = ¢ : 0 and T' -+ t : 7 then
o=rT. O

2Hindley uses the term consistence for this concept but we follow the naming conven-
tion of Jouannaud and Rubio [JRO7].
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Theorem 8.11 (Uniqueness of typing judgements). Given a typed term T+t : o
its type derivation is unique. O

Now we present a theorem stating that typability of simply typed A-terms is de-
cidable in linear time.

Theorem 8.12 (Decidability of typing). Given environment I' and an un-typed
term t the problem of finding o such that 't : o is decidable in linear time with
respect to the sum of the sizes of t and T. O

Two following lemmas express the fact that a term can be typed in an extended
environment. We will need them in Section[8.3.3] for reasoning about substitution.

Lemma 8.13. Let A,T" be an environment. If U'=t:0 then A-T't: 0.

Proof. Easy structural induction on ¢. [l

Lemma 8.14. Let A,T" be environments. If T —t: 0 and A =T, then T - A
t:o.

Proof. Easy structural induction on ¢. For the variable case we use compatibility
of A with T. O

Coq » Remarks:

e The proof of Theorem B.I1]is actually quite technical in Coq. It involves the
usage of the uniqueness of identity proofs for dependent types and makes use
of Streicher’s K property from the standard library. I would like to express
my gratitude to Roland Zumkeller who helped me carry out this proof.

e From the constructive Coq proof of Theorem a certified algorithm for
typing lambda terms can be extracted easily. This algorithm indeed has
linear complexity, but note that linear complexity of the decision procedure
is not proven in Coq. <

8.2.3 Further Definitions

We define a set of free variables of a term as:

Definition 8.15. [Free variables, Vars| For T' - ¢ : o we define the environment
containing free variables of ¢, Vars(t), by induction on ¢ as:

Vars(T' -z :0) = {x:0}
Vars(T'+ f:0) =
Vars(I' - Q(¢;,t,) :0) = Vars(D'+1¢;:7— o) Vars(I' ¢, : 7)
Vars(I' - Az:ot:0 - 7) = Vars(I'-{z:0} —t:7)\{z:0}
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Note that Vars(I' -t :0) € T. o

We define a subterm relation as follows:

Definition 8.16. [Sub-term, =, =] The subterm (&) and strict subterm (=)
relations are inductively defined as:

tE oy tE up tEu
t = Qug, uy) t = Q(ug, uy) tC \r:ou
t

tCw tCw
We proceed with showing that the strict subterm relation is well-founded. This
result justifies the use of induction with respect to the = relation on terms. We
will refer to it as an induction on the structure of terms and it will be frequently
used in the subsequent proofs.

Theorem 8.17 (Well-foundedness of =). = is a well-founded relation. O

The following two notions will be used in the definition of HORPO in Section

Definition 8.18. [Partial left-flattening] Given a term Q(ty,...,%,), any list of
terms of the form: Q(t1,t0,...,t;),ti41,...,tn for 1 < i < n is called its partial
left-flattening. o

Definition 8.19. [Neutral term] A term ¢ is called neutral if it is not an abstrac-
tion. o

Coq » In Coq development an environment containing only free variables and
no additional unused declarations is called an active environment of a term. It is
defined as activeEnv (M: Term) : Env. Then a number of auxiliary functions is
provided. Functions appBodyL, appBodyR and absBody return the left argument of
an application, the right argument of an application and the body of an abstraction
respectively and are defined as expected. Predicates isVar, isFunS, isAbs and
isApp hold for a term that is a variable, a function symbol, an abstraction or
an application respectively. For an application ¢t = Q(¢q,ta,...,t,) we call {; an
application head, to, ..., t, application arguments and t1, ..., t, application units.
appHead t returns the head of t; isArg t’ t (resp. isAppUnit t’ t) holds if
t' is an application argument of t (resp. application unit). Finally subterm and
subterm_le correspond to the definitions of = and E, respectively. «

8.3 Substitution

In this section we introduce the substitution on terms of A7”. First in R3] we
introduce concepts not directly related to substitution, namely those of positions
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in a term and the replacement operation. In [B.3.2] we define lifting and lowering
operations on terms, which will be used in the definition of substitution. Finally
in B33 we define substitution on A~ terms and discuss some of its properties.

8.3.1 Positions and Replacement

We begin by defining term positions.

Definition 8.20. [Term positions, Posy] We define positions (Pos) as strings
over the following set:

{e, <, >, A}

its elements indicating a position at the root, a position in left and right argument
of an application and a position within a lambda abstraction respectively.

Now we inductively define term positions (Posa) as a family of positions indexed
by terms, as follows:

te A p € Posy
€€ POSt A- pE POS}@:U.IS
p € Posy, p € Posy, o
<-p € Posa(y t,) > -p € Posa,t,)

We continue with a definition of a subterm at a position and of a replacement of
a term at a given position.

Definition 8.21. [Subterm at position, ¢|,] For any term I' - ¢ : o and position
p € Pos; we give a recursive definition of a subterm of t at p, t|,:

te=t
@(tlvtT)|<1';D = tl|P
Qts, tr)|sp = trlp
Az:ot|ap =tlp o
Definition 8.22. [Replacement at position, ¢[u],] For any term I' - ¢ : o, position

p € Pos; and term A + w : 7 such that type(t|,) = 7 and env(t|,) = A we define
the replacement in term t at position p with term w (t[u]p), by recursion on p, as:

tu]e =
Qty, tr)[u] p—@(tl[] )
]

o t,
Aty t)[u]sp = @l tr[u]p)
Az:ot[u]ap = Av:ot[u]p o
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Lemma 8.23. For any terms ' =t : 0, A - u : 7 and position p € Pos; such
that the replacement t[u], is well defined we have:

I'tlulp:o

so the result of a replacement is typable with the same environment and type as
the term in which the replacement takes place.

Proof. Induction on p.

e p =c¢ Then tfu], = u, I' = env(t|c) = env(t) = A and 7 = type(t|c) =
type(t) = o by definition and then I' - t[u], : 0 as A -~ w : 7.

e p=\-p, thent = \r:0.t and t{u], = A\x:0.t'[u], and we conclude by the
induction hypothesis for t'[u], .

e p=<-p, then t = Q(¢;,t,) and t[u], = Q(t;[u],, tr) and we conclude by
the induction hypothesis for ¢;[u],.

e p =0 -p, then t = Q(#;,t,) and t[u], = Q(t;,t,[u],y) and we conclude by
induction hypothesis for ¢,[u],. O

8.3.2 Lifting and Lowering of Terms

So far we tried to hide the use of de Bruijn indices from the presentation but it
is not possible in this section as lifting and lowering are operations specifically
defined for terms using this representation. So throughout this section we assume
V=N

Before we define those operations let us briefly explain why do we need them. In
the process of substitution we replace a term in some context which may contain
binders. To avoid capturing of free variables their de Bruijn indices need to be
increased by a value equal to the number of binders in the context in which a
substitution takes place. This operation is called a lifting of a term. Lowering is
the opposite operation in which the indices are decreased.

Definition 8.24. [Term lifting, ¢1}] For a term ¢ and n,k € N we define its
lifted version with variables with index less than & untouched and remaining ones
increased by n (¢17) as:

fMe=1r
oy =z ifx <k
fy=z+n ife >k

Aty t)Ty = Qg 4 1%)
Ar:odly = Axiotly

We also define 1" := t1y. o



8.3 Substitution 141

Now we define lifting of environments:

Definition 8.25. [Environment lifting, I' 1?] For an environment I' = {z; :
O1,...,Tpn:0,} we define its lifted version I''} as:

'y = {zioi |xiio;€ Tk >ieN}-{(z; +n):0; |0, €Tk <ieN}

We also define '™ := I'7y. o

The following result ensures that lifted terms are well-typed.

Lemma 8.26. IfI' -t : o then for any n,k e N: '} =11} : 0.
Proof. Structural induction on :

e t =x. Either x < k or x > k but in both cases I'l}, - 21} : 0.
e t = f. Then f1}= f and I'} -~ f1} : o by typing rule for constant.

ot =Av:Tt, with ¢,:§ and 0 =7 — £ We conclude I''} = (Az:7.6)17 1 0
by induction hypothesis for #,1}, ; and by typing rule for abstraction.

e t = Q(t,t,). We conclude I't?  Q(t;,¢,)1} : o by induction hypothesis for
117}, induction hypothesis for ¢,1} and by typing rule for application. O

The definitions and results for lowering are dual except that this time we need to
take care of not lowering indices below 0.

