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Abstract 

A new kind of transformation of TRS's is proposed, depending on a choice for a 
model for the TRS. The labelled TRS is obtained from the original one by labelling 
operation symbols, possibly creating extra copies of some rules. This construction 
has the remarkable property that the labelled TRS is terminating if and only if 
the original TRS is terminating. Although the labelled version has more operation 
symbols and may have more rules (sometimes infinitely many), termination is often 
easier to prove for the labelled TRS than for the original one. This provides a 
new technique for proving termination, making classical techniques like RPO and 
polynomial interpretations applicable for non-simplifying TRS's. 

1 Introduction 

The well-known quicksort algorithm can be described as a term rewriting system (TRS) 
as follows: 

qsort(nil) ---+ nil 
qsort(x : y) ---+ qsort(low(x, y)) 0 (x: qsort(high(x, y)) 
low(x, nil) ---+ nil 
low(x, y : z) ---+ if(y:s x, y : low(x, z), low(x, z» 
high(x, nil) ---+ nil 
high(x, y : z) ---+ if(y :::; x, high(x, z), y : high(x, z») 
0:::; x ---+ true 
s(x) :::; 0 ---+ false 
s(x) :::; s(y) ---+ x:::;y 
if(true, x, y) ---+ x 
if(false, x, y) ---+ y. 

Here x : y can be interpreted as the list obtained by putting the element x in front of the 
list y, '0' can be interpreted as list concatenation, low(x, y) removes the elements from y 
that are greater than x, and high(x, y) removes the elements from y that are less or equal 

*This is an extended and revised version of technical report RUU-CS-92-38, appeared in December 
1992. 
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than x. This TRS corresponds to a functional program implementing quicksort on natural 
numbers. Termination of this program is not difficult to see: for each recursive call of 
low and high the length of the right argument strictly decreases. Further the lengths of 
low(x, y) and high(x, y) are less or equal than the length of y, and hence for each recursive 
call of qsort the length of the argument strictly decreases. 

However, if we forget about the semantics of the terms being lists and numbers, then 
proving termination of the TRS is not that easy any more. Standard techniques like re
cursive path order (RPO) fail. We should like to have a technique for proving termination 
of a TRS making use of the semantics of the TRS. One technique doing so is semantic 
path order ([7, 3]). It can be seen as a generalization of RPO and is discussed in section 
7. 

In this paper we describe another technique: given a TRS having some semantics, we 
introduce a labelling of the operation symbols in the TRS depending on the semantics 
of their arguments. We do this in such a way that termination of the original TRS is 
equivalent to termination of the labelled TRS. The labelled TRS has more operation 
symbols than the original TRS, and often more rules, sometimes even infinitely many. 
The original TRS can be obtained from the labelled TRS by removing all labels and 
removing multiple copies of rules. Although the labelled TRS is greater in some sense 
than the original one, in many cases termination of the labelled version is easier to prove 
than termination of the original one. We propose proving termination of a TRS by 
proving termination of a particular labelled version as a new method. This method we 
call semantic labelling. 

For instance, in the quicksort system we can label every symbol 'qsort' by the length 
of the list interpretation of its argument. We obtain infinitely many distinct operation 
symbols 'qsort/ instead of one symbol 'qsort'j the other operation symbols do not change. 
The labelled TRS is obtained from the original one by replacing the first two rules by the 
rule 

qsorto( nil) -t nil 

and infinitely many rules 

qsorti(x : y) -t qsortj(low(x, y)) 0 (x : qsortk(high(x, y))) 

for natural numbers i,j, k satisfying j < i and k < i. Since the labels occurring in the 
left hand sides are all strictly greater than the labels occurring in the corresponding right 
hand sides, it is easy to prove termination of the labelled system by a recursive path order 
on a precedence satisfying qsorti+l > qsorti for all i. 

Our method is helpful for TRS's that are not simply terminating. The very simplest 
exam pIe is the system 

f(f(x)) -t f(g(f(x))). 

We can choose a model of two elements and obtain the labelled system 

/2(h(x)) -t h(g(h(x))) 
/2(/2(x)) -t h(g(/2(x))) 
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of which simple termination is very easily proved. Less artificial is the factorial example: 

fact(s(x)) -+ fact(p(s(x))) * s(x) 
p(s(O)) -+ 0 
p(s(s(x))) -+ s(p(s(x))). 

This system is not simply terminating. However, by semantic labelling it transforms to 
another system that is easily proved to be simply terminating by standard techniques as 
we shall see in section 3. A nice source of examples is [15J. 

