
 Open access Journal Article DOI:10.1145/1462179.1462182

Termination of rewriting under strategies — Source link

Isabelle Gnaedig, Hélène Kirchner

Institutions: French Institute for Research in Computer Science and Automation

Published on: 02 Mar 2009 - ACM Transactions on Computational Logic (ACM)

Topics: Rewriting

Related papers:

 Termination of term rewriting using dependency pairs

 Term rewriting and all that

 Tom: piggybacking rewriting on java

 Rewriting with strategies in elan: a functional semantics

 Termination of rewriting strategies: a generic approach

Share this paper:

View more about this paper here: https://typeset.io/papers/termination-of-rewriting-under-strategies-
189pjubjz0

https://typeset.io/
https://www.doi.org/10.1145/1462179.1462182
https://typeset.io/papers/termination-of-rewriting-under-strategies-189pjubjz0
https://typeset.io/authors/isabelle-gnaedig-3rlqtk7ooo
https://typeset.io/authors/helene-kirchner-3hfeiab71n
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/journals/acm-transactions-on-computational-logic-hyvt9r6z
https://typeset.io/topics/rewriting-3utfzglr
https://typeset.io/papers/termination-of-term-rewriting-using-dependency-pairs-et1wjlo90q
https://typeset.io/papers/term-rewriting-and-all-that-2ps9hx05i8
https://typeset.io/papers/tom-piggybacking-rewriting-on-java-2xkeck1epg
https://typeset.io/papers/rewriting-with-strategies-in-elan-a-functional-semantics-52zylg0gcy
https://typeset.io/papers/termination-of-rewriting-strategies-a-generic-approach-32y706h339
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/termination-of-rewriting-under-strategies-189pjubjz0
https://twitter.com/intent/tweet?text=Termination%20of%20rewriting%20under%20strategies&url=https://typeset.io/papers/termination-of-rewriting-under-strategies-189pjubjz0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/termination-of-rewriting-under-strategies-189pjubjz0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/termination-of-rewriting-under-strategies-189pjubjz0
https://typeset.io/papers/termination-of-rewriting-under-strategies-189pjubjz0

HAL Id: inria-00182432
https://hal.inria.fr/inria-00182432

Submitted on 14 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Termination of Rewriting under Strategies
Isabelle Gnaedig, Hélène Kirchner

To cite this version:
Isabelle Gnaedig, Hélène Kirchner. Termination of Rewriting under Strategies. ACM Trans-
actions on Computational Logic, Association for Computing Machinery, 2009, 10 (2), pp.1-52.
10.1145/1462179.1462182. inria-00182432

https://hal.inria.fr/inria-00182432
https://hal.archives-ouvertes.fr

Termination of Rewriting under Strategies*

ISABELLE GNAEDIG

and

HÉLÈNE KIRCHNER

INRIA & LORIA (UMR 7503 CNRS-INPL-INRIA-Nancy 2-UHP)

A termination proof method for rewriting under strategies, based on an explicit induction on

the termination property, is presented and instantiated for the innermost, outermost and local
strategies. Rewriting trees are simulated by proof trees generated with an abstraction mechanism,
narrowing and constraints representing sets of ground terms. Abstraction introduce variables to
represent normal forms without computing them and to control the narrowing mechanism, well-
known to easily diverge. The induction ordering is not given a priori, but defined with ordering
constraints, incrementally set during the proof. It is established that termination under strategy
is equivalent to the construction of finite proof trees schematizing terminating rewriting trees.
Sufficient effective conditions to ensure finiteness are studied and the method is illustrated on
several examples for each specific strategy.

Categories and Subject Descriptors: F.3.1 [LOGICS AND MEANINGS OF PROGRAMS]:
Specifying and Verifying and Reasoning about Programs—Logics of programs, Mechanical verifi-
cation, Specification techniques; F.4.2 [MATHEMATICAL LOGIC AND FORMAL LAN-

GUAGES]: Grammars and Other Rewriting Systems; F.4.3 [MATHEMATICAL LOGIC

AND FORMAL LANGUAGES]: Formal Languages—Algebraic language theory; I.1.3 [SYM-

BOLIC AND ALGEBRAIC MANIPULATION]: Languages and Systems—Evaluation stra-

tegies, Substitution mechanisms; I.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming—Automatic analysis of algorithms, Program verification; I.2.3 [ARTIFICIAL IN-

TELLIGENCE]: Deduction and Theorem Proving—Deduction, Inference engines, Mathemat-
ical induction; D.3.1 [PROGRAMMING LANGUAGES]: Formal Definitions and Theory;
D.2.4 [SOFTWARE ENGINEERING]: Software/Program Verification—Correctness proofs,
Formal methods, Validation

General Terms: Algorithms, Languages, Verification

Additional Key Words and Phrases: abstraction, induction, innermost, local strategy, narrowing,
ordering constraint, outermost, termination

1. INTRODUCING THE PROBLEM

Rewriting techniques are now widely used in automated deduction, especially to
handle equality, as well as in programming, in functional, logical or rule-based
languages. Termination of rewriting is a crucial property, important in itself to
guarantee a result in a finite number of steps. But it is also required to decide
properties like confluence and sufficient completeness, or to allow proofs by consis-
tency.

Existing methods for proving termination of rewrite systems essentially tackle the
termination problem on free term algebras for rewriting without strategies. Most
are based on syntactic or semantic noetherian orderings containing the rewriting
relation induced by the rewrite system [Plaisted 1978; Lankford 1979; Kamin and

* This paper is a preliminary version of a paper to appear in ACM Transactions of Computational
Logic (accepted September 2007).

2 ·

Lévy 1982; Dershowitz 1982a; Ben Cherifa and Lescanne 1987; Dershowitz and
Hoot 1995; Borralleras et al. 2000].

Other methods consist in transforming the termination problem of a rewrite
system into another decreasingness problem on which former techniques may apply.
Examples are semantic labelling [Zantema 1995], and the dependency pair me-
thod [Arts and Giesl 2000; Giesl et al. 2004]. For most approaches, finding an
appropriate ordering is the key problem, that often comes down to solving a set of
ordering constraints.

In the context of proof environments for rule-based programming languages, such
as ASF+SDF [Brand et al. 2001], Maude [Clavel et al. 2003], CafeOBJ [Futatsugi
and Nakagawa 1997], Stratego [Visser 2001], ELAN [Borovanský et al. 1998], or
TOM [Moreau et al. 2003], a program is a rewrite system and the evaluation of
a query consists in rewriting a first-order term. However, in this context, specific
termination proof tools are required, to allow termination proofs under specific re-
duction strategies. There are still few results in this domain. To our knowledge,
methods have only been given with the innermost strategy [Arts and Giesl 1997;
Giesl et al. 2003], and for the context-sensitive rewriting [Lucas 1996; Giesl and Mid-
deldorp 1999; Lucas 2002; Giesl and Middeldorp 2003; Alarcón et al. 2006; Alarcón
and Lucas 2007], which involves particular kinds of local strategies [Lucas 2001a;
2001b; Alpuente et al. 2004]. In previous works, we already have obtained termi-
nation results on ground terms for the innermost strategy [Fissore et al. 2002a], for
general local strategies on the operators [Fissore et al. 2001], and for the outermost
strategy [Fissore et al. 2002b].

Rewriting under strategies is a particular case of “strategic rewriting”. This ter-
minology has emerged in [Visser 2004] and [Kirchner 2005] to denote the capability
to express control of rewriting via a strategy language. In [Fissore et al. 2003b],
we have studied termination of strategic rewriting, by simplification of strategy
expressions.

In this paper, we propose a general proof technique based on an explicit induction
mechanism on the termination property. We then show how it can be instantiated
to give a termination proof algorithm for the innermost strategy, the outermost
strategy, and local strategies on operators. This is a generalization of our previ-
ous results that also allowed to considerably simplify the technical features of our
approach, proposed in the three original algorithms.

The three considered strategies have been chosen for their relevance to program-
ming languages.

The most widely used is the innermost strategy, consisting in rewriting always at
the lowest possible positions. It is often used as a built-in mechanism in evaluation
of rule-based or functional languages. In addition, for non-overlapping or locally
confluent overlay systems [Gramlich 1995], or systems satisfying critical peak condi-
tions [Gramlich 1996], innermost termination is equivalent to standard termination
(i.e. termination for standard rewriting, which consists in rewriting without any
strategy). As proved in [Krishna Rao 2000], termination of rewriting is equivalent
for the leftmost innermost and the innermost strategies.

The outermost strategy for evaluating expressions in the context of programming
is essentially used when one knows that some computations can be non-terminating.
The intuition suggests that rewriting a term at the highest possible position gives

· 3

more chance than with another strategy to lead to an irreducible form. Indeed,
outermost rewriting may succeed when innermost rewriting fails, as illustrated
by the expression second(dec(1), 0), with the rewrite rules second(x, y) → y and
dec(x) → dec(x− 1) on integers. Innermost rewriting fails to terminate, because it
first evaluates dec(1) into dec(0), dec(−1), and so on. Outermost rewriting, how-
ever, gives 0 in one rewriting step. Moreover, outermost derivations may be often
shorter : in our example, to reduce second(u, v), one does not need to reduce u,
which can lead to infinite computations or, at least, to a useless evaluation. This
advantage makes the outermost strategy an interesting strategy for rule-based lan-
guages, by allowing the interpreters to be more efficient, as well as for theorem
proving, by allowing the rewriting-based proofs to be shorter.

Outermost computations are also of interest for functional languages, where in-
terpreters or compilers generally involve a strategy for call by name. Often, lazy
evaluation is used instead: operators are labelled in terms as lazy or eager, and the
strategy consists in reducing the eager subterms only when their reduction allows
a reduction step higher in the term [Nguyen 2001]. Lazy termination of functional
languages has already been studied (see for example [Panitz and Schmidt-Schauss
1997] and [Giesl et al. 2006] for Haskell), but to our knowledge, except our previously
cited work, no termination proof method exists for specifically proving outermost
termination of rewriting.

Note finally that lazy evaluation may diverge while the outermost computation
terminates, which gives an additional motivation for studying outermost termina-
tion. For instance, let us consider the evaluation of the expression f (0) with the
following two rules : c(x, c(y, z)) → b, f (x) → c(x, f (s(x))). If f is labelled as ea-
ger, f (0) is reduced to c(0, f (s(0))), and then, since application of the first rule fails,
the sub-expression f (s(0)) has to be evaluated before considering the whole expres-
sion, which leads to an infinite evaluation. Evaluated in an outermost manner, f (0)
is also reduced to c(0, f (s(0))), but then f (s(0)) is reduced to c(s(0), f (s(s(0)))),
and the whole expression is reduced to b.

Local strategies on operators are also used to force the evaluation of expressions
to terminate. A well known example is the evaluation of an if then else expression,
for which evaluating the first argument in priority may allow to avoid divergence.
This kind of strategy is available in languages such that OBJ3, CafeOBJ or Maude,
and has been studied in [Eker 1998] and [Nakamura and Ogata 2000]. It is defined
in the following way: to any operator f is attached an ordered list of integers
LS (f), giving the positions of the subterms to be evaluated in a given term, whose
top operator is f . For example, the rewrite system

f(i(x)) → if then else(zero(x), g(x), f(h(x)))
zero(0) → true
zero(s(x)) → false
if then else(true, x, y) → x
if then else(false, x, y) → y
h(0) → i(0)
h(x) → s(i(x))

does not terminate for the standard rewriting relation, but does with the following
strategy: LS (ite) = [1; 0], LS (f) = LS (zero) = LS (h) = [1; 0] and LS (g) = LS (i) =

4 ·

[1], where ite denotes if then else for short.
Local strategies have to be compared with context-sensitive rewriting where

rewriting is also allowed at some specified positions only in the terms. The for-
mer specify an ordering on these rewriting positions, so they are more specific than
context-sensitive rewriting where a redex is chosen in a set of positions.

The termination problem for the three considered strategies is always different:
in [Fissore et al. 2002c], examples are given to show that termination for one of
these strategies does not imply termination for any other one.

Despite of these distinct behaviours, the termination proofs we propose rely on
the same principle and a few common concepts, that are emphasized in this paper.
Our approach is based on an explicit induction mechanism on the termination
property. The main idea is to proceed by induction on the ground term algebra with
a noetherian ordering ≻, assuming that for any t′ such that t ≻ t′, t′ terminates,
i.e. there is no infinite derivation chain starting from t′. The general proof principle
relies on the simple idea that for establishing termination of a ground term t, it is
enough to suppose that subterms of t are smaller than t for this ordering, and that
rewriting the context only leads to terminating chains. Iterating this process until
a non-reducible context is obtained establishes termination of t.

Termination of terms has also been proposed in [Goubault-Larreck 2001], but
for inductively proving well-foundedness of binary relations, among which path
orderings.

In order to explain more precisely the basic idea of our approach, let us consider
the classical example, due to Toyama, of a rewrite system that does not terminate,
but terminates with the innermost strategy:

f(0, 1, x) → f(x, x, x)
g(x, y) → x
g(x, y) → y

Let us prove by induction on the set T (F) of ground terms built on F =
{0, 1, f, g} with a noetherian ordering ≻, that any term t innermost terminates
(i.e. there is no infinite innermost rewriting chain starting from t). The terms of
T (F) are 0, 1, or terms of the form f(t1, t2, t3), or g(t1, t2), with t1, t2, t3 ∈ T (F).
The terms 0 and 1 are obviously terminating.

We now prove that f(t1, t2, t3) is innermost terminating. First, f(t1, t2, t3) ≻
t1, t2, t3 for any term ordering with the subterm property (i.e. any term is greater
than any of its subterms). Then, by induction hypothesis, assume that t1, t2 and
t3 innermost terminate. Let t1↓, t2↓, t3↓ be respectively any of their normal forms.
The problem is then reduced to innermost termination of all f(t1↓, t2↓, t3↓). If
t1↓ = 0 , t2↓ = 1, then f(0, 1, t3↓) only rewrites at the top position into f(t3↓, t3↓,
t3↓), which is in normal form. Else f(t1↓, t2↓, t3↓) is already in normal form.

Let us finally prove that g(t1, t2) is innermost terminating. First, g(t1, t2) ≻ t1,
t2. Then, by induction hypothesis, assume that t1 and t2 innermost terminate. Let
t1↓, t2↓ be respectively any of their normal forms. It is then sufficient to prove that
g(t1↓, t2↓) is innermost terminating. The term g(t1↓, t2↓) rewrites either into t1↓
or into t2↓ at the top position, with both t1↓ and t2↓ in normal form. Note that for
≻ in this proof, any ordering having the subterm property is convenient. Our goal

· 5

is to provide a procedure implementing such a reasoning, and valid for the three
previously presented strategies.

Unlike classical induction proofs, where the ordering is given, we do not need to
define it a priori. We only have to check its existence by ensuring satisfiability of
ordering constraints incrementally set along the termination proof.

An important difference with other termination proof methods is that in our
approach, the studied system R and the induction ordering ≻ are in general not
connected in the usual sense, where proving termination of R amounts at finding
a reduction ordering such that l ≻ r for all rules l → r in R. This original aspect
allows us to prove termination in a finer way than usual and to take into account
rewriting strategies. This is useful not only for systems that only terminate under
strategies, but also when rewriting under strategy is used to restrict the derivation
space. Moreover, for the induction ordering, simple orderings (such as the subterm
ordering or a recursive path ordering) are often sufficient, whereas they cannot be
used to directly orient the rules. This is the case for Toyama’s example: here, a
subterm ordering is obviously not sufficient to compare left- and right-hand sides of
the rules, because the system is not terminating, but it is enough as an induction
relation to establish innermost termination.

The paper is organized as follows: in Section 2, the background is presented.
Section 3 introduces the inductive proof principle of our approach. Section 4 gives
the basic concepts of our inductive proof mechanism based on abstraction and
narrowing, and the involved constraints. Section 5 presents the termination proof
procedure that is further applied to different rewriting strategies. In Section 6, the
mechanism is instantiated for the case of innermost termination. In Section 7, the
procedure is applied to outermost termination, and in Section 8, to the case of local
strategies. Finally, Section 9 addresses implementation and related work.

2. THE BACKGROUND

We assume that the reader is familiar with the basic definitions and notations of
term rewriting given for instance in [Dershowitz and Jouannaud 1990; Baader and
Nipkow 1998; Dershowitz and Plaisted 2001; Barendsen et al. 2003]. T (F ,X) is
the set of terms built from a given finite set F of function symbols f having arity
n ∈ N (denoted f : n), and a set X of variables denoted x, y T (F) is the set
of ground terms (without variables). The terms reduced to a symbol of arity 0 are
called constants. Positions in a term are represented as sequences of integers. The
empty sequence ǫ denotes the top position. The symbol at the top position of a
term t is written top(t). Let p and p′ be two positions. The position p is said to
be (a strict) prefix of p′ (and p′ suffix of p) if p′ = pλ, where λ is a (non-empty)
sequence of integers. Given a term t, V ar(t) is the set of variables of t, Pos(t)
is the set of positions in t, inductively defined as follows: Pos(t) = {ǫ} if t ∈
X , Pos(t) = {ǫ} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)} if t = f(t1, . . . , tn). The set
of non-variable positions is PosF (t) = {p ∈ Pos(t) | t|p 6∈ X}, where the notation
t|p stands for the subterm of t at position p. If p ∈ Pos(t), then t[t′]p denotes the
term obtained from t by replacing the subterm at position p by the term t′.

A substitution is an assignment from X to T (F ,X), written σ = (x 7→ t) . . . (y 7→
u). It uniquely extends to an endomorphism of T (F ,X). The result of applying σ
to a term t ∈ T (F ,X) is written σ(t) or σt. The domain of σ, denoted Dom(σ) is

6 ·

the finite subset of X such that σx 6= x. The range of σ, denoted Ran(σ), is defined
by Ran(σ) =

⋃

x∈Dom(σ) V ar(σx). An instantiation or ground substitution is an

assignment from X to T (F). Id denotes the identity substitution. The composition
of substitutions σ1 followed by σ2 is denoted σ2σ1. Given a subset X1 of X , we
write σX1

for the restriction of σ to the variables of X1, i.e. the substitution such
that Dom(σX1

) ⊆ X1 and ∀x ∈ Dom(σX1
) : σX1

x = σx.
A reduction relation on terms is a relation → on T (F ,X)×T (F ,X). A derivation

is a sequence of terms t1 → t2 → . . . tn. A term t is reducible (for the relation →)
when there exists t′ such that t → t′ and irreducible otherwise. The reflexive
transitive closure of the reduction relation is denoted by

∗
→. If t

∗
→ t′ with t′

irreducible, then t′ is called a normal form of t and denoted by t↓. Note that given
t, t↓ may be not unique.

In this work, we will use two families of reduction relations on terms, namely
rewriting and narrowing relations.

A set R of rewrite rules or rewrite system on T (F ,X) is a set of pairs of terms
of T (F ,X), denoted l → r, such that V ar(r) ⊆ V ar(l), and l 6∈ X . Given a rewrite
system R, a function symbol in F is called a constructor iff it does not occur in
R at the top position of a left-hand side of a rule, and is called a defined function

symbol otherwise. The set of constructors of F for R is denoted C, and the set of
defined function symbols D. In this paper, we only consider finite sets of rewrite
rules.

The rewriting relation induced by R is denoted by →R (→ if there is no ambiguity
on R), and defined by s → t iff there exists a substitution σ and a position p in
s such that s|p = σl for some rule l → r of R, and t = s[σr]p. This is written

s →p,l→r,σ
R t where p, l → r, σ or R may be omitted; s|p is called a redex.

Let R be a rewrite system on T (F ,X). A term t is narrowed into t′, at the non-
variable position p, using the rewrite rule l → r of R and the substitution σ, when σ
is a most general unifier of t|p and l, and t′ = σ(t[r]p). This is denoted t ❀

p,l→r,σ
R t′

where p, l → r, σ or R may be omitted. It is always assumed that there is no
variable in common between the rule and the term, i.e. that V ar(l) ∩ V ar(t) = ∅.