Definition 8.27. [Term lowering, ¢]}] For a term ¢t and n,k € N we define its
lowered version with variables with index less than k untouched and remaining
ones decreased by n (t|}) as:

=171
iy ==z ife <k
Ty =r=n ife >k

Qts, tr )y = Qtuly, trli)
Aviotly = Ax:iot]p
We also define ¢|" := t|§. o

Definition 8.28. [Environment lowering, I' |}'] For an environment I' = {z; :
O1,...,Tn:0,} we define its lowered version I'|} as:

Dg = {x;:0; |xi0, €k >ieN}-{(z; =n)io; |x;i0; e k+n<ieN}

We also define I'|" := T'|{. o
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We have similar result to that of Lemma[8.20] just this time we need to make sure
that in the initial term indices k, ...,k +n — 1 are unused.

Lemma 8.29. For any n,k € N and any term U =t : 0 if Viep,  kan—1) Ti ¢
Var(T') then T} =t} 1 0.

Proof. Structural induction on ¢. The proof is similar to the proof of Lemma [8.20]
We use the assumption that z; ¢ Var(T') for k < i < k + n in the variable case to
ensure that by lowering no variable declarations are lost. O

Coq » The Coq formalization follows the structure of this presentation. So firstly
the definition operating on un-typed terms (prelift and prelower) are intro-
duced. Then operations computing lifted (resp. lowered) version of the environ-
ment (liftedEnv and loweredEnv). Finally it is proven that lifted (resp. lowered)
pseudoterms are well-typed in the respective environment. «

8.3.3 Definition of Substitution

Now we can present the definition of substitution. First we present it for un-typed
terms.

Definition 8.30. [Substitution] A substitution is a finite set of pairs of variables
and typed terms:

T={r1/T1+t1:01,...,2,/Tn -ty :on}
such that for all i # j e {1,...,n}, z; # z;.

A substitution domain is defined as an environment: Dom(7) = {z1:01,..., Ty :
o, } and, in case all environments I'; for 7 € {1,...,n} are pairwise compatibleﬁ,
we also define a substitution range as an environment: Ran(7) = U;er, oy i

Abusing notation we will also write € Dom(T") for = € Var(Dom(T")).
By mx we denote the substitution 7 with its domain restricted to V\X', that is:
T\X={(,Ti/l—‘iI—tiZO’i)ET|Z'E{1,...,n},JJi¢X} <o

Definition 8.31. [Substitution on un-typed terms| We define substitution on un-
typed terms as follows:

T = if & ¢ Dom(T)
T =u ife/T'+u:oer
fr=1r1
Q(ty, t,)T = Q(ty7, t,r7)
(Av:0t)T = A\2:047\ (4} o

3Which will be the case for compatible substitutions, see Definition R33]
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The computation of 7 (,; in de Bruijn notation is realized via taking 711 the lifted
version of substitution 7, with lifting operation on substitution defined as follows:

Definition 8.32. [Substitution lifting] Let 7 = {1 /Ty = t1 : 01, ..., 2n/Tn bty :
on} be a substitution. We define its lifted version as:

M= {(x1 +n)/(T1 =t o)™, .oy (n +0) /(T by o)1} o

Substitution operates on typed terms and hence is not always applicable as there
may be type and environment clashes. The following definition captures conditions
that are required for a substitution to be applicable to a term.

Definition 8.33. [Compatibility of substitution] We say that a substitution 7 =
{z1/T1 =ty 01,...,x0/Tn b ty 2 0n} i compatible with a term T' - ¢ : o if the
following conditions are satisfied:

e Environments of terms in 7 are compatible:
Vi;éje{l,...,n} Fi = Fj.

e Domain of 7 is compatible with the environment of ¢:
I' = Dom(r).

e Declarations in the range of 7 not present in the domain of 7 are compatible
with the environment of ¢:
I' = Ran(1)\ Dom(T). o

The following result ensures that the conditions posted in the above definition
are sufficient to type the result of application of substitution. This is a stronger
version of the result from [JROI]. We need two auxiliary lemmas first.

Lemma 8.34. Let 7 = {z1/T1 — t1 : 01,..., 2, /T L, : 00} be a substitution
such that all terms in T have compatible environments, that is: V4 e
L. Then for any i, Ran(t) = Ran(r) - T;.

.....

Proof. The result follows from the fact that environment composition is idempo-
tent and commutative for compatible environments. O

Lemma 8.35. Let 7 = {a1/T'1 Ft1 : 01,...,2/Tn F tn 2 0n} be a substitution
such that all terms in T have compatible environments, that is: ¥izjeq1,.. ny I'i =
T'j. Then for any i, Ran(t) - t; : 0.

Proof. By Lemma B34l Ran(7) = Ran(r) -I'; and then Ran(t) -I'; - t; : 0 by
Lemma RT3 O

Theorem 8.36. LetT' —t: 0 beatermandletT = {z1/T1 11 :01,...,2,/T
Ly on} be a substitution compatible with this term. Then:

(T\ Dom(T)) - Ran(T) - t1: 0
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Proof. Structural induction on t.

o t=u.

— If © € Dom(7) then z/T"; & t; : 0; € 7 for some ¢ and x7 = t,. By
Lemma [R30 we get that Ran(t) - t; : 0;, by Lemma RT3 (T'\ Dom(r)) -
Ran(7) + t; : 0; and finally o; = o by the assumption on compatibility
of 7 with ¢ (hence domain of 7 is compatible with ¢).

— If © ¢ Dom(7) then z7 = x and to conclude the result by the typing
rule for variable we need to show that (I'"\ Dom(7)) - Ran(t) - z : o.
Either z : 7 € Ran(T") but then 7 = o by compatibility of T" with
Ran(7)\ Dom(T) (7 is compatible with ¢; note that ¢ Dom(7)). Or z ¢
Var(Ran(I")) but then z:0 € I and hence z:0 € (I'\ Dom(7)) - Ran(7).

e t = f. Then fr = f and (I'\ Dom(7)) - Ran(T) + f : o by the typing rule for
constant.

o t =Q(t,t,) withT' ¢, : & > cand I' ¢, : & Then (I'\ Dom(7))-Ran(T)
tim: & - o and (I'\ Dom(7)) - Ran(7) \ t,.7 : £ by the induction hypothesis
and (I'\ Dom(7)) - Ran(T) - Q(¢;,¢,)7 : o by the typing rule for application
as Q(t;, t, )T = Qty7, L, 7).

e { = \x:7.t,. Substitution 7 is compatible with I' - ¢ : 0 so I' & Dom(7) and
hence I' - {z : 7} = Dom(7\(z}). Similarly I' = Ran(7)\ Dom(7) and hence
[-{z:7} = Ran(n(,})\ Dom(7\(,}).- So substitution 7,y is compatible with
the term I' - {x : 7} + ¢, : 7 — o and by the induction hypothesis we get
(' Az:7}\ Dom(7\(2})) - Ran(T\(z}) - tyT\(z} : T — 0. By the typing rule for
abstraction and by observation that (I'\ Dom(7)) - Ran(7) - {z:7} = (I - {«:

7\ Dom(7\(2})) - Ran(7\(zy) we conclude (I'\ Dom(7)) - Ran(7) = Az :7.tp7 :

. O

Coq » The part concerning substitution is by far the largest part of the devel-
opment of A™. That is primarily because indeed the definition of substitution
on typed terms is rather complex. But also the development contains some more
results about substitution not included in this presentation.

Because of the use of de Bruijn indices substitution is simply a list of option Term
(None indicating that the given index is not in the domain of a given substitution).
The actual substitution operating on typed terms corresponds to Theorem[8.36 «

8.4 Convertibility of Terms

For the development of computability in Section we will need to define com-
putability modulo classes of terms that are equivalent with respect to a relation
on terms ~, adhering to the following properties:
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(i)

it extends a-convertibility, so for a-convertible terms ¢t =, u we want to have
t ~u,

it relates terms that differ only on some additional declarations in environ-
ments that are not used, so we want to have ' =t : 0 ~ TV ¢ : o if
r=1",

finally we want to relate terms that differ only on names of free variables
that is we want to have ¢t ~ u if there exist a renaming of variables 7 such
that t = ur. Note that in de Bruijn notation such renaming corresponds to
permutation of indexes of free variables.

If ¢ ~ u then we will say that ¢t and u are ~-convertible.