Semantic labelling is also helpful for proving termination of TRS's that don't have 
obvious semantics, but for which particular patterns can be recognized in the rewrite 
rules. The system f(J(x)) -+ f(g(J(x))) can be considered ofthis type; we shall give more 
interesting examples. This approach is closely related to typing the operation symbols 
and proving termination of the resulting order-sorted system as discussed in [6J. Other 
approaches of proving termination of non-simply terminating systems in a syntactic way 
can be found in [13, 12, 1, 10J. 

The technique of semantic labelling does not restrict to plain TRS's. In section 4 
we show that the same construction and the preservation of termination behaviour also 
holds for term rewriting modulo equations. Further semantic labelling serves well for 
completion of an equational specification: if the original equations hold in the model we 
want to use, the same holds for all critical pairs emerging during the completion process, 
and all these critical pairs can be labelled and oriented using a termination order we have 
for labelled terms. 

In section 5 we present an extension of the theory in which the requirement of having 
a model is weakened. In a model the left hand side of any rule has to be equal to the 
corresponding right hand side; in this extension the left hand side is allowed to be greater 
than the corresponding right hand side. 

Semantic labelling does not only provide termination proofs; it can also be used for 
proving bounds on reduction lengths. By labelling the length of a reduction does not 
change. So if we have a bound on the reduction lengths in the labelled version, such a 
bound can be used to prove a bound for the unlabelled version. Semantic labelling also 
holds for other properties like confluence, in the sense that confluence of a TRS follows 
from confluence of its labelled version. However, we do not know examples of confluence 
proofs that are simplified by this observation. 

In sections 6 and 7 we compare semantic labelling with existing techniques and char
acterizations of TRS termination. In section 8 we sketch how labelling leads to a general
ization of Kruskal's theorem, and can be a starting point for purely syntactical RPO-like 
orderings having the power to prove termination of systems that are not simply termi
nating. 

2 The basic theorem 

Let F be a set of operation symbols, each having a fixed arity ~ o. We define an 
F-algebra M to consist of a set M (the carrier set) and for every f E F of arity n a 
function 1M : Mn -+ M. In the following we fix an F-algebra M. 
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Let X be a set of variable symbols. Let M X 

¢M : T(F, X) x M X -+ M inductively by 

a(x), 

{ a X -+ M}. We define 

¢M(X, a) 

¢M(f(t l , ... , tn), a) IM(¢M(t l , a), ... , ¢M(tn, a)) 

for x E X, a : X -+ M, f E F, t l , ... , tn E T(F, X). This means that ¢M( -, a) is the 
homomorphic extension of a to general terms. If it is clear which model is involved, we 
write simply ¢ instead of ¢M. The function ¢ satisfies the following useful property. 

Lemma 1 Let a : X -+ M and let T : X -+ T(F, X). Define a' : X -+ M by a'(x) = 
¢(T(X), a). Then 

Proof: By induction on the structure of t. 0 

Next we introduce labelling of operation symbols: choose for every f E F a corre
sponding non-empty set Sf of labels. Now the new signature F is defined by 

where the arity of Is is defined to be the arity of I. An operation symbol I is called 
labelled if Sf contains more than one element. For unlabelled I the set Sf containing only 
one element can be left implicit; in that case we shall often write I instead of Is. 

Choose for every f E F a map 7r f : Mn -+ Sf, where n is the arity of f. This map 
describes how a function symbol is labelled depending on the values of its arguments as 
interpreted in M. For unlabelled I this function trf can be left implicit. We extend the 
labelling of operation symbols to a labelling of terms by defining lab: T(F, X) x M X -+ 
T(F, X) inductively by 

lab(x, a) 

lab(f(tl' ... ,tn ), a) 
x, 

for x E X, a : X -+ M, I E F, t l , ... , tn E T(F, X). This labelling of terms satisfies the 
following property. 

Lemma 2 Let a : X -+ M and let T : X -+ T(F, X). Define a' : X -+ M by a'(x) = 
¢(T(X), a), and define 7: X -+ T(F, X) by 7(X) = lab(T(x), a). Then 

labW",a) = lab(t,a')T. 

