

Termination of term rewriting by semantic labelling

Citation for published version (APA):
Zantema, H. (1993). Termination of term rewriting by semantic labelling. (Universiteit Utrecht. UU-CS,
Department of Computer Science; Vol. 9324). Utrecht University.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/0b254341-8193-44f1-9f2f-f8d26fe5640b

Termination of term rewriting by semantic
labelling

H. Zantema

RUU-CS-93-24
July 1993

Utrecht University
Department of Computer Science

Padualaan 14, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands,

Tel. : ... + 31 - 30 - 531454

Termination of term rewriting by semantic
labelling

H. Zantema

Technical Report RUU-CS-93-24
July 1993

Department of Computer Science
Utrecht University

P.O.Box 80.089
3508 TB Utrecht
The Netherlands

Termination of term rewriting
by semantic labelling *

H. Zantema
Utrecht University, Department of Computer Science

P.O. box 80.089, 3508 TB Utrecht, The Netherlands
phone +31-30-534116, e-mail: hansz@cs.ruu.nl

Abstract

A new kind of transformation of TRS's is proposed, depending on a choice for a
model for the TRS. The labelled TRS is obtained from the original one by labelling
operation symbols, possibly creating extra copies of some rules. This construction
has the remarkable property that the labelled TRS is terminating if and only if
the original TRS is terminating. Although the labelled version has more operation
symbols and may have more rules (sometimes infinitely many), termination is often
easier to prove for the labelled TRS than for the original one. This provides a
new technique for proving termination, making classical techniques like RPO and
polynomial interpretations applicable for non-simplifying TRS's.

1 Introduction

The well-known quicksort algorithm can be described as a term rewriting system (TRS)
as follows:

qsort(nil) ---+ nil
qsort(x : y) ---+ qsort(low(x, y)) 0 (x: qsort(high(x, y))
low(x, nil) ---+ nil
low(x, y : z) ---+ if(y:s x, y : low(x, z), low(x, z»
high(x, nil) ---+ nil
high(x, y : z) ---+ if(y :::; x, high(x, z), y : high(x, z»)
0:::; x ---+ true
s(x) :::; 0 ---+ false
s(x) :::; s(y) ---+ x:::;y
if(true, x, y) ---+ x
if(false, x, y) ---+ y.

Here x : y can be interpreted as the list obtained by putting the element x in front of the
list y, '0' can be interpreted as list concatenation, low(x, y) removes the elements from y
that are greater than x, and high(x, y) removes the elements from y that are less or equal

*This is an extended and revised version of technical report RUU-CS-92-38, appeared in December
1992.

1

than x. This TRS corresponds to a functional program implementing quicksort on natural
numbers. Termination of this program is not difficult to see: for each recursive call of
low and high the length of the right argument strictly decreases. Further the lengths of
low(x, y) and high(x, y) are less or equal than the length of y, and hence for each recursive
call of qsort the length of the argument strictly decreases.

However, if we forget about the semantics of the terms being lists and numbers, then
proving termination of the TRS is not that easy any more. Standard techniques like re
cursive path order (RPO) fail. We should like to have a technique for proving termination
of a TRS making use of the semantics of the TRS. One technique doing so is semantic
path order ([7, 3]). It can be seen as a generalization of RPO and is discussed in section
7.

In this paper we describe another technique: given a TRS having some semantics, we
introduce a labelling of the operation symbols in the TRS depending on the semantics
of their arguments. We do this in such a way that termination of the original TRS is
equivalent to termination of the labelled TRS. The labelled TRS has more operation
symbols than the original TRS, and often more rules, sometimes even infinitely many.
The original TRS can be obtained from the labelled TRS by removing all labels and
removing multiple copies of rules. Although the labelled TRS is greater in some sense
than the original one, in many cases termination of the labelled version is easier to prove
than termination of the original one. We propose proving termination of a TRS by
proving termination of a particular labelled version as a new method. This method we
call semantic labelling.

For instance, in the quicksort system we can label every symbol 'qsort' by the length
of the list interpretation of its argument. We obtain infinitely many distinct operation
symbols 'qsort/ instead of one symbol 'qsort'j the other operation symbols do not change.
The labelled TRS is obtained from the original one by replacing the first two rules by the
rule

qsorto(nil) -t nil

and infinitely many rules

qsorti(x : y) -t qsortj(low(x, y)) 0 (x : qsortk(high(x, y)))

for natural numbers i,j, k satisfying j < i and k < i. Since the labels occurring in the
left hand sides are all strictly greater than the labels occurring in the corresponding right
hand sides, it is easy to prove termination of the labelled system by a recursive path order
on a precedence satisfying qsorti+l > qsorti for all i.

Our method is helpful for TRS's that are not simply terminating. The very simplest
exam pIe is the system

f(f(x)) -t f(g(f(x))).

