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Abstract: Termite mushrooms have been classified to the genus Termitomyces, family Lyophyllaceae,
order Agaricales. These mushrooms form a mutualistic association with termites in the subfamily
Macrotermitinae. In fact, all Termitomyces species are edible and have unique food value attributed to
their texture, flavour, nutrient content, and beneficial mediational properties. Additionally, Termito-
myces have been recognized for their ethno-medicinal importance in various indigenous communities
throughout Asia and Africa. Recent studies on Termitomyces have indicated that their bioactive com-
pounds have the potential to fight against certain human diseases such as cancer, hyperlipidaemia,
gastroduodenal diseases, and Alzheimer’s. Furthermore, they possess various beneficial antioxidant
and antimicrobial properties. Moreover, different enzymes produced from Termitomyces have the
potential to be used in a range of industrial applications. Herein, we present a brief review of the
current findings through an overview of recently published literature involving taxonomic updates,
diversity, distribution, ethno-medicinal uses, nutritional value, medicinal importance, and industrial
implementations of Termitomyces, as well as its socioeconomic importance.

Keywords: basidiomycetous fungi; biological property; edible mushrooms; ethno-medicine;
nutritional values

1. Introduction

As the second largest group of organisms, fungi are estimated to comprise 11.7–13.2 million
species; however, to date, only 150,000 fungal species have been fully explored [1,2]. The
huge degree of diversity of this organism, along with differing climatic conditions and a
wide range of distribution, have all contributed to fungi being recognized as an ultimate
source of natural compounds that can have a significant impact on human health, the
economy, and the environment [3,4]. Fungi producing fruit bodies are called “macro-
fungi” or “mushrooms” that are large enough to be observed by the naked eye. They are
able to grow either above ground or underground. Mushrooms are distributed through-
out the world and play an important role in associations with mycorrhizae, saprotroph,
parasites, and insects in various ecosystems. Mueller et al. [5] estimated that there are
53,000 to 110,000 mushroom species in the world. Up to the present time, approximately
14,000 species have been officially described [6]. In 2021, more than 2189 wild edible mush-
rooms were reported to be from different parts of the world, of which the highest number of

J. Fungi 2023, 9, 112. https://doi.org/10.3390/jof9010112 https://www.mdpi.com/journal/jof

https://doi.org/10.3390/jof9010112
https://doi.org/10.3390/jof9010112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://orcid.org/0000-0003-3980-9168
https://orcid.org/0000-0002-3673-6541
https://orcid.org/0000-0001-9139-0072
https://orcid.org/0000-0001-7080-0781
https://orcid.org/0000-0002-2653-1913
https://doi.org/10.3390/jof9010112
https://www.mdpi.com/journal/jof
https://www.mdpi.com/article/10.3390/jof9010112?type=check_update&version=1


J. Fungi 2023, 9, 112 2 of 31

edible mushrooms were reported in Asia (1493 species), followed by Europe (629 species),
North America (487 species), Africa (351 species), South America (204 species), Central
America (100 species), and the Oceanic Region (19 species). Wild edible mushrooms
are routinely consumed in many modern-day communities due to their high nutritional
value [7–9]. Beneficially, mushrooms are known to possess high protein and fiber contents
along with various health-promoting nutrients. They are also known to be low in calories
and to contain very low amounts of fat and cholesterol [9], as well as being a good source
of vitamins (thiamin, riboflavin, cobalamin, ascorbic acid, calciferol, and tocopherol) and
essential minerals (iron, phosphor, copper, potassium, and selenium) [10,11]. For example,
wild edible mushrooms, Boletus edulis, Cantharellus cibarius, and Lactifluus piperatus contain
80% to 90% moisture, a good amount of protein (2.67–7.39% dw), and low levels of fat
(0.18–1.70% dw) [8,11]. Accordingly, differing regions and/or groups of local peoples
utilize wild mushrooms differently, i.e., as a popular food source or for their medicinal or
nutritional properties and most mushroom species are consumed after boiling or frying,
i.e., cooked condition, but sometimes very few are consumed as raw, for example Laetiporus
sulphureus in Cameroon [7].