An ordering ≻ on T (F ,X) is said to be noetherian iff there is no infinite de-
creasing chain for this ordering. It is monotone iff for any pair of terms t, t′ of
T (F ,X), for any context f(.), t ≻ t′ implies f(. . . t . . .) ≻ f(. . . t′ . . .). It has
the subterm property iff for any t of T (F ,X), f(. . . t . . .) ≻ t. It is stable under
substitution iff for any substitution σ, any pair of terms t, t′ ∈ T (F ,X), t ≻ t′

implies σt ≻ σt′. An ordering which is noetherian, monotone and stable by sub-
stitution is called a reduction ordering. For F and X finite, if ≻ is monotone and
has the subterm property, then it is noetherian [Kruskal 1960]. If, in addition, ≻
is stable under substitution, then it is called a simplification ordering.

The notion of strategy is fundamental for computation and deduction, and can
be defined in a general way for reduction relations. We concentrate in this work on
reductions defined by a rewrite system and define rewriting strategies.

Definition (rewriting strategy). A rewriting strategy S for a rewrite system
R is a subset of the set of all derivations of R. When a rewrite step belongs to a
derivation of the strategy S, it is denoted by →S and is called a rewriting step under
the strategy S. A term t reducible for →S is said S-reducible; t is an S-normal

· 7

form if it is a normal form for →S .

This definition of rewriting strategy generalizes the one proposed in [van Oostrom
and de Vrijer 2003] because we do not require the derivations to reach normal forms.

A strategy could be described extensively or more suitably by a strategy lan-

guage like in ELAN, Stratego, TOM or Maude. The semantics of such a language
is naturally described in the rewriting calculus [Cirstea and Kirchner 2001; Cirstea
et al. 2003]. A strategy language involves rules as basic elements and offers strat-
egy combinators and iterators to build more complex strategy expressions. Well-
known rewriting strategies allow controlling the application of rules over subterms,
performing term traversal and normalizing terms: in this paper, we consider in
particular the innermost, outermost and local strategies on operators.

Definition (innermost/outermost strategy). Let R a rewrite system on
T (F , X). Rewriting under the innermost (resp. outermost) strategy is defined as
follows: for any term t ∈ T (F ,X), t →R t′ and the rewriting position p in t is such
that there is no suffix (resp. prefix) position p′ of p such that t rewrites at position
p′.

Rewriting strategies may be more complex to define. This is the case for local
strategies on operators, used in the OBJ-like languages. We use here the notion of
local strategy as expressed in [Goguen et al. 1992].

Definition (LS -strategy). An LS-strategy is given by a function LS from F
to the set of lists of integers L(N), that induces a rewriting strategy as follows.

Given an LS -strategy such that LS (f) = [i1, . . . , ip], ij ∈ [0..arity(f)] for all
j ∈ [1..p], for some symbol f ∈ F , normalizing a term t = f(t1, . . . , tm) ∈ T (F ,X)
with respect to LS (f) = [i1, . . . , ip] consists in normalizing all subterms of t at
positions i1, . . . , ip successively, according to the strategy. If there exists j ∈ [1..p]
such that i1, . . . , ij−1 6= 0 and ij = 0 (0 is the top position), then

—if the current term t′ obtained after normalizing t|i1 , . . . , t|ij−1
is reducible at

the top position into a term g(u1, . . . , un), then g(u1, . . . , un) is normalized with
respect to LS (g) and the rest of the strategy [ij+1, . . . , jp] is ignored,

—if t′ is not reducible at the top position, then t′ is normalized with respect to
ij+1, . . . , ip.

From now on, S can be one of the innermost, outermost or local strategy.

3. THE INDUCTIVE PROOF PROCESS

For proving that a rewrite system R terminates for the strategy S on T (F), we
proceed by induction on T (F) with a noetherian ordering ≻ as noetherian induction
relation, assuming that for any t′ such that t ≻ t′, t′ terminates. To warrant non
emptiness of T (F), we assume that F contains at least one constructor constant.

The original idea is here to consider the termination property on terms, instead
of considering it on the rewrite systems. Given a rewrite system R and a strategy
S, a term t of T (F) terminates for the considered strategy S, or S-terminates,
iff every S-rewriting derivation starting from t is finite. Termination of rewriting
under strategy on the set of ground terms is thus expressed as the property: for all
t of T (F), t S-terminates.

8 ·

It is worth noticing here that rewriting ground terms is not a restriction for the
study of rule-based languages: the requests are indeed terms with variables but
they are reduced with a set of rewrite rules built on a disjoint set of variables.
So there is no essential difference between the variables in the requests (which are
never instantiated) and constants, from the point of view of the rewriting process.

The induction principle on the termination property will be applied on the deriva-
tion tree of any term: “for any ground term t, if on any S-derivation issued from
t, there exists t′ such that t ≻ t′, then t S-terminates”. On such t′, the induction
hypothesis can be applied, so each t′ terminates, and t terminates too. Of course,
generating derivation trees for each term is not a good idea, so we will schematize
them into so-called proof trees on which we will lift the induction reasoning.

3.1 Lifting rewriting trees into proof trees

Thus we observe the rewriting derivation tree (for the considered strategy) starting
from a ground term t ∈ T (F) which is any instance of a term g(x1, . . . , xm), for
some defined function symbol g ∈ D, and variables x1, . . . , xm. Proving termination
on ground terms amounts at proving that all rewriting derivation trees have only
finite branches, using the same induction ordering ≻ for all trees.

Each rewriting derivation tree is simulated, using a lifting mechanism, by a proof
tree, developed from the patterns g(x1, . . . , xm), by alternatively using two main
operations, namely narrowing and abstraction, adapted to the considered rewrit-
ing strategy. More precisely, narrowing schematizes all rewriting possibilities of
terms. The abstraction process simulates the normalization of subterms in the
derivations, according to the strategy. It consists in replacing these subterms by
special variables, denoting one of their normal forms, without computing them.
This abstraction step is performed on subterms that can be assumed terminating
by induction hypothesis.

The common property of the three considered strategies is to allow normalisation
of some subterms: all subterms for the innermost case, all subterms having no
rewriting position at one of their prefix positions for the outermost case, or all
subterms allowed by the local strategy of an operator for local strategies.

The schematization of ground rewriting derivation trees is achieved through con-
straints. Each node of the developed proof trees is a step of the proof, composed
of a current term of T (F ,X), and a set of ground substitutions represented by a
constraint progressively built along the successive abstraction and narrowing ap-
plications. A node schematizes a set of ground terms: the ground instances of the
current term, that are solutions of the constraint.

The constraint is in fact composed of two kinds of formulas: ordering constraints,
set to warrant the validity of the inductive steps, and abstraction constraints com-
bined to narrowing substitutions, which effectively define the relevant sets of ground
terms. The latter are actually useful for controlling the narrowing process, well
known to easily diverge.

The termination proof procedures given in this paper are described by deduc-
tion rules applied with a special control Strat−Rules(S), depending on the studied
rewriting strategy S. To prove termination of R on any term t ∈ T (F) under
the strategy S, we consider a so-called reference term tref = g(x1, . . . , xm) for
each defined symbol g ∈ D, and empty sets ⊤ of constraints. Applying the de-

· 9

duction rules according to the control strategy Strat−Rules(S) to the initial node
({g(x1, . . . , xm)},⊤,⊤) builds a proof tree, whose nodes are produced by the infer-
ence rules. Branching is produced by the different possible narrowing applications.

Termination is established when the procedure terminates because the deduction
rules do not apply anymore and all terminal nodes of all proof trees have an empty
set of terms.

3.2 Lifting the inductive reasoning

As said previously, we consider any term of T (F) as a ground instance of a term
t of T (F ,X) occurring in a proof tree issued from a reference term tref . Using
the termination induction hypothesis on T (F) naturally leads us to simulate the
rewriting relation by two mechanisms:

—first, some subterms tj of the current term t of the proof tree are supposed to
have only terminating ground instances, by induction hypothesis, if θtref ≻ θtj
for the induction ordering ≻ and for every solution θ of the constraint associated
to t. They are replaced in t by abstraction variables Xj representing respectively
one of the normal forms of their ground instances (θtj)↓. Reasoning by induction
allows us to only suppose the existence of the (θtj)↓ without explicitly computing

them;

—second, narrowing (under the strategy S) the resulting term u = t[Xj]j∈{p1,...,pk}

(where p1, . . . , pk are the positions of the abstracted subterm tj in t) into terms
v, according to the possible instances of the Xj . This corresponds to rewriting
(under the strategy S) the possible ground instances of u (characterized by the
constraint associated to u) in all possible ways.
In general, the narrowing step of u is not unique. We obviously have to consider
all terms v such that θu rewrites into θv, which corresponds to considering all
narrowing steps from u.

Then the termination problem of the ground instances of t is reduced to the
termination problem of the ground instances of v. If θtref ≻ θv for every ground
substitution θ solution of the constraint associated to v, by induction hypothesis,
θv is supposed to be terminating. Else, the process is iterated on v, until getting a
term t′ such that either θtref ≻ θt′, or θt′ is irreducible.

We introduce in the next section the necessary concepts to formalize and auto-
mate this technique.

4. ABSTRACTION, NARROWING, AND THE INVOLVED CONSTRAINTS

4.1 Ordering constraints

The induction ordering is constrained along the proof by inequalities between terms
that must be comparable, each time the induction hypothesis is used in the abstrac-
tion mechanism. As we are working with a lifting mechanism on the proof trees
with terms of T (F ,X), we directly work with an ordering ≻P on T (F ,X) such
that t ≻P u implies θt ≻ θu, for every solution θ of the constraint associated to u.

Any ordering ≻P on T (F ,X) satisfying t ≻P u and which is stable under substi-
tution fulfills the previous implication. The ordering ≻P , defined on T (F ,X), can
then be seen as an extension of the induction ordering ≻. For convenience, ≻P will
also be written ≻.

10 ·

This ordering is not defined a priori, but just has to verify inequalities of the
form t > u1, . . . , um, accumulated along the proof, and which are called ordering

constraints. Thus, for establishing the inductive termination proof, it is sufficient
to decide whether ordering constraints are satisfiable.

Definition (ordering constraint). An ordering constraint is a pair of terms
of T (F ,X) noted (t > t′). It is said to be satisfiable if there exists an ordering
≻, such that for every instantiation θ whose domain contains Var(t) ∪ Var(t′), we
have θt ≻ θt′. We say that ≻ satisfies (t > t′).

A conjunction C of ordering constraints is satisfiable if there exists an ordering
satisfying all conjuncts. The empty conjunction, always satisfied, is denoted by ⊤.

Satisfiability of a constraint conjunction C of this form is undecidable. But
a sufficient condition for an ordering ≻ to satisfy C is that ≻ is stable under
substitution and t ≻ t′ for any constraint t > t′ of C.

Reduction orderings fulfill the first requirement. So in practice, it is sufficient to
find a reduction or a simplification ordering ≻ such that t ≻ t′ for any constraint
t > t′ of C.

Solving ordering constraints in finding simplification orderings is a well-known
problem. The simplest way and an automatable way to proceed is to test simple ex-
isting orderings like the subterm ordering, the Recursive Path Ordering (RPO) [Der-
showitz 1982b], or the Lexicographic Path Ordering (LPO) [Kamin and Lévy 1982].
This is often sufficient for the constraints considered here: as said in the introduc-
tion, thanks to the power of induction, they are often simpler than for termination
methods directly using ordering for orienting rewrite rules.

If these simple orderings are not powerful enough, automatic solvers like Cime 1

can provide adequate polynomial orderings.

4.2 Abstraction

To abstract a term t at positions p1, . . . , pk, where the t|j are supposed to have
a normal form t|j↓, we replace the t|j by abstraction variables Xj representing
respectively one of their possible normal forms. Let us define these special variables
more formally.

Definition (abstraction variable). Let XA be a set of variables disjoint from
X . Symbols of XA are called abstraction variables. Substitutions and instantiations
are extended to T (F ,X ∪ XA) in the following way: for any substitution σ (resp.
instantiation θ) such that Dom(σ) (resp. Dom(θ)) contains a variable X ∈ XA,
σX (resp. θX) is in S-normal form.

Definition (term abstraction). The term t[t|j]j∈{p1,...,pk} is said to be ab-

stracted into the term u (called abstraction of t) at positions {p1, . . . , pk} iff u =
t[Xj]j∈{p1,...,pk}, where the Xj , j ∈ {p1, . . . , pk} are fresh distinct abstraction vari-
ables.

Termination on T (F) is proved by reasoning on terms with abstraction variables,
i.e. on terms of T (F ,X ∪XA). Ordering constraints are extended to pairs of terms
of T (F ,X ∪XA). When subterms t|j are abstracted by Xj , we state constraints on

1Available at http://cime.lri.fr/

· 11

abstraction variables, called abstraction constraints to express that their instances
can only be normal forms of the corresponding instances of t|j . Initially, they are
of the form t↓ = X where t ∈ T (F ,X ∪ XA), and X ∈ XA, but we will see later
how they are combined with the substitutions used for the narrowing process.

4.3 Narrowing

After abstraction of the current term t into t[Xj]j∈{p1,...,pk}, we check whether the
possible ground instances of t[Xj]j∈{p1,...,pk} are reducible, according to the possible
values of the instances of the Xj . This is achieved by narrowing t[Xj]j∈{p1,...,pk}.

The narrowing relation depends on the considered strategy S and the usual def-
inition needs to be refined. The first idea is to use innermost (resp. outermost)
narrowing. Then, if a position p in a term t is a narrowing position, a suffix (resp.
prefix) position of p cannot be a narrowing position too. However, if we consider
ground instances of t, we can have rewriting positions p for some instances, and p′

for some other instances, such that p′ is a suffix (resp. a prefix) of p. So, when
narrowing at some position p, the set of relevant ground instances of t is defined
by excluding the ground instances that would be narrowable at some suffix (resp.
prefix) position of p, that we call S-better position: a position S-better than a po-
sition p in t is a suffix position of p if S is the innermost strategy, a prefix position
of p if S is the outermost strategy. This definition does not make sense for local
strategies: as the redex positions of a term are imposed by the strategy attached to
each operator, they are also redex positions for any ground instance of this term.
So there is no S-better position in this case.

Moreover, to preserve the fact that a narrowing step of t schematizes a rewriting
step of possible ground instances of t, we have to be sure that an innermost (resp.
outermost) narrowing redex in t corresponds to the same rewriting redex in a ground
instance of t. This is the case only if, in the rewriting chain of the ground instance
of t, there is no rewriting redex anymore in the part of the term brought by the
instantiation. So before each narrowing step, we schematize the longest rewriting
chain of any ground instance of t, whose redexes occur in the variable part of
the instantiation, by a linear variable renaming. Linearity is crucial to express
that, in the previous rewriting chain, ground instances of the same variables can
be reduced in different ways. For the innermost strategy, abstraction of variables
performs this schematization. For the outermost strategy, a reduction renaming
will be introduced. For local strategies, this variable renaming is not relevant, since
by construction, there is no rewriting redex in the part of the term brought by the
instantiation.

The S-narrowing steps which apply to a given term t are computed in the fol-
lowing way. After applying the variable renaming to t, we look at every position
p of t such that t|p unifies with the left-hand side of a rule using a substitution σ.
The position p is an S-narrowing position of t, iff there is no S-better position p′

of t such that σt|p′ unifies with a left-hand side of a rule. Then we look for every
S-better position p′ than p in t such that σt|p′ narrows with some substitution σ′

and some rule l′ → r′, and we set a constraint to exclude this substitution. So the
substitutions used to narrow a term have in general to satisfy a set of disequalities
coming from the negation of previous substitutions. To formalize this point, we
need the following notations and definitions.

12 ·

In the following, we identify a substitution σ = (x1 7→ t1) . . . (xn 7→ tn) on
T (F ,X ∪XA) with the finite set of solved equations (x1 = t1)∧ . . .∧ (xn = tn), also
denoted by the equality formula

∧

i(xi = ti), with xi ∈ X ∪XA, ti ∈ T (F ,X ∪XA),
where = is the syntactic equality. We call negation σ of the substitution σ the
formula

∨

i(xi 6= ti).

Definition (constrained substitution). A constrained substitution σ is a for-
mula σ0 ∧

∧

j

∨

ij
(xij

6= tij
), where σ0 is a substitution.

Definition (S-narrowing). A term t ∈ T (F ,X ∪ XA) S-narrows into a term
t′ ∈ T (F ,X ∪XA) at the non-variable position p of t, using the rule l → r ∈ R with

the constrained substitution σ = σ0 ∧
∧

j∈[1..k] σj , which is written t ❀
p,l→r,σ
S t′ iff

σ0(l) = σ0(t|p) and t′ = σ0(t[r]p)

where σ0 is the most general unifier of t|p and l and σj , j ∈ [1..k] are all most
general unifiers of σ0t|p′ and a left-hand side l′ of a rule of R, for all position p′

which are S-better positions than p in t.

It is always assumed that there is no variable in common between the rule and
the term, i.e. that V ar(l) ∩ V ar(t) = ∅. This requirement of disjoint variables is
easily fulfilled by an appropriate renaming of variables in the rules when narrowing
is performed. The most general unifier σ0 used in the above definition can be taken
such that its range only contains fresh variables. This is important for controlling
the satisfiability of the constraints presented in the next section, as shown in the
proof of the narrowing lemma given in the appendix.

Since we are interested in the narrowing substitution applied to the current term
t, but not in its definition on the variables of the left-hand side of the rule, the
narrowing substitutions can be restricted to the variables of the narrowed term t.

The following lifting lemma, generalized from [Middeldorp and Hamoen 1994],
ensures the correspondence between the narrowing relation, used during the proof,
and the rewriting relation.

Lemma (S-lifting Lemma). Let R be a rewrite system. Let s ∈ T (F ,X), α
a ground substitution such that αs is S-reducible at a non variable position p of s,
and Y ⊆ X a set of variables such that V ar(s) ∪ Dom(α) ⊆ Y. If αs →p,l→r

S t′,
then there exist a term s′ ∈ T (F ,X) and substitutions β, σ = σ0 ∧

∧

j∈[1..k] σj such

that:

1. s ❀
p,l→r,σ
S s′,

2. βs′ = t′,
3. βσ0 = α[Y ∪ V ar(l)]
4. β satisfies

∧

j∈[1..k] σj

where σ0 is the most general unifier of s|p and l and σj , j ∈ [1..k] are all most

general unifiers of σ0s|p′ and a left-hand side l′ of a rule of R, for all position p′

which are S-better positions than p in s.

4.4 Cumulating constraints

Abstraction constraints have to be combined with the narrowing constrained sub-
stitutions to characterize the ground terms schematized by the proof trees. A

· 13

narrowing step effectively corresponds to a rewriting step of ground instances of
t if the narrowing constrained substitution σ is compatible with the abstraction
constraint formula A associated to t (i.e. A ∧ σ is satisfiable). Else, the narrowing
step is meaningless. So the narrowing constraint attached to the narrowing step is
added to A. Hence the introduction of abstraction constraint formulas.

Definition (abstraction constraint formula). An abstraction constraint for-

mula (ACF in short) is a formula
∧

i(ti↓ = t′i) ∧
∧

j(xj = tj) ∧
∧

k

∨

lk
(ulk 6= vlk),

where ti, t
′
i, tj , ulk , vlk ∈ T (F ,X ∪ XA), xj ∈ X ∪ XA.

Definition (satisfiability of an ACF). An abstraction constraint formula
∧

i(ti↓ = t′i) ∧
∧

j(xj = tj) ∧
∧

k

∨

lk
(ulk 6= vlk), is satisfiable iff there exists at least

one instantiation θ such that
∧

i(θti↓ = θt′i)∧
∧

j(θxj = θtj)∧
∧

k

∨

lk
(θulk 6= θvlk).

The instantiation θ is then said to satisfy the ACF A and is called solution of A.

Integrating a constrained substitution σ = σ0 ∧
∧

i

∨

ji
(xji

6= tji
) to an ACF A is

done by adding the formula defining σ to A, thus giving the formula A ∧ σ. For a
better readability on examples, we can propagate σ into A (by applying σ0 to A),
thus getting instantiated abstraction constraints of the form ti↓ = t′i from initial
abstraction constraints of the form ti↓ = Xi.

An ACF A is attached to each term t in the proof trees; its solutions characterize
the interesting ground instances of this term, i.e. the θt such that θ is a solution
of A. When A has no solution, the current node of the proof tree represents no
ground term. Such nodes are then irrelevant for the termination proof. Detecting
and suppressing them during a narrowing step allows us to control the narrowing
mechanism. So we have the choice between generating only the relevant nodes of
the proof tree, by testing the satisfiability of A at each step, or stopping the proof
on a branch on an irrelevant node, by testing the unsatisfiability of A. These are
both facets of the same question, but in practice, they are handled in different ways.