We can choose a model of two elements and obtain the labelled system

/2(h(x)) -t h(g(h(x)))
/2(/2(x)) -t h(g(/2(x)))

2

of which simple termination is very easily proved. Less artificial is the factorial example:

fact(s(x)) -+ fact(p(s(x))) * s(x)
p(s(O)) -+ 0
p(s(s(x))) -+ s(p(s(x))).

This system is not simply terminating. However, by semantic labelling it transforms to
another system that is easily proved to be simply terminating by standard techniques as
we shall see in section 3. A nice source of examples is [15J.

Semantic labelling is also helpful for proving termination of TRS's that don't have
obvious semantics, but for which particular patterns can be recognized in the rewrite
rules. The system f(J(x)) -+ f(g(J(x))) can be considered ofthis type; we shall give more
interesting examples. This approach is closely related to typing the operation symbols
and proving termination of the resulting order-sorted system as discussed in [6J. Other
approaches of proving termination of non-simply terminating systems in a syntactic way
can be found in [13, 12, 1, 10J.

The technique of semantic labelling does not restrict to plain TRS's. In section 4
we show that the same construction and the preservation of termination behaviour also
holds for term rewriting modulo equations. Further semantic labelling serves well for
completion of an equational specification: if the original equations hold in the model we
want to use, the same holds for all critical pairs emerging during the completion process,
and all these critical pairs can be labelled and oriented using a termination order we have
for labelled terms.

In section 5 we present an extension of the theory in which the requirement of having
a model is weakened. In a model the left hand side of any rule has to be equal to the
corresponding right hand side; in this extension the left hand side is allowed to be greater
than the corresponding right hand side.

Semantic labelling does not only provide termination proofs; it can also be used for
proving bounds on reduction lengths. By labelling the length of a reduction does not
change. So if we have a bound on the reduction lengths in the labelled version, such a
bound can be used to prove a bound for the unlabelled version. Semantic labelling also
holds for other properties like confluence, in the sense that confluence of a TRS follows
from confluence of its labelled version. However, we do not know examples of confluence
proofs that are simplified by this observation.

In sections 6 and 7 we compare semantic labelling with existing techniques and char
acterizations of TRS termination. In section 8 we sketch how labelling leads to a general
ization of Kruskal's theorem, and can be a starting point for purely syntactical RPO-like
orderings having the power to prove termination of systems that are not simply termi
nating.

2 The basic theorem

Let F be a set of operation symbols, each having a fixed arity ~ o. We define an
F-algebra M to consist of a set M (the carrier set) and for every f E F of arity n a
function 1M : Mn -+ M. In the following we fix an F-algebra M.

3

Let X be a set of variable symbols. Let M X

¢M : T(F, X) x M X -+ M inductively by

a(x),

{ a X -+ M}. We define

¢M(X, a)

¢M(f(t l , ... , tn), a) IM(¢M(t l , a), ... , ¢M(tn, a))

for x E X, a : X -+ M, f E F, t l , ... , tn E T(F, X). This means that ¢M(-, a) is the
homomorphic extension of a to general terms. If it is clear which model is involved, we
write simply ¢ instead of ¢M. The function ¢ satisfies the following useful property.

Lemma 1 Let a : X -+ M and let T : X -+ T(F, X). Define a' : X -+ M by a'(x) =
¢(T(X), a). Then

Proof: By induction on the structure of t. 0

Next we introduce labelling of operation symbols: choose for every f E F a corre
sponding non-empty set Sf of labels. Now the new signature F is defined by

where the arity of Is is defined to be the arity of I. An operation symbol I is called
labelled if Sf contains more than one element. For unlabelled I the set Sf containing only
one element can be left implicit; in that case we shall often write I instead of Is.

Choose for every f E F a map 7r f : Mn -+ Sf, where n is the arity of f. This map
describes how a function symbol is labelled depending on the values of its arguments as
interpreted in M. For unlabelled I this function trf can be left implicit. We extend the
labelling of operation symbols to a labelling of terms by defining lab: T(F, X) x M X -+
T(F, X) inductively by

lab(x, a)

lab(f(tl' ... ,tn), a)
x,

for x E X, a : X -+ M, I E F, t l , ... , tn E T(F, X). This labelling of terms satisfies the
following property.

Lemma 2 Let a : X -+ M and let T : X -+ T(F, X). Define a' : X -+ M by a'(x) =
¢(T(X), a), and define 7: X -+ T(F, X) by 7(X) = lab(T(x), a). Then

labW",a) = lab(t,a')T.