Interestingly, members of the genus Termitomyces commonly grow in association with
termites. They have unique importance as a food source and also hold promise in the
development of nutritional supplements and for their ethno-medicinal prospects, as well
as in the socio-economic development of local communities [12–15]. Historically this genus
has not only been regarded for its edibility, the Yoruba people of Nigeria have also used
this mushroom in their mythological practices [16]. However, the potential taxonomic
development, nutritional prospects, mediational importance, and socio-economic signifi-
cance of this genus have not yet been fully investigated when compared with other wild
edible mushroom genera, e.g., Amanita, Cantharellus, Lactarius, Lentinus, and Russula. In
this review, we have summarized the current findings related to the taxonomic updates,
species diversity, distribution, and the potential utilization of the Termitomyces species as
an alternative supplementary food source as well as for its potential social-economic and
industrial development in future.

2. Overview of Taxonomic Implementation

The genus Termitomyces was established by R. Heim in 1942 [17]. Soon after the discov-
ery of this genus, Singer [18] recognized a new genus, namely Podabrella, and P. microcarpa
(synonym: Termitomyces microcarpus) was proposed as the type species. Podabrella species
was placed in the subgenus Praetemitomyces. However, this classification has not been
accepted by Heim [19] and Pegler [20] as they have held back all Podabrella species in the
genus Termitomyces due to their morphological similarity with other species belonging to
the genus Termitomyces and their association with termites [21]. The early identification and
classification of Termitomyces has been broadly studied based on comparisons of relevant
morphological characteristics. The first detailed study of this genus was summarized by
Heim in his monograph “Termite Et Champgnon” [19] of Termitomyces species from Africa
and Asia. Later, Jiilich [22] elevated this genus to the family level, namely Termitomycetaceae,
together with Amanitaceae and Torrendiaceae under the order Amanitales. Pegler [23] chose
to accommodate this genus within the family Pluteaceae due to its morphological similarity
with Pluteaceae (free and crowded lamella, pink spores print, glutted basidiospores, and
hymeneal cystidia) [24]. However, the morphological identification of Termitomyces has
been limited due to the high degree of phenotypic variability that exists across a wide range
of geographic distribution, varying environmental conditions, and the fact that the develop-
mental stage may make morphological identification difficult among other closely related
species. Thus, it is essential to identify Termitomyces species by applying a DNA-based
analysis of its molecular data.

In 2002, the molecular phylogeny along with the morphological characteristics was used
for a more prominent identification of the Termitomyces species. Rouland-Lefevre et al. [25]
used 15 Termitomyces samples to establish any relevant molecular relationships based
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on the internal transcribed spacers (ITS) of the nuclear ribosomal DNA region. Some
molecular studies focusing on the host specificity of termites and fungal associations were
conducted by Aanen et al. [26] and employed the large subunit (nrLSU) region of the
nuclear ribosomal DNA (nrLSU) and the mitochondrial small subunit (mtSSU) region for
molecular identification. Taprab et al. [27] combined the ITS and nrLSU regions for effective
identification of the Termitomyces species. Molecular phylogenetic analysis has revealed
that the genus Termitomyces forms a monophyletic clade in the family Lyophyllaceae, order
Agaricales [25,28]. Frøslev et al. [29], also indicated that Termitomyces and Sinotermitomyces
are actually congeneric based on nrLSU and mtSSU sequence analysis [25]. However,
the most significant phylogenetic study on Termitomyces based on an analysis of nrLSU
and mtSSU sequences was provided by Mossebo et al. [30], wherein the Termitomyces
species was found to include 74 strains belonging to 28 taxa. Sawhasan et al. [31] reported
nine known Termitomyces species distributed throughout Thailand using ITS sequences.
Another molecular study conducted in Africa determined that ITS sequences could be
used for accurate Termitomyces identification. Recently, may new species have also been
identified and proposed based on morpho-molecular taxonomic techniques. Accordingly,
Mossebo et al. [30] reported a new combination species, namely T. brunneopileatus from
Cameroon, based on nrLSU and mtSSU sequences. Ye et al. [32] identified T. fragilis from
China based on ITS sequence. Tang et al. [33] identified T. floccosus and T. upsilocystidiatus
from China and Thailand based on combined nrLSU and mtSSU regions. Seelan et al. [34]
identified T. gilvus from Malaysia based on nrLSU and mtSSU sequences. Izhar et al. [35]
identified T. sheikhupurensis from Pakistan based on a combination of ITS and nrLSU
sequences. Additionally, T. cryptogamus was described from Africa based on a phylogenetic
analysis of the ITS sequence [36]. Therefore, it is essential to be able to identify Termitomyces
by coordinating both morphological characteristics and molecular approaches through the
phylogenetic analyses of ITS, nrLSU, and mtSSU sequences.