The satisfiability of A is in general undecidable. The disequality part of an ACF
is a particular instance of a disunification problem (a quantifier free equational
formula), whose satisfiability has been addressed in [Comon 1991], that provides
rules to transform any disunification problem into a solved form. Testing the sat-
isfiability of the equational part of an ACF is undecidable in general, but sufficient
conditions can be given, relying on a characterization of normal forms.

The unsatisfiability of A is also undecidable in general, but simple automatable
sufficient conditions can be used, very often applicable in practice. They rely on
reducibility, unifiability, narrowing and constructor tests.

According to Definition 4.8, an ACF
∧

i(ti↓ = t′i) ∧
∧

j(xj = tj) ∧
∧

k

∨

lk
(ulk 6=

vlk) is unsatisfiable if for instance, one of its conjunct ti↓ = t′i is unsatisfiable, i.e. is
such that θt′i is not a normal form of θti for any ground substitution θ. Hence, we
get four sufficient conditions for unsatisfiability of an abstraction constraint t↓ = t′:

Case 1:. t↓ = t′, with t′ reducible. Indeed, in this case, any ground instance of
t′ is reducible, and hence cannot be a normal form.

Case 2:. t↓ = t′ ∧ . . . ∧ t′↓ = t′′, with t′ and t′′ not unifiable. Indeed, any
ground substitution θ satisfying the above conjunction is such that (1) θt↓ = θt′

and (2) θt′↓ = θt′′. In particular, (1) implies that θt′ is in normal form and hence
(2) imposes θt′ = θt′′, which is impossible if t′ and t′′ are not unifiable.

14 ·

Case 3:. t↓ = t′ where top(t) is a constructor, and top(t) 6= top(t′). Indeed, if the
top symbol of t is a constructor c, then any normal form of any ground instance of t
is of the form c(u), where u is a ground term in normal form. The above constraint
is therefore unsatisfiable if the top symbol of t′ is g, for some g 6= c.

Case 4:. t↓ = t′ with t, t′ ∈ T (F ,XA) not unifiable and
∧

t❀Sv v↓ = t′ unsatisfi-
able. This criterion is of interest if unsatisfiability of each conjunct v↓ = t′ can be
shown with one of the four criteria we present here.

So both the satisfiability and the unsatisfiability checks need to use sufficient
conditions. But in the first case, the proof process stops with failure as soon as
the satisfiability of A cannot be proved. In the second one, it can go on, until A is
proved to be unsatisfiable, or until other stopping conditions are fulfilled.

Let us now come back to ordering constraints. If we check the satisfiability of A
at each step, we only generate nodes in the proof trees, that represent non empty
sets of ground terms. So in fact, the ordering constraints of C have not to be
satisfied for every ground instance, but only for those instances that are solution of
A, hence the following definition, that can be used instead of Definition 4.1, when
constraints of this definition cannot be proved satisfiable, and solutions of A can
easily be characterized.

Definition (constraint problem). Let A be an abstraction constraint formula
and C a conjunction of ordering constraints. The constraint problem C/A is sat-
isfied by an ordering ≻ iff for every instantiation θ satisfying A, then θt ≻ θt′ for
every conjunct t > t′ of C. C/A is satisfiable iff there exists an ordering ≻ as above.

Note that C/A may be satisfiable even if A is not.

4.5 Relaxing the induction hypothesis

It is important to point out the flexibility of the proof method that allows the
combination with auxiliary termination proofs using different techniques: when the
induction hypothesis cannot be applied on a term t introduced along the proof, i.e.
when it is not possible to decide whether the ordering constraints are satisfiable, it
is often possible to prove termination (for the considered strategy) of any ground
instance of the current term t by another way. In the following we use a predicate
TERMIN (S , t) that is true for t iff every ground instance of t terminates for the
considered strategy S.

To establish TERMIN (S , t), decidable sufficient conditions exist, applicable in
practice, because the predicate is only considered for particular terms introduced
along the proof, and not for any term.

In particular, TERMIN (S , t) is true when every instance of t is in normal form.
This is the case when t is not narrowable, and all variables of t are in XA. Indeed,
by Lifting Lemma and Definition 4.2, every instance of t is in normal form. This
includes the cases where t itself is an abstraction variable, and where t is a non
narrowable ground term.

Every instance of a narrowable t whose variables are all in XA, and whose nar-
rowing substitutions are not compatible with A, is also in normal form. As said
in Section 4.4, these narrowing possibilities do not represent any reduction step for
the ground instances of t, which are then irreducible.

· 15

Otherwise, in many cases, for proving that TERMIN (S , t) is true, the notion of
usable rules [Arts and Giesl 1997] is relevant. Given a rewrite system R on T (F ,X)
and a term t ∈ T (F ,X ∪ XA), the usable rules of t are a subset of R, which is a
computable superset of the rewrite rules that are likely to be used in any rewriting
chain (for the standard rewriting relation) starting from any ground instance of t,
until its ground normal forms are reached, if they exist.

Proving termination of every ground instance of t then comes down to proving
termination of its usable rules, which is in general much easier than proving termi-
nation of the whole rewrite system R. If there exists a reduction ordering ≻N that
orients these rules, any ground instance αt is bound to terminate for the standard
rewriting relation, and then for the rewriting strategy S. Indeed, if αt → t1 →
t2 → . . ., then, thanks to the previous hypotheses, αt ≻N t1 ≻N t2 ≻N . . . and,
since the ordering ≻N is noetherian, the rewriting chain cannot be infinite. If an
appropriate reduction ordering cannot be found, termination of the usable rules
may also be proved with our inductive process itself. The fact that the induction
ordering used for usable rules is independent of the main induction ordering, makes
the proof very flexible. Complete results on usable rules for the innermost strategy
are given in Section 6.2. For the outermost and local strategies, this is developed
in [Fissore et al. 2002b] and [Fissore et al. 2001].

5. THE TERMINATION PROOF PROCEDURE

5.1 Strategy-independent proof steps

We are now ready to describe the different steps of the proof mechanism presented
in Section 3.

The proof steps generate proof trees in transforming 3-tuples (T,A, C) where

—T is a set of terms of T (F ,X ∪ XA), containing the current term t whose ter-
mination has to be proved. T is either a singleton or the empty set. For local
strategies, the term is enriched by the list of positions where t has to be evaluated,
LS (top(t)). This is denoted by uLS(top(t)).

—A is a conjunction of abstraction constraints.

—C is a conjunction of ordering constraints.

Starting from initial nodes (T = {tref = g(x1, . . . , xm)}, A = ⊤, C = ⊤), where
g ∈ D, the proof process consists in iterating the following steps:

—The first step abstracts the current term t at given positions p1, . . . , pk. If the
conjunction of ordering constraints

∧

j tref > t|j is satisfiable for some j ∈
{p1, . . . , pk}, we suppose, by induction, the existence of irreducible forms for
the ground instances of the t|j . We must have TERMIN (S , t |j) for the other
t|j , j ∈ {p1, . . . , pk}. Then, t|p1

, . . . , t|pk
are abstracted into abstraction vari-

ables Xp1
, . . . , Xpk

. The abstraction constraints t|p1
↓ = Xp1

, . . . , t|pk
↓ = Xpk

are
added to the ACF A. We call that step the abstract step.

—The second step narrows the resulting term u with all possible rewrite rules of the
rewrite system R, and all possible substitutions σ, into terms v, according to Def-
inition 4.5. This branching step creates as many nodes as narrowing possibilities.
The substitution σ is added to A. This is the narrow step.

16 ·

—We then have a stop step halting the proof process on the current branch of the
proof tree, when A is detected to be unsatisfiable, or when the ground instances of
the current term can be stated terminating for the considered rewriting strategy.
This happens when the whole current term t can be abstracted, i.e. when the
induction hypothesis applies on it, or when we have TERMIN (S , t).

The satisfiability and unsatisfiability tests of A are integrated in the previously
presented steps. If testing the unsatisfiability of A is chosen, the test is integrated
in the stop step. If testing the satisfiability of A is chosen, the test is made at each
attempt of an abstraction or a narrowing step, which are then effectively performed
only if A can be proved satisfiable. Otherwise, the proof cannot go on anymore and
stops with failure.

As we will see later, for a given rewriting strategy S, these proof steps are in-
stantiated by more precise mechanisms, depending on the strategy S, and taking
advantage of its specificity. We will define these specific instances by inference rules.

5.2 Discussion on abstraction and narrowing positions

There are different ways to simulate the rewriting relation on ground terms, using
abstraction and narrowing.

For example, the abstraction positions can be chosen to abstract the greatest
subterms in the term, that are the immediate subterms of the term. Then, if a
narrowing step follows, the abstracted term has to be narrowed in all possible ways
at the top position only. This may yield a deadlock if some of the direct subterms
cannot be abstracted.

We can instead abstract all greatest possible subterms of t = f(t1, . . . , tn). More
concretely, we try to abstract t1, . . . , tn and, for each ti = g(t′1, . . . , t

′
p) that cannot

be abstracted, we try to abstract t′1, . . . , t
′
p, and so on. In the worst case, we are

driven to abstract leaves of the term, which are either variables, that do not need
to be abstracted if they are abstraction variables, or constants. Obviously, usable
rules can be used to prove termination of constants, and then to allow them to be
abstracted.

On the contrary, we can choose in priority the smallest possible subterms ui,
that are constants or variables. The ordering constraints t > ui needed to apply
the induction hypothesis, and then to abstract the term, are easier to satisfy than
in the previous case since the ui are smaller.

Beyond these cases, there are a finite but possibly big number of ways to choose
the positions where terms are abstracted. Anyway it is not useful to abstract the
subterms, whose ground instances are in normal form. Identifying these subterms
is performed using the conditions given in Section 4.5.

From the point of view of the narrowing step following the abstraction, there is no
general optimal abstracting choice either: the greater the term to be narrowed, the
greater is the possible number of narrowing positions. On another side, more general
the term to be narrowed, greater is the possible number of narrowing substitutions
for a given redex.

5.3 How to combine the proof steps

The previous proof steps, applied to every reference term tref = g(x1, . . . , xm),
where x1, . . . , xm ∈ X and g ∈ D, can be combined in the same way whatever

· 17

S ∈ {Innermost ,Outermost ,LS}:

Strat−Rules(S) = repeat∗(try(abstract), try(narrow), try(stop)).

”repeat∗(T1, . . . , Tn)” repeats the control strategies of the sequence (T1, . . . , Tn)
until none of them is applicable anymore. The operator ”try” is a parametric
operator that can be instantiated, following S, by try−skip(T), expressing that the
control strategy or rule T is tried, and skipped when it cannot be applied, or by
try−stop(T), stopping Strat−Rules(S) if T cannot be applied.

5.4 The termination theorem

For S ∈ {Innermost ,Outermost ,LS}, we write SUCCESS (g , ≻) if the application
of Strat−Rules(S) on ({g(x1, . . . , xm)},⊤,⊤) gives a finite proof tree, whose sets
C of ordering constraints are satisfied by a same ordering ≻, and whose leaves are
either nodes of the form (∅, A, C) or nodes whose set of constraints A is unsatisfiable.
This general definition of the SUCCESS predicate holds whatever the rewriting
strategy instantiation, whatever the corresponding inference rules, and the way to
apply them.

Our main result states that termination under a strategy S is equivalent to finite-
ness of the proof trees described above.

Theorem 5.1. Let R be a rewrite system on a set F of symbols containing at

least one constructor constant. Every term of T (F) terminates under the strategy

S iff there exists a noetherian ordering ≻ such that for each symbol g ∈ D, we have

SUCCESS (g ,≻).

The proof is given in the appendix. Intuitively, if every ground term is S-
terminating, the construction of the proof trees stops by applying the stop step on
each branch, which is possible since by hypothesis on any term t, TERMIN (S , t).
In this case, the noetherian ordering required for the proof is simply the subterm or-
dering. For the converse part, we need an emptiness lemma, an abstraction lemma,
a narrowing lemma, and a stopping lemma to prove S-termination for all ground
instances of terms of the proof tree that satisfy the associated constraint.

We are now ready to instantiate the general proof process, according to the
different rewriting strategies.

6. THE INNERMOST CASE

6.1 Abstraction and narrowing

As said before, when rewriting according to the innermost principle, the ground in-
stances of variables have to be normalized before a redex appears higher in the term.
The variable renaming performed before narrowing corresponds here to abstracting
variables in the current term. Then, here, narrowing has only to be performed on
terms of T (F ,XA).

Moreover, for the most general unifiers σ produced during the proof process,
all variables of Ran(σ) are abstraction variables. Indeed, by Definition 4.2, if
X ∈ Dom(σ), σX is in normal form, as well as θX for any instantiation θ. By
definition of the innermost strategy, this requires that variables of σX can only be
instantiated by terms in normal form, i.e. variables of σX are abstraction variables.

18 ·

Then, since before the first narrowing step, all variables are renamed into vari-
ables of XA, and the narrowing steps only introduce variables of XA, variable re-
namings are superfluous before the further narrowing steps.

6.2 Relaxing the induction hypothesis

To establish TERMIN (Innermost , t), a simple narrowing test of t can first be tried.
Except for the initial node, the variables of t are in XA. If t is not narrowable, or
if t is narrowable with a substitution σ that is not compatible with A, then every
ground instance of t is in innermost normal form. Else, we compute the usable
rules.

When t is a variable of X , the set of usable rules of t is R itself. When t ∈ XA,
the set of usable rules of t is empty, since the only possible instances of such a
variable are ground terms in normal form. Otherwise, it is recursively computed
on the term structure.

Definition Usable rules. Let R be a rewrite system on a set F of symbols.
Let Rls(f) = {l → r ∈ R | root(l) = f}. For any t ∈ T (F ,X ∪ XA), the set of
usable rules of t, denoted U(t), is defined by:

—U(t) = R if t ∈ X ,

—U(t) = ∅ if t ∈ XA,

—U(f(u1, . . . , un)) = Rls(f) ∪
⋃n

i=1 U(ui) ∪
⋃

l→r∈Rls(f) U(r).

Lemma 6.2. Let R be a rewrite system on a set F of symbols and t ∈ T (F ,X ∪
XA). For any ground instance αt of t and any rewrite chain αt →p1,l1→r1 t1
→p2,l2→r2 t2 → . . . →pn,ln→rn tn, then li → ri ∈ U(t), ∀i ∈ [1..n].

A sufficient criterion for ensuring standard termination (and then innermost ter-
mination) of any ground instance of a term t can be given.

Proposition 6.3. Let R be a rewrite system on a set F of symbols, and t a

term of T (F ,X ∪ XA). If there exists a reduction ordering ≻ such that for every

l → r ∈ U(t), we have l ≻ r, then any ground instance of t is terminating.

6.3 The innermost termination proof procedure

The inference rules Abstract, Narrow and Stop respectively instantiate the proof
steps abstract, narrow, and stop defined in Section 5.1. They are given in Table I.
Their application conditions depend on whether the satisfiability of A or the un-
satisfiability of A is checked. These conditions are specified in Tables II and III
respectively.

As said above, the ground terms whose termination is studied are defined by
the solutions of A. When the satisfiability of A is checked at each inference step,
the nodes of the proof tree exactly model the ground terms generated during the
rewriting derivations. The satisfiability of A, although undecidable in general, can
be proved by exhibiting a ground substitution satisfying the constraints of A.

When the satisfiability of A is not checked, nodes are generated in the proof tree,
that can represent empty sets of ground terms, so the generated proof trees can
have branches that do not represent any derivation on the ground terms. The un-
satisfiability test of A is only used to stop the development of meaningless branches
as soon as possible, with the sufficient conditions presented in Section 4.4.

· 19

Table I. Inference rules for the innermost strategy

Abstract:
{t}, A, C

{u}, A ∧ t|i1↓ = Xi1 . . . ∧ t|ip
↓ = Xip

, C ∧ HC(t|i1) . . . ∧ HC(t|ip
)

where t is abstracted into u at positions i1, . . . , ip 6= ǫ

if COND−ABSTRACT

Narrow:
{t}, A, C

{u}, A ∧ σ, C

if t ❀
σ
Innermost u and COND−NARROW

Stop:
{t}, A, C

∅, A ∧ HA(t), C ∧ HC(t)

if COND−STOP

and HA(t) =

⊤ if any ground instance of t
is in normal form

t↓ = X otherwise.

HC(t) =

{

⊤ if TERMIN (Innermost , t)
tref > t otherwise.

Table II. Conditions for inference rules dealing with satisfiability of A

COND−ABSTRACT : (A ∧ t|i1↓ = Xi1 . . . ∧ t|ip
↓ = Xip

)
and (C ∧ HC(t|i1) . . . ∧ HC(t|ip

)) are satisfiable

COND−NARROW : A ∧ σ is satisfiable

COND−STOP : (A ∧ HA(t)) and (C ∧ HC(t)) are satisfiable

Table III. Conditions for inference rules dealing with unsatisfiability of A

COND−ABSTRACT : C ∧ HC(t|i1) . . . ∧ HC(|tip
) is satisfiable

COND−NARROW : true

COND−STOP : (C ∧ HC(t)) is satisfiable or A is unsatisfiable.

Once instantiated, the control strategy Strat−Rules(S) simply becomes:

repeat ∗ (try−skip(Abstract), try−stop(Narrow), try−skip(Stop))

with conditions of Table II, and

repeat ∗ (try−skip(Abstract), try−skip(Narrow), try−skip(Stop))

with conditions of Table III. Note that Narrow with conditions of Table II is the
only rule stopping the proof procedure when it cannot be applied: when A ∧ σ is

20 ·

Table IV. Conditions for inference rules dealing with satisfiability of A

COND−ABSTRACT : (C ∧ HC(t|i1) . . . ∧ HC(t|ip
)) is satisfiable

COND−NARROW : A ∧ σ is satisfiable

COND−STOP : (C ∧ HC(t)) is satisfiable

satisfiable, the narrowing step can be applied, while, if satisfiability of A∧σ cannot
be proved, the procedure stops.

The procedure can diverge, with infinite alternate applications of Abstract and
Narrow. With conditions of Table II, it can stop on Narrow with a node of the
form ({t} 6= ∅, A, C) on at least one branch of the proof tree. In both cases, nothing
can be said on termination. Termination is proved when, for all proof trees, the
procedure stops with an application of Stop on each branch, generating only final
nodes of the form (∅, A, C).

According to the strategy Strat−Rules(Innermost), testing the satisfiability of A
in conditions of Table II can be optimized on the basis of the following remarks. In
the first application of Abstract for each initial node, (A∧ t|i1↓ = Xi1 . . .∧ t|ip

↓ =
Xip

) = (⊤ ∧ x1↓ = X1 . . . ∧ xm↓ = Xm), which is always satisfiable, since the
signature admits at least one constructor constant. Moreover, the following possible
current application of Abstract comes after an application of Narrow, for which
it has been checked that A ∧ σ is satisfiable. So (A ∧ σ ∧ t|i1↓ = Xi1 . . . ∧ t|ip

↓ =
Xip

) is also satisfiable since Xi1 , . . . , Xip
are fresh variables, not used in A ∧ σ.

So it is useless to verify satisfiability of (A ∧ t|i1↓ = Xi1 . . . ∧ t|ip
↓ = Xip

) in
COND−ABSTRACT .

In a similar way, as Stop is applied with a current abstraction constraint formula
A, which is satisfiable, A ∧ t↓ = X is also satisfiable since X is a fresh variable,
not used in A. So it is also useless to verify that A ∧ t↓ = X is satisfiable in
COND−STOP .

This leads to the conditions expressed in Table IV, simplifying those of Table II.

6.4 Examples

For a better readability, when a constrained substitution σ is added to the ACF A,
we propagate it into A in applying the substitution part σ0 of σ to A.