Proof: By induction on the structure of t. If t is a variable the lemma follows from the
definition of 7. If t = I(t l , ... ,tn) we obtain

lab(tT
, a) = lab(f (tI, ... , t~), a) = f7r/(<!>(tr ,<T),""",cf>(t:;,<T» (Iab(tI, a), ... , lab(t~, a))

and

4

The labels of f are equal due to lemma 1 and the arguments are equal due to the induction
hypothesis. Hence both terms are equal. 0

Let R be a TRS over F. We say that an F-algebra M is a model for R if

for all (J : X -+ M and all rules I -+ r of R.
Fix an F-algebra M together with corresponding sets Sf and functions 1rf. For any

TRS Rover F we define R to be the TRS over F consisting of the rules

lab(I, O") -+ lab(r, 0")

for all 0" : X -+ M and all rules I -+ r of R. Note that if R and all Sf are finite, then
R is finite too. The following lemma states how reduction over R can be transformed to
red uction over R.

Lemma 3 Let M be a model for R. Let t, t' E T(F, X) satisfy t -+R t'. Then

lab(t,O") -+li lab(t',O")

for all 0" : X -+ M.

Proof: If t = IT and t' = rT for some rule I -+ r of R and some T : X -+ T(F, X) we
obtain from lemma 2

lab(t,O") = lab(l, 0"')7'" -+li lab(r, 0"')7'" = lab(t', 0"),

since lab(I,O"') -+ lab(r, 0"') is a rule of R.
Let t -+R t' and lab(t,0") -+li lab(t',O"). We still have to prove that

lab(f(... ,t, . . .),0") -+li lab(f(... , t', . . .),0").

Since M is a model for R we know that ¢(t,O") = ¢(t', 0"). We obtain

lab(f(... , t, ...),0") - f7ff(... ,.p(t,u), ...)(... , lab(t, 0"), ...)
f7ff(. .. ,.p(t',u), ...)(... , lab(t, 0"), ...)

-+Ii f7ff(... ,.p(tl,u), ...)(... , lab(t', 0"), ...)
lab(f(... , t', ...),0").

o

As usual, a TRS R is defined to be terminating if it does not admit infinite reductions

In the literature a terminating TRS is also called strongly normalizing or noetherian. Now
we arrive at the main theorem of this paper.

5

Theorem 4 Let M be a model for a TRS R over F. Choose for every f E F a non
empty set Sf of labels and a map 7ff : Mn -+ Sf, where n is the arity of f. Define R as
above. Then R is terminating if and only if R is terminating.

Proof: Assume R allows an infinite reduction. Then removing all labels yields an infinite
reduction in R.

On the other hand assume R allows an infinite reduction

Choose a : X -+ M arbitrarily. Then according to lemma 3 R allows an infinite reduction

o

In section 6 an alternative proof of this theorem is proposed. One can wonder whether
similar theorems hold for other interesting properties like confluence, weak confluence and
weak normalization. Due to lemma 3 and the trivial counterpart (removing labels in an
R-reduction yields an R-reduction) it is not difficult to prove that if R is confluent, weakly
confluent or weakly normalizing, then R satisfies the same property. However, we do not
know examples in which these observations are helpful for proving these properties; in the
typical case the proof obligations for R are similar or more complicated than for R.

Before giving a list of examples of termination proofs using theorem 4 we briefly discuss
the notion of simple termination. For a set F of operation symbols define Emb(F) to be
the TRS consisting of all the rules

with f E F and i E {I, ... ,n}. A TRS Rover F is defined to be simply terminating if
RUEmb(F) is terminating. In the literature ([9, 11, 17]) some other equivalent definitions
appear. If F is finite it is also equivalent to the notion of a simplifying TRS ([8]); if F is
infinite there is a slight difference (see [11]). However, for the scope of this paper it suffices
to see that some terminating TRS's are not simply terminating using our definition, and
to know that standard techniques like RPO and KBO, both with status (see e.g. [14]),
and polynomial interpretations, all fail for TRS's that are not simply terminating.

3 Examples

Example 1.
The simplest example R of a terminating TRS that is not simply terminating is

f(f(x)) -+ f(g(f(x))).

Intuitively termination of this system is not difficult: at every step the number of operation
symbols f of which the argument is again a term with head symbol f decreases. This idea
can be transformed directly to a semantic labelling: define the model M with M = {I, 2},

6

and IM(X) = 2 and gM(X) = 1 for x = 1,2. Choose Sf = {I, 2} and trf is the identity;
choose 9 to be unlabelled. Then R is

!2(/I(x)) -+ 11(g(/I(X)))
!2 (f2 (x)) -+ 11(g(!2(X)));

the first rule is obtained by choosing a(x) = 1, the second by choosing a(x) = 2. Termina
tion of R is easily proved by counting the number of !2 symbols. Also recursive path order
and polynomial interpretations ([/I](x) = [g](x) = x, [J2](X) = x + 1) suffice for proving
termination. Using theorem 4 we conclude that the original system R is terminating too.