3. Species Diversity and Distribution

Termitomyces grows in association with fungal-growing termites belonging to the
subfamily Macrotermitinae. It is frequently found in the ecosystems of tropical regions [37].
More than 330 species of termites, especially those classified within the genus Odontotermes,
Macrotermes, and Microtermes, have been reported to be associated with the cultivation
of Termitomyces [26,38]. The mutualistic symbiosis between Termitomyces and termites
was established at least 31 million years ago [39], where termites provided a constant
environment for fungal growth as well as to help in the dispersal of spores. In turn,
Termitomyces provide food for the termites [40]. Generally, termites cultivate Termitomyces
mycelia on special structures within their nests called “fungal combs”. Fruiting bodies of
Termitomyces develop from these fungal combs (Figure 1) when the environment is favorable.
The seasonal fructification (especially during the rainy season) of Termitomyces is restricted
to the paleotropical region (African, Asian, and the Pacific Island region), but it is also
found in America (Figure 2A) [37]. During the period from 1945 to 1990, many Termitomyces
species have been found in Africa and Asia. Otieno [41] reported on the identification of
five new species with 10 known species being from East Africa. Another study conducted
by Pegler and Rayner [42] reported that 11 species were from the same region, while some
previous studies [21,43,44] identified seven and five species, respectively, from South Africa.
Furthermore, Alasoadura [45] identified six species from Nigeria, and Moriss [46] reported
on eight species from Malawi. One new species, Termitomyces titanicus, was reported to be
from Zambia along with 10 other known species [47,48].

Taxonomic treatments of the genus Termitomyces in Asia were mainly conducted by
several previous studies [49–58]. Termitomyces species were reportedly from India and
22 taxa were reported to be from Asia. The type revision of three Indian Termitomyces
species was conducted by Tang et al. [59] and Pegler and Vanhaecke [24] in South East
Asia. They reported on the existence of 14 Termitomyces species from China, India, Malaysia,
Philippines, Thailand, etc. [60–64], while Tang et al. [65] reported that many Termitomyces
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species were collected from different parts of India and China. Sawhasan et al. [31] and
Jannual et al. [66] have also provided distributional records of several Termitomyces species
from Thailand, while Kobayashi et al. [67] identified several species from Japan. Currently,
worldwide distribution of Termitomyces comprises 58 species [68]. The list of Termitomyces
species and their known range of distribution are summarized in Table 1.
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Table 1. List of Termitomyces species, origin, and their known distributions.

Termitomyces Species Origin Known Distribution References

T. acriumbonatus Usman and Khalid Pakistan Pakistan [70]

T. albidolaevis Dhanch., J.C. Bhatt and S.K. Pant India India [57]

T. albidus (Singer) L.D. Gómez Costa Rica Costa Rica [71]

T. albus (Peck) L.D. Gómez New York New York and USA [71]

T. aurantiacus (R. Heim) R. Heim Central Africa Tanzania, Malawi, Ethiopia, Cameroon, Ivory Coast,
Thailand, China, Nepal, and Malaysia [19,24,29,72–78]

T. badius Otieno Kenya Kenya, India, Nepal, and
Myanmar [76,79–81]

T. biyi Otieno Kenya Kenya [41]

T. brunneopileatus
Mossebo and Essouman Cameroon Cameroon [30]

T. bulborhizus T.Z. Wei, Y.J. Yao, Bo Wang and Pegler China China; Thailand, Philippines, India, Myanmar, Laos, and
Nigeria [31,62,81–85]

T. cartilagineus (Berk.) R. Heim Sri Lanka Sri Lanka [86]

T. citriophyllus R. Heim Guinea Guinea [17]

T. clypeatus R. Heim Congo

Congo, Ethiopia, Burundi, South Africa, Tanzania,
Nigeria, Cameroon, Kenya, Uganda, Ivory Coast, Ghana,

Thailand, Japan, Malaysia, Philippines, India, China,
Myanmar, Nepal, Laos,

and Bangladesh

[24,26,44,64,66,72,75,78,81,82,85,87–95]