We shortly present motivation for those three requirements:

(i)

(i)

(iii)

Typically we do not want to distinguish a-convertible terms in any way. This
is also the easiest requirement as we are using de Bruijn indices to represent
terms and in this representation a-convertible terms are simply equal.

The typical reasoning in computability proofs will be as follows: “given
term I' - ¢ : 0 — 7 take variable I' - {x:0} I 2 : 0 and consider application
I'{z:0} - Q(t,z) : 7...”. Note that constructing such application requires
extending I' with the declaration for z. On the other hand we would like to
have that the left argument of this application is equal to ¢. Strictly speaking
it is not equal as it has an extended environment. But thanks to (ii) it will
be ~-convertible.

The reason behind this requirement is to have ~-convertibility of lifted terms,
so: t ~ t1% for any 7. This in turn is needed for substitution. We will assume
in Section[@.2to have a substitution with all terms in its domain computable.
But those terms are being substituted in context of some abstractions and
hence need to be lifted (as explained in Section B3.2)). So we want to be
able to conclude computability of those lifted terms and since we are defining
convertibility relation anyhow, solving this problem by demanding that terms
and their liftings are convertible seems to be rather natural.

We will spend the rest of this section seeking convertibility relation on terms ~
satisfying posed requirements. The idea is, roughly speaking, to define two terms
to be convertible if there exist an endomorphism on free variables of one term that
maps them to free variables of the other term. We begin with the definition of
such variable mappings.

Definition 8.37. [Variable mapping] We say that a partial function ® : V — V
is a variable mapping if it is injective.
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Since @ is an injective function there exist its inverse ® ! and since this symmetry
will play an important role we will write variable mappings using infix notation so
z ® y instead of ®(z) = y. o

Now given such variable mapping we can say when two environments or two un-
typed terms are convertible modulo this mapping.
Definition 8.38. [Environment convertibility] I" and A are convertible environ-
ments modulo variable mapping ®, denoted as: T’ 2 A, if:

Vaoel, yreA TP Yy = o0 =7 S
Definition 8.39. [Un-typed terms convertibility] We define ¢ and ¢’ to be convert-

ible un-typed terms modulo variable mapping ®, denoted as ¢ 2 tﬁ, inductively
as:

TR ife ®y
fRf
Q(t,t,) 2 Q(uy, uy) if ¢ 2 u; and t, 2 Uy
Az:o.t 2 Az o if t {gl U o

Now it seems that we can say that two terms I' — ¢ : o, A - u : 7 are convertible

P o
(t L u) if there exists a variable mapping ® such that I' & A and ¢ & u. However
we need to be careful. If we require convertibility of full environments then the
following desired property does not hold:

t2u A dcd — t2uy

To see that consider terms: t = x:0 ~c: 6 and u = 2:7 I ¢ : 6 and notice
that we have t ~g w but ¢ #((, )} u as environments of ¢ and u declare x with
different types.

This can be easily repaired if we demand convertibility of environments on free
variables only, that is only those declarations that are really used in given term.
The definition of term convertibility follows:

Definition 8.40. [Term convertibility, ~] Terms I' ¢ : o and T + ¢’ : ¢ are

/

convertible up to variable mapping ®, denoted as '+t : o Lt o (we will

often leave environments and types implicit and write ¢ 2y ) iff:

Vars(T' ¢ : o) 2 Vars(I' =t : 0’) A ¢ 2

4We abuse the notation here and denote un-typed term convertibility and environment con-
vertibility with the same symbol &, however depending on the arguments being used it will
always be clear which one is to be used.
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Terms I' =t : 0 and IV — t' : o’ are convertible if there exist a variable mapping
dsuchthat T-t:0 ST/ ¢ 0. o

Then we extend the notion of convertibility to substitutions.

Definition 8.41. [Convertible substitutions, ~|] Substitutions 7 and § are con-

vertible with variable mapping ®, 7 2 6, iff:

x € Dom(T) <= y e Dom(d)
Vz,yevx(by:} P
rfteTAYy/ueEdl = t~u

Theorem 8.42. The relation ~ is an equivalence relation.

Proof. For reflexivity, we have t 2 ¢ with ® being identity on variables restricted

-1
to free variables of t. For symmetry, if ¢ 2w then u ™~ ¢ Finally transitivity is
o, @ w U
ensured as if t ~ v and v ~ w then t "~ w. O

The most important results concerning ~ include:

e Compatibility with substitution: ¢ ~ ¢' and 7 ~ 7/ implies ¢t7 ~ t'7’.
e Compatibility with beta-reduction, see Lemma [8.40!

e Compatibility with HORPO, see Lemma [0.20]

Coq » The most interesting aspect of this part of the development is probably
the representation of variable mappings in Coq. Variable mappings are partial,
injective functions. Moreover we need to be able to compute their inverse for
proving symmetry of ~. We know that the inverse of any variable mappings exists,
as it is an injective function. But this does not make our task any easier as we want
to provide a constructive proof and for that we need to be able to compute this
inverse: something that clearly cannot be done in full generality. But before giving
up constructiveness let us observe that variable mappings operate on environments
which are finite. So both domain and codomain of variable mappings are finite
and computing inverse of such functions can be accomplished.

To encode variable mappings in Coq we have chosen to model ® as a relation.
Then computing inverse is trivial as we only need to transpose the relation but we
still need to make sure that we can compute ®(z) for any x. Let us first present
the solution that we employed and then we will discuss it.

Record EnvSubst : Type := build_envSub {
envSub: relation nat;
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size: nat;

envSub_dec: forall i j, {envSub i j} + {“envSub i j};
envSub_Lok: forall i j j’, envSub i j -> envSub i j’ -> j = j’;
envSub_Rok: forall i i’ j, envSub i j -> envSub i’ j -> i = i’;
sizeOk: forall i j, envSub i j -> i < size /\ j < size

So envSub represents ® function (seen as a relation). Fields envSub_Lok and
envSub_Rok ensure that envSub is, respectively, a function and that it is injective.
The size field is an upper bound on indices of variables both in the domain and
the codomain of envSub and sizeOk verifies that indeed that is the case. Finally
envSub_dec states that envSub relation is decidable.

Now to compute ®(z) we check whether envSub x y holds (with the use of
envSub_dec) for y € {0,...,size — 1}. If we find such y then ®(z) = y and
we know that this y is unique by envSub_Lok. On the other hand if no such y
exists in this interval then we know that it does not exist at all due to sizeOk
and we conclude that z is not in the domain of ®. So using this reasoning we can
prove the following lemma:

Lemma envSubst_dec: forall (i: nat) (Q: EnvSubst),
{j: nat | envSub Q i j} + {forall j, “envSub Q i j}.

Using such representation of variable mappings the remaining definitions of this
section can be naturally expressed in Coq. However, working on structures for
which Leibniz equality does not denote the intended equality is not very easy in
Cog. Setoid is an extension that makes it somehow easier by allowing to register
an equivalence relation along with some functions compatible with it (morphisms).
Then one can replace a term by an equivalent one in arguments of such functions
as easily as if they were equal. The convertibility relation ~ was proven to be an
equivalence relation (actual Coq proofs are somehow more complicated than what
the proof of Theorem would suggest) and registered as a setoid. Then we
proved a number of operations to be morphisms with respect to ~. «

8.5 (-reduction

The [-reduction relation expresses the way in which the application of a function
to arguments is evaluated and hence is a model of computation for A7.