Example 2.
Consider the TRS

I(O,l,x) -+ I(x,x,x)

from [16]. This system is not simply terminating. For proving termination we want to
use the observation that in the left hand side the first and the second argument of 1 are
distinct while in the right hand side they are equal. This distinction is made by choosing
Sf = {1,2} and 7rf(x, y, z) = 1 if x = y and 7rf(x, y, z) = 2 if x =1= y. We still need any
model in which 0 and 1 are indeed distinct; a simple one is M = {O, I} with OM = 0,
1M = 1, and IM(X, y, z) = 0 for x, y, z = 0,1. Now we obtain the labelled system

!2(O,l,x) -+ /I(x,x,x)

which is easily proved to be terminating by any standard technique.

Example 3.
A valid definition of the function max to compute the maximum of two natural numbers

is the following: if x ~ y then max(x,y) = x, otherwise max(x,y) = max(y, x). This
definition can be transformed to the following TRS MAX:

max(x, y) -+ c(x, y, x ~ y)
x ~ 0 -+ true
o ~ s(x) -+ false
s(x) ~ s(y) -+ x ~ y
c(x, y, true) -+ x
c(x, y, false) -+ max(y, x).

This system is not simply terminating since by adding the rule x ~ y -+ x which is in
Emb(F) we obtain the infinite reduction

max(false, false) -+ c(false, false, false ~ false)

-+ c(false, false, false) -+ max(false, false) -+

However, MAX can be proved to be terminating by semantic labelling. As a model M we
choose the natural numbers in which we identify true and false by 1 and 0, respectively.
More precisely: M = N, maxM(x, y) = max(x, y), trueM = 1, falseM = 0, OM =
0, sM(x)=x+1,

{

X ifz>O
CM(X, y, z) = max(x, y) if z = 0 '

7

if x ~ y

if x < y.

One easily checks that M is indeed a model for MAX. We still have to find an appropriate
labelling; consider the reduction

C(8(0), 0, false) -+ max(O, 8(0)) -+ + c(O, 8(0), false) -+ max(8(0), 0) -+ + c(s(O), 0, true).

We shall label max and C in such a way that the three occurrences of c and the two
occurrences of max in this sequence get distinct labels. A possible choice is Smax = {I, 2}
and Se = {I, 2, 3} and

{ ~ ifx2::y
1r,(x,y,z) = { ~ ifz>O

1rmax(x, y) = ifz=Ol\x<y
ifx<y

if z = Ol\x 2:: y.

Now MAXis
maxl(x, y) -+ Cl (x, y, x 2:: y)
max2(x, y) -+ C2(X, y, x 2:: y)
x2::0 -+ true
o 2:: s(x) -+ false
8(X) 2:: s(y) -+ x2::y
Cl (x, y, true) -+ x
C2(X, y, false) -+ maxl(y, x)
C3(X, y, false) -+ maxl(y, x)
C3(X, y, false) -+ max2(y, x)

and can be proved to be terminating by RPO using the precedence

C3 > max2 > C2 > maXI > Cl > 2:: > true > false.

Example 4.
In the system

(x * y) * z
(x+y)*z
x * (y + J(z))

-+ x*(y*z)
-+ (x * z) + (y * z)
-+ g(x, z) * (y + a)

from [3] we can force that the symbols '*' in the last rule get distinct labels by choosing
the model {I, 2} and defining aM = 1, JM(X) = 2, 1r*(x, y) = x +M Y = y, X *M Y = 1 for
all x, y = 1,2. The labelled system is

(X*IY)*I Z -+ X *1 (y *1 z)
(X*IY)*2 Z -+ X *1 (y *2 z)
(X*2Y)*I Z -+ X *1 (y *1 z)
(x *2 y) *2 Z -+ X *1 (y *2 z)
(X+Y)*I Z -+ (x *1 z) + (y *1 z)
(x + y) *2 Z -+ (x *2 z) + (y *2 z)
X *2 (y + J(z)) -+ g(x, z) *1 (y + a)

and is proved terminating using RPO: give *1 a lexicographic status, choose *2 to be
greater than all the other symbols and choose *1 > +.

8

Example 5.
In the 'fact' system from the introduction choose M = 1\1, OM = 0, SM(X) = X+l,PM(O) =

0, and PM(X) = x -1 for x > O. Further choose X*M Y = x*y and factM(x) = xl. Clearly
M is a model for the system; by labelling fact with the naturals and choosing 1I"fact(x) = x
we get the labelled version

facti+1(S(X))
p(s(O))
p(s(s(x)))

-+ facti(p(S(X))) * s(x)
-+ a
-+ s(p(s(x)))

in which the first line stands for infinitely many rules, one for every i E 1\1. An in
terpretation in N proving termination is [0] = 0, [s](x) = x + 1, [P](x) = 2x,x[*]y =
x + y, [facti] (X) = 4i * X.

4 Rewriting modulo equations

In this section we show how theorem 4 extends to rewriting modulo equations.

Theorem 5 Let M be a model for a TRS R over F. Choose for every f E F a non
empty set Sf of labels and a map 1I"f : Mn -+ Sf, where n is the arity of f. Define R as
in section 2. Let Fu = {f E FI#Sf = I}. Let £ be any set of equations over Fu that hold
in M. Then R is terminating modulo £ if and only if R is terminating modulo £.