Example 6.4. Let R be the previous example of Toyama. We prove that R is
innermost terminating on T (F), where F = {f :3, g :2, 0:0, 1:0}.

f(0, 1, x) → f(x, x, x)
g(x, y) → x
g(x, y) → y

The defined symbols of F are here f and g. Applying the rules on f(x1, x2, x3),
we get:

· 21

tref = f(x1, x2, x3)
A = ⊤
C = ⊤

Abstract
��

f(X1, X2, X3)
A = (x1↓ = X1 ∧ x2↓ = X2 ∧ x3↓ = X3)

C = (f(x1, x2, x3) > x1, x2, x3)

Narrowσ=(X1=0∧X2=1)

��

f(X3, X3, X3)
A = (x1↓ = 0 ∧ x2↓ = 1 ∧ x3↓ = X3)

C = (f(x1, x2, x3) > x1, x2, x3)

Stop

��

∅
A = (x1↓ = 0 ∧ x2↓ = 1 ∧ x3↓ = X3)

C = (f(x1, x2, x3) > x1, x2, x3)

Abstract applies since f(x1, x2, x3) > x1, x2, x3 is satisfiable by any simplifica-
tion ordering.

If we are using the conditions for inference rules dealing with the satisfiability of
A given in Table IV, we have to justify the Narrow application. Here, Narrow

applies because A∧σ = (x1↓ = 0∧x2↓ = 1∧x3↓ = X3), where σ = (X1 = 0∧X2 =
1), is satisfiable by any ground instantiation θ such that θx1 = 0, θx2 = 1 and
θx3 = θX3 = 0.

Then Stop applies because f(X3, X3, X3) is a non narrowable term whose all vari-
ables are abstraction variables, and hence we have TERMIN (Innermost , f (X3 ,X3 ,
X3)).

Considering now g(x1, x2), we get:

tref = g(x1, x2)
A = ⊤
C = ⊤

Abstract
��

g(X1, X2)
A = (x1↓ = X1 ∧ x2↓ = X2)

C = (g(x1, x2) > x1, x2)

Narrow

σ=Id
wwppppppppppp

Narrow

σ=Id
''NNNNNNNNNNN

X1

A = (x1↓ = X1 ∧ x2↓ = X2)
C = (g(x1, x2) > x1, x2)

Stop

��

X2

A = (x1↓ = X1 ∧ x2↓ = X2)
C = (g(x1, x2) > x1, x2)

Stop

��

∅
A = (x1↓ = X1 ∧ x2↓ = X2)

C = (g(x1, x2) > x1, x2)

∅
A = (x1↓ = X1 ∧ x2↓ = X2)

C = (g(x1, x2) > x1, x2)

22 ·

Abstract applies since g(x1, x2) > x1, x2 is satisfiable by the same simplification
ordering than for the proof tree of f .

Again, we have to justify the Narrow application. Here, Narrow applies be-
cause A ∧ σ = (x1↓ = X1 ∧ x2↓ = X2), where σ = Id, is satisfiable by any ground
instantiation θ such that θx1 = θX1 = 0 and θx2 = θX2 = 0.

Then Stop applies on both branches because X1 and X2 are abstraction vari-
ables, hence we trivially have TERMIN (Innermost ,X1) and TERMIN (Innermost ,
X2).

Example 6.5. Let us now give an example dealing with the unsatisfiability of A
and illustrating the relevance of usable rules. Let us consider the following system
R:

plus(x, 0) → x (1)
plus(x, s(y)) → s(plus(x, y)) (2)
f(0, s(0), x) → f(x, plus(x, x), x) (3)
g(x, y) → x (4)
g(x, y) → y (5)

Let us first note that R is not terminating, as illustrated by the following cycle,
where successive redexes are underlined:

f(0, s(0), g(0, s(0))) →(3) f(g(0, s(0)), plus(g(0, s(0)), g(0, s(0))), g(0, s(0)))

→(4) f(0, plus(g(0, s(0)), g(0, s(0))), g(0, s(0)))

→(5) f(0, plus(s(0), g(0, s(0))), g(0, s(0)))

→(4) f(0, plus(s(0), 0), g(0, s(0)))

→(1) f(0, s(0), g(0, s(0)))

→(3) . . .

Let us prove innermost termination of R on T (F), where F = {0 : 0, s : 1, plus :
2, g :2, f :3}. The defined symbols of F are f, plus and g.

Let us apply the inference rules checking the unsatisfiability of A, whose condi-
tions are given in Table III. Applying the rules on f(x1, x2, x3), we get:

· 23

f(x1, x2, x3)
A = ⊤
C = ⊤

Abstract
��

f(X1, X2, X3)
A = (x1↓ = X1 ∧ x2↓ = X2 ∧ x3↓ = X3)

C = f(x1, x2, x3) > x1, x2, x3

Narrowσ=(X1=0∧X2=s(0))

��

f(X3, plus(X3, X3), X3)
A = (x1↓ = 0 ∧ x2↓ = s(0) ∧ x3↓ = X3)

C = f(x1, x2, x3) > x1, x2, x3

Abstract
��

f(X3, X4, X3)
A = (x1↓ = 0 ∧ x2↓ = s(0) ∧ x3↓ = X3 ∧ plus(X3, X3)↓ = X4)

C = f(x1, x2, x3) > x1, x2, x3

Narrowσ=(X3=0∧X4=s(0))

��

f(0, plus(0, 0), 0)
A = (x1↓ = 0 ∧ x2↓ = s(0) ∧ x3↓ = 0 ∧ plus(0, 0)↓ = s(0))

C = f(x1, x2, x3) > x1, x2, x3

Stop

��

∅
A = (x1↓ = 0 ∧ x2↓ = s(0) ∧ x3↓ = 0 ∧ plus(0, 0)↓ = s(0))

C = f(x1, x2, x3) > x1, x2, x3

The first Abstract applies since f(x1, x2, x3) > x1, x2, x3 is satisfiable by any
simplification ordering.

Since we are using the inference rules checking the unsatisfiability of A, whose
conditions are given in Table III, we do not have to justify the Narrow applications.

The second Abstract applies by using the TERMIN predicate. Indeed, the us-
able rules of plus(X3, X3) consist of the system {plus(x, 0) → x, plus(x, s(y)) →
s(plus(x, y))}, that can be proved terminating with any precedence based order-
ing, independent of the induction ordering, with the precedence plus ≻F s, which
ensures the property TERMIN (Innermost , plus(X3 ,X3)). Without abstraction
here, the process would have generated a branch containing an infinite number
of Narrow applications.

Finally, Stop applies because the constraint A becomes unsatisfiable. Indeed, it
contains the abstraction constraint plus(0, 0)↓ = s(0), which is not true since the
unique normal form of plus(0, 0) is 0. Note that if we would have chosen to apply
the inference rules checking the satisfiability of A, whose conditions are given in
Table IV, then the last narrowing step would not have applied, and would have
been replaced by a Stop application.

Considering now g(x1, x2), we get:

24 ·

tref = g(x1, x2)
A = ⊤
C = ⊤

Abstract
��

g(X1, X2)
A = (x1↓ = X1 ∧ x2↓ = X2)

C = (g(x1, x2) > x1, x2)

Narrow

σ=Id
wwppppppppppp

Narrow

σ=Id
''NNNNNNNNNNN

X1

A = (x1↓ = X1 ∧ x2↓ = X2)
C = (g(x1, x2) > x1, x2)

Stop

��

X2

A = (x1↓ = X1 ∧ x2↓ = X2)
C = (g(x1, x2) > x1, x2)

Stop

��

∅
A = (x1↓ = X1 ∧ x2↓ = X2)

C = (g(x1, x2) > x1, x2)

∅
A = (x1↓ = X1 ∧ x2↓ = X2)

C = (g(x1, x2) > x1, x2)

The proof tree is the same as in the previous example. Abstract applies since
g(x1, x2) > x1, x2 is satisfiable by the simplification ordering used for the first
Abstract of the previous proof tree.

Let us finally apply the inference rules of Table III on plus(x1, x2):

plus(x1, x2)
A = ⊤
C = ⊤

Abstract
��

plus(X1, X2)
A = (x1↓ = X1 ∧ x2↓ = X2)
C = plus(x1, x2) > x1, x2

Narrow
σ=(X2=0)

wwppppppppppp
Narrow

σ=(X2=s(X3))

''NNNNNNNNNNN

X1

A = (x1↓ = X1 ∧ x2↓ = 0)
C = plus(x1, x2) > x1, x2

Stop

��

s(plus(X1, X3))
A = (x1↓ = X1 ∧ x2↓ = s(X3))

C = plus(x1, x2) > x1, x2

Stop

��

∅
A = (x1↓ = X1 ∧ x2↓ = 0)
C = plus(x1, x2) > x1, x2

∅
A = (x1↓ = X1 ∧ x2↓ = s(X3))

C = plus(x1, x2) > x1, x2

Abstract applies since plus(x1, x2) > x1, x2 is satisfiable by the simplification
ordering used for the first Abstract of the first proof tree. Stop applies on the
left branch because X1 is an abstraction variable. Stop applies on the right branch
thanks to the TERMIN predicate. Indeed, the usable rules of s(plus(X1, X3)) are
{plus (x, 0) → x, plus(x, s(y)) → s(plus(x, y))} and terminate.

· 25

7. THE OUTERMOST CASE

7.1 Abstraction

According to the outermost strategy, abstraction can be performed on subterms
ti only if during their normalization, the ti’s do not introduce outermost redexes
higher in the term t. More formally, the induction hypothesis is applied to the
subterms t|p1

, . . . , t|pk
of the current term t, provided αtref ≻ αt|p1

, . . . , αt|pk
for

every ground substitution α, for the induction ordering ≻ and provided u = t[y1]p1

. . . [yn]pk
is not narrowable at prefix positions of p1, . . . , pk, for the outermost nar-

rowing relation defined below.

7.2 The narrowing mechanism

Outermost narrowing is defined by Definition 4.5, where an S-better position is
a prefix position. In order to support intuition, let us consider for instance the
system {f(g(a)) → a, f(f(x)) → b, g(x) → f(g(x))}. With the standard narrowing
relation used at the outermost position, f(g(x1)) only narrows into a with the first
rule and the substitution σ = (x1 = a). With the outermost narrowing relation,
f(g(x1)) narrows into a with the first rule and σ = (x1 = a), and into f(f(g(x1)))
with the third rule and the constrained substitution σ = Id ∧ x1 6= a.

In the outermost termination proof, the variable renaming performed before the
narrowing step has a crucial meaning for the schematization of outermost deriva-
tions. This renaming, applied on the current term t, replaces the variable occur-
rences x1, . . . , xm of t by new and mutually distinct variables x′

1, . . . , x′
m, defined as

follows. Given any ground instance αt, x′
1, . . . , x

′
m represent the first reduced form

of αx1, . . . , αxm encountered in any outermost rewriting chain starting from αt,
such that the next redex in the chain is not in αx1, . . . , αxm anymore, but higher
in the term.

This replacement is memorized in a reduction formula before we apply a step of
outermost narrowing to g(x′

1, . . . , x′
m). The abstraction variables are not renamed:

since their ground instances are in normal form, they are not concerned by the
rewriting chain schematized by the variable renaming.

Definition 7.1. Let t ∈ T (F ,X) be a term whose variable occurrences from
left to right in t are x1, . . . , xm. The reduction renaming of t, noted ρ = (x1

x′
1)...(xm x′

m), consists in replacing the xi by new and mutually distinct variables
x′

i in t, giving a term tρ. This is denoted by the so-called reduction formula

R(t) = t tρ.

Notice that the reduction renaming linearizes the term. For instance, the two
occurrences of x in g(x, x) are respectively renamed into x′

1 and x′
2, and g(x, x)

g(x′
1, x

′
2).

Definition 7.2. Let t ∈ T (F ,X) be a term whose variable occurrences from left
to right are x1, . . . , xm, at positions p1, . . . , pm respectively. A ground substitution
θ satisfies the reduction formula R(t) = t tρ, where ρ = (x1 x′

1)...(xm x′
m),

iff there exists an outermost rewriting chain θt
∗
→

p6∈PosF (t)

Outermost θtρ →
p∈PosF (t)
Outermost u, i.e.

such that:

26 ·

—either θtρ = t[θx′
1]p1

. . . [θx′
m]pm

is the first reduced form of θt = t[θx1]p1

. . . [θxm]pm
on this chain having an outermost rewriting position at a non variable

position of t, if this position exists,

—or θx′
1 = (θx1↓), . . . , θx

′
m = (θxm↓) if there is no such position.

Before going on, a few remarks on this definition can be made. In the second
case of satisfiability, t[θx1↓]p1

. . . [θxm↓]pm
is in outermost normal form. In any case,

R(t) is always satisfiable : it is sufficient to take a ground substitution θ such that
t[θx1]p1

. . . [θxm]pm
has an outermost rewriting position at a non variable position

of t, and then to extend its domain {x1, . . . , xm} to {x1, . . . , xm, x′
1, . . . , x

′
m} by

choosing for each i ∈ {1, ...,m}, θx′
i = θxi. If such a substitution does not exist,

then every ground instance of t has no outermost rewriting position at a non variable
position of t, and it is sufficient to take a ground substitution θ such that θx1 =
. . . = θxm = θx′

1 = . . . = θx′
m = u, with u any ground term in normal form.

However, there may exist several instantiations solutions of such constraints. Let
us consider for instance the rewrite system R = {f(a) → f(c), b → a} and the
reduction formula R(f(x)) = f(x) f(x′). The substitution θ1(x) = θ1(x

′) = a
and θ2(x) = b, θ2(x

′) = a are two distinct solutions. With the substitution θ2, f(a)
is the first reduced form of f(b) having an outermost rewriting position at a non
variable position of f(x) (here at top).

Notice also that if t is outermost reducible at position p, variables of t whose
position is a suffix of p are not affected by the reduction renaming. Indeed, if t
is reducible at position p, a ground instance αt of t cannot be outermost reduced
in the instance of x, whose positions are suffix of p. So x′, representing the first
reduced form of αx in any outermost rewriting chain starting from αt, such that
the reduction is performed higher in the current term, is equal to x.

To illustrate this, let us consider the system {g(x) → x, f(x, x) → x} (the right-
hand sides of the rules are not important here). Then, since f(x, g(y)) outermost
rewrites at the position of g, the variable y does not need to be renamed. So
R(f(x, g(y))) = (f(x, g(y)) f(x′, g(y))).

Because of the previously defined renaming process, the formula A for cumulating
constraints has to be completed in the following way.

Definition 7.3. A renaming-abstraction constraint formula (RACF for short) is
a formula
∧

m um uρ
m

∧

i(ti↓ = t′i)∧
∧

j(xj = tj)∧
∧

k

∨

lk
(ulk 6= vlk), where um, uρ

m, ti, t
′
i, tj ,

ulk , vlk ∈ T (F ,X ∪ XA), xj ∈ X ∪ XA. The empty formula is denoted ⊤.

Definition 7.4. A renaming-abstraction constraint formula
∧

m um uρ
m

∧

i(ti↓ = t′i)∧
∧

j(xj = tj)∧
∧

k

∨

lk
(ulk 6= vlk) is said to be satisfiable

iff there exists at least one instantiation θ such that
∧

i(θti↓ = θt′i) ∧
∧

j(θxj =
θtj) ∧

∧

k

∨

lk
(θulk 6= θvlk) and θ satisfies

∧

m um uρ
m.

In practice, one can solve the equality and disequality part of the constraint and
then check whether the solution θ satisfies the reduction formulas. This is trivial
when θ only instantiates the x′

i, since it can be extended by setting θ(xi) = θ(x′
i).

Unfortunately, when θ also instantiates the xi, we get an undecidable problem of

reachability: θt
∗
→

p6∈PosF (t)

Outermost θtρ →
p∈PosF (t)
Outermost u.

· 27

So here again, we can test either the satisfiability of the formula of cumulated
constraints, or the unsatisfiability. As the satisfiability is in general more difficult
to show than in the innermost case, we only present here inference rules checking
the unsatisfiability.

Unlike in the innermost case, the variables of the narrowed terms here are in
X ∪XA. Indeed, following the definition of the reduction renaming above, renaming
variables of X still gives variables of X . Moreover, abstraction may let unchanged
subterms containing variables of X , in the abstracted term.

7.3 Inference rules for the outermost case

The inference rules Abstract, Narrow and Stop respectively instantiate the proof
steps abstract, narrow, and stop.

They work as follows:

—The narrowing step is expressed by a rule Narrow applying on ({t}, A, C):
the variables of t are renamed as specified in Definition 7.1. Then tρ is out-
ermost narrowed in all possible ways in one step, with all possible rewrite rules
of the rewrite system R, into terms u. For any possible u, we generate the node
({u}, R(t)∧A∧σ,C) where σ is the constrained substitution allowing outermost
narrowing of tρ into u.

—The rule Abstract works as in the innermost case, except that the abstraction
positions are such that the abstracted term is not narrowable at prefix positions
of the abstraction positions.

—The rule Stop also works as in the innermost case.

To prove outermost termination of R on every term t ∈ T (F), for each defined
symbol g ∈ D, we apply the rules on the initial node ({tref = g(x1, . . . , xm)},⊤,⊤),
with the strategy:

Strat−Rules(Outermost) = repeat ∗ (try−skip(Abstract), try−skip(Narrow),
try−skip(Stop)).

There are two cases for the behavior of the strategy: either there is a branch in
the proof tree with infinite applications of Abstract and Narrow, in which case
we cannot say anything about termination, or the procedure stops on each branch
with the rule Stop. Then, outermost termination is established, if all proof trees
are finite.

According to the remark following Definition 7.2, the reduction formulas in A
may often be reduced to simple variable renamings. In this case, A may exclusively
contain variable renamings and constrained substitutions, that can be used to show
that the ordering constraint needed to apply Abstract or Stop is satisfiable (see
Examples B.1 and B.4 in [Fissore et al. 2002c]). The following lemma can also
be used, if satisfiability of C is considered with Definition 4.9 (see Examples B.2,
B.3 and B.4 in [Fissore et al. 2002c]). It enables to compare the variables of the
current term in a proof tree with the reference term, so it allows in particular to
apply Stop when the current term is either a variable, or a non narrowable term
containing variables of X .

28 ·

Table V. Inference rules for the outermost strategy

Abstract:
{t}, A, C

{u}, A ∧ t|i1↓ = Xi1 . . . ∧ t|ip
↓ = Xip

, C ∧ HC(t|i1) . . . ∧ HC(t|ip
)

where t is abstracted into u at positions i1, . . . , ip 6= ǫ

if C ∧ HC(t|i1) . . . ∧ HC(|tip
) is satisfiable

and u is not narrowable at prefix positions of i1, . . . , ip

Narrow:
{t}, A, C

{u}, R(t) ∧ A ∧ σ, C

if tρ ❀
σ
Outermost u

Stop:
{t}, A, C

∅, A ∧ HA(t), C ∧ HC(t)

if C ∧ HC(t) is satisfiable or A is unsatisfiable

and HA(t) =

⊤ if any ground instance of t
is in normal form

t↓ = X otherwise.

HC(t) =

{

⊤ if TERMIN (Outermost , t)
tref > t otherwise.

Lemma 7.5. Let ({ti}, Ai, Ci) be the ith node of any branch of the proof tree

obtained by applying the strategy Strat−Rules(Outermost) on ({tref },⊤,⊤), and

≻ a noetherian ordering having the subterm property. If every reduction formula

in Ai can be reduced to a formula
∧

j xj = x′
j, then we have:

for every variable x of ti in X : (tref > x)/Ai is satisfiable by ≻.

7.4 Examples

Example 7.6. Consider the previous example

f(g(a)) → a
f(f(x)) → b
g(x) → f(g(x))

that is outermost terminating, but not terminating for the standard rewriting
relation, especially because of the third rule.

We prove that R is outermost terminating on T (F) where F = {f : 1, g : 1, a :
0, b : 0}.

The defined symbols of F for R are f and g. Applying the rules on f(x1), we
get:

· 29

f(x1)
A = ⊤, C = ⊤

Narrow

σ=(x′

1=g(a))xxrrrrrrrrrr

Narrow

σ=(x′

1=f(x2)) &&LLLLLLLLLL

a
A = (f(x1) f(x′

1)

∧ x′
1 = g(a))

C = ⊤

Stop

��

b
A = (f(x1) f(x′

1)

∧ x′
1 = f(x2))

C = ⊤

Stop

��

∅
A = (f(x1) f(x′

1)

∧ x′
1 = g(a))

C = ⊤

∅
A = (f(x1) f(x′

1)

∧ x′
1 = f(x2))

C = ⊤

The first Stop is applied because a is in normal form, the second Stop because
b is in normal form. Applying the rules on g(x1), we get:

g(x1)
A = ⊤, C = ⊤

Narrow σ=Id

��

f(g(x1))
A = ⊤, C = ⊤

Narrow

σ=(x1=a)
zzuuuuuuuuu

Narrow

σ=(x1 6=a)
$$

IIIIIIIII

a
A = (x1 = a)

C = ⊤

Stop

��

f(f(g(x1)))
A = (x1 6= a)

C = ⊤

Narrowσ=Id

��

∅
A = (x1 = a)

C = ⊤

b
A = (x1 6= a)

C = ⊤

Stop

��

∅
A = (x1 6= a)

C = ⊤

There is no reduction renaming before the Narrow steps, since g(x1), f(g(x1))
and f(f(g(x1))) are reducible at prefix positions of the position of x1.