Definition 8.43. [—3] The 3-reduction rule is defined as:
Q(Az:o.t,u) —p t[zr/u]

The B-reduction relation is the smallest relation on terms that satisfies S-reduction
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rule and is closed under contexts:
t—>5tl t—>5tl u—mu'
Az:ot =g Ax:ot! Q(t,u) - Qt', u) Q(t,u) —p Q(t,u')

Theorem 8.44 (Subject reduction). If T'+t:0 -~ u: 7T then o = 7. O
Lemma 8.45. (-reduction preserves variables, that is:
t —»gu = Vars(t) 2 Vars(u) O

Lemma 8.46. (-reduction is compatible with ~, that is:

F'Ht:0—-gAFu:n

Dt:6 20 -t o

Al—u:ngA’l—u’:n’

I'=A’

= I"'+t:8 5 A'+u 0

Proof. Induction on t. All cases but [-reduction step at the root easily by the
induction hypothesis. For -reduction step at the root @(\z:7.s,w) —g s[z/w]

1
we get t' = Q(Az:7.¢',w') and v’ = s[z/w'] with s “ ¢ and w ¢ w' and hence
t/ -3 u'. O

Lemma 8.47. (-reduction is stable under substitution, that is:

t —wgu = (1T —>gur O

We will need the following simple lemma in Section
Lemma 8.48.

fltr, ) mpu = Jicq oy u=ftr, ... .t tn) Aty —p t;

Proof. Follows easily from
Q(t1,...,tn) = = Fjeqr,ny u=Qt1,... . t;,... . ty) At; gt
that is easily proven by induction on n. [l
Lemma 8.49. (-reduction is monotonous, that is:
u—gu = tlu], —opt[u], U
Coq » The definition of S-reduction is done in two steps; first an arbitrary reduc-
tion compatible with term structure is defined. It is parameterized by a relation
R. So a reduction is either a direct R-step at the root or a reduction in left or

right argument of an application or a reduction in a body of an abstraction. Then
such reduction is specialized to define the beta reduction relation. “






Chapter 9

Termination of Higher-Order
Rewriting

In this chapter we define the higher-order recursive path ordering (HORPO) and
prove some of its properties. We begin by introducing higher-order rewriting in
Section Then we present the computability predicate proof method due to
Tait and Girard [GTL89, [Tai67] in Section Finally we define HORPO in
Section and prove some of its properties, most notably well-foundedness of
the union of HORPO and the beta-reduction of the A, which requires use of the
aforementioned computability method.

9.1 Higher-Order Rewriting

In this section we introduce the concept of higher-order rewriting, that is rewriting
terms with bound variables. In Section we introduce algebraic terms that
we will use in Section where we present the AFS format for higher-order
rewriting and shortly discuss its relation with other existing formats.

9.1.1 Terms

In this section we will introduce algebraic terms. The main difference with A-terms
as introduced in Section 8] is that now function symbols are algebraic operators

An earlier version of this chapter appeared as: A. Koprowski, Certified Higher-Order Re-
cursive Path Ordering, In F. Pfenning ed., Proceedings of the 17th International Conference on
Rewriting Techniques and Applications (RTA ’06), Seattle, WA, USA, volume 4098 of Lecture
Notes in Computer Science, pp. 227—241, Springer-Verlag, August 2006.
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equipped with arity. We use the definition of simple types 7s over a given set of
sorts S from Section Bl Let us begin with the definition of algebraic signature.

Definition 9.1. [Algebraic signature] A declaration of a function symbol f ex-
pecting n arguments of types ai,...,qa, and an output type 8 we will write as
frar x ... xa, > 0.

An algebraic signature F is a set of such function declarations. o

Now we define algebraic terms as follows:

Definition 9.2. [Algebraic terms] A set of algebraic terms is defined by the fol-
lowing grammar:

Pty =V | Q(Pta, Pta) | \V:Ts. Pty | F(Pla, ..., Pla)

and such terms conform to the following typing rules (compare with Definition[83):

fragx...xa, > PeX

rz:a€l Ftiiag,..., -ty ay
'z:a Tr f(ty,... tn): B
F'Ht:a—-p lu:a Fu{z:al-t:p
' Q(tu):p PX:at:a— g ©

Example 9.3. Consider two sorts: N for natural numbers and List representing
lists of natural numbers.

S = {N, List}
Now consider the following signature F:
F = {nil : List,
cons : N x List — List,
map : List x(N — N) — List}
Some terms over this signature:
& + nil : List
X:N - N - map(nil, X) : List
2:N,l:List, X :N — N  map(cons(z, 1), X) : List
x:N,I:List, X :N — N |- cons(Q(X, z), map(l, X)) : List <

Note that in the formalization our intention is to use A~ terms to represent such
algebraic terms. To avoid dealing with arities we made a simplification and as-
sumed that output types of functions are base types, an assumption often made
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in the literature. This allows us to represent a function f: a3 x ... x a, = 3 by
a A7~ constant f : a3 — ... — a,, — ( and its application f(t1,...,t,) as a A™
term @(f,¢q,...,t,). This also means that we restrict to fully applied terms, as
in Definition

Remark. All the theory in the following sections deals with algebraic terms. They
are assumed to be encoded in this way and hence all the definitions of substitution,
positions etc. from Chapter [§ need not be repeated here for this new algebraic
structure.

Coq » As remarked above the higher-order terms with arity were encoded in Coq
using simply typed lambda-terms. So effectively algebraic terms are a subset of
simply typed lambda terms where every function is fully applied. Please note that
this puts no restriction on types and/or level of application for variables. This
condition has been formalized by the following predicate:

Inductive algebraic: Term -> Prop :=
| AlgVar: forall M, isVar M -> algebraic M
| AlgAbs: forall M (Mabs: isAbs M), algebraic (absBody Mabs) -> algebraic M
| AlgApp: forall M, isApp M -> “isFunApp M ->
(forall M’, isAppUnit M’ M -> algebraic M’) -> algebraic M
| AlgFunApp: forall M, isFunApp M -> isBaseType (type M) ->
(forall M’, isArg M’ M -> algebraic M’) -> algebraic M.

Now every time an algebraic term is expected we take a pair of a lambda term
(T: Term) and a proof that it satisfies this condition (Talg: algebraic T). An-
other possibility would be to introduce a type for algebraic terms as a refinement
of lambda terms and then introduce a coercion between the two.

Definition ATerm := { T: Term | algebraic T }.
Definition aterm2term (A: ATerm) : Term := projl_sig A.
Coercion aterm2term : ATerm >-> Term.

9.1.2 Rewriting

There are several variants of higher-order rewriting. Here we use the algebraic-
functional systems (AFSs) introduced by Jouannaud and Okada [JO91]. The main
difference between AFSs and another popular format of higher-order rewriting
systems (HRSs, [Nip91]) is that in HRSs we work modulo beta-eta (using pure
A7 terms) whereas in AFSs we do not (and function symbols have fixed arity,
as in Definition [@2)). As a consequence rewriting for AFSs is defined using plain
pattern matching compared to rewriting modulo 87 of A™ in HRSs framework. For
a broader discussion on this subject we refer the reader to, for instance, [Raa03].
The presentation in this section follows [JROT].
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We give definitions of higher-order: rewrite rules, rewriting systems and rewrite
relation.

Definition 9.4. [Higher-order term rewriting system| Given a signature F a
rewrite rule is a quadruple I' = ¢ — r : « where ¢ and r are algebraic terms
such that:

e Vars(r) € Vars(l)

e['+H/l:aand '+—17r:a.

A higher-order rewriting system is a set of rewrite rules. o

Definition 9.5. [The rewrite relation] Given higher-order rewriting system R
aterm I' - s : « rewrites to a term I' - ¢ : « if there exist a rewrite rule
A+ ¢ —r:[3€e R, asubstitution v and a position p such that:

Dom(~v) € A,
e A-Ran(y) €Ty,

¢ S‘p = [’7,

t = s[rv]p- o

Example 9.6. [Example continued] With signature given in Example [I.3 we
can construct the following higher-order term rewriting system (from [IR99]) rep-
resenting the usual map computation on lists of natural numbers:

X:N-> N map(nil, X') — nil : List
x:N,[:List, X :N — N - map(cons(z, 1), X) — cons(Q(X, z), map(l, X)) : List

<

For more detailed introduction to higher-order rewriting in AFS format and prov-
ing its termination by means of higher-order reduction orderings we refer the reader

to [JRO1].
Coq » Note that Definitions [@.4] and [0.5] do not play any direct role for our results
and hence are omitted in the formalization. <

9.2 Computability

In this section we present the computability predicate proof method due to Tait
and Girard [GTL89, [Tai67]. In Section[@.3.3 we will use computability with respect
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to a particular relation (being the union of HORPO and S-reduction relation in
that case) but here we present computability for an arbitrary relation satisfying
given properties.

We begin by giving a definition of computability in Section 0.2.1] and in Sec-
tion [@.2.2] we prove some computability properties that we will need in Section [3.3}

9.2.1 Definition of Computability

We begin by presenting the definition of computability predicate.

Definition 9.7. [Computability] A term I' - ¢ : § is computable with respect to
a relation on terms », denoted as t € Cs (or simply ¢ € C if the type is of no
interest), if:

e § is a base type and ¢ is strongly normalizable with respect to » (¢ € Accs, ),
or

e ) =0—7and Q(t',u) € C, for all / ~ ¢ and all u e C,. o

This definition deserves a few words of explanation. Firstly, it is usual to assume
that variables are computable. We do not do that, following the presentation
in [JR99] and we prove that variables are computable as one of the computability
properties.