Proof: Assume R allows an infinite reduction modulo £:

Then removing all labels yields an infinite reduction in R modulo £.
On the other hand assume R allows an infinite reduction modulo £:

Choose (j : X -+ M arbitrarily. Similar to the proof of lemma 3 one proves that

lab(t, (j) -£ lab(t', (j)

for any t, t' satisfying t =£ t'. From this observation and lemma 3 we conclude that R
allows an infinite reduction modulo £:

o

In section 7 we present an application of this theorem. Note that all operation symbols
in £ are required to be unlabelled. This restriction is essential: otherwise the theorem
does not hold without introducing extra restrictions. For instance, for the system

(X+y)+z -+ x+(y+z)

9

we can choose the model of positive integers in which + is interpreted as addition, which
is commutative. If we choose 7r+(x, y) = x, then the infinite labelled system is eas
ily proved to be terminating modulo commutativity by the polynomial interpretation
X[+i]Y = x + Y + i. However, the original system is not terminating modulo commutativ
ity.

Theorem 5 can be extended to allow £ to contain commutativity of labelled symbols if
7r f is required to be symmetric for these symbols. For other equations on labelled symbols
it is not clear how it can be extended.

5 Quasi-models

In this section we give an extension of theorem 4 in the sense that M is not required to
be a model for R any more. As a motivation consider the following TRS introduced in
[4] for showing that completeness is not a modular property:

f(a,b,x) -+ f(x,x,x)
f(x, y, z) -+ c
a -+ c
b -+ c.

Clearly this system is closely related to example 2 of section 3. However, it does not
allow any non-trivial model since in all models any term has the same interpretation as
c. So theorem 4 is not helpful for proving termination of this system; using the extension
presented in this section it is easily proved.

Until now the model M and label sets Sf were sets. Here we require them to be well
founded posets. The maps f M and 7r f have to be weakly monotone in all coordinates.
Until now M was required to be a model for the TRS, meaning that the interpretation of
a left hand side of a rule is always equal to the interpretation of the corresponding right
hand side. Here M is only required to be a quasi-model for the TRS, meaning that the
interpretation of a left hand side of a rule is ~ the interpretation of the corresponding
right hand side. Before presenting the theorem we give some definitions and lemmas.

Let M be an F-algebra provided with a well-founded partial order ~ for which each
algebra operation is weakly monotone in all coordinates, more precisely: for all operation
symbols f E F and all aI, ... ,an, bl , ... , bn E M satisfying ai ~ bi for all i, we have

For all f E F let Sf be any set, again provided with a well-founded partial order ~. For
all f E F of arity n let 7rf : Mn -+ Sf any map that is weakly monotone in all coordinates.
Define <p, lab and F as in section 2. Let R be a TRS over F. We say that the F-algebra
M is a quasi-model for R if

<PM(l, a) ~ <PM(r, a)

for all a : X -+ M and all rules l -+ r of R. As in section 2 we define R to be the TRS
over F consisting of the rules

lab(l, a) -+ lab(r, a)

10

for all a : X ---t M and all rules l ---t r of R. Further the TRS Deer over F is defined to
consist of the rules

fs(xl, •• ' ,xn) ---t fsl(xl,'" ,xn)

for all f E F and all s, s' E Sf satisfying s > s'. Here > denotes the strict part of 2:.

Lemma 6 Let M be a quasi-model for R. Let t, t' E T(F, X) satisfy t ---t R t'. Then
¢(t, a) 2: ¢(t',a) for all a: X ---t M.

Proof: If t = [T and t' = rT for some rule [---t r of R and some T : X ---t T(F, X) the
assertion follows from lemma 1 and the definition of quasi-model.

Let t ---tR t' and ¢(t, a) 2: ¢(t',a); we still have to prove that

¢(f(... , t, .. .), a) 2: ¢(f(... , t', .. .), a)

for all f E F and all a : X ---t M. This follows from the definition of ¢ and the fact that
f M is weakly monotone in all coordinates. 0

Lemma 7 Let M be a quasi-model for R. Let t, t' E T(F, X) satisfy t ---t R t'. Then for
all a : X ---t M there is a term u over F such that

lab(t, a) ---tOeer u ---tJi lab(t', a).

Proof: If t = rand t' = rT for some rule l ---t r of R and some T : X ---t T(F, X) we
obtain from lemma 2

hence the assertion holds.
Write~ for the composition of ---tOeer and ---tR- Let t ---tR t' and lab(t, a) ~ lab(t', a).

We still have to prove that

lab(f(... ,t, ...), a) ~ lab(f(... , t', . ..), a).