Proof: By induction on the structure of t. If t is a variable the lemma follows from the 
definition of 7. If t = I(t l , ... ,tn) we obtain 

lab( tT 
, a) = lab(f (tI, ... , t~), a) = f7r/(<!>(tr ,<T),""",cf>(t:;,<T» (Iab( tI, a), ... , lab( t~, a)) 

and 
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The labels of f are equal due to lemma 1 and the arguments are equal due to the induction 
hypothesis. Hence both terms are equal. 0 

Let R be a TRS over F. We say that an F-algebra M is a model for R if 

for all (J : X -+ M and all rules I -+ r of R. 
Fix an F-algebra M together with corresponding sets Sf and functions 1rf. For any 

TRS Rover F we define R to be the TRS over F consisting of the rules 

lab(I, O") -+ lab(r, 0") 

for all 0" : X -+ M and all rules I -+ r of R. Note that if R and all Sf are finite, then 
R is finite too. The following lemma states how reduction over R can be transformed to 
red uction over R. 

Lemma 3 Let M be a model for R. Let t, t' E T(F, X) satisfy t -+R t'. Then 

lab(t,O") -+li lab(t',O") 

for all 0" : X -+ M. 

Proof: If t = IT and t' = rT for some rule I -+ r of R and some T : X -+ T(F, X) we 
obtain from lemma 2 

lab(t,O") = lab(l, 0"')7'" -+li lab(r, 0"')7'" = lab(t', 0"), 

since lab(I,O"') -+ lab(r, 0"') is a rule of R. 
Let t -+R t' and lab(t,0") -+li lab(t',O"). We still have to prove that 

lab(f( ... ,t, . . . ),0") -+li lab(f( ... , t', . . . ),0"). 

Since M is a model for R we know that ¢(t,O") = ¢(t', 0"). We obtain 

lab(f( ... , t, ... ),0") - f7ff( ... ,.p(t,u), ... )( ... , lab(t, 0"), ... ) 
f7ff(. .. ,.p(t',u), ... )( ... , lab(t, 0"), ... ) 

-+Ii f7ff( ... ,.p(tl,u), ... )( ... , lab(t', 0"), ... ) 
lab(f( ... , t', ... ),0"). 

o 

As usual, a TRS R is defined to be terminating if it does not admit infinite reductions 

In the literature a terminating TRS is also called strongly normalizing or noetherian. Now 
we arrive at the main theorem of this paper. 
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Theorem 4 Let M be a model for a TRS R over F. Choose for every f E F a non
empty set Sf of labels and a map 7ff : Mn -+ Sf, where n is the arity of f. Define R as 
above. Then R is terminating if and only if R is terminating. 

Proof: Assume R allows an infinite reduction. Then removing all labels yields an infinite 
reduction in R. 

On the other hand assume R allows an infinite reduction 

Choose a : X -+ M arbitrarily. Then according to lemma 3 R allows an infinite reduction 

o 

In section 6 an alternative proof of this theorem is proposed. One can wonder whether 
similar theorems hold for other interesting properties like confluence, weak confluence and 
weak normalization. Due to lemma 3 and the trivial counterpart (removing labels in an 
R-reduction yields an R-reduction) it is not difficult to prove that if R is confluent, weakly 
confluent or weakly normalizing, then R satisfies the same property. However, we do not 
know examples in which these observations are helpful for proving these properties; in the 
typical case the proof obligations for R are similar or more complicated than for R. 

Before giving a list of examples of termination proofs using theorem 4 we briefly discuss 
the notion of simple termination. For a set F of operation symbols define Emb( F) to be 
the TRS consisting of all the rules 

with f E F and i E {I, ... ,n}. A TRS Rover F is defined to be simply terminating if 
RUEmb(F) is terminating. In the literature ([9, 11, 17]) some other equivalent definitions 
appear. If F is finite it is also equivalent to the notion of a simplifying TRS ([8]); if F is 
infinite there is a slight difference (see [11]). However, for the scope of this paper it suffices 
to see that some terminating TRS's are not simply terminating using our definition, and 
to know that standard techniques like RPO and KBO, both with status (see e.g. [14]), 
and polynomial interpretations, all fail for TRS's that are not simply terminating. 

3 Examples 

Example 1. 
The simplest example R of a terminating TRS that is not simply terminating is 

f(f(x)) -+ f(g(f(x))). 

Intuitively termination of this system is not difficult: at every step the number of operation 
symbols f of which the argument is again a term with head symbol f decreases. This idea 
can be transformed directly to a semantic labelling: define the model M with M = {I, 2}, 
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and IM(X) = 2 and gM(X) = 1 for x = 1,2. Choose Sf = {I, 2} and trf is the identity; 
choose 9 to be unlabelled. Then R is 

!2(/I(x)) -+ 11(g(/I(X))) 
!2 (f2 (x)) -+ 11(g(!2(X))); 

the first rule is obtained by choosing a(x) = 1, the second by choosing a(x) = 2. Termina
tion of R is easily proved by counting the number of !2 symbols. Also recursive path order 
and polynomial interpretations ([/I](x) = [g](x) = x, [J2](X) = x + 1) suffice for proving 
termination. Using theorem 4 we conclude that the original system R is terminating too. 