Another deviation from the standard definition is the fact that we define com-
putability modulo convertibility relation on terms (~). That is because a typical
pattern in computability proof will be as follows: “for t € C,_,, take a fresh
variable z : 0 and consider Q(t,z) : 7 having Q(¢,z) € C, from the definition
of computability, as variables are computable”. But constructing the application
@(t, x) requires extending environment of ¢ with a declaration for x. Such sub-
tleties are usually omitted in a presentation but our goal is to make presentation
that closely reflects the formal verification that has been made. That is why we
define computability modulo ~, which will also prove helpful for dealing with
computability of lifted terms as we shall see later.

Coq » To begin with the notion of well-foundedness corresponding to Defini-
tion [[7] is present in the standard library of Coq in the module Coq.Init.Wf.
The membership in WA is expressed by the accessibility predicate Acc and the
induction principle generated by Coq corresponds to the one from Definition

The coding of the definition of computability in Coq poses some technical diffi-
culties. The problem is that it needs to be expressed as a fixpoint definition and
Coq uses a simple criterion to ensure that such definitions are terminating, namely
one of the arguments in the recursive call needs to be a subterm of the original
argument. This is not the case for computability. To check whether t : 0 — 7 is



156 Chapter 9 Termination of Higher-Order Rewriting

computable we check whether its application to a computable term u : o is com-
putable. Although types of u : 0 and Q(t,u) : 7 are simpler than of ¢ : ¢ — 7 this
is not enough for a simple syntactic criterion of Coq. What makes matters even
worse is that actually we do not take @Q(¢,u) : 7 but @Q(¢',u) : 7 with ¢ ~ ¢'. Hence
we extracted the type of a term as an extra argument to an auxiliary ComputableS
function. This argument satisfies Coq requirements of decreasing arguments and
hence Coq accepts this definition. Then Computable merely calls ComputableS
with the appropriate type.

Fixpoint ComputableS (M: Term) (T: SimpleType)
{struct T} : Prop := algebraic M /\ type M =T /\
match T with
| #T => AccR M
| TL --> TR =>

forall P (Papp: isApp P) (PL: appBodyL Papp ~ M)
(typeL: type P = TR) (typeR: type (appBodyR Papp) = TL),
algebraic (appBodyR Papp) ->
ComputableS (appBodyR Papp) TL ->
ComputableS P TR
end.

Definition Computable M := ComputableS M (type M).

It is worth noting that a new Function feature of Coq 8.1, allowing for more
complex fixpoint definitions where the obligation of proving that some argument
is decreasing is left to the user, could be very helpful in this and many other similar
situations. However at the time when this work was carried out this feature was
not powerful enough to deal with our variant of computability. «

9.2.2 Computability Properties

We want to abstract away from the particular relation with respect to which we
define computability. So let us assume an arbitrary relation on terms » and in this
section by Acc we will mean Acc,. But in order to prove required computability
properties we need to make some assumptions about ». Table presents the
list of properties we require » to conform to. All those properties but (Pg) are
quite general and natural so our abstraction is (partly) successful. The property
(Pg) looks rather complicated but basically it states that every reduction of an
application either operates on separate arguments or it is a G-reduction step. This
property is rather specific for a particular » relation being in that case union of
(B-reduction and HORPO as we will use it in Section [2.3]
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Subject reduction

(Pl) t:o>u:T = 0o=T
P Preservation of environments
(2) I‘tl—t:5>>1"u|—u:n=>1"t=1"u
P Preservation of variables
(Ps) t »u = Vars(t) 2 Vars(u)
P Normal form of variables
(Ps) =(x > u)
Compatibility with ~
PHt:0»>AFru:n
Q
F'Ht: 0TVt :0
(Ps) - 0 - =T+t >A+u 1y
Aru:n~A"+u 7o
I'"'=A
P Stability under substitution
(Fs) t>»u = ty>»uy
Monotonicity
(#7) u»u = tfu], »t[v],
Reductions of applications
t=Q(t,t,) »u =
( J, t = QAo ty) Au=ty[z/t,]
v
(PS) tr =u; Aty > u,
v
Juju, w=Qup,u) A | g »u At =u,
v
L tr > up Aty > u,
Reductions of abstraction
(Po)

Azioty »u = Jy, u=Ax:0u Aty > up

Table 9.1 Abstract properties required for >».
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Every reduct of a computable term is computable.
(Ch) teCsant>u = ueCs
Lemma [0.10

Every computable term is strongly normalizable.
(Co) teCs = te Acc
Lemma [O.11]

Neutral term is computable iff its every reduct is
(Cs) computable.
t-neutral = ((V, t » u = ueCs) < teCs)
Lemma

Variables are computable.
(Ca) Vo5 2 €Cs
Lemma

Computability of abstractions
(Cs) Vuec, tlz/u] € C, = (M\z:0.t) € Cyoyr
Lemma

Term convertible with computable term is computable.
(Ce) teCsnt~t = t'eCs
Lemma [0.14

Table 9.2 Computability properties.

Table on the other hand presents the list of all the computability properties
that we will need in the following section. We proceed with presenting proofs for
those properties. We begin with two simple auxiliary lemmas.

Lemma 9.8. Let Q(t,u) € Acc then t € Acc.

Proof. Easy using monotonicity (Pr). O

Lemma 9.9. Let t € Acc and t ~ u then u € Acc.
Proof. Easy using compatibility with ~ (Ps). O

Now we will prove that reducts of computable terms are computable again.
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Lemma 9.10. (Cy) Let T' =t : 6, such that t € Cs. The for all terms A+ u: o,
such that t » u we have u € C,.

Proof. Induction on §. For the base case t € Cs5 and ¢ is a base type so t € Acc
by the definition of computability. Since t € Acc and t » u, u € Acec. By subject
reduction for » (P;), 6 = o, so u € C, by the definition of computability.

For the induction step let ¢ = p — 7. By the definition of computability v € C,_,,
if for every s € C,, Q(u,s) € C,. Q(t,s) € C; by the definition of computability
and Q(¢,s) » @(u, s) by monotonicity (P7). Finally we conclude Q(u, s) € C, by
the induction hypothesis. [l

Let us recall that we did not assume variables to be computable. Variables of
a base type are computable due to the definition of computability and the as-
sumption that variables are not reducible (Py). But variables of a functional type
are computable by property (Cs), which forbids us to prove the computability
properties (C2) and (C3) separately.

Lemma 9.11. For all terms T'—1:9, A+ u:d we prove that:

(Cy) teCs = te Acc

(C3) if t is neutral then (Vys t > w = we Cs) & te€Cs

Proof. Induction on type 0. Note that ‘<=’ part of (C3) is (C1) so below we only
prove the ‘=’ part of this property.

e J is a base type.
(C2) t e Csand ¢ is a base type so t € Acc by the definition of computability.

(C3) t:9 so to show t € Cs we need to show ¢ € Ace but for every w such that
t » w we have w € Cs5 by assumption. Hence w € Acc by the definition
of computability and ¢ € Acc.

e d=0—>T

(C3) Take variable x: 0 which is computable by induction hypothesis (C3) as
variables are not reducible by (Ps). Now consider application I' U {z:
o} Q(t,z) : 7 which is computable by the definition of computability
(note that T U {z:o} —t:0 ~Tt:6). SoT u{z:o} - Qt,z): T €
Acc by induction hypothesis (C2). Then I' U {z:0} -t : 6 € Acc by
Lemma @8 and I' — ¢ : § € Acc by Lemma [0.90
Remark. From now on we will work modulo ~ without stating it
explicitly which greatly improves the readability of the proofs. The
reader interested in all the details is encouraged to consult the Coq
scripts.
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(C3) By the definition of computability ¢t € C,_, if for every s € C,, Q(t, s) €

C,. By induction hypothesis for (Cs), s € Acc so we continue by well-
founded inner induction on s with respect to ».
@(¢,s) : 7 is neutral so we can apply induction hypothesis for (C3)
and we are left to show that all reducts of @Q(¢, s) are computable. We
do case analysis using (Ps). Since t is neutral and hence is not an
abstraction, we can exclude the -reduction case and we are left with
the following cases:

- Q(t,s) » Q(t',s) with ¢ » /. Then ¢’ is computable as so is every
reduct of ¢t and application of two computable terms is computable
by the definition of computability.