According to lemma 6 and the fact that 7r f is weakly monotone in all coordinates, we
obtain

Hence

o

7rf(' .. , ¢(t, a), ...) 2: 7rf(' .. , ¢(t', a), .. .).

lab(f(... , t, .. .), a) f7rf(... ,</>(t,a), ... l .. , lab(t, a), ...)
---tOeer f7rf(...,<!>(tl,a), ...)(•.. , lab(t, a), ...)
~ f7rf(... ,</>(tl,a), ... l .. ,Iab(t', a), ...)

lab(f(... , t', .. .), a).

Theorem 8 Let M be a quasi-model for a TRS R over F. Let R and Deer be as above
for any choice of Sf and 7r f. Then R is terminating if and only if R u Deer is terminating.

11

Proof: Assume RuDeer allows an infinite reduction. Since the order on Sf is well-founded
for all f E F, the system Deer is terminating. So the infinite reduction of RuDeer contains
infinitely many R-steps. Then removing all labels yields an infinite reduction of R.

On the other hand assume that R allows an infinite reduction. Then applying lab
for a fixed substitution on this infinite reduction yields an infinite reduction of R U Deer
according to lemma 7. 0

This proof is very similar to the proof of theorem 4. In fact theorem 4 can be considered
as a special case of theorem 8 by choosing the discrete order (Le., x ~ y if and only if
x = y) on both M and Sf. In this special case the requirements of weak monotonicity
are trivially fulfilled, the notions of model and quasi-model coincide, and the TRS Deer
is empty.

Again consider the TRS introduced at the beginning of this section. The constant
e serves as a bottom element: anything can be rewritten to e, but not the other way
around. The elements a and b are essentially distinct. So choose the model M to consist
of three elements a, band e with a > e and b > e; a and b are incomparable. By choosing
aM = a, bM = b, eM = e and fM(X, y, z) = e for all x, y, z we have a quasi-model. Define
Sf = {O, 1} with 1 > 0, and

ifx=al\y=b
otherwise.

One easily checks that 7r f is weakly monotone in all three coordinates. Now R consists of
the rules

h(a, b, x) -+ fo(x, x, x)
fo(x, y, z) -+ e
h(x,y,z) -+ e
a -+ e
b -+ e

and Deer consists of the rule

h(x, y, z) -+ fo(x, y, z).

The system R U Deer is easily proved to be terminating by choosing the interpretation

[a] = [b] = 2, [e] = 1, [Jo](x, y, z) = x + y + z, [fd(x, y, z) = x + y + 3z

over the positive integers. Hence according to theorem 8 the original system is terminating.
In Appendix A of [2] termination of the TRS describing an algebra of communicating

processes was proved by first transforming it to another TRS. This transformation is
a particular case of our construction, and the proof of preservation of termination is a
particular case of theorem 8.

One can wonder whether it is essential in theorem 8 to add the system Deer to the
labelled system. It is indeed; consider the following example: R consists of one rule

f(g(x)) -+ g(g(f(f(x)))).

12

Choose M = Sf = {O, 1} with 0 < 1, let fM(X) = 1 and gM(X) = 0 for all x. Clearly M
is a quasi-model for R. Choose 7r f to be the identity which is clearly monotone. Then the
system R consists of the two rules

fo(g(x)) -+ g(g(JI(fo(x))))
fo(g(x)) -+ g(g(fI(JI(X))))

and is terminating: choose the interpretation

[fo](x) = 3x, [fl](X) = x, [g](x) = x + 1

over the positive integers. However, R is not terminating since it allows the infinite
reduction

f(f(g(x))) -+ f(g(g(f(f(x))))) -+ g(g(f(f(g(f(f(x))))))) -+
"-.--"

By similar examples one can show that weak monotonicity of both f M and 7r f are essential.

6 Monotone algebras

A well-founded monotone F-algebra (A, » is defined to be an F-algebra A for which the
underlying set is provided with a well-founded strict partial order> and each algebra
operation is strictly monotone in all of its coordinates, more precisely: for each operation
symbol f E F and all aI, ... , am bl , ... ,bn E A for which ai > bi for some i and aj = bj
for all j =I i we have

fA(aI, ... , an) > fA(bl , ... , bn).

Note the difference with the partial orders as they occurred in section 5: there operations
were weakly monotone and here they are strictly monotone.

We define the partial order> A on T(F, X) as follows:

where CPA is defined as in section 2. Intuitively: t > A t' means that for each interpretation
of the variables in A the interpreted value of t is greater than that of t'.

In [17] the following characterization of termination was given.

Theorem 9 A TRS Rover F is terminating if and only if there is a non-empty well
founded monotone F-algebra (A, » for which 1 > A r for every rule 1 -+ r of R.