Example 2. 
Consider the TRS 

I(O,l,x) -+ I(x,x,x) 

from [16]. This system is not simply terminating. For proving termination we want to 
use the observation that in the left hand side the first and the second argument of 1 are 
distinct while in the right hand side they are equal. This distinction is made by choosing 
Sf = {1,2} and 7rf(x, y, z) = 1 if x = y and 7rf(x, y, z) = 2 if x =1= y. We still need any 
model in which 0 and 1 are indeed distinct; a simple one is M = {O, I} with OM = 0, 
1M = 1, and IM(X, y, z) = 0 for x, y, z = 0,1. Now we obtain the labelled system 

!2(O,l,x) -+ /I(x,x,x) 

which is easily proved to be terminating by any standard technique. 

Example 3. 
A valid definition of the function max to compute the maximum of two natural numbers 

is the following: if x ~ y then max(x,y) = x, otherwise max(x,y) = max(y, x). This 
definition can be transformed to the following TRS MAX: 

max(x, y) -+ c(x, y, x ~ y) 
x ~ 0 -+ true 
o ~ s(x) -+ false 
s(x) ~ s(y) -+ x ~ y 
c(x, y, true) -+ x 
c(x, y, false) -+ max(y, x). 

This system is not simply terminating since by adding the rule x ~ y -+ x which is in 
Emb(F) we obtain the infinite reduction 

max(false, false) -+ c(false, false, false ~ false) 

-+ c(false, false, false) -+ max(false, false) -+ .... 

However, MAX can be proved to be terminating by semantic labelling. As a model M we 
choose the natural numbers in which we identify true and false by 1 and 0, respectively. 
More precisely: M = N, maxM(x, y) = max(x, y), trueM = 1, falseM = 0, OM = 
0, sM(x)=x+1, 

{

X ifz>O 
CM(X, y, z) = max(x, y) if z = 0 ' 
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One easily checks that M is indeed a model for MAX. We still have to find an appropriate 
labelling; consider the reduction 

C(8(0), 0, false) -+ max(O, 8(0)) -+ + c(O, 8(0), false) -+ max(8(0), 0) -+ + c(s(O), 0, true). 

We shall label max and C in such a way that the three occurrences of c and the two 
occurrences of max in this sequence get distinct labels. A possible choice is Smax = {I, 2} 
and Se = {I, 2, 3} and 

{ ~ ifx2::y 
1r,(x,y,z) = { ~ ifz>O 

1rmax(x, y) = ifz=Ol\x<y 
ifx<y 

if z = Ol\x 2:: y. 

Now MAXis 
maxl(x, y) -+ Cl (x, y, x 2:: y) 
max2(x, y) -+ C2(X, y, x 2:: y) 
x2::0 -+ true 
o 2:: s(x) -+ false 
8(X) 2:: s(y) -+ x2::y 
Cl (x, y, true) -+ x 
C2(X, y, false) -+ maxl(y, x) 
C3(X, y, false) -+ maxl(y, x) 
C3(X, y, false) -+ max2(y, x) 

and can be proved to be terminating by RPO using the precedence 

C3 > max2 > C2 > maXI > Cl > 2:: > true > false. 

Example 4. 
In the system 

(x * y) * z 
(x+y)*z 
x * (y + J(z)) 

-+ x*(y*z) 
-+ (x * z) + (y * z) 
-+ g(x, z) * (y + a) 

from [3] we can force that the symbols '*' in the last rule get distinct labels by choosing 
the model {I, 2} and defining aM = 1, JM(X) = 2, 1r*(x, y) = x +M Y = y, X *M Y = 1 for 
all x, y = 1,2. The labelled system is 

(X*IY)*I Z -+ X *1 (y *1 z) 
(X*IY)*2 Z -+ X *1 (y *2 z) 
(X*2Y)*I Z -+ X *1 (y *1 z) 
(x *2 y) *2 Z -+ X *1 (y *2 z) 
(X+Y)*I Z -+ (x *1 z) + (y *1 z) 
(x + y) *2 Z -+ (x *2 z) + (y *2 z) 
X *2 (y + J(z)) -+ g(x, z) *1 (y + a) 

and is proved terminating using RPO: give *1 a lexicographic status, choose *2 to be 
greater than all the other symbols and choose *1 > +. 
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Example 5. 
In the 'fact' system from the introduction choose M = 1\1, OM = 0, SM(X) = X+l,PM(O) = 