When narrowing f(g(x1)), we first try the top position, and find a possible uni-
fication with the first rule (the left branch). One must also consider the third rule
if x1 is such that x1 6= a (second branch). Stop is applied on a and b as previously.

Example 7.7. Let R be the rewrite system cited in the introduction, built on
F = {c : 2, f : 1, b : 0} :

c(x, c(y, z)) → b
f(x) → c(x, f(s(x)))

30 ·

Applying the inference rules on f(x1), we get :

f(x1)
A = ⊤, C = ⊤

Narrowσ=Id

��

c(x1, f(s(x1)))
A = ⊤, C = ⊤

Narrowσ=Id

��

c(x′
1, c(s(x1), f(s(s(x1)))))

A = (c(x1, f(s(x1))) c(x′
1, f(s(x1))))

C = ⊤

Narrowσ=Id

��

b
A = (c(x1, f(s(x1))) c(x′

1, f(s(x1))))
C = ⊤

Stop

��

∅
A = (c(x1, f(s(x1))) c(x′

1, f(s(x1))))
C = ⊤

Applying the inference rules on c(x1, x2), we get :

c(x1, x2)
A = ⊤, C = ⊤

Narrowσ=(x′

2=c(x3,x4))
��

b
A = (c(x1, x2) c(x′

1, x′
2))

∧ x′
2 = c(x3, x4))

C = ⊤

Stop

��

∅
A = (c(x1, x2) c(x′

1, x′
2))

∧ x′
2 = c(x3, x4))

C = ⊤

8. LOCAL STRATEGIES ON OPERATORS

We now address the termination problem for rewriting with local strategies on
operators.

8.1 Abstraction and narrowing

A subtle point related to local strategies is that some subterms may never be
rewritten according to the LS -strategy. Identifying reducible subterms according

· 31

to the LS -strategy is thus an important point, and the notion of LS -position is
introduced to denote possible reducible positions of any instantiation of t, with
respect to the LS -strategy.

Definition 8.1. A position p of a term t ∈ T (F ,X) is an LS -position in t if the
LS -strategy allows rewriting t at position p, or if the LS -strategy allows rewriting
any ground instance of t at position p or at a suffix position of p.

This notion enables to identify which variables may be replaced by abstraction
variables. The information that variables are abstraction variables can be very
important to conclude the proofs here: if the current term is an abstraction variable,
its strategy is set to the empty list [] in the Narrow step, and then the Stop step
applies. This information can be easily deduced when new variables are introduced:
the abstracting process directly introduces abstraction variables, by definition. But
the resulting term may still have variables of X since the abstracted subterms of a
term may not cover all variables of the term.

Moreover, narrowing is performed on terms of T (F ,X ∪ XA). Indeed, there is
no variable renaming before the narrowing steps, that could transform all variables
into abstraction variables. In addition, even if the variables of a narrowed term are
all in XA, the range of the narrowing substitution can introduce variables of X ,
according to the LS -strategies, if these variables do not appear at LS -positions.

However some variable occurrences can be particularized into variables of XA in
the narrowing process: the narrowing substitution σ, whose range only contains
new variables of X , can be transformed into a new substitution σA by replacing
some of these variables by abstraction variables. Let us consider an equality of
the form X = u, introduced by the narrowing substitution σ, where X ∈ XA, and
u ∈ T (F ,X). As X is an abstraction variable, every ground instance of u must
be in LS -normal form. So the variables in u that occur at an LS -position can be
replaced by abstraction variables. Let now µ be the substitution (xi = Xi), for all
xi ∈ V ar(u) such that X = u is an equality of σ with X ∈ XA, u ∈ T (F ,X ∪XA),
and xi occurs at an LS -position in u. Then σA = µσ.

Combining abstraction and narrowing is achieved here in the following way. Ab-
straction is tried on the immediate subterms of the current term. If the abstraction
is possible, then a narrowing step is applied, only at the top position, which limits
the number of narrowing steps, more complicated here than for the other strategies,
since, as we will see later, they involve complementary branches.

If Abstract cannot be applied at all LS-positions of the term, the simulation of
LS -rewriting by abstraction steps is blocked, so the proof process is stopped, and
nothing can be concluded about termination.

8.2 The termination proof procedure for local strategies

The inference rules Abstract, Narrow and Stop respectively instantiate the proof
steps abstract, narrow, and stop. They work in the following way on a node
({t[i1,...,ip]}, A, C), where top(t) = f and LS (f) = [i1, . . . , ip].

—The rule Abstract can apply:
—when there exists k ∈ [2..p], ij 6= 0 for 1 ≤ j ≤ k − 1 and ik = 0. The term t

is abstracted at positions ij 6= 0 for 1 ≤ j < k if C ∧ (tref > t|ij
, 1 ≤ j < k)

32 ·

is satisfiable. Indeed, by induction hypothesis, all ground instances of t|ij
, 1 ≤

j < k, LS -terminate. We can instead have TERMIN (LS , t |ij) for some of the
previous t|ij

. The list of positions then becomes [0, ik+1, . . . , ip].

—when there is no position 0 in the strategy of the current term, and the subterms
can be abstracted as previously. Any ground instance of the term obtained
after abstraction is irreducible, by definition of the LS -strategy, which ends
the proof on the current derivation chain. The set containing the current term
is then replaced by the empty set.

—when i1 = 0. The rule applies but does not change the node. This is the
case where the local strategy of the current term expresses that it has to be
narrowed at the top, so there is no abstraction here, and the Narrow rule is
tried just after. Note that instead of applying Abstract without effect, we
could have suppressed this case and use here a “try-skip” strategy to enable
the application of Narrow. But this would be incompatible with the other
failure cases of Abstract, needing a “try-stop”.

—The rule Narrow works as follows:

—if the current term t is narrowable at position 0, t is narrowed in all pos-
sible ways in one step, with all possible rewrite rules of the rewrite system
R, and all possible substitutions σi, into ui, i ∈ [1..l]. Then from the node

({t[0,i1,...,ip]}, A, C) we generate the nodes ({u
LS(top(ui))
i }, A ∧ σi, C), i ∈ [1..l],

where the σi are all most general unifiers allowing narrowing of t into terms
ui, such that A∧ σi is satisfiable. This narrowing step means that σ1t, . . . , σlt
are all most general instances of t that are reducible at the top position. As
a consequence, if Φ = σ1 ∧ . . . ∧ σl is satisfiable, for each instantiation µ sat-
isfying Φ, µt is not reducible at the top position. Then, as these µt have to
be reduced at positions [i1, . . . , ip], we also generate the complementary node

({t[i1,...,ip]}, A ∧
∧l

i=1 σi, C).
Let us also notice that if ui is a variable x ∈ X , we cannot conclude anything
about termination of ground instances of x. Setting LS (x) to [0] or [] would
wrongly lead to conclude, with the rule Narrow, that ground instances of x
are terminating. So we force the proof process to stop in setting LS (x) to a
particular symbol ♯. However, if ui = X ∈ XA, LS (X) is set to [], which is
coherent with the fact that any ground instance of X is in LS -normal form.

—if t is not narrowable at position 0 or is narrowable with a substitution that
is not compatible with the current constraint formula A, then no narrowing
is applied and the current term is evaluated at positions following the top
position in the strategy. The list of positions then becomes [i1, . . . , ip].

—We can also check for the current term t whether C ∧ tref > t is satisfiable, or
whether we have TERMIN (LS , t). Then, by induction hypothesis, any ground
instance of t terminates for the LS -strategy, which ends the proof on the current
derivation chain. The Stop rule then replaces the set containing the current
term by the empty set. It also allows to stop the inference process when the list
of positions is empty.

The set of inference rules is given in Table VI. In the conditions of these rules, the
satisfiability of A is checked. Working with the unsatisfiability of A would be more

· 33

Table VI. Inference rules for tref LS -termination

Abstract:
{t[i1,...,ip]}, A, C

{uS}, A ∧
∧

j∈POS

(t|j↓ = Xj), C ∧
∧

j∈POS

HC(t|j)

where t is abstracted into u at the positions j ∈ POS

if A ∧
∧

j∈POS

(t|j↓ = Xj), C ∧
∧

j∈POS

HC(t|j) are satisfiable and

POS = {i1, . . . , ik−1}, S = [0, ik+1, . . . , ip] if ∃k ∈ [2..n] : i1, . . . , ik−1 6= 0

and ik = 0

POS = {i1, . . . , ip}, S = [] if i1, . . . , ip 6= 0 or [i1, . . . , ip] = []

POS = ∅, S = [i1, . . . , ip] if i1 = 0

Narrow:
{t[0,i1,...,ip]}, A, C

{uS}, A′, C

where u = ui, S = LS(top(ui)), A
′ = A ∧ σi if t ❀

ǫ,σi

R ui and A ∧ σi is satisfiable

or uS = t[i1,...,ip], A′ = A ∧ (
l

∧

i=1

σi), and σi, i ∈ [1..l] are all nar. subst. as above

or uS = t[i1,...,ip], A′ = A

if t is not narrowable at the top position

or ∀σ nar. subst. of t at the top position, A ∧ σ is not satisfiable

Stop:
{t[i1,...,ip]}, A, C

∅, A ∧ HA(t), C ∧ HC(t)

if A ∧ HA(t), C ∧ HC(t) are satisfiable

and HA(t) =

⊤ if [i1, . . . , ip] = []
or any ground instance of t
is in normal form

t↓ = X otherwise.

HC(t) =

⊤ if [i1, . . . , ip] = []
or TERMIN (LS , t)

tref > t otherwise.

technical to handle here than in the innermost case, because of the complementary
branches generated by the Narrow rule.

The strategy for applying these rules is:

34 ·

repeat ∗ (try−stop(Abstract), try−stop(Narrow), try−skip(Stop)).

There are here three cases for the behavior of the proof process. It can diverge
as previously, or stop and the leaves have then to be considered. The good case is
when the process stops and all leaves of all proof trees are of the form (∅, A, C):
the termination w.r.t the given LS -strategy is established.

8.3 Examples

Example 8.2. Let us recall the rules of the example given in the introduction.

f(i(x)) → ite(zero(x), g(x), f(h(x)))
zero(0) → true
zero(s(x)) → false
ite(true, x, y) → x
ite(false, x, y) → y
h(0) → i(0)
h(x) → s(i(x))

The LS -strategy is the following :

—LS(ite) = [1; 0],

—LS(f) = LS(zero) = LS(h) = [1; 0] and

—LS(g) = LS(i) = [1].

Let us prove the termination of this system on the signature F = {f : 1, zero :
1, ite : 3, h : 1, s : 1, i : 1, g : 1, 0 : 0}.

Applying the inference rules on f(x1), we get :

f(x1)[1,0]

A = ⊤, C = ⊤

Abstract
��

f(X1)[0]

A = (x1↓ = X1)
C = (f(x1) > x1)

Narrow σA=(X1=i(X2))

{{xx
xx

xx
xx

x
Narrow

##
FF

FF
FF

FF
F

ite(zero(X2), g(X2), f(h(X2)))[1,0]

A = (x1↓ = i(X2))
C = (f(x1) > x1)

Abstract
��

f(X1)[]

A = (x1↓ = X1) ∧ (X1 6= i(X2))
C = (f(x1) > x1)

Stop

��

ite(X3, g(X2), f(h(X2)))[0]

A = (x1↓ = i(X2) ∧ zero(X2)↓ = X3)
C = (f(x1) > x1)

∅
A = (x1↓ = X1) ∧ (X1 6= i(X2))

C = (f(x1) > x1)

Abstract applies on f(x1), since C is satisfiable by any ordering having the
subterm property. A is satisfiable with any instantiation θ such that θx1 = θX1 = 0.

· 35

Narrow expresses the fact that σf(X1) is reducible if σ is such that σX1 = i(X2),
and that the other instances (σ′f(X1) with σ′X1 6= i(X2)) cannot be reduced.

The renaming of x2 into X2 in σA comes from the fact that x2 occurs in i(x2) at
an LS -position in σ = (X1 = i(x2)).

Then, the constraint formula A on the left branch is satisfiable by any instanti-
ation θ such that θX2 = 0 and θx1 = i(0). The constraint formula on the comple-
mentary branch is satisfied by any instantiation θ such that θx1 = θX1 = θX2 = 0.

Abstract applies here on the first branch, since zero(X2) can be abstracted,
thanks to a version of Proposition 6.3 adapted to local strategies [Fissore et al. 2001].
Indeed, U(zero(X2)) = {zero(0) → true, zero(s(x)) → false}, and both rules can
be oriented by a LPO ≻ with the precedence zero ≻F true and zero ≻F false.
Then we have TERMIN (LS, zero(X2)).

The next constraint formula A is satisfiable with any instantiation θ such that
θX2 = 0, θX3 = true and θx1 = i(0).

Then, Narrow applies on the left branch:

ite(X3, g(X2), f(h(X2)))[0]

A = (x1↓ = i(X2) ∧ zero(X2)↓ = X3)
C = (f(x1) > x1)

Narrow

σA=(X3=true)
wwooooooooooooo

σA=(X3=false)

��

Complementary state

$$
IIIIIIIIIIIIIIIII

g(X2)[1]

A = (x1↓ = i(X2)∧
zero(X2)↓ = true)
C = (f(x1) > x1)

Abstract

��

f(h(X2))[1,0]

A = (x1↓ = i(X2)∧
zero(X2)↓ = false)
C = (f(x1) > x1)

Abstract
��

•

g(X2)[]

A = (x1↓ = i(X2)∧
zero(X2)↓ = true)
C = (f(x1) > x1)

Stop

��

f(X4)[0]

A = (x1↓ = i(X2)∧
zero(X2)↓ = false ∧ h(X2)↓ = X4)

C = (f(x1) > x1)

Narrow
��

∅
A = (x1↓ = i(X2)∧
zero(X2)↓ = true)
C = (f(x1) > x1)

f(X4)[]

A = (x1↓ = i(X2)∧
zero(X2)↓ = false ∧ h(X2)↓ = X4)

C = (f(x1) > x1)

Stop

��

∅
A = (x1↓ = i(X2)∧

zero(X2)↓ = false ∧ h(X2)↓ = X4)
C = (f(x1) > x1)

The first constraint formula A is satisfiable by any instantiation θ such that
θX2 = 0 and θx1 = i(0). The second one is satisfiable by any instantiation θ such
that θX2 = s(0) and θx1 = i(s(0)). The third one (see below) is satisfiable by any
instantiation θ such that θX3 = zero(i(0)), θX2 = i(0) and θx1 = i(i(0)).

36 ·

Abstract trivially applies on g(X2): since X2 is an abstraction variable, there
is no need to abstract it.

The second Abstract applies on f(h(X2)), thanks to the previous adaptation
of Proposition 6.3 to local strategies. Indeed, U(h(X2)) = {h(0) → i(0), h(x) →
s(i(x))}, and both rules can be oriented by an LPO with the precedence h ≻F i
and h ≻F s. Then we have TERMIN (LS , h(X2)).

The constraint formula associated to f(X4)
[0] is satisfiable by any instantiation

θ such that θX4 = s(i(s(0))), θX2 = s(0) and θx1 = i(s(0)).
Then, f(X4)

[0] narrows into f(X4)
[]: we are here in the last application case of

the rule Narrow. Indeed, there is no narrowing possibility satisfying A. The only
possible narrowing would use the first rewriting rule and the narrowing substitution
σA = (X4 = i(X5)).

But then A ∧ σA would lead to (x1↓ = i(X2) ∧ zero(X2)↓ = false ∧ h(X2)↓ =
i(X5)). For any θ satisfying A ∧ σA, θ must be such that θh(X2)↓ = h(θX2↓)↓ =
i(θX5). If θX2↓ 6= 0, then, according to R, h(θX2↓) → s(i(θX2↓)), where s is a
constructor. Then we cannot have h(θX2↓)↓ = i(θX5), so θ must be such that
θX2↓ = 0. But then θzero(X2)↓ = true, which makes A ∧ σA unsatisfied.

For the third branch, we have:

•
ite(X3, g(X2), f(h(X2)))[]

A = (x1↓ = i(X2)∧
zero(X2)↓ = X3

∧X3 6= true ∧ X3 6= false)
C = (f(x1) > x1)

Stop

��

∅
A = (x1↓ = i(X2)∧
zero(X2)↓ = X3∧

X3 6= true ∧ X3 6= false)
C = (f(x1) > x1)

For the defined symbols f, zero, h, the inference rules apply successfully with a
common scheme: with an application of Abstract, Narrow, Abstract with no
abstraction position, Narrow and Stop. Therefore R is LS -terminating.

Let us now give an example of a system that cannot be expressed in the context-
sensitive formalism which, for each operator, does not consider a list of specified
positions but a set.

Example 8.3. Let R be the following rewrite system

f(a, g(x)) → f(a, h(x))
h(x) → g(x)

with the LS -strategy : LS (f) = [0; 1; 2], LS (h) = [0] and LS (g) = [1].
The context-sensitive strategy would allow to permute the reducible arguments

of f , so that we could also evaluate terms with LS (f) = [1; 2; 0]. We let the reader
check that, with this strategy, R does not terminate.

· 37

Applying the rules on f(x1, x2), we get:

f(x1, x2)[0,1,2]

A = ⊤, C = ⊤

Narrow

σ=(x1=a∧x2=g(x3))

{{vvvvvvvvv Narrow

##
HHHHHHHHH

f(a, h(x3))[0,1,2]

A = (x1 = a ∧ x2 = g(x3))
C = ⊤

Narrow

��

f(x1, x2)[1,2]

A = (x1 6= a ∨ x2 6= g(x3))
C = ⊤

Abstract
��

f(a, h(x3))[1,2]

A = (x1 = a ∧ x2 = g(x3))
C = ⊤

Abstract

��

f(X1, X2)[]

A = (x1↓ = X1 ∧ x2↓ = X2

x1 6= a ∧ x2 6= g(x3))
C = (f(x1, x2) > x1, x2)

Stop

��

f(a, X3)[]

A = (x1 = a ∧ x2 = g(x3)∧
h(x3)↓ = X3)

C = (f(x1, x2) > h(x3))

Stop

��

∅
A = (x1↓ = X1 ∧ x2↓ = X2

x1 6= a ∧ x2 6= g(x3))
C = (f(x1, x2) > x1, x2)

∅
A = (x1 = a ∧ x2 = g(x3)∧

h(x3)↓ = X3)
C = (f(x1, x2) > h(x3))

Applying the rules on h(x1), we get:

h(x1)[0]

A = ⊤, C = ⊤

Narrowσ=Id

��

g(x1)[1]

A = ⊤, C = ⊤

Abstract
��

g(X1)[]

A = (x1↓ = X1), C = (h(x1) > x1)

Stop

��

∅
A = (x1↓ = X1), C = (h(x1) > x1)

38 ·

9. IMPLEMENTATION, DISCUSSION, AND COMPARISON WITH RELATED WORKS

Our three original procedures for proving termination of rewriting under the inner-
most, outermost and local strategies have been implemented in a system named
CARIBOO [Fissore et al. 2002a; Fissore 2003]. Although the unified proof frame-
work we propose in this paper is different from the three original procedures, the
experiments on our inductive technique allowed by this first implementation [Fis-
sore et al. 2005] have been helpful and are interesting to mention, in particular from
the point of view of the generated constraints.

CARIBOO consists of two main parts :

(1) The proof procedures, written in ELAN, which are direct translations of the
inference rules. They generate the proof trees, dealing with the ordering and
the abstraction constraints. It is worth emphasizing the reflexive aspect of these
implementations, developed in a rule-based language, to allow termination of
rule-based programs.

(2) A graphical user interface (GUI), written in Java. It provides an edition tool to
define specifications of rewrite systems which are then transformed into ELAN
specifications used by the proof procedure. It also displays the detailed results
of the proof process : which defined symbols have already been treated and,
for each of them, the proof tree together with the detail of each node. Trace
files can be generated in different formats (HTML, ps, pdf...)