- Q(t,s) » Q(t,s") with s » s’. We observe that s’ € C by (C7) and
since s » s we apply the inner induction hypothesis to conclude
Q(t,s") e C,.

- Q(t,s) » Q(t',s") with ¢t » ¢/ and s » s’. Every reduct of ¢ is
computable so t' € C,_,,. By (C1) s' € C,. Again application of
two computable terms is computable. O

An easy consequence of the above lemma is the fact that all variables are com-
putable.

Lemma 9.12 (Cy). For every variable x:6, z € Cs.

Proof. Variables are neutral so we apply (C5) and since variables are in normal
forms (Py) we conclude z € Cs. O

The following property deals with computability of abstractions.

Lemma 9.13 (C;). Consider an abstraction (A\x : o.t) : o — 7. If for every
u€ C,, tlz/u] € C; then (Az:o.t) € Coyr.

Proof. By the definition of computability A\z:o.t is computable if for every s € C,,
@Az : o.t,s) € C,. Note that ¢t € C by assumption because ¢t = t[z/x] and
x € C by (C4). So by (C2) both t € Acc and s € Acc and we proceed by well-
founded part induction on a pair of computable terms (¢, s) with respect to ordering
> = (», »)iex. Now, since Q(A\x:0.t, s) is neutral, by (C3) we are left to show that
all its reducts are computable. Let us continue by considering possible reducts of
this application using (Py). So we have @(Az:0.t,s) » u and the following cases
to consider:

e u = t[z/s]. ue C by the assumption.

u = Q(A\x :0t,s') with s » §. w € C by the induction hypothesis for
(t,s") < (t,s).
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o u = Q(w,s) with Az:0.t » w. By (Ps) we know that this reduction is in the
abstraction body of Az:o.t so in fact w = Az :0.t’ with ¢ » t'. We conclude
computability of u by the induction hypothesis for (¢',s) < (¢, s).

o u = Q(w,s") with Az:0.t » w and s » s’. As in the above case, by (Ps) we
observe that w = Az:o0.t’ with t » ¢’ and we conclude computability of u by
the induction hypothesis for (¢/,s") < (¢, s). O

We conclude with the following simple property.
Lemma 9.14 (Cg). Ift€ Cs and t ~t' then t' € C;

Proof. If § is a simple type then we apply Lemma[0.9l If ¢ is an arrow type then
we conclude ¢’ € Cy directly from the definition of computability for ¢. Note that
here we make use of the fact that we defined computability modulo ~. O

Coq » Proving computability properties turned out to be the most difficult part
of the whole development. In its first version ([Kop04]) those properties were
assumed as axioms. Completing the pursuit of making the development axiom-
free and proving all computability properties turned out to be a very laborious
task after which the size of Coq script tripled.

Strictly speaking, in terms of script size, the part of the formalization dealing
with computability accounts for only slightly more than 5%. However, as those
properties are at the heart of proofs concerning HORPO, providing proofs for them
triggered many other developments.

This difficulty can be partially explained by the real complexity of the computabil-
ity predicate proof method. Other factors that contributed to making this task
difficult include:

e the fact that algebraic terms were encoded using pure A~ terms,

e the necessity of defining computability modulo ~.

For the clarity of presentation those issues are left implicit in the computability
proofs presented in this section but in Coq proofs they had to be taken care of.
Another aspect not visible in this presentation is the use of de Bruijn indices

[Bru72] to represent terms. “

9.3 HORPO: Higher-Order Recursive Path Order-
ing

This section is devoted to the core of the work presented in the second part of this
thesis: the results concerning the higher-order recursive path ordering (HORPO).
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We begin by presenting the definition of HORPO in Section @31 then some of
its properties in Section [0.3.2] and its main property — well-foundedness — in
Section 0.3.3

9.3.1 Definition of HORPO

As indicated in the introduction to the second part of this thesis, Chapter [ the
subject of our formalization is a slight variant of HORPO as presented in [JR99).
We begin by first presenting the formalized variant of the definition and then we
discuss the differences compared to the original definition of Jouannaud and Rubio.

Originally the ordering is defined for algebraic-functional systems [JO91] (AFSs),
where all function symbols have a fixed arity. As explained in Section [0.1] we will
use pure terms of the simply-typed lambda calculus, restricted to fully applied
terms (see Definition R7)).

Definition 9.15. [The higher-order recursive path ordering, >"°%"°] Assume a
well-founded ordering on the set of function symbols =, called a precedence. We
define HORPO, >"%"° on terms as, [' - ¢ : § >"f° T" | o : § iff one of the
following holds:

t=f(t1,- - tn); Jieqr,..ny ti =" u

t=f(t1,...,tn), u=glur,...,ug), f g, t > {uq, .. u}
t=f(t1,. .. tn), u= flur,...,;ug), {t1,. . tn}} >0 Huq,...,ur}}
Q@(u1,...,uy) is a partial left-flattening of u, t >>"F"° {uq, ... ux}

= @(tlvtT)v u = @(ulvuT)v {{tlvtT}} >’;/([)[RJPLO {{ulvuT}}

t=Xv:ot',u= A x:ou, t' ="/

e >>MRP0 ig a relation between a term and a set of terms, defined as:
t= f(tl, R ,tk) >>HORPO {ul, R ,un} iff Vie{l n} t >HORPO 4y v (Hj t; >HorPO
ui)v

.....

o >"O%"0 i the reflexive closure of HORPO (that is >"°%° = »"ofF° (, =) and

o >'ORPO ig a multiset extension of HORPO (see Definition [.3)). o

Note that we will not prove transitivity of the ordering, neither in this presentation
nor in Coq. Although this version of HORPO is transitive [JR99], many others
are not [JROT7], but as they are well-founded, their transitive closures are well-
founded orderings. This justifies our abuse of terminology in calling HORPO an
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ordering. Thanks to defining the multiset extension in Section for an arbitrary
relation and not just for orderings, transitivity of the ordering plays no role in
this development. It also allows for easier extension of the formalization for more
complex, non-transitive versions of HORPO.

Let us now discuss the relation with the definition from [JR99]. There are three
major differences. First let us note that in our variant only terms of equal types
can be compared whereas in the original definition this restriction is weaker and
it is possible to compare terms of equivalent types, where equivalence of types is a
congruence generated by equating all sorts (in other words two types are equivalent
if they have the same arrow structure).

The reason for strengthening this assumption is that allowing to reduce between
different sorts poses some technical difficulties. In [JR99] this problem was solved
by extending the typing rules with the congruence rule which presence is basically
equivalent to collapsing all sorts and which allows typing terms that normally
would be ill-typed due to a sort clash. Our goal was to use A~ in its purest form
as a meta-language and hence we decided not to do that.

But there is an even stronger argument against implementing this extension. It
would complicate the formalization, whereas, as we claim, it would have absolutely
no practical advantage. That is because the presented variant of HORPO takes no
advantage of the sorting information. So we can prove some system terminating
if and only if we can prove termination of its variant with all sorts collapsed
to one single sort. Now, obviously, termination of such collapsed system implies
termination of the original one. So it makes perfect sense to restrict (or transform)
our termination problems to one-sorted setting.

The second difference is that the original definition of HORPO uses statuses and
allows arguments of function symbols to be compared either lexicographically or
as multisets, depending on the status (in the same way as for the first-order RPO;
compare Section [[L34]), whereas we allow only for comparing arguments of func-
tions as multisets. This choice was made simply to avoid dealing with statuses
and multiset comparison has been chosen as posing more difficulties (proofs of its
well-foundedness and decidability are much more intricate than in the case of lex-
icographic order), so extension with statuses and lexicographic comparison should
be relatively easy.

Finally we use the multiset extension as in Definition instead of the one from
Definition[[2l Case (ii) of Lemma[l.§ will be crucial for the results in Section[0.3.2)
and for the Definition [[2 only its weaker variant holds (Lemma (i)).

We conclude this section with a simple termination argument using HORPO.