0, and PM(X) = x -1 for x > O. Further choose X*M Y = x*y and factM(x) = xl. Clearly 
M is a model for the system; by labelling fact with the naturals and choosing 1I"fact(x) = x 
we get the labelled version 

facti+1(S(X)) 
p(s(O)) 
p(s(s(x))) 

-+ facti(p(S(X))) * s(x) 
-+ a 
-+ s(p(s(x))) 

in which the first line stands for infinitely many rules, one for every i E 1\1. An in
terpretation in N proving termination is [0] = 0, [s](x) = x + 1, [P](x) = 2x,x[*]y = 
x + y, [facti] (X) = 4i * X. 

4 Rewriting modulo equations 

In this section we show how theorem 4 extends to rewriting modulo equations. 

Theorem 5 Let M be a model for a TRS R over F. Choose for every f E F a non
empty set Sf of labels and a map 1I"f : Mn -+ Sf, where n is the arity of f. Define R as 
in section 2. Let Fu = {f E FI#Sf = I}. Let £ be any set of equations over Fu that hold 
in M. Then R is terminating modulo £ if and only if R is terminating modulo £. 

Proof: Assume R allows an infinite reduction modulo £: 

Then removing all labels yields an infinite reduction in R modulo £. 
On the other hand assume R allows an infinite reduction modulo £: 

Choose (j : X -+ M arbitrarily. Similar to the proof of lemma 3 one proves that 

lab(t, (j) -£ lab(t', (j) 

for any t, t' satisfying t =£ t'. From this observation and lemma 3 we conclude that R 
allows an infinite reduction modulo £: 

o 

In section 7 we present an application of this theorem. Note that all operation symbols 
in £ are required to be unlabelled. This restriction is essential: otherwise the theorem 
does not hold without introducing extra restrictions. For instance, for the system 

(X+y)+z -+ x+(y+z) 
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we can choose the model of positive integers in which + is interpreted as addition, which 
is commutative. If we choose 7r+(x, y) = x, then the infinite labelled system is eas
ily proved to be terminating modulo commutativity by the polynomial interpretation 
X[+i]Y = x + Y + i. However, the original system is not terminating modulo commutativ
ity. 

Theorem 5 can be extended to allow £ to contain commutativity of labelled symbols if 
7r f is required to be symmetric for these symbols. For other equations on labelled symbols 
it is not clear how it can be extended. 

5 Quasi-models 

In this section we give an extension of theorem 4 in the sense that M is not required to 
be a model for R any more. As a motivation consider the following TRS introduced in 
[4] for showing that completeness is not a modular property: 

f(a,b,x) -+ f(x,x,x) 
f(x, y, z) -+ c 
a -+ c 
b -+ c. 

Clearly this system is closely related to example 2 of section 3. However, it does not 
allow any non-trivial model since in all models any term has the same interpretation as 
c. So theorem 4 is not helpful for proving termination of this system; using the extension 
presented in this section it is easily proved. 

Until now the model M and label sets Sf were sets. Here we require them to be well
founded posets. The maps f M and 7r f have to be weakly monotone in all coordinates. 
Until now M was required to be a model for the TRS, meaning that the interpretation of 
a left hand side of a rule is always equal to the interpretation of the corresponding right 
hand side. Here M is only required to be a quasi-model for the TRS, meaning that the 
interpretation of a left hand side of a rule is ~ the interpretation of the corresponding 
right hand side. Before presenting the theorem we give some definitions and lemmas. 

Let M be an F-algebra provided with a well-founded partial order ~ for which each 
algebra operation is weakly monotone in all coordinates, more precisely: for all operation 
symbols f E F and all aI, ... ,an, bl , ... , bn E M satisfying ai ~ bi for all i, we have 

For all f E F let Sf be any set, again provided with a well-founded partial order ~. For 
all f E F of arity n let 7rf : Mn -+ Sf any map that is weakly monotone in all coordinates. 
Define <p, lab and F as in section 2. Let R be a TRS over F. We say that the F-algebra 
M is a quasi-model for R if 

<PM(l, a) ~ <PM(r, a) 

for all a : X -+ M and all rules l -+ r of R. As in section 2 we define R to be the TRS 
over F consisting of the rules 

lab(l, a) -+ lab(r, a) 
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for all a : X ---t M and all rules l ---t r of R. Further the TRS Deer over F is defined to 
consist of the rules 

fs(xl, •• ' ,xn ) ---t fsl(xl,'" ,xn ) 

for all f E F and all s, s' E Sf satisfying s > s'. Here > denotes the strict part of 2:. 