To deal with the generated constraints, the proof processes of CARIBOO can
use integrated features, like the computation of usable rules, the use of the subterm
ordering or the Lexicographic Path ordering (LPO) to satisfy ordering constraints,
and the test of sufficient conditions of Section 4.4 for detecting the unsatisfiability
of A.

CARIBOO can also delegate features, as ordering constraint solving, the orien-
tation of the usable rules when the LPO fails, the satisfiability test of A or the
termination proof of a term by any other mean than those proposed in Section 4.5,
which are implemented in CARIBOO. For the first two cases, delegation can be
either proposed to the user, or automatically ensured by the ordering constraint
solver Cime.

CARIBOO provides several automation modes for dealing with constraints. Deal-
ing with the unsatisfiability of A and using the sufficient conditions given in Sec-
tion 4.4 allows a complete automatic mode for the innermost and outermost strate-
gies.

Experiments have been made with the CARIBOO implementation [Fissore et al.
2005] on Version 2.0 of the Termination Problem Data Base (TPDB) for termination
tools 2. The TPDB base contains many examples that are universally terminating
(i.e. for standard rewriting). We did not focus on them since we were mostly inter-
ested in rewriting under specific strategies, but we used them to test our innermost
proof process with the automatic mode.

From these experiments, a few remarks can be drawn to enlight the specificities
of our approach and comparisons with other works.

2Experiments have been made in the beginning of 2006 with the data base available at that time
at http://www.lri.fr/∼marche/tpdb/

· 39

Ordering constraints. It is interesting to note that thanks to the power of in-
duction, and to the help of usable rules, the generated ordering constraints are
often simple, and easily satisfied by the subterm ordering or an LPO. This is the
case for 189 of the 229 examples of the data base for standard termination suc-
cessfully treated by CARIBOO. For the 40 other successful ones, a polynomial
ordering computed by Cime solves them. The failure cases are due to generated or-
dering constraints whose resolution requires to compare abstraction variables with
standard variables, or which cannot be satisfied by simplification orderings, due
to constraints uncompatible with term embedding. In the first case, additional
knowledge on normal forms should solve the problem. For the second case, other
orderings could be tried.

The automatic mode has been used on the innermost examples of the data base:
27 among 47 have run sucessfully. For all of them, except one requiring Cime,
ordering constraints were solved by the internal orderings of CARIBOO.

The outermost examples in the TPDB data base are those we gave when par-
ticipating to the second termination tool competition [Fissore et al. 2003a]. For
this strategy, in our initial procedure, the ordering constraints were less important
to control the proof process, because they were only used at terminal steps: the
abstract step was stopping the process on the current branch of the proof tree.

Abstraction constraints. Since such constraints are rather specific to our ap-
proach, there is no existing solver. In full generality, solving such constraints relies
on the characterisation of normal forms [Genet 1998; Comon et al. 1997]. In CARI-
BOO, ad-hoc sufficient conditions for both satisfiability and unsatisfiablity have
been implemented. The first ones rely on a syntactic analysis of the signature and
the rewrite rules. The second ones are among the integrated features mentioned
above.

When the sufficient conditions do not apply, the abstraction constraints are sub-
mitted to the user. In the satisfiability mode, a positive answer on satisfiability
is required to ensure the next step of the proof process, otherwise it stops. The
unsatisfiability test, however, is not blocking: if it succeeds, it enables the process
to end. Otherwise, the process goes on and remains sound.

Completeness of definitions. With respect to automation, an additional advan-
tage can be taken from the sufficient completeness property when it is satisfied by
the specification. When the rewrite systems are sufficiently complete, every ground
term has a constructor normal form, which is often easy to describe and provides
intuition for solving abstraction constraints. Moreover, the assumption that every
constructor term is minimal for the induction ordering is easy to ensure with a
precedence where constructors are minimal, and this yields a straightforward way
to solve ordering constraints [Gnaedig and Kirchner 2006]. Several examples of the
TPDB data base have been enriched to satisfy sufficient completeness, then leading
to a successful proof.

Local versus context-sensitive strategies. There is no example in the TPDB data
base for local strategies, but we have considered those for context-sensitive strate-
gies, which are more general. We have realized tests in replacing every context-
sensitive strategy (n1 n2 . . . np) by the more specific local strategy [0 n1 n2 . . . np].
This is of course more restrictive, since this encodes only one possible behaviour

40 ·

of the context-sensitive rewriting strategy. But a local strategy, where the order
of reduced positions is relevant, can enable termination while the context sensitive
strategy diverges.

On the 37 examples of the data base, 30 were successfully proved terminating
under local strategies, among which 7 in a completely automatic way. Moreover,
the user interactions were only to authorize skipping a stop rule at some steps of
the proof (17 examples), or to solve simple ordering constraints (where an RPO was
sufficient) to apply a stop rule (6 examples). All these cases are easily automatable.

Comparison with dependency pairs. Designed from 1996 by T. Arts and J.Giesl,
the dependency pair method has proved its efficiency and automatic power for
the universal and innermost termination problems. The comparison between this
method and our approach is not easy to do. Indeed, several basic ingredients are
shared: narrowing, ordering constraints, usable rules are present in both contexts.
But while the dependency pairs method is initially based on an analysis of the
rules syntax to detect forward closures, our approach was guided by the idea to
schematize derivation trees, which allows us to abstract the reduction relation.
Except for the innermost case, handling specific rewriting strategies seems more
difficult with the dependency pair approach.

Narrowing has been used as the basis of our method, since 1999 [Gnaedig et al.
1999], to schematize rewriting steps of terms, following their possible ground in-
stances. In the dependency pair approach instead [Arts and Giesl 1997], narrowing
has been introduced to provide a sufficient condition to detect the dependencies
between pairs.

Usable rules have been introduced in the dependency pair approach [Arts and
Giesl 1997] for innermost termination. We then have adapted the notion to local
strategies [Fissore et al. 2001], and to the outermost strategy [Fissore et al. 2002b],
to enrich our inductive proof principle.

Characterization of orderings for proving innermost termination. In [Fernández
et al. 2005], the relationship between innermost termination and well-founded order-
ings is studied. It is shown that orderings suitable for proving innermost termination
have to be at least monotonic after each maximal parallel innermost rewriting step.
A similar structural requirement can be made on the term ordering needed for our
inductive approach: the abstraction process requires in general for the induction
ordering to verify f(x1, . . . , xm) ≻ xi, for some of the xi ∈ [1..m].

General power of the method. As argued above, from a theoretical point of view,
our approach has great assets to handle proofs of different rewriting properties:
induction is a universal proof mechanism, and the simulation of rewriting by nar-
rowing and abstraction is fine enough to capture refinements of the rewriting rela-
tion, like strategies. We could also consider extensions of rewriting like conditional,
equational, typed or constrained rewriting, provided the corresponding narrowing
relation can be defined. We have shown in [Gnaedig and Kirchner 2006; 2007;
Gnaedig 2007] how the method applies to properties other than termination. This
is a clear advantage with respect to other existing approaches dedicated to termi-
nation.

Our general termination result is complete: it gives a necessary and sufficient
condition of termination under the strategy S on ground terms. The undecidability

· 41

of termination is reflected in the undecidability of finiteness of the proof trees, in
two ways: first the TERMIN predicate is undecidable in general, but it can be
checked on specific terms introduced along the proof and under sufficient conditions.
Second, satisfiablity (or unsatisfiability) of ordering and abstraction constraints is
undecidable and here also we have given several sufficient conditions, in the general
case as well as in the specific case of each considered strategy.

All complete results about termination lead anyway to deal with sufficient con-
ditions in practice. Comparing different approaches then amounts at comparing
these sufficient conditions, which is very hard to do. They can always be improved,
either by finding new sufficient conditions, or by improving the efficiency of their
implementation, and this comparison goes beyond the limits of this paper.

In the CARIBOO prototype, the implementation effort was put in priority on
experiments and validation of our approach to handle the termination problem
for different strategies. The framework proposed here should now lead to a more
concise and structurated code, with shared procedures for the different strategies.
We also expect to improve automation and efficiency.

10. CONCLUSION

The termination proof method presented in this paper is based on the simple ideas
of schematizing and observing the derivation trees of ground terms, supposing that
terms smaller that the starting terms for an induction ordering are terminating.

By using the induction ordering, we skip normalizing subderivations and we stop
derivations as soon as termination is ensured by induction.

The framework we have given unifies the three different procedures we had pre-
viously proposed for proving termination of rewriting respectively under the in-
nermost, the outermost and the local strategies. Analyzing and extracting their
common features, and identifying the specific ones led us to a more general and
simple process expressed with three inference steps. Each of them enlights one
basic concept of the proposed method. Induction on a noetherian ordering is used
to stop the process. Abstraction also takes advantage of induction for dealing in
one step with many rewriting steps leading to a specific normal form. Narrowing
represents all potential applications of rewrite rules at a given position. As a con-
sequence of this unified presentation, proofs of the results have also been factorized
and simplified.

The current work also makes clear that the specificities related to each strategy
are localized in the control, either in constraints or conditions of the inference rules,
or in the application strategies of these inference steps.

Another characteristic of this work is that constraints are heavily used on one
hand to gather conditions that the induction ordering must satisfy, on the other
hand to represent the sets of ground instances of terms considered in the proof. The
power of deduction with constraints [Kirchner et al. 1990] is once more illustrated
in this proof process where the construction of the ordering for instance may be
delayed until the end of the process.

The techniques presented here look promising in different directions. They al-
ready have been applied successfully to weak termination proofs in [Fissore et al.
2004; Gnaedig and Kirchner 2007], where the analysis of proof trees provides a

42 ·

constructive algorithm to reach a normal form. Moreover, since the proof process
can be expressed with respect to any rewriting relation, it can easily be extended
to prove ground termination of conditional, equational and typed rewriting, with
an adequate definition of narrowing.

The approach can also be applied to other properties than termination. For in-
stance, it has been recently adapted to the sufficient completeness problem [Gnaedig
and Kirchner 2006] and to termination of probabilistic rewriting [Gnaedig 2007].
We expect it to be interesting too to tackle other properties like ground confluence,
or other reduction frameworks like transition systems.

ACKNOWLEDGMENTS

We sincerely thank Olivier Fissore for fruitful exchanges on previous works on the
topic, the Protheo group for providing support to our ideas, the referees for their
pertinent remarks and suggestions and Nachum Dershowitz for his interest and
friendly advices.

REFERENCES

Alarcón, B., Gutiérrez, R., and Lucas, S. 2006. Context-sensitive dependency pairs. In
Proceedings of the 26th International Conference on Foundations of Software Technology and
Theoretical Computer Science. Lecture Notes in Computer Science, vol. 4337. Springer, 297–
308.

Alarcón, B. and Lucas, S. 2007. Termination of innermost context-sensitive rewriting using de-
pendency pairs. In Proceedings of the 6th International Symposium on Frontiers of Combining
Systems. lnai. Springer-Verlag.

Alpuente, M., Escobar, S., and Lucas, S. 2004. Correct and complete (positive) strategy

annotations for OBJ. In Proceedings of the 5th International Workshop on Rewriting Logic
and its Applications. Elecronic Notes In Theoretical Computer Science, vol. 71. esp, 70–89.

Arts, T. and Giesl, J. 1997. Proving innermost normalisation automatically. In Proceedings
8th Conference on Rewriting Techniques and Applications, Sitges (Spain). Lecture Notes in
Computer Science, vol. 1232. Springer-Verlag, 157–171.

Arts, T. and Giesl, J. 2000. Termination of term rewriting using dependency pairs. Theor.
Comput. Sci. 236, 133–178.

Baader, F. and Nipkow, T. 1998. Term rewriting and all that. Cambridge University Press,
New York, NY, USA.

Barendsen, E., Bethke, I., Heering, J., Kennaway, R., Klint, P., van Oostrom, V., van
Raamsdonk, F., de Vries, F.-J., and Zantema, H. 2003. Term Rewriting Systems. Cambridge
Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press.

Ben Cherifa, A. and Lescanne, P. 1987. Termination of rewriting systems by polynomial
interpretations and its implementation. Sci. Comput. Program. 9, 2 (Oct.), 137–160.

Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E., and Ringeissen, C. 1998. An
Overview of ELAN. In Proceedings of the 2nd International Workshop on Rewriting Logic and
its Applications, C. Kirchner and H. Kirchner, Eds. Electronic Notes in Theoretical Computer
Science. Elsevier Science Publishers B. V. (North-Holland), Pont-à-Mousson (France).

Borralleras, C., Ferreira, M., and Rubio, A. 2000. Complete monotonic semantic path or-
derings. In Proceedings of the 17th International Conference on Automated Deduction. Lecture
Notes in Computer Science, vol. 1831. Springer-Verlag, Pittsburgh, PA, USA, 346–364.

Brand, M., Deursen, A., Heering, J., Jong, H., Jonge, M., Kuipers, T., Klint, P., Moo-
nen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, E., and Visser, J. 2001. The
ASF+SDF Meta-Environment: a Component-Based Language Development Environment. In
Compiler Construction (CC ’01), R. Wilhelm, Ed. Lecture Notes in Computer Science, vol.
2027. Springer, 365–370.

· 43

Cirstea, H. and Kirchner, C. 2001. The rewriting calculus — Part I and II. Logic Journal of

the Interest Group in Pure and Applied Logics 9, 427–498.

Cirstea, H., Kirchner, C., Liquori, L., and Wack, B. 2003. Rewrite strategies in the rewriting
calculus. In Electronic Notes in Theoretical Computer Science, B. Gramlich and S. Lucas, Eds.
Vol. 86. Elsevier.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., and Tal-
cott, C. 2003. The Maude 2.0 system. In Proceedings of the 14th International Conference
on Rewriting Techniques and Applications, R. Nieuwenhuis, Ed. Lecture Notes in Computer
Science, vol. 2706. Springer, 76–87.

Comon, H. 1991. Disunification: a survey. In Computational Logic. Essays in honor of Alan

Robinson, J.-L. Lassez and G. Plotkin, Eds. The MIT press, Cambridge (MA, USA), Chapter 9,
322–359.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., and Tommasi,
M. 1997. Tree automata techniques and applications. Release October, 1rst 2002.

Dershowitz, N. 1982a. Orderings for term rewriting systems. Theor. Comput. Sci. 17, 279–301.

Dershowitz, N. 1982b. Orderings for term-rewriting systems. Theor. Comput. Sci. 17, 279–301.

Dershowitz, N. and Hoot, C. 1995. Natural termination. Theor. Comput. Sci. 142(2), 179–207.

Dershowitz, N. and Jouannaud, J.-P. 1990. Handbook of Theoretical Computer Science. Vol. B.

Elsevier Science Publishers B. V. (North-Holland), Chapter 6: Rewrite Systems, 244–320. Also
as: Research report 478, LRI.

Dershowitz, N. and Plaisted, D. 2001. Rewriting. In Handbook of Automated Reasoning,
A. Robinson and A. Voronkov, Eds. Vol. I. Elsevier Science, Chapter 9, 535–610.

Eker, S. 1998. Term rewriting with operator evaluation strategies. In Proceedings of the 2nd

International Workshop on Rewriting Logic and its Applications, C. Kirchner and H. Kirchner,
Eds. Pont-à-Mousson (France).

Fernández, M.-L., Godoy, G., and Rubio, A. 2005. Orderings for innermost termination. In
Proceedings of the 16th International Conference on Rewriting Techniques and Applications,

J. Giesl, Ed. Lecture Notes in Computer Science, vol. 3467. Springer-Verlag, Nara, Japan,
17–31.

Fissore, O. 2003. Terminaison de la réécriture sous stratégies. Ph.D. thesis, Université Henri
Poincaré-Nancy I, France.

Fissore, O., Gnaedig, I., and Kirchner, H. 2001. Termination of rewriting with local strategies.

In Selected papers of the 4th International Workshop on Strategies in Automated Deduction,
M. P. Bonacina and B. Gramlich, Eds. Electronic Notes in Theoretical Computer Science,
vol. 58. Elsevier Science Publishers B. V. (North-Holland).

Fissore, O., Gnaedig, I., and Kirchner, H. 2002a. CARIBOO : An induction based proof
tool for termination with strategies. In Proceedings of the 4th International Conference on
Principles and Practice of Declarative Programming. ACM Press, Pittsburgh, USA, 62–73.

Fissore, O., Gnaedig, I., and Kirchner, H. 2002b. Outermost ground termination. In Proceed-
ings of the 4th International Workshop on Rewriting Logic and Its Applications. Electronic
Notes in Theoretical Computer Science, vol. 71. Elsevier Science Publishers B. V. (North-
Holland), Pisa, Italy.

Fissore, O., Gnaedig, I., and Kirchner, H. 2002c. Outermost ground termination - Extended
version. Tech. Rep. A02-R-493, LORIA, Nancy (France). December.

Fissore, O., Gnaedig, I., and Kirchner, H. 2003a. CARIBOO: A multi-strategy termination
proof tool based on induction. In Proceedings of the 6th International Workshop on Termina-
tion 2003, A. Rubio, Ed. Valencia (Spain), 77–79.

Fissore, O., Gnaedig, I., and Kirchner, H. 2003b. Simplification and termination of strategies
in rule-based languages. In Proceedings of the 5th International Conference on Principles and
Practice of Declarative Programming. ACM Press, Uppsala, Sweden, 124–135.

Fissore, O., Gnaedig, I., and Kirchner, H. 2004. A proof of weak termination providing the
right way to terminate. In Proceedings of the 1st International Colloquium on THEORETICAL
ASPECTS OF COMPUTING. Lecture Notes in Computer Science, vol. 3407. Springer-Verlag,
Guiyang, China, 356–371.

44 ·

Fissore, O., Gnaedig, I., Kirchner, H., and Moussa, L. 2005. Cariboo, a termination

proof tool for rewriting-based programming languages with strategies, Version 1.1. Free
GPL Licence, APP registration IDDN.FR.001.170013.001.S.P.2005.000.10600. Available at

http://cariboo.loria.fr/.

Futatsugi, K. and Nakagawa, A. 1997. An overview of the Cafe specification environment – an
algebraic approach for creating, verifying, and maintaining formal specifications over networks.
In Proceedings of the 1st IEEE Int. Conference on Formal Engineering Methods.

Genet, T. 1998. Decidable approximations of sets of descendants and sets of normal forms. In
Proceedings of the 9th Conference on Rewriting Techniques and Applications, Tsukuba (Japan).
Lecture Notes in Computer Science, vol. 1379. Springer-Verlag, 151–165.

Giesl, J. and Middeldorp, A. 1999. Transforming Context-Sensitive Rewrite Systems. In Pro-
ceedings of the 10th International Conference on Rewriting Techniques and Applications. Lec-
ture Notes in Computer Science, vol. 1631. Springer-Verlag, Trento (Italy), 271–285.

Giesl, J. and Middeldorp, A. 2003. Innermost termination of context-sensitive rewriting. In
Proceedings of the 6th International Conference on Developments in Language Theory (DLT
2002). Lecture Notes in Computer Science, vol. 2450. Springer-Verlag, Kyoto, Japan, 231–244.

Giesl, J., Swiderski, S., Schneider-Kamp, P., and Thiemann, R. 2006. Automated Termination
Analysis for Haskell: From term rewriting to programming languages. In Proceedings of the
17th International Conference on Rewriting Techniques and Applications. 297–312.

Giesl, J., Thiemann, R., and Schneider-Kamp, P. 2004. The dependency pair framework: Com-
bining techniques for automated termination proofs. In Proceedings of the 11th International

Conference on Logic for Programming, Artificial Intelligence and Reasoning. Lecture Notes in
Artificial Intelligence, vol. 3452. Springer, 301–331.

Giesl, J., Thiemann, R., Schneider-Kamp, P., and Falke, S. 2003. Improving dependency

pairs. In Proceedings of the 10th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning. Lecture Notes in Artificial Intelligence, vol. 2850. Springer-Verlag,
Almaty, Kazakhstan, 165–179.

Gnaedig, I. 2007. Induction for Positive Almost Sure Termination. In Proceedings of the 9th ACM-
SIGPLAN International Symposium on Principles and Practice of Declarative Programming.
ACM Press, Wroclaw, Poland, 167–177.