Example 9.16. Consider the one sorted variant of the higher-order term rewriting
system from Ezxample[9.0, with the following signature:

F={nil: %, cons:x —>x—>x* map:*— (¥ > %) > x}



164 Chapter 9 Termination of Higher-Order Rewriting

and its two rules:

Fix—>x map(nil, F') — il
xix, lix, Fix —> % | map(cons(z,l),F) — cons(Q(F,z), map(l, F))

We will orient the rules of this system using HORPO. The first one is triv-
tal by (Hy). For the second one we take precedence with map > cons and ap-
ply (Hz). The remaining obligations are map(cons(zx,l), F') >"F° Q(F,z) and
map(cons(z,l), F') >""° map(l, F'). The latter is easily shown by (Hs) and (Hy).
The first is taken care of by (Hs) followed by two applications of (Hy). <

Coq » The Coq variant of the Definition consists of five mutually recursive
inductive definitions for: >>HORPO>HORPO 5 HORPO and >HO%PO the last one split over
two definitions (one factoring out the condition that terms under consideration
must have equal types and environments). For details of the definition we refer to
[Kop06D]. The Example [0.16 has also been carried out in Cog. “

9.3.2 Properties of HORPO

In this section we will prove some properties of HORPO.

Lemma 9.17. HORPO is stable under substitution, that is:

HORPO HORPO

t > u = ty > wy

Proof. Induction on pair (¢, u) ordered by (=, =), followed by a case analysis on

t >HORPO u.

(Hi) t = f(t1,...,tn) and t; ="°%° o for some i € {1,...,n}. But then ¢ty =
fltary, ..o tyy) >"9FP wy by (Hy) since t;y >"°%"° wy by the induction hy-
pothesis.

(Ho) t = f(t1,...,tn), v = glur,...,ug), f =g and ¢ >>"° {uq ... ug}.
But then to get ty >"F° wy by (Hs2) we only need to show ¢y >>"oRP
{ur7y,...,upy}. Foreveryie {1,...,k} wehavet >"%° u,; v (3; t; ="R u;).
In either case we have ty >"%° u;y or t;v ="%"° u;y by the induction hy-
pothesis.

(Hs) t = f(t1,...,tn), u = f(ur,...,ug) and {t1,.. .t }} >N {uq,...,url}
But then we have {{t17y,...tp,y}} >N {{ur,...,upy}} since for all i €
{1,...,n}, 7e{1,... k}, t; >0 u; implies ¢;y >"°%° ;v by the induction
hypothesis. So we get ty >"%° uy by (Hs).

(Hy) Q(uq,...,uy) is a partial left-flattening of w and ¢ >>"%° {uy, ... u;}. We

use the same partial left-flattening for wy and get ty >>"F° {uq7y, ..., ugy}
with the same argument as in case (Hz). We conclude ¢y >"F"° u~y by (Hy).
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(Hs) t = Q(t,up), u = Q¢ u,) and {{t;, t,-}} >R {uy,u,.}}. Type considera-

MUL
tions show that ¢; >"%° v, ¢, >MFPO 4, and t; >"OFP° v, >"%F° y,.. By in-
HORPO

duction hypothesis on (¢;7y, w;y) and (¢,7y, u,7y) we conclude {{t;y, t,y}} >58¢
{wry, upy}} and hence ty >"%° uy by (Hs).

(Ho) t = Mx:ot', u = Ax:ou and t/ >"F° ¢/, But then ty = \x:o.t'y, uy =
Az:ou'y and t'y >"°F"° ¢/ by the induction hypothesis. So ty >"°%"° u~ by
(Hg). O

Lemma 9.18. HORPO is monotonous, that is:
U >HORPO u/ _— t[u]p >HORPO t[ul]p

Proof. The proof proceeds by induction on p and essentially uses the following
observations:

o if w, >MRPO ! then @(wy,w,) >"%° Q(w;, w!.) by (Hs).

o if wy >0y then @(wy, w,) >"%° Q(wy}, w,) by (Hs).

o if w MO then f(...,w,...) > f(L .. w',...) by (Hs).

o if w >0 o then A\z:o.w >"F"° Az:o.w’ by (Hg). O

Lemma 9.19. HORPO preserves variables, that is:

t >"oRF9 4 = Vars(t) 2 Vars(u)

Proof. The proof uses the same inductive argument as in the above proof of sta-
bility of HORPO under substitution and all cases are easy. O

Lemma 9.20. HORPO is compatible with ~, that is:

PHt:d>"f° Au:n

I‘I—t:&gl—"l—t’:é'

Al—u:ngA’l—u’:n'
I =A

. Fl l_tl . 5/ >HORPO Al l_ ul . T]l

Proof. The proof is slightly technical but the inductive argument is again the same:
induction on pair of terms (¢, u) ordered by lexicographic extension of the subterm
relation. (|

Lemma 9.21. Ift € C and t >="*° u then u € C.

Proof. We either have t = u, but then u =t € C, or ¢t >"°° ¢ in which case u € C
by the computability property (C1). O
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We conclude this section with a result that is not present in [JR99], namely a proof
of the fact that >"°%"° is decidable.

Theorem 9.22. Given terms t and u and a decidable precedence =, the problem
whether t >"°f° y, is decidable.

Proof. Induction on the pair (¢,u) ordered by (=, =), followed by a case analysis
on t.

HORPO

e { = x. Variables are in normal forms with respect to > SO we cannot

have x >HORFO 4.

e t = Q(t;,t,). Only (Hs) is applicable if u = @Q(u;, u,) and for that, taking
typing considerations into account, it is required that ¢; >"°F° ¢, ¢, >HORFO
wy and t; >0 ;v oy >R g4, all of which are decidable by the induction
hypothesis.

o { = \x:0.ty. Ounly (Hg) is applicable for u = Az:0.u, and it is required that
tp >"9%"0 4y, which we can decide by induction hypothesis.

o t = f(t1,...,t,). We have several cases to consider corresponding to appli-
cation of different clauses of HORPO:

— (Hy): for every i € {1,...,n} we check whether t; >"°%° u by the
application of the induction hypothesis.

— (H2): u needs to be of the shape u = g(uq,...,ux) with f =g (we
assume precedence to be decidable). We need to check whether ¢ >
>MORPO fauy, ..., ug b Soforevery i € {1,..., k} we check whether ¢ >"°R"°
u; or t; >"%° qy, for some j € {1,...,n}. Typing considerations are
helpful in immediate discarding of many cases.

— (H3): comparison between all arguments of ¢ and u is decidable by the
induction hypothesis so to conclude whether multisets of arguments can
be compared we use Theorem [T.7]

— (Hy): we consider all possible partial left-flattenings @(uq, ..., uy) of
u (bounded by the size of u) and for each of them we check whether
t >>"RP0 Loyq, ..., ug} in the same way as in the (Hs) case. O

9.3.3 Well-foundedness of HORPO

In this section we present the proof of well-foundedness of >"°*"® y —3. This
relation will play an important role in this section so let us abbreviate it by vww» =
>HORPO () — 5. For the proof we will use the computability predicate proof method
due to Tait and Girard which was discussed in Section
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Property  Proof for —p Proof for >"HorPo
(P1) Theorem Direct from the definition.
(P2) Direct from the definition = Direct from the definition.
(Ps) Lemma Lemma
(Py) Direct from the definition  Direct from the definition.
(Ps) Lemma Lemma
(FPs) Lemma R4 Lemma
(Pr) Lemma Lemma
(Ps) Direct from the definition  Direct from the definition
(Py) Direct from the definition ~ Direct from the definition.

Table 9.3 Conformance of —3 and >"°""° to properties required by com-
putability (summarized in Table 0.1))

Note that we will use computability with respect to vw» and for that we need to
prove properties (Py)-(Py) for vww». In Table 03] conformance of — 5 and > to
those properties is summarized. Note that all those properties easily generalize to
the union if they hold for the components.

The crucial lemma states that if function arguments are computable then so is the
function application. First we need an auxiliary lemma.

Lemma 9.23. For any t = f(t1,...,t,) and uw = g(us,...,ug) if

(1) t >>-HORPO {uh » Uk} and
(2) Yieq,...ny ti € C and

(3) Vje{l,...,k} t v U; == Uj; € (C,

then Vje{l,...,k} U e C.

HORPO

Proof. For a given u; according to the definition of >> we have two cases:

o  >"ORPO 4, then u; € C by assumption (3).

o t; >"%° wu,; for some i. If t; = u; then t; € C by assumption (2) and so
t; € C. Otherwise t; >"°"° u; but ¢; € C by (2) and then u; € C by (C1). O

Now we can present the aforementioned lemma.

Lemma 9.24. Ifty,...,t, € C thent = f(t1,...,t,) € C.
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Proof. The proof proceeds by well-founded induction on the pair of a function
symbol and a multiset of computable terms, (f, {{t1,...,t,}}), ordered lexicograph-
ically by (=, v ui)ies- Note that all terms in the multiset are computable and
hence strongly normalizable, by (C2). So (=, v ul)ies is well-founded by Theo-
rem [.20] and Theorem which justifies the induction argument.