Lemma 6 Let M be a quasi-model for R. Let t, t' E T( F, X) satisfy t ---t R t'. Then 
¢(t, a) 2: ¢(t',a) for all a: X ---t M. 

Proof: If t = [T and t' = rT for some rule [ ---t r of R and some T : X ---t T(F, X) the 
assertion follows from lemma 1 and the definition of quasi-model. 

Let t ---tR t' and ¢(t, a) 2: ¢(t',a); we still have to prove that 

¢(f( ... , t, .. . ), a) 2: ¢(f( ... , t', .. . ), a) 

for all f E F and all a : X ---t M. This follows from the definition of ¢ and the fact that 
f M is weakly monotone in all coordinates. 0 

Lemma 7 Let M be a quasi-model for R. Let t, t' E T( F, X) satisfy t ---t R t'. Then for 
all a : X ---t M there is a term u over F such that 

lab(t, a) ---tOeer u ---tJi lab(t', a). 

Proof: If t = rand t' = rT for some rule l ---t r of R and some T : X ---t T(F, X) we 
obtain from lemma 2 

hence the assertion holds. 
Write~ for the composition of ---tOeer and ---tR- Let t ---tR t' and lab(t, a) ~ lab(t', a). 

We still have to prove that 

lab(f( ... ,t, ... ), a) ~ lab(f( ... , t', . .. ), a). 

According to lemma 6 and the fact that 7r f is weakly monotone in all coordinates, we 
obtain 

Hence 

o 

7rf(' .. , ¢(t, a), ... ) 2: 7rf(' .. , ¢(t', a), .. . ). 

lab(f( ... , t, .. . ), a) f7rf( ... ,</>(t,a), ... l .. , lab(t, a), ... ) 
---tOeer f7rf(...,<!>(tl,a), ... )( •.. , lab(t, a), ... ) 
~ f7rf( ... ,</>(tl,a), ... l .. ,Iab(t', a), ... ) 

lab(f( ... , t', .. . ), a). 

Theorem 8 Let M be a quasi-model for a TRS R over F. Let R and Deer be as above 
for any choice of Sf and 7r f. Then R is terminating if and only if R u Deer is terminating. 
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Proof: Assume RuDeer allows an infinite reduction. Since the order on Sf is well-founded 
for all f E F, the system Deer is terminating. So the infinite reduction of RuDeer contains 
infinitely many R-steps. Then removing all labels yields an infinite reduction of R. 

On the other hand assume that R allows an infinite reduction. Then applying lab 
for a fixed substitution on this infinite reduction yields an infinite reduction of R U Deer 
according to lemma 7. 0 

This proof is very similar to the proof of theorem 4. In fact theorem 4 can be considered 
as a special case of theorem 8 by choosing the discrete order (Le., x ~ y if and only if 
x = y) on both M and Sf. In this special case the requirements of weak monotonicity 
are trivially fulfilled, the notions of model and quasi-model coincide, and the TRS Deer 
is empty. 

Again consider the TRS introduced at the beginning of this section. The constant 
e serves as a bottom element: anything can be rewritten to e, but not the other way 
around. The elements a and b are essentially distinct. So choose the model M to consist 
of three elements a, band e with a > e and b > e; a and b are incomparable. By choosing 
aM = a, bM = b, eM = e and fM(X, y, z) = e for all x, y, z we have a quasi-model. Define 
Sf = {O, 1} with 1 > 0, and 

ifx=al\y=b 
otherwise. 

One easily checks that 7r f is weakly monotone in all three coordinates. Now R consists of 
the rules 

h(a, b, x) -+ fo(x, x, x) 
fo(x, y, z) -+ e 
h(x,y,z) -+ e 
a -+ e 
b -+ e 

and Deer consists of the rule 

h(x, y, z) -+ fo(x, y, z). 

The system R U Deer is easily proved to be terminating by choosing the interpretation 

[a] = [b] = 2, [e] = 1, [Jo](x, y, z) = x + y + z, [fd(x, y, z) = x + y + 3z 

over the positive integers. Hence according to theorem 8 the original system is terminating. 
In Appendix A of [2] termination of the TRS describing an algebra of communicating 

processes was proved by first transforming it to another TRS. This transformation is 
a particular case of our construction, and the proof of preservation of termination is a 
particular case of theorem 8. 