Gnaedig, I. and Kirchner, H. 2006. Computing Constructor Forms with Non Terminating
Rewrite Programs. In Proceedings of the 8th ACM-SIGPLAN International Symposium on
Principles and Practice of Declarative Programming. ACM Press, Venice, Italy, 121–132.

Gnaedig, I. and Kirchner, H. 2007. Narrowing, abstraction and constraints for proving prop-
erties of reduction relations. In Rewriting, Computation and Proof. Essays Dedicated to Jean-
Pierre Jouannaud on the Occasion of His 60th Birthday, H. Comon-Lundh, C. Kichner, and

H. Kirchner, Eds. Lecture Notes in Computer Science, vol. 4600. Springer-Verlag, 44–67.

Gnaedig, I., Kirchner, H., and Genet, T. 1999. Induction for Termination. Tech. Rep. 99.R.338,
LORIA, Nancy (France). December.

Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., and Jouannaud, J. 1992. Introducing

OBJ3. Tech. rep., Computer Science Laboratory, SRI International. Mar.

Goubault-Larreck, J. 2001. Well-founded recursive relations. In Proceedings of the 15th In-
ternational Workshop in Computer Science Logic (CSL’2001). Lecture Notes in Computer
Science, vol. 2142. Springer-Verlag, Paris.

Gramlich, B. 1995. Abstract relations between restricted termination and confluence properties

of rewrite systems. Fundamenta Informaticae 24, 3–23.

Gramlich, B. 1996. On proving termination by innermost termination. In Proceedings 7th
Conference on Rewriting Techniques and Applications, New Brunswick (New Jersey, USA),
H. Ganzinger, Ed. Lecture Notes in Computer Science, vol. 1103. Springer-Verlag, 93–107.

Kamin, S. and Lévy, J.-J. 1982. Attempts for generalizing the recursive path ordering. Inria,
Rocquencourt .

Kirchner, C. 2005. Strategic rewriting. Electr. Notes Theor. Comput. Sci. 124, 2, 3–9.

Kirchner, C., Kirchner, H., and Rusinowitch, M. 1990. Deduction with symbolic constraints.
Revue d’Intelligence Artificielle 4, 3, 9–52. Special issue on Automatic Deduction.

· 45

Krishna Rao, M. 2000. Some characteristics of strong normalization. Theor. Comput. Sci. 239,

141–164.

Kruskal, J. B. 1960. Well-quasi ordering, the tree theorem and Vazsonyi’s conjecture. Trans.
Amer. Math. Soc. 95, 210–225.

Lankford, D. S. 1979. On proving term rewriting systems are noetherian. Tech. rep., Louisiana

Tech. University, Mathematics Dept., Ruston LA.

Lucas, S. 1996. Termination of context-sensitive rewriting by rewriting. In Proceedings of the
23rd International Colloquium on Automata, Languages and Programming. Lecture Notes in

Computer Science, vol. 1099. Springer-Verlag, 122–133.

Lucas, S. 2001a. Termination of on-demand rewriting and termination of OBJ programs. In
Proceedings of the 3rd International ACM SIGPLAN Conference on Principles and Practice

of Declarative Programming, PPDP’01, H. Sondergaard, Ed. ACM Press, New York, Firenze,
Italy, 82–93.

Lucas, S. 2001b. Termination of rewriting with strategy annotations. In Proceedings of the 8th
International Conference on Logic for Programming, Artificial Intelligence and Reasoning,

LPAR’01, A. Voronkov and R. Nieuwenhuis, Eds. Lecture Notes in Artificial Intelligence, vol.
2250. Springer-Verlag, Berlin, La Habana, Cuba, 669–684.

Lucas, S. 2002. Context-sensitive rewriting strategies. Inf. Comput. 178, 1, 294–343.

Middeldorp, A. and Hamoen, E. 1994. Completeness results for basic narrowing. Applicable
Algebra in Engineering, Communication and Computation 5, 3 & 4, 213–253.

Moreau, P.-E., Ringeissen, C., and Vittek, M. 2003. A Pattern Matching Compiler for Multiple
Target Languages. In Proceedings of the 12th Conference on Compiler Construction, Warsaw
(Poland), G. Hedin, Ed. Lecture Notes in Computer Science, vol. 2622. Springer, 61–76.

Nakamura, M. and Ogata, K. 2000. The evaluation strategy for head normal form with and
without on-demand flags. In Proceedings of the 3rd International Workshop on Rewriting Logic
and its Applications, WRLA’2000, K. Futatsugi, Ed. Electronic Notes in Theoretical Computer
Science, Kanazawa City Cultural Halt, Kanazawa, Japan, 211–227.

Nguyen, Q.-H. 2001. Compact normalisation trace via lazy rewriting. In Proceedings of the 1st

International Workshop on Reduction Strategies in Rewriting and Programming (WRS 2001),
S. Lucas and B. Gramlich, Eds. Vol. 57. Elsevier Science Publishers B. V. (North-Holland).
Available at http://www.elsevier.com/locate/entcs/volume57.html.

Panitz, S. E. and Schmidt-Schauss, M. 1997. TEA: Automatically proving termination of
programs in a non-strict higher-order functional language. In Proceedings of Static Analysis
Symposium’97. Lecture Notes in Computer Science, vol. 1302. Springer-Verlag, 345–360.

Plaisted, D. 1978. Well-founded orderings for proving termination of systems of rewrite rules.
Tech. Rep. R-78-932, Department of Computer Science, Univesity of Illinois at Urbana Cham-
paign. July.

van Oostrom, V. and de Vrijer, R. 2003. Term Rewriting Systems. Cambridge Tracts in

Theoretical Computer Science, vol. 55. Cambridge University Press, Chapter 9. Strategies.

Visser, E. 2001. Stratego: A Language for Program Transformation based on Rewriting Strategies.
System Description for Stratego 0.5. In Proceedings of the 12th International Conference on

Rewriting Techniques and Applications, A. Middeldorp, Ed. Lecture Notes in Computer Science,
vol. 2051. Springer, 357–361.

Visser, E. 2004. Program transformation with Stratego/XT: Rules, strategies, tools, and systems
in StrategoXT-0.9. In Domain-Specific Program Generation, C. Lengauer et al., Eds. Lecture
Notes in Computer Science, vol. 3016. Spinger-Verlag, 216–238.

Zantema, H. 1995. Termination of term rewriting by semantic labelling. Fundamenta Informat-
icae 24, 89–105.

46 ·

APPENDIX

A. THE LIFTING LEMMA

The lifting lemma for standard narrowing [Middeldorp and Hamoen 1994] can be
locally adapted to S-rewriting (rewriting under the innermost, outermost or local
strategies) with non-normalized substitutions provided they fulfill some constraints
on the positions of rewriting. To do so, we need the following two propositions (the
first one is obvious).

Proposition A.1. Let t ∈ T (F ,X) and σ be a substitution of T (F ,X). Then

V ar(σt) = (V ar(t) − Dom(σ)) ∪ Ran(σV ar(t)).

Proposition A.2. Suppose we have substitutions σ, µ, ν and sets A,B of vari-

ables such that (B − Dom(σ)) ∪ Ran(σ) ⊆ A. If µ = ν[A] then µσ = νσ[B].

Proof. Let us consider (µσ)B , which can be divided as follows: (µσ)B =
(µσ)B∩Dom(σ) ∪ (µσ)B−Dom(σ).
For x ∈ B ∩ Dom(σ), we have Var(σx) ⊆ Ran(σ), and then (µσ)x = µ(σx) =
µRan(σ)(σx) = (µRan(σ)σ)x. Therefore (µσ)B∩Dom(σ) = (µRan(σ)σ)B∩Dom(σ).
For x ∈ B−Dom(σ), we have σx = x, and then (µσ)x = µ(σx) = µx. Therefore we
have (µσ)B−Dom(σ) = µB−Dom(σ). Henceforth we get (µσ)B = (µRan(σ)σ)B∩Dom(σ)

∪µB−Dom(σ).
By a similar reasoning, we get (νσ)B = (νRan(σ)σ)B∩Dom(σ) ∪ νB−Dom(σ).
By hypothesis, we have Ran(σ) ⊆ A and µ = ν[A]. Then µRan(σ) = νRan(σ). Like-
wise, since B − Dom(σ) ⊆ A, we have µB−Dom(σ) = νB−Dom(σ).
Then we have (µσ)B = (µRan(σ)σ)B∩Dom(σ) ∪ µB−Dom(σ) =
(νRan(σ)σ)B∩Dom(σ) ∪ νB−Dom(σ) = (νσ)B . Therefore (µσ) = (νσ)[B].

Lemma (S-lifting Lemma). Let R be a rewrite system. Let s ∈ T (F ,X), α
a ground substitution such that αs is S-reducible at a non variable position p of s,
and Y ⊆ X a set of variables such that V ar(s) ∪ Dom(α) ⊆ Y. If αs →p,l→r

S t′,
then there exist a term s′ ∈ T (F ,X) and substitutions β, σ = σ0 ∧

∧

j∈[1..k] σj such

that:

1. s ❀
p,l→r,σ
S s′,

2. βs′ = t′,
3. βσ0 = α[Y ∪ V ar(l)]
4. β satisfies

∧

j∈[1..k] σj .

where σ0 is the most general unifier of s|p and l and σj , j ∈ [1..k] are all most

general unifiers of σ0s|p′ and a left-hand side l′ of a rule of R, for all position p′

which are S-better positions than p in s.

Proof. In the following, we assume that Y ∩ Var(l) = ∅ for every l → r ∈ R.

If αs →p,l→r
S t′, then there exists a substitution τ such that Dom(τ) ⊆ Var(l) and

(αs)|p = τ l. Moreover, since p is a non variable position of s, we have (αs)|p =
α(s|p). Denoting µ = ατ , we have:
µ(s|p) = α(s|p) for Dom(τ) ⊆ Var(l) and Var(l) ∩ Var(s) = ∅

= τ l by definition of τ
= µl for Dom(α) ⊆ Y and Y ∩ Var(l) = ∅,

· 47

and therefore s|p and l are unifiable. Let us note σ0 the most general unifier of s|p
and l, and s′ = σ0(s[r]p).

Since σ0 is more general than µ, there exists a substitution ρ such that ρσ0 =
µ[Y ∪ V ar(l)]. Let Y1 = (Y − Dom(σ0)) ∪ Ran(σ0). We define β = ρY1

. Clearly
Dom(β) ⊆ Y1.
We now show that Var(s′) ⊆ Y1, by the following reasoning:

—since s′ = σ0(s[r]p), we have Var(s′) = Var(σ0(s[r]p));

—the rule l → r is such that Var(r) ⊆ Var(l), therefore we have Var(σ0(s[r]p)) ⊆
Var(σ0(s[l]p)), and then, thanks to the previous point, Var(s′) ⊆ Var(σ0(s[l]p));

—since σ0(s[l]p) = σ0s[σ0l]p and since σ0 unifies l and s|p, we get σ0(s[l]p) =
(σ0s)[σ0(s|p)]p = σ0s[s|p]p = σ0s and, thanks to the previous point: Var(s′) ⊆
Var(σ0s);

—according to Proposition A.1, we have Var(σ0(s)) = (Var(s) −Dom(σ0)) ∪
Ran(σ0Var(s)); by hypothesis, Var(s) ⊆ Y. Moreover, since Ran(σ0Var(s)) ⊆
Ran(σ0), we have
Var(σ0(s)) ⊆ (Y −Dom(σ0))∪Ran(σ0), that is Var(σ0s) ⊆ Y1. Therefore, with
the previous point, we get V ar(s′) ⊆ Y1.

From Dom(β) ⊆ Y1 and V ar(s′) ⊆ Y1, we infer Dom(β) ∪ V ar(s′) ⊆ Y1.
Let us now prove that βs′ = t′.

Since β = ρY1
, we have β = ρ[Y1]. Since V ar(s′) ⊆ Y1, we get βs′ = ρs′. Since

s′ = σ0(s[r]p), we have ρs′ = ρσ0(s[r]p) = µ(s[r]p) = µs[µr]p. Then βs′ = µs[µr]p.
We have Dom(τ) ⊆ Var(l) and Y ∩ Var(l) = ∅, then we have Y ∩ Dom(τ) = ∅.
Therefore, from µ = ατ [Y ∪ V ar(l)], we get µ = α[Y]. Since Var(s) ⊆ Y, we get
µs = αs.
Likewise, by hypothesis we have Dom(α) ⊆ Y, Var(r) ⊆ Var(l) and Y∩Var(l) = ∅,
then we get V ar(r)∩Dom(α) = ∅, and then we have µ = τ [V ar(r)], and therefore
µr = τr.
From µs = αs and µr = τr we get µs[µr]p = αs[τr]p. Since, by hypothesis,
αs →p t′, with τ l = (αs)|p, then αs[τr]p = t′. Finally, as βs′ = µs[µr]p, we get
βs′ = t′ (2).

Next let us prove that βσ0 = α[Y]. Reminding that Y1 = (Y − Dom(σ0)) ∪
Ran(σ0), Proposition A.2 (with the notations A for Y1, B for Y, µ for β, ν for ρ
and σ for σ0) yields βσ0 = ρσ0[Y]. We already noticed that µ = α[Y]. Linking
these two equalities via the equation ρσ0 = µ yields βσ0 = α[Y] (3).

Let us now suppose that there exist a rule l′ → r′ ∈ R, a position p′ S-better
than p and a substitution σi such that σi(σ0(s|p′)) = σil

′.
Let us now suppose that β does not satisfy

∧

j∈[1..k] σj . There exists i ∈ [1..k] such

that β satisfies σi =
∧

il∈[1..n](xil
= uil

). So β is such that
∧

il∈[1..n](βxil
= βuil

).

Thus, on Dom(β) ∩ Dom(σi) ⊆ {xil
, il ∈ [1..n]}, we have (βxil

= βuil
), so

βσi = β. Moreover, as β is a ground substitution, σiβ = β. Thus, βσi = σiβ.
On Dom(β) ∪ Dom(σi) − (Dom(β) ∩ Dom(σi)), either β = Id, or σi = Id, so

βσi = σiβ.
As a consequence, α(s) = σiα(s) = σiβσ0(s) = βσiσ0(s) is reducible at position

p′ with the rule l′, which is impossible by definition of reducibility of α(s) at position
p under the strategy S. So the ground substitution β satisfies

∧

i∈[1..k] σi for all

48 ·

most general unifiers σi of σ0s and a left-hand side of a rule of R at S-better
positions of p (4).

Therefore, denoting σ = σ0 ∧
∧

i∈[1..k] σi, from the beginning of the proof, we get

s ❀
p,l→r,σ
S s′, and then the point (1) of the current lemma holds.

B. PROOF OF THE TERMINATION RESULT

Let us remind that SUCCESS (g ,≻) means that the application of Strat−Rules(S)
on ({g(x1, . . . , xm)}, ⊤,⊤) gives a finite proof tree, whose sets C of ordering con-
straints are satisfied by a same ordering ≻, and whose leaves are either nodes of
the form (∅, A, C) or nodes whose set of constraints A is unsatisfiable.

Theorem 5.1. Let R be a rewrite system on a set F of symbols containing at

least one constructor constant. Every term of T (F) terminates under the strategy

S iff there exists a noetherian ordering ≻ such that for each symbol g ∈ D, we have

SUCCESS (g ,≻).

Proof. Let us suppose that every ground term is S-terminating and show that
the construction of the proof trees always terminate. Let f(x1, . . . , xm), f ∈ D any
initial pattern of a proof tree.

If S = Innermost , Abstract applies to give f(X1, . . . , Xm), X1, . . . , Xm ∈ XA.
Indeed, by hypothesis, we have TERMIN (Innermost , xi). Then Stop applies, be-
cause we have TERMIN (Innermost , f (X1 , . . . ,Xm)).

If S = LS , the reasoning is the same, except that only some subterms xi of
f(x1, . . . , xm) are abstracted, according to the local strategy of f .

If S = Outermost , Narrow applies on f(x1, . . . , xm), to give some term u. In
a similar way than in the previous cases, we have TERMIN (Outermost , u), and
Stop applies.

So any proof tree is finite, and SUCCESS (f ,≻) for every f ∈ D, with any noethe-
rian ordering ≻.

For the converse part, we use an emptiness lemma, an abstraction lemma, a
narrowing lemma, and a stopping lemma, which are given after this main proof.

We prove by induction on T (F) that any ground instance θf(x1, . . . , xm) of any
term f(x1, . . . , xm) ∈ T (F ,X) with f ∈ F , S-terminates. The induction ordering
is constrained along the proof. At the beginning, it has at least to be noetherian.
Such an ordering always exists on T (F) (for instance the embedding relation). Let
us denote it ≻.

If f is a defined symbol, let us denote it g and prove that g(θx1, . . . , θxm) S-
terminates for any θ satisfying A = ⊤. Note that g may be a reducible constant.
Let us denote g(x1, . . . , xm) by tref in the sequel of the proof.

To each node of the proof tree of g, characterized by a current term t and the
set of constraints A, we associate the set of ground terms G = {αt | α satisfies A},
that is the set of ground instances of t schematized by A. When t is a reducible
constant, the set of ground instances is reduced to t itself.

Inference rule Abstract (resp. Narrow) transforms ({t}, A, C) into ({t′}, A′, C ′)
to which is associated G′ = {βt′ | β satisfies A′} (resp. into ({t′i}, A

′
i), i ∈ [1..l] to

which are associated G′ = {βit
′
i | βi satisfies A′

i}).

· 49

By abstraction (resp. narrowing) Lemma, applying Abstract (resp. Narrow),
for each reducible αt in G, there exists a βt′ (resp. βit

′
i) in G′ and such that

S-termination of βt′ (resp. of the βit
′
i) implies S-termination of αt.

When the inference rule Stop applies on ({t}, A, C):

—either A is satisfiable, in which case, by stopping lemma, every term of G =
{αt | α satisfies A} is S-terminating,

—or A is unsatisfiable. In this case, G is empty. By emptiness lemma, all previ-
ous nodes on the branch correspond to empty sets Gi, until an ancestor node
({tp}, Ap, Cp), where Ap is satisfiable. Then every term αt of Gp is irreducible,
otherwise, by Abstraction and Narrowing lemmas, Gp+1 would not be empty.

Therfore, S-termination is ensured for all terms in all sets G of the proof tree.
As the process is initialized with {tref } and a constraint problem satisfiable by
any ground substitution, we get that g(θx1, . . . , θxm) is S-terminating, for any
tref = g(x1, . . . , xm) with g ∈ D, and any ground instance θ.

If f is a constructor, either it is a constant, which is irreducible, by hypothe-
sis, and then S-terminating, or we consider the pattern f(x1, . . . , xm). The proof
then works like in the case of defined symbols, but with only two proof steps,
namely abstract and stop. Indeed, f(x1, . . . , xm) always abstracts into f(x1, . . . ,
xm)[Xp1

]p1
. . . [Xpk

]pk
, where {p1, . . . , pk} are the abstraction positions allowed by

the strategy ([1..m] if S = Innermost or S = Outermost, {p1, . . . , pk} = LS (f)
if S = LS). Then stop applies because f(x1, . . . , xm)[Xp1

]p1
. . . [Xpk

]pk
is not

narrowable and all its variables at positions allowed by the strategy S are in XA.
We thus get that any ground term, written as a ground instance of a pattern

f(x1, . . . , xm) with f ∈ F , is S-terminating.

Lemma (Emptiness lemma). Let ({t}, A, C) be a node of any proof tree, giving

({t′}, A′, C ′) by application of Abstract or Narrow. If A is unsatisfiable, then so

is A′.

Proof. If Abstract is applied, then if A is unsatisfiable, A′ = A ∧ t|p1
↓ =

Xp1
. . . ∧ t|pk

↓ = Xpk
is also unsatisfiable.

If Narrow is applied, then if A is unsatisfiable (which never happens for local
strategies), A′ = A∧σ in the innermost case, and A′ = R(t)∧A∧σ in the outermost
case are also unsatisfiable.

Lemma (Abstraction lemma). Let ({t}, A, C) be a node of any proof tree,

giving the node ({t′ = t[Xj]j∈{p1,...,pk}}, A′, C ′) by application of Abstract.

For any ground substitution α satisfying A, if αt is reducible, there exists β such

that S-termination of βt′ implies S-termination of αt. Moreover, β satisfies A′.

Proof. We prove that αt
∗
→S βt′, where β = α ∪

⋃

j∈{p1,...,pk}
Xj = αt|j↓.