If I > A r for every rule I -+ r of R we say that (A, » is compatible with R. Using
this characterization we now sketch alternative proofs of theorems 4 and 8; in fact this
was the line along which semantic labelling was discovered. Since theorem 4 is a special
case of theorem 8 we concentrate on theorem 8. The interesting direction of the theorem
is proving termination of R from termination of R U Deer. So assume that R U Deer is
terminating. Then it admits a compatible well-founded monotone F-algebra (A, ». We
define the well-founded monotone F-algebra (A, » by choosing A = M x A as the carrier

13

set, where M is the carrier set of the model M and A is the carrier set of (A, ». As the
order we define

(m, a) > (m', a') {=::} m 2: m' 1\ a > a';

clearly it is well-founded. As operations we choose

where s = 1TAml, ... , m n). It can be checked straigtforwardly that (A, » is compatible
with R, so R is terminating.

A similar proof of theorem 5 using theorem 9 can be given, even of a "quasi-model"
version of theorem 5, generalizing both theorem 8 and theorem 5.

7 Semantic path order

Let t be any quasi-ordering on terms, i.e., t is reflexive and transitive. Write t >- u for
t t u and not u t t, and write t ~ u for t t u and u t t. The quasi-ordering t is called
well-founded if the strict partial order >- is well-founded. The semantic path order tspo

on terms is defined recursively as follows: s = f(s1.' .. ,sm) tspo g(tl,' .. ,tn) = t if and
only if one of the following conditions holds

• Si tspo t for some i = 1, ... ,m,

• s>- t and s >-spo tj for allj = 1, ... ,n,

where u >-spo u' means u tspo u' and not u' tspo u, and tM,spo is the multiset ordering
induced by tspo' The basic theorem ([7, 3]) motivating this order is the following:

Theorem 10 A TRS R is terminating if and only if there is a well-founded quasi-ordering
t on terms such that t ---+ R U =} f(... , t, ...) t f(... , u, ...) holds for all terms and
lCT >- spo rCT holds for all rules l ---+ r in R and all substitutions a.

If 2: is a well-founded quasi-ordering on the set :F of operation symbols and >- is
defined by

f(sl, ... ,sm) t g(t1 , .. . ,tn) {=::} f 2: g

then the corresponding semantic path order is called recursive path order (RPO). A recent
extension of semantic path order is given in [5].

For practical applications the following observations are useful. Define the subterm
relation ~ recursively by s ~ t = f(t 1 , • .. ,tn) if and only if s = t or :Ji : s ~ k Write
set for s ~ t 1\ s =1= t. If t C s then we may conclude s >-spo t. Further if for all u ~ t we
have either s >- u or u C s we also may conclude that s >-spo t. The 'only if' part of the
theorem easily follows from this observation by defining

s t t {=::} 3u: s ---+ * u 1\ t ~ u.

14

A typical example of a termination proof by semantic path order is found in [3]:

x * (y + 1)
x*l
x+O
x*O

~ (x * (y + (1 * 0))) + x
~ x
~ x
~ 0

which is not simply terminating. The semantic path order is defined as follows. First
choose the obvious model M in which M consists of the natural numbers and 0,1, +, *
are interpreted as 0,1, +, *. Next define s !:: t if and only if either the head symbol of t is
not '*', or

s = 81 * 82 1\ t = t1 * t2 1\ \:f(7 : ¢(82' (7) 2: ¢(t2' (7).

Here ¢ is defined as in section 2. Now one can check all proof obligations of theorem 10,
concluding that the system is terminating.

Using similar ingredients we can give a termination proof of the same system by
semantic labelling: choose the same M, label '*' by the naturals and define 7r*(x, y) = y.
The resulting labelled system is

X *i+1 (y + 1)
x *11
x+O
x *0 0

~ (x *i (y + (1 *0 0))) + x
~ x
~ x
~ 0

for all i 2: O. We can give the termination proof of this labelled system by RPO. Then the
structure of the complete termination proof is essentially the same as that of Dershowitz;
labelling is only used to split up the definition of !:: in two layers.

However, we are not forced to use a path order like approach to prove termination
of the labelled system, for example the interpretation in the naturals 2: 2 defined by
[0] = [1] = 2, x[+]y = x+y, xhly = x*(y+4i) provides another termination proof. In this
latter approach the symbol '+' is interpreted by a commutative and associative operation,
so the labelled system is even terminating modulo commutativity and associativity of
'+'. Also in the model M the operation + is commutative and associative. According
to theorem 5 we conclude that the original system is terminating modulo commutativity
and associativity of '+'.

Finally, using the latter approach one easily proves by induction on the depth that a
term of depth d can not have reductions of length greater then 22C

*d for some constant
C. Semantic path order does not provide tools for deriving such bounds.

8 Conclusions and further research

We introduced semantic labelling as a new technique for proving termination of term
rewriting systems. The starting point is a model for a TRS, i.e., a model in which each
left hand side of a rewrite rule has the same value as the corresponding right hand side. An
operation symbol in a term can now be labelled in a way depending on the interpretation
of its arguments in the model. This is applied to all rewrite rules. We proved that the
labelled TRS is terminating if and only if the original TRS is terminating. We illustrated

15

this new technique for proving termination by several examples. In the typical case the
TRS whose termination has to be proved is not simply terminating, while the labelled
TRS is proved terminating by RPO or by an interpretation in the natural numbers.