One can wonder whether it is essential in theorem 8 to add the system Deer to the 
labelled system. It is indeed; consider the following example: R consists of one rule 

f(g(x)) -+ g(g(f(f(x)))). 
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Choose M = Sf = {O, 1} with 0 < 1, let fM(X) = 1 and gM(X) = 0 for all x. Clearly M 
is a quasi-model for R. Choose 7r f to be the identity which is clearly monotone. Then the 
system R consists of the two rules 

fo(g(x)) -+ g(g(JI(fo(x)))) 
fo(g(x)) -+ g(g(fI(JI(X)))) 

and is terminating: choose the interpretation 

[fo](x) = 3x, [fl](X) = x, [g](x) = x + 1 

over the positive integers. However, R is not terminating since it allows the infinite 
reduction 

f(f(g(x))) -+ f(g(g(f(f(x))))) -+ g(g(f(f(g(f(f(x))))))) -+ .... 
"-.--" 

By similar examples one can show that weak monotonicity of both f M and 7r f are essential. 

6 Monotone algebras 

A well-founded monotone F-algebra (A, » is defined to be an F-algebra A for which the 
underlying set is provided with a well-founded strict partial order> and each algebra 
operation is strictly monotone in all of its coordinates, more precisely: for each operation 
symbol f E F and all aI, ... , am bl , ... ,bn E A for which ai > bi for some i and aj = bj 
for all j =I i we have 

fA(aI, ... , an) > fA(bl , ... , bn). 

Note the difference with the partial orders as they occurred in section 5: there operations 
were weakly monotone and here they are strictly monotone. 

We define the partial order> A on T(F, X) as follows: 

where CPA is defined as in section 2. Intuitively: t > A t' means that for each interpretation 
of the variables in A the interpreted value of t is greater than that of t'. 

In [17] the following characterization of termination was given. 

Theorem 9 A TRS Rover F is terminating if and only if there is a non-empty well
founded monotone F-algebra (A, » for which 1 > A r for every rule 1 -+ r of R. 

If I > A r for every rule I -+ r of R we say that (A, » is compatible with R. Using 
this characterization we now sketch alternative proofs of theorems 4 and 8; in fact this 
was the line along which semantic labelling was discovered. Since theorem 4 is a special 
case of theorem 8 we concentrate on theorem 8. The interesting direction of the theorem 
is proving termination of R from termination of R U Deer. So assume that R U Deer is 
terminating. Then it admits a compatible well-founded monotone F-algebra (A, ». We 
define the well-founded monotone F-algebra (A, » by choosing A = M x A as the carrier 
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set, where M is the carrier set of the model M and A is the carrier set of (A, ». As the 
order we define 

(m, a) > (m', a') {=::} m 2: m' 1\ a > a'; 

clearly it is well-founded. As operations we choose 

where s = 1TAml, ... , m n ). It can be checked straigtforwardly that (A, » is compatible 
with R, so R is terminating. 

A similar proof of theorem 5 using theorem 9 can be given, even of a "quasi-model" 
version of theorem 5, generalizing both theorem 8 and theorem 5. 

7 Semantic path order 

Let t be any quasi-ordering on terms, i.e., t is reflexive and transitive. Write t >- u for 
t t u and not u t t, and write t ~ u for t t u and u t t. The quasi-ordering t is called 
well-founded if the strict partial order >- is well-founded. The semantic path order tspo 

on terms is defined recursively as follows: s = f(s1.' .. ,sm) tspo g(tl,' .. ,tn ) = t if and 
only if one of the following conditions holds 

• Si tspo t for some i = 1, ... ,m, 

• s>- t and s >-spo tj for allj = 1, ... ,n, 

where u >-spo u' means u tspo u' and not u' tspo u, and tM,spo is the multiset ordering 
induced by tspo' The basic theorem ([7, 3]) motivating this order is the following: 

Theorem 10 A TRS R is terminating if and only if there is a well-founded quasi-ordering 
t on terms such that t ---+ R U =} f( ... , t, ... ) t f( ... , u, ... ) holds for all terms and 
lCT >- spo rCT holds for all rules l ---+ r in R and all substitutions a. 

If 2: is a well-founded quasi-ordering on the set :F of operation symbols and >- is 
defined by 

f(sl, ... ,sm) t g(t1 , .. . ,tn ) {=::} f 2: g 

then the corresponding semantic path order is called recursive path order (RPO). A recent 
extension of semantic path order is given in [5]. 