First, whatever the strategy S, the abstraction positions in t are chosen so that
the αt|j can be supposed terminating under S. Indeed, each term t|j is such that:

—either TERMIN (S , t |j) is true, and then by definition of the predicate TERMIN ,
αt|j S-terminates;

50 ·

—or tref > t|j is satisfiable by ≻, and then, by induction hypothesis, αt|j S-
terminates.

So the αt|j↓exist.
Then, let us consider the different choices of abstraction positions w.r.t the strat-

egy S:

—either S = Innermost , and whatever the positions p1, . . . , pk in the term t, we
have αt

∗
→Innermost αt[αt|p1

↓]p1
. . . [αt|pk

↓]pk
= βt′;

—either S = Outermost and t is abstracted at positions p1, . . . , pk if t[Xj]j∈{p1,...,pk}

is not outermost narrowable at prefix positions of p1, . . . , pk, which warrants that
the only redex positions of αt are suffixes of the j, and then that αt

∗
→Outermost

αt[αt|p1
↓]p1

. . . [αt|pk
↓]pk

= βt′;

—or S = LS and top(t) = f with LS (f) = [p1, . . . , pn]. The term t is abstracted
at positions p1, . . . , pk−1, if ∃k ∈ [2..n] : p1, . . . , pk−1 6= 0, pk = 0, or at posi-
tions p1, . . . , pn if p1, . . . , pn 6= 0. According to the definition of local strategies,
αt

∗
→LS αt[αt|p1

↓]p1
. . . [αt|pk

↓]pk
= βt′.

If LS (f) = [] or LS (f) = [0, p2, . . . , pn], then t = t′ and A = A′, so αt = βt′.

Thus, αt
∗
→S βt′ for every derivation that normalizes all subtems αt|j↓, for

j ∈ {p1, . . . , pk}. As every βt′ represents a reduced form of αt on every possible
rewriting branch of αt, then S-termination of βt′ implies S-termination of αt.

Clearly in all cases, β satisfies A′ = A∧t|p1
↓ = Xp1

. . .∧t|pk
↓ = Xpk

provided the
Xi are neither in A, nor in Dom(α), which is true since the Xi are fresh variables
neither appearing in A, nor in Dom(α).

Lemma (narrowing lemma). Let ({t}, A, C) be a node of any proof tree, giv-

ing the nodes ({vi}, A′
i, C

′
i), i ∈ [1..l], by application of Narrow. For any ground

substitution α satisfying A, if αt is reducible, then, for each i ∈ [1..l], there ex-

ist βi such that S-termination of the βivi, i ∈ [1..l], implies S-termination of αt.
Moreover, βi satisfies A′

i for each i ∈ [1..l].

Proof. We reason by case on the different strategies.

—Either S = Innermost , and by Lifting Lemma, there is a term v and substitutions
β and σ = σ0 ∧

∧

j∈[1..k] σj , corresponding to each rewriting step αf(u1, . . . , um)

→p,l→r
Innermost t′, such that:

1. t = f(u1, . . . , um) ❀
p,l→r,σ
Innermost v,

2. βv = t′,
3. βσ0 = α[Y ∪ V ar(l)]
4. β satisfies

∧

j∈[1..k] σj .

where σ0 is the most general unifier of t|p and l and σj , j ∈ [1..k] are all most
general unifiers of σ0t|p′ and a left-hand side l′ of a rule of R, for all position p′

which are suffix positions of p in t.
These narrowing steps are effectively produced by the rule Narrow, applied in
all possible ways on f(u1, . . . , um). So a term βv is produced for every innermost

· 51

rewriting branch starting from αt. Then innermost termination of the βv implies
innermost termination of αt.
Let us prove that β satisfies A′ = A ∧ σ0 ∧

∧

j∈[1..k] σj .

By Lifting Lemma, we have α = βσ0 on Y. As we can take Y ⊇ V ar(A), we
have α = βσ0 on V ar(A).
More precisely, on Ran(σ0), β is such that βσ0 = α and on V ar(A) \ Ran(σ0),
β = α. As Ran(σ0) only contains fresh variables, we have V ar(A)∩Ran(σ0) = ∅,
so V ar(A) \ Ran(σ0) = V ar(A). So β = α on V ar(A) and then, β satisfies A.
Moreover, as βσ0 = α on Dom(σ0), β satisfies σ0.
So β satisfies A∧σ0. Finally, with the point 4. of the lifting lemma, we conclude
that β satisfies A′ = A ∧ σ0 ∧

∧

j∈[1..k] σj .

—Either S = LS , and Narrow is applied on {t = f(u1, . . . , um)} with l =
[0, i1, . . . , ip]. For any α satisfying A,

—either αf(u1, . . . , um) is irreducible at the top position, but may be reduced
at positions i1, . . . , ip. In this case, either f(u1, . . . , um) is not narrowable
at the top position, either f(u1, . . . , um) ❀

ǫ,σi vi for i ∈ [1..l] and A ∧ σi is
unsatisfiable for each i, or for i ∈ [1..l], f(u1, . . . , um) ❀

ǫ,σi vi and A ∧ σi is
satisfiable.
In the first two cases, Narrow produces the node ({t[i1,...,ip]}, A, C), and
setting β = α, we obtain that termination of βt[i1,...,ip] implies termination of
αt[0,i1,...,ip], and that β satisfies A′ = A.
In the third case, Narrow produces the node ({t[i1,...,ip]}, A ∧ (

∧l
i=1 σi), C),

and setting β = α, we have termination of βt[i1,...,ip] implies termination of
αt[0,i1,...,ip]. Moreover, as αt is not reducible at the top position, α = β satisfies
(
∧l

i=1 σi). Thus, as α satisfies A, β satisfies A′ = A ∧ (
∧l

i=1 σi).
—or αf(u1, . . . , um) is reducible at the top position, and by Lifting Lemma, there

is a term v and substitutions β and σ0 corresponding to each rewriting step
αf(u1, . . . , um) →ǫ,l→r t′, such that:

1. t = f(u1, . . . , um) ❀
ǫ,l→r,σ0 v,

2. βv = t′,
3. βσ0 = α[Y ∪ V ar(l)].

where σ0 is the most general unifier of t and l.
These narrowing steps are effectively produced by Narrow, which is applied
in all possible ways on f(u1, . . . , um) at the top position. So a term βv is
produced for every LS -rewriting step applying on αt at the top position. Then
termination of the βv implies termination of αt for the given LS -strategy.
We prove that β satisfies A ∧ σ0 like in the innermost case, except that there
is no negation of substitution here.

—Or S = Outermost , and in this case, t = f(u1, . . . , un) is renamed into t0 =
f(u1, . . . , un)ρ. A then becomes A0 = A ∪ R(f(u1, . . . , un)) where ρ = (x1

x′
1) . . . (xk x′

k).
We first show that if every β0t0 outermost terminates, for β0 satisfying A0, then
every αt outermost terminates.

52 ·

If A is satisfiable, then A0 is satisfiable. Indeed, A0 = A ∪ f(u1, . . . , um)

f(u1, . . . , um)ρ, with ρ = (x1 x′
1) . . . (xk x′

k). In addition, the xi are the
variables of f(u1, . . . , un).
If A = ⊤, then A0 = f(u1, . . . , um) f(u1, . . . , um)ρ, which is always satisfi-
able. If A 6= ⊤, since they are the variables of f(u1, . . . , un), the xi can appear
in A, either in abstracted subterms, either as new abstraction variables, either in
the right hand-sides of equalities and disequalities defining the substitution of the
previous narrowing step, or as new variables introduced by the previous reduc-
tion renaming step. In any case, the formula in which they appear is compatible
with f(u1, . . . , um) f(u1, . . . , um)ρ. Indeed, for the θxi such that θ satisfies
A, θ can be extended on the variables x′

i, in such a way that A0 is satisfiable.
Then A0 = A ∪ f(u1, . . . , um) f(u1, . . . , um)ρ is satisfiable.

By definition of A0, the β0 are the α verifying the reduction formula f(u1, . . . , um)
 f(u1, . . . , um)ρ, with ρ = (x1 x′

1) . . . (xk x′
k). We have Dom(α) =

V ar(A) ∪ {x1, . . . , xk}. The domain of β0 is Dom(α) ∪ {x′
1, . . . , x

′
k}. Then

β0 = α [Dom(α)] and by definition of the reduction formula, the β0x
′
i are such

that t[β0x
′
1]p1

. . . [β0x
′
k]pk

is the first reduced form of αf(u1, . . . , un) in any outer-
most rewriting chain starting from αf(u1, . . . , un), having an outermost rewriting
position at a non variable position of f(u1, . . . , un).
Then, by definition of the outermost strategy, the β0t0 represent any possible
outermost reduced form of αt just before the reduction occurs at a non variable
occurrence of f(u1, . . . , un). Thus, outermost termination of the β0t0 implies
outermost termination of the αt.

Then t0 is narrowed in all possible ways into terms vi at positions pi with substi-
tutions σi, provided pi and σi satisfy the outermost narrowing requirements, as
defined in Definition 4.5. We now show that if β0t0 is reducible, then there exist
βi satisfying A′ such that outermost termination of the βivi implies outermost
termination of β0t0.
We have β0t0 →p,l→r

Outermost t′ and p ∈ PosF (t0) since t0 = tρ.
By Lifting Lemma, there is a term v and substitutions β and σ = σ0∧

∧

j∈[1..k] σj ,

corresponding to each rewriting step αt0 →p,l→r
Outermost t′, such that:

1. t0 ❀
p,l→r,σ
Outermost v,

2. βv = t′,
3. βσ0 = β0[Y ∪ V ar(l)]
4. β satisfies

∧

j∈[1..k] σj .

where σ0 is the most general unifier of t0|p and l and σj , j ∈ [1..k] are all most
general unifiers of σ0t0|p′ and a left-hand side l′ of a rule of R, for all position p′

which are prefix positions of p in t0.
These narrowing steps are effectively produced by the rule Narrow, applied in
all possible ways. So a term βv is produced for every outermost rewriting branch
starting from β0t0. Then outermost termination of the βv implies outermost
termination of β0t0.
We prove that β satisfies A′ = A0 ∧ σ0

∧

j∈[1..k] σj like in the innermost case.

· 53

Lemma (Stopping lemma). Let ({t}, A, C) be a node of any proof tree, with A
satisfiable, and giving the node (∅, A′, C ′) by application of an inference rule. Then

for every ground substitution α satisfying A, αt S-terminates.

Proof. The only rule giving the node (∅, A′, C ′) is Stop. When Stop is applied,
then

—either TERMIN (S , t) and then αt S-terminates for every ground substitution α,

—or (tref > t) is satisfiable. Then, for every ground substitution α satisfying A,
αtref ≻ αt. By induction hypothesis, αt S-terminates.

C. THE USABLE RULES

To prove Lemma 6.2, we need the next three lemmas. The first two ones are pretty
obvious from the definition of the usable rules.

Lemma C.1. Let R be a rewrite system on a set F of symbols and t ∈ T (F ,X ∪
XA). Then, every symbol f ∈ F occurring in t is such that Rls(f) ⊆ U(t).

Proof. We proceed by structural induction on t.

—If t ∈ X ∪ XA, the property is trivially true;

—if t is a constant a, U(t = a) = Rls(a) ∪l→r∈Rls(a) U(r); the only symbol of t is
a, and we have Rls(a) ⊆ U(t).

Let us consider a non-constant and non-variable term t ∈ T (F ,X ∪ XA), of
the form f(u1, . . . , un). Then, by definition of U(t), we have U(t) = Rls(f) ∪n

i=1

U(ui) ∪l→r∈Rls(f) U(r). Then, whatever g symbol of t, either g = f and then
Rls(g) ⊆ U(t), or g is a symbol occurring in some ui and, by induction hypothesis
on ui, Rls(g) ⊆ U(ui), with U(ui) ⊆ U(t).

Lemma C.2. Let R be a rewrite system on a set F of symbols and t ∈ T (F ,X ∪
XA). Then l → r ∈ U(t) ⇒ U(r) ⊆ U(t).

Proof. According to the definition of the usable rules, if a term t is such that
Var(t) ∩ X 6= ∅, then U(t) = R, and then the property is trivially true. We will
then suppose in the following that t does not contain any variable of X .

Let l → r ∈ U(t). By definition of U(t), since Var(t)∩X = ∅, among all recursive
applications of the definition of U in U(t), there is an application U(t′) of U to some
term t′ such that U(t′) = Rls(g) ∪i U(t′|i) ∪l′→r′∈Rls(g) U(r′), with U(t′) ⊆ U(t),
and l → r ∈ Rls(g), with g = top(l).

Since l → r ∈ Rls(g), by definition of U(t′), we have U(r) ⊆ ∪l′→r′∈Rls(g)U(r′),
and then U(r) ⊆ U(t′) ⊆ U(t).

Lemma C.3. Let R be a rewrite system on a set F of symbols and t ∈ T (F ,X ∪
XA). For any ground normalized substitution α and any rewrite chain αt →p1,l1→r1

t1 →p2,l2→r2 t2 → . . . →pn,ln→rn tn, the defined symbol of tk, 1 ≤ k ≤ n at a redex

position of tk is either a symbol of t or one of the ri, i ∈ [1..k].

54 ·

Proof. We proceed by induction on the length of the derivation. The property
is obviously true for an empty derivation i.e. on αt.

Let us show the property for the first rewriting step αt →p1,l1→r1 t1. By definition
of rewriting, ∃σ : σl1 = αt|p1

and t1 = αt[σr1]p1
. Let f be the redex symbol of t1

at a position p, and let us show that f comes either from t or from r1.
Since t1 = αt[σr1]p1

, either p is a position of the context αt[]p1
, which does not

change by rewriting, so we already have f as redex symbol of αt at position p. As
α is normalized, p is a position of t, so f is a symbol of t.

Either p corresponds in t1 to a non variable position of r1, so f is a symbol of r1.
Or p corresponds in t1 to a position p2 in σx, for a variable x ∈ Var(r1) at

position q in r1: we have p = p1qp2. In this case, since Var(r1) ⊆ Var(l1), we
have x ∈ Var(l1), so σx is also a subterm of αt, and f occurs in αt at position
p′ = p1q

′p2, where q′ is a position of x in l1.
Moreover, as p is a redex position in t1, then by definition of the innermost

strategy, there is no suffix redex position of p in t1. As t1|p = αt|p′ , then similarly
p′ is a redex position in αt. As α is normalized, p′ is a position of t, so f is a symbol
of t.

Then, let us suppose the property true for any term of the rewrite chain αt
→p1,l1→r1 t1 → . . . →pk,lk→rk tk, i.e. any redex symbol f of tk is also a symbol of t,
or a symbol of one of the ri, i ∈ [1..k], and let us consider tk →pk+1,lk+1→rk+1 tk+1.

By a similar reasoning than previously, we establish that any redex symbol f of
tk+1 is also a symbol of tk, or a symbol of rk+1. We then conclude with the previous
induction hypothesis.

We are now able to prove Lemma 6.2.

Lemma 6.2. Let R be a rewrite system on a set F of symbols and t ∈ T (F ,X ∪
XA). For any ground instance αt of t and any rewrite chain αt →p1,l1→r1 t1
→p2,l2→r2 t2 → . . . →pn,ln→rn tn, then li → ri ∈ U(t), ∀i ∈ [1..n].

Proof. If a variable x ∈ X occurs in t, then U(t) = R and the property is
trivially true. We then consider in the following that t ∈ T (F ,XA), and then that
α is a (ground) normalized substitution.
We proceed by induction on T (F ,XA) and on the length of the derivation.

The property is trivially true if αt is in normal form. For any αt →p1,l1→r1 t1,
since α is normalized, p1 corresponds in αt to a non-variable position of t. Let f
be the symbol at position p1 in t. Since f is the symbol at the redex position p1 of
αt with the rule l1 → r1, then l1 → r1 ∈ Rls(f). Moreover, thanks to Lemma C.1,
Rls(f) ⊆ U(t). Therefore, l1 → r1 ∈ U(t).

Let us now suppose the property is true for any derivation chain starting from αt
whose length is less or equal to k, and consider the chain: αt →p1,l1→r1 t1 →p2,l2→r2

t2 → . . . →pk,lk→rk tk →pk+1,lk+1→rk+1 tk+1. Let f be the symbol at position
pk+1 in tk. Since pk+1 is a redex position of tk with the rule lk+1 → rk+1, then
lk+1 → rk+1 ∈ Rls(f).

By Lemma C.3 with a derivation of length k, we have two cases:

—either the symbol f at position pk+1 in tk is a symbol of t; then, thanks to
Lemma C.1 on t, we get Rls(f) ⊆ U(t); henceforth lk+1 → rk+1 ∈ U(t);

· 55

—or the symbol f at position pk+1 in tk is a symbol of a ri, i ∈ [1..k]; then, thanks
to Lemma C.1 on ri, we get Rls(f) ⊆ U(ri); henceforth lk+1 → rk+1 ∈ U(ri); by
induction hypothesis we have li → ri ∈ U(t) and, thanks to Lemma C.2, we have
U(ri) ⊆ U(t). Henceforth lk+1 → rk+1 ∈ U(t).

Proposition 6.3. Let R be a rewrite system on a set F of symbols, and t a

term of T (F ,X ∪ XA). If there exists a reduction ordering ≻ such that ∀l → r ∈
U(t) : l ≻ r, then any ground instance of t is terminating.

Proof. As ≻ orients the rules used in any reduction chain starting from αt for
any ground substitution α, by properties of the reduction orderings, ≻ also orients
the reduction chains, which are then finite.

D. A LEMMA SPECIFIC TO THE OUTERMOST CASE

Lemma 7.5. Let ({ti}, Ai, Ci) be the ith node of any branch of the proof tree

obtained by applying the strategy Strat−Rules(Outermost) on ({tref },⊤,⊤), and

≻ a noetherian ordering having the subterm property. If every reduction formula

in Ai can be reduced to a formula
∧

j xj = x′
j, then we have:

for every variable x of ti in X : (tref > x)/Ai is satisfiable by ≻.

Proof. The proof is made by induction on the number i of applications of the
inference rules from ({tref },⊤,⊤) to the node ({ti}, Ai, Ci).

Let us prove that the property holds for i = 0. We have t0 = tref and then
V ar(t0) = Var(tref). Consequently, for every x ∈ V ar(t0), whatever the ground
substitution α such that Var(tref) ⊆ Dom(α), αx is a subterm of αtref . The
induction ordering ≻ satisfying the conditions of the rules before the application of
these rules can be any noetherian ordering having the subterm property. We then
have αtref ≻ αx.

We now prove that if the property holds for i − 1, it also holds for i.

If the rule used at the ith step is Stop, then V ar(ti) = ∅, and then, the property
is trivially verified.

If the rule used at the ith step is Abstract, as the rule Abstract replaces sub-
terms in ti−1 by new variables of XA, then (V ar(ti)∩X) ⊆ (V ar(ti−1)∩X), so the
property still holds.

If the rule used at the ith step is Narrow then, by hypothesis, the reduction
renaming applied to ti−1 and giving a term t′i−1 just consists in a mere renaming
of the variables of ti−1. Let ti be a term obtained by narrowing t′i−1 with the
substitution σ.

Let z ∈ Var(ti), and α a substitution satisfying Ai. We show that αtref ≻ αz.
We have two cases.

Either z is a fresh variable introduced by the narrowing step. Let x′ ∈ Var(t′i−1)
such that z ∈ Var(σx′), and x ∈ Var(ti−1) such that x′ is a renaming of x. By
hypothesis, every reduction formula in Ai can be reduced to a formula

∧

j xj = x′
j .

56 ·

This is then the same for Ai−1. Moreover, since α satisfies Ai, then it satisfies in
particular Ai−1. Then, by induction hypothesis, αtref ≻ αx and, since α satisfies
x = x′, we also have αtref ≻ αx′.
By hypothesis, σ contains the equality x′ = C[z], with C[z] a (possibly empty)
context of z. Moreover, by definition of the rule Narrow, Ai = Ai−1 ∧R(ti−1)∧σ.
So Ai contains the equality x′ = C[z].
Then, as α satisfies Ai, α is such that αx′ = αC[z]. Since αtref ≻ αx′, we have
αtref ≻ αC[z] and then, by subterm property, αtref ≻ αz.

Or z ∈ Var(t′i−1) ; by the same reasoning as in the previous point for x′, we have
αtref ≻ αz.