Globally we distinguish two ways of using this technique. In the first way we choose
a model which reflects the original semantics of the TRS, e.g., for a system describing
quicksort we choose lists and in a system describing the factorial function we choose the
natural numbers. In the second way we choose an artificial finite model reflecting syntactic
properties we recognize in the rewrite rules. For example, in a rule

... f(g(·· .))... -+ ... f(h(·· .)) ...

the 1's can be forced to obtain distinct labels by choosing the images of g and h in the
model to be distinct. In section 5 we saw that the requirement of having a model for
the TRS can essentially be weakened. This technique also works for termination modulo
equations.

The technique of semantic labelling is hard to automate since it depends on either the
knowledge of a semantic model or on heuristics for choosing a model in a syntactic way.
A promising approach of using labelling without any model to avoid this drawback is the
following. Choose the labelling in which every operation symbol in a term is labelled by
the head symbols of its direct subterms. If the original signature is finite then the labelled
signature is still finite. By applying the basic version of Kruskal's theorem to this labelled
signature, the following generalization of Kruskal's theorem over finite signatures can be
derived:

Let E consist of all rewrite rules

for all operation symbols f and all contexts C. Then -+ E is a well-quasi order.

If we replace E by the system Emb(F) as introduced in section 2 we obtain the ba
sic version of Kruskal's theorem. However, E is more restrictive than Emb(F) , so this
theorem is more powerful than the basic version. For example, it succeeds in ordering
f(f(x)) > f(g(f(x))) (as in the approach of [13, 12]) and even f(O, 1, x) > f(x, x, x).

References

[1] BELLEGARDE, F., AND LESCANNE, P. Termination by completion. Applicable
Algebra in Engineering, Communication and Computing 1, 2 (1990), 79-96.

[2] BERGSTRA, J. A., AND KLOP, J. W. Algebra of communicating processes with
abstraction. Theoretical Computer Science 37, 1 (1985), 77-12l.

[3] DERSHOWITZ, N. Termination of rewriting. Journal of Symbolic Computation 3, 1
and 2 (1987),69-116.

[4] DROSTEN, K. Termersetzungssysteme, vol. 210 of Informatik-Fachberichte. Springer,
1989.

16

[5] GESER, A. On a monotonic semantic path order. Tech. Rep. 92-13, University of
Ulm, 1992.

[6] GNAEDIG, I. Termination of order-sorted rewriting. In Algebraic and Logic Program
ming (1992), H. Kirchner and G. Levi, Eds., vol. 632 of Lecture Notes in Computer
Science, Springer, pp. 37 - 52.

[7] KAMIN, S., AND LEVY, J. J. Two generalizations of the recursive path ordering.
University of Illinois, 1980.

[8] KAPLAN, S. Simplifying conditional term rewriting systems: unification, termination
and confluence. Journal of Symbolic Computation 4, 3 (1987), 295-334.

[9] KURIHARA, M., AND OHUCHI, A. Modularity of simple termination of term rewrit
ing systems. Journal of IPS Japan 31, 5 (1990), 633-642.

[10] LESCANNE, P. Well rewrite orderings and well quasi-orderings. Journal of Symbolic
Computation 14 (1992), 419-435.

[11] OHLEBUSCH, E. A note on simple termination of infinite term rewriting systems.
Tech. Rep. 7, Universitat Bielefeld, 1992.

[12] PUEL, L. Embedding with patterns and associated recursive path ordering. In
Proceedings of the 3rd Conference on Rewriting Techniques an Applications (1989),
N. Dershowitz, Ed., vol. 355 of Lecture Notes in Computer Science, Springer, pp. 371-
387.

[13] PUEL, L. Using unavoidable sets of trees to generalize Kruskal's theorem. Journal
of Symbolic Computation 8 (1989), 335-382.

[14] STEINBACH, J. Extensions and comparison of simplification orderings. In Proceed
ings of the 3rd Conference on Rewriting Techniques an Applications (1989), N. Der
showitz, Ed., vol. 355 of Lecture Notes in Computer Science, Springer, pp. 434-448.

[15] STEINBACH, J., AND KUHLER, U. Check your ordering - termination proofs and
open problems. Tech. Rep. SR-90-25, University of Kaiserslautern, 1990.

[16] TOYAMA, Y. Counterexamples to termination for the direct sum of term rewriting
systems. Information Processing Letters 25 (1987), 141-143.

[17] ZANTEMA, H. Termination of term rewriting by interpretation. In Conditional
Term Rewriting Systems, proceedings third international workshop CTRS-92 (1993),
M. Rusinowitch and J. Remy, Eds., vol. 656 of Lecture Notes in Computer Science,
Springer, pp. 155-167. Full version appeared as report RUU-CS-92-14, Utrecht Uni
versity.

17