For practical applications the following observations are useful. Define the subterm 
relation ~ recursively by s ~ t = f(t 1 , • .. ,tn ) if and only if s = t or :Ji : s ~ k Write 
set for s ~ t 1\ s =1= t. If t C s then we may conclude s >-spo t. Further if for all u ~ t we 
have either s >- u or u C s we also may conclude that s >-spo t. The 'only if' part of the 
theorem easily follows from this observation by defining 

s t t {=::} 3u: s ---+ * u 1\ t ~ u. 
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A typical example of a termination proof by semantic path order is found in [3]: 

x * (y + 1) 
x*l 
x+O 
x*O 

~ (x * (y + (1 * 0))) + x 
~ x 
~ x 
~ 0 

which is not simply terminating. The semantic path order is defined as follows. First 
choose the obvious model M in which M consists of the natural numbers and 0,1, +, * 
are interpreted as 0,1, +, *. Next define s !:: t if and only if either the head symbol of t is 
not '*', or 

s = 81 * 82 1\ t = t1 * t2 1\ \:f(7 : ¢(82' (7) 2: ¢(t2' (7). 

Here ¢ is defined as in section 2. Now one can check all proof obligations of theorem 10, 
concluding that the system is terminating. 

Using similar ingredients we can give a termination proof of the same system by 
semantic labelling: choose the same M, label '*' by the naturals and define 7r*(x, y) = y. 
The resulting labelled system is 

X *i+1 (y + 1) 
x *11 
x+O 
x *0 0 

~ (x *i (y + (1 *0 0))) + x 
~ x 
~ x 
~ 0 

for all i 2: O. We can give the termination proof of this labelled system by RPO. Then the 
structure of the complete termination proof is essentially the same as that of Dershowitz; 
labelling is only used to split up the definition of !:: in two layers. 

However, we are not forced to use a path order like approach to prove termination 
of the labelled system, for example the interpretation in the naturals 2: 2 defined by 
[0] = [1] = 2, x[+]y = x+y, xhly = x*(y+4i) provides another termination proof. In this 
latter approach the symbol '+' is interpreted by a commutative and associative operation, 
so the labelled system is even terminating modulo commutativity and associativity of 
'+'. Also in the model M the operation + is commutative and associative. According 
to theorem 5 we conclude that the original system is terminating modulo commutativity 
and associativity of '+'. 

Finally, using the latter approach one easily proves by induction on the depth that a 
term of depth d can not have reductions of length greater then 22C

*d for some constant 
C. Semantic path order does not provide tools for deriving such bounds. 

8 Conclusions and further research 

We introduced semantic labelling as a new technique for proving termination of term 
rewriting systems. The starting point is a model for a TRS, i.e., a model in which each 
left hand side of a rewrite rule has the same value as the corresponding right hand side. An 
operation symbol in a term can now be labelled in a way depending on the interpretation 
of its arguments in the model. This is applied to all rewrite rules. We proved that the 
labelled TRS is terminating if and only if the original TRS is terminating. We illustrated 
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this new technique for proving termination by several examples. In the typical case the 
TRS whose termination has to be proved is not simply terminating, while the labelled 
TRS is proved terminating by RPO or by an interpretation in the natural numbers. 

Globally we distinguish two ways of using this technique. In the first way we choose 
a model which reflects the original semantics of the TRS, e.g., for a system describing 
quicksort we choose lists and in a system describing the factorial function we choose the 
natural numbers. In the second way we choose an artificial finite model reflecting syntactic 
properties we recognize in the rewrite rules. For example, in a rule 

... f(g(·· .))... -+ ... f(h(·· .)) ... 

the 1's can be forced to obtain distinct labels by choosing the images of g and h in the 
model to be distinct. In section 5 we saw that the requirement of having a model for 
the TRS can essentially be weakened. This technique also works for termination modulo 
equations. 

The technique of semantic labelling is hard to automate since it depends on either the 
knowledge of a semantic model or on heuristics for choosing a model in a syntactic way. 
A promising approach of using labelling without any model to avoid this drawback is the 
following. Choose the labelling in which every operation symbol in a term is labelled by 
the head symbols of its direct subterms. If the original signature is finite then the labelled 
signature is still finite. By applying the basic version of Kruskal's theorem to this labelled 
signature, the following generalization of Kruskal's theorem over finite signatures can be 
derived: 

Let E consist of all rewrite rules 

for all operation symbols f and all contexts C. Then -+ E is a well-quasi order. 

If we replace E by the system Emb(F) as introduced in section 2 we obtain the ba
sic version of Kruskal's theorem. However, E is more restrictive than Emb(F) , so this 
theorem is more powerful than the basic version. For example, it succeeds in ordering 
f(f(x)) > f(g(f(x))) (as in the approach of [13, 12]) and even f(O, 1, x) > f(x, x, x). 
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