Since t is neutral we apply (C3) and we are left to show that « € C for an arbitrary
u, such that ¢t v u. We will show that by inner induction on the structure of
u. We continue by case analysis on ¢t v wu. The first case corresponds to a
beta-reduction step and the following ones to applications of clauses (H1), (H2),
(H3) and (Hy) of HORPO definition. Note that clauses (Hs) and (Hg) are not
applicable.

(B) Let t -3 u. By Lemma we know that the reduction is in one of the
arguments, so for some j we have u = f(t1,...t;,...t,) with t; —g ¢’. For
every i, t; € C by assumption and t; € C by (C1) so we conclude u € C by
the outer induction hypothesis.

(Hy) t; >="°%° y for some i € {1,...,n}. By assumption ¢; € C and we either have
t; = wor t; >"%° y but then u € C by (Cy).

(Hz) u=g(uy,...u;) with f=g. Allu; € Cforie{1,...,k} by Lemma[0.23 and
we conclude that u € C by the outer induction hypothesis as (f, {t1,...tn}})
(l>7 W\’)mul)lem (gu {{ulu ceey uk}})

(Hs) u = f(uy,...ux) with {t1,...,t.}} >"%0 {{uqg, ..., ux}}. We can conclude
u € C by the outer induction hypothesis if we can prove that u; € C for
i€ {l,...,k}. For arbitrary 4, by Lemmal[l§ (ii) we get t; >"°%° u; for some
j and since t; € C by assumption we conclude u; € C by (Ch).

(Hy) Q(uq,...,ux) is some partial left-flattening of w and ¢ >>"%° {uq,..., uy}.
By Lemma [0:23] we get u; € C for ¢ € {1,...,k} and hence u € C. O

The next step is to show that application of a computable substitution gives com-
putable term, where we define computable substitution as a substitution containing
in its domain only computable terms. More formally:

Definition 9.25. [Computable substitution] We say that a substitution 7y =
[1/u1, ..., Tn/un] is & computable substitution if for every i € {1,...,n}, u; €
o

C.

Lemma 9.26. Let v be a computable substitution and t be an arbitrary term.
Then ty € C.

Proof. We proceed by induction on the structure of ¢. We have the following cases
to consider.
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o t =x. If x € Dom(y) then vy =[...,z/u,...] and ty = u but u € C since 7 is
a computable substitution. Otherwise z ¢ Dom(y) and ty = z € C by (Cy).

t = f(t1,...,tn) so ty = f(t17v,...,tny). We apply Lemma and we
are left to show that for i € {1,...,n}, t; € C which easily follows from the
induction hypothesis.

o t = Q(t,t,) and ty = Q(¢;7y,t,7y). Both ¢y and ¢, are computable by the
induction hypothesis so ty € C by the definition of computability.

o { = \x:0.lys0ty = \v:o.tyy. By application of (Cs) we are left to show that
tyy[x/u] € C for any u € C,. But tpy[z/u] = tp(y U [x/u]) since x ¢ Dom(y).
Since v U [z/u] is a computable substitution as so is v and u € C, we can
conclude ¢y € C by the induction hypothesis. O

Now we are ready to present the main theorem stating that the union of HORPO
and (-reduction of simply typed A-calculus, is a well-founded relation on terms.

Theorem 9.27. The relation v~ is well-founded.

Proof. We need to show that ¢ € Acc for an arbitrary ¢. Consider the empty
substitution e, which is computable by definition. We also have ¢t = te so we
conclude ¢ € C by Lemma [0.26] and then t € Acc by (Cs). O

In this way we we have essentially proven that v is a, so-called, higher-order
reduction ordering [JR06] (the counter-part of the first-order reduction ordering;
see Definition [[20) as (we refer to the article for the definitions of respective
notions):

well-foundedness was proven in Theorem

e coherence follows from compatibility with ~, Lemma [R.46] and Lemma [3.20]
e stability was proven in Lemma 847 and Lemma Q.17

e monotonicity was proven in Lemma and Lemma [0.18]

e functionality states that — g is included in the ordering and indeed we defined
wAs as >HORPOU_)B-






Conclusions

In this thesis we presented contributions to methods for producing proofs of ter-
mination of term rewriting systems and to certification of such proofs.

The contributions with regard to proving termination are:

1. extending the arctic interpretations methods from string to term rewriting
and generalizing from arctic naturals to arctic integers (Section 22]),

2. direct approach for applying RPO on infinite systems obtained via applica-
tion of semantic labeling with natural numbers (Section B]),

3. an improved approach to the above where semantic labeling is replaced with
predictive labeling, the search procedure is realized via an encoding into SAT
and the whole approach is implemented within the dependency pair setting
(Section [3.2) and

4. application of termination proving techniques to proving liveness properties
of systems (Chapter [H).

Our efforts in the area of certification can be summarized by the following contri-
butions to the CoLoR project:

1. formalization and extension of CoLoR with the ability to formalize termina-
tion proofs using the matrix interpretations method (Section 2:34)),

2. ditto for two variants of arctic interpretations (Section 2331,

3. a termination prover implementing all the techniques available in ColLoR
and allowing to produce formal certificates along with generated termination
proofs (Chapter ) and

4. formalization of the higher-order recursive path ordering (HORPO), an ex-
tension of the well-known termination technique of recursive path ordering
(RPO) to the higher-order setting (Part II of the thesis).



172 Conclusions

A lot remains to be done in this area. We mentioned some possible extensions
and directions for further work at the end of each chapter. However, we believe
that the main goal is to extend the applicability of CoLoR, on the one hand by
increasing the number of techniques available for certification and, on the other
hand, by improving the flexibility of application of those methods, so that all the
variants in which those methods are used by the tools would be covered. The
ultimate objective should be the ability to certify a major part of the termination
proofs produced by modern termination provers.
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Termination of Rewriting and Its Certification

Summary

In programming, termination of a program/algorithm means that its evaluation
will eventually terminate, regardless of the input it receives. It is an important
property and is required for total correctness. In general the problem is undecid-
able.

Term rewriting is a formal way of specifying computation and as such it can be
seen as a generic model for programming languages. Termination, here meaning
lack of infinite sequences, is a well-studied concept in this context. There exist a
number of methods for proving termination as well as a number of tools for doing
that automatically. There is an on-going work on application of this methodology
and tools to proving termination of programs in actual programming languages.

In this thesis we first give a short introduction to term rewriting and to termination
of rewriting. Subsequently we present a number of contributions to this field, which
can be categorized into the following categories:

e proposing new methods for proving termination and refining the existing
ones,

e developing a tool for proving termination and

e proposing a methodology and tools for certification of termination proofs,
i.e., formal verification of proofs produced by the existing tools for proving
termination.






Termination of Rewriting and Its Certification

Samenvatting

Van een programma of algoritme betekent terminatie dat het uitvoeren ervan
altijd zal eindigen, onafhankelijk van de betreffende invoer. Dit is een belangrijk
begrip; zo is dit een van de eisen van totale correctheid. In zijn algemeenheid is
het vaststellen van terminatie een onbeslisbaar probleem.

Termherschrijven is een formalisme om berekening te specificeren, en als zo-
danig kan het opgevat worden als generiek model voor programmeertalen. Hierin
betekent terminatie het ontbreken van oneindig doorgaande berekeningen, een
concept dat uitgebreid is bestudeerd. Zo is er een uitgebreid scala aan methoden
om terminatie van termherschrijfsystemen te bewijzen, en zijn er diverse imple-
mentaties om dit geheel automatisch te doen. Huidig onderzoek richt zich onder
meer op het toepassen van deze technieken op het bewijzen van terminatie van
programma’s in gebruikelijke programmeertalen.

In dit proefschrift geven we eerst een korte inleiding in herschrijven en termi-
natie van herschrijven. Vervolgens presenteren we enkele nieuwe bijdragen aan dit
gebied, ingedeeld in de volgende onderdelen:

e het ontwikkelen van nieuwe methoden om terminatie te bewijzen en het
verfijnen van bestaande methoden,

e het ontwkkelen van een tool om automatisch terminatie te bewijzen, en

e het ontwikkelen van methodiek en een tool om terminatiebewijzen te certifi-
ceren, dat wil zeggen het formeel verifiéren van de correctheid van bewijzen
zoals die door bestaande tools worden opgeleverd.
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