T. congolensis (Beeli) Singer Congo Congo [96]

T. cryptogamus van de Peppel South Africa South Africa [36]

T. dominicalensis L.D. Gómez Costa Rica Costa Rica [71]

T. entolomoides R. Heim Congo Congo, China, Thailand,
India, and Malaysia [31,64,87,97,98]

T. epipolius (Singer) L.D. Gómez Brazil Brazil [71]
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Table 1. Cont.

Termitomyces Species Origin Known Distribution References

T. eurrhizus (Berk.) R. Heim Sri Lanka
Uganda, Tanzania, Zambia, Kenya, Malawi, Ethiopia,

Sri Lanka, China, Japan, India, Philippines, Nepal, Thailand,
Malaysia, and Myanmar

[17,58,64,67,75,81,94,99–104]

T. floccosus S.M. Tang, Raspé and S.H. Li Thailand Thailand [33]

T. fragilis L. Ye, Karun, J.C. Xu, K.D. Hyde and
Mortimer China China [32]

T. fuliginosus R. Heim Guinea Guinea, Ivory Coast, Thailand, and Vietnam [17,37,66]

T. gilvus C.S. Yee and J.S. Seelan Malaysia Malaysia [34]

T. globulus R. Heim and Gooss.-Font. Congo Congo, Ghana, Nigeria, Uganda, Cameroon, Kenya, Thailand,
China, Indonesia, India, and Nepal [14,16,20,24,64,87,91,98,99,105,106]

T. griseiumbo Mossebo Cameroon Cameroon [107]

T. heimii Natarajan India
Kenya, Ivory Coast, India,

Malaysia, Nepal, Pakistan, China, Thailand, Myanmar, and
Bangladesh

[14,24,52,64,66,81,94,95,108,109]

T. indicus Natarajan India India [49]

T. infundibuliformis Mossebo Cameroon Cameroon [110]

T. lanatus R. Heim Central African Central African [19]

T. le-testui (Pat.) R. Heim Congo Congo, Tanzania, Cameroon, Zimbabwe, Ivory Coast,
Ethiopia, Malawi, Nepal, China, and India [17,29,30,37,75,76,111]

T. magoyensis Otieno Kenya Kenya [41]

T. mammiformis R. Heim Guinea Guinea, Burundi, Zambia, China, and India [17,29,64,72,112]

T. mboudaeinus Mossebo Cameroon Cameroon [107]

T. mbuzi Härkönen and Niemelä Tanzania Tanzania [113]

T. medius R. Heim and Grassé French Equatorial
Africa French Equatorial Africa, Cameroon, Ivory Coast, and India [29,37,114,115]

T. meipengianus (M. Zang and D.Z. Zhang) P.M. Kirk Yunnan China [116]
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Table 1. Cont.

Termitomyces Species Origin Known Distribution References

T. microcarpus (Berk. and Broome) R. Heim Sri Lanka

Uganda, Zimbabwe,
Cameroon, Tanzania, South Africa, Malawi, Ethiopia,

Japan, Ghana, Nepal,
Sri Lanka, Malaysia, India,

Pakistan, Philippines, China, Thailand, and Laos

[14,24,29,31,64,67,74,85,86,91,117,118]

T. narobiensis Otieno Kenya Kenya [41]

T. orientalis R. Heim Kenya Kenya [19]

T. perforans R. Heim Central African Central African, Nigeria,
Thailand, and India [19,119–121]

T. poliomphax (Singer) L.D. Gómez Brazil Brazil [71]

T. rabuorii Otieno Kenya Kenya [41]

T. radicatus Natarajan India India, Thailand, and Malaysia [31,50,98]

T. reticulatus Van der Westh. and Eicker South Africa South Africa, Cameroon, and India [21,122,123]

T. robustus (Beeli) R. Heim Congo Congo, Uganda, Burundi, Tanzania, Ethiopia, Ivory Coast,
Philippines, Nigeria, Ghana, Nepal, and India [14,26,29,42,75,78,87,91,124–126]

T. sagittiformis (Kalchbr. and Cooke) D.A. Reid South Africa South Africa, Tanzania, and India [72,127]

T. schimperi (Pat.) R. Heim Africa
Ethiopia, Tanzania, Kenya,

Namibia, Zambia, Malawi, Zimbabwe, Ghana, Ivory Coast,
Myanmar, West Africa, India, and Nepal

[14,21,29,42,91,122,128–130]

T. sheikhupurensis Izhar, Khalid
and H. Bashir Pakistan Pakistan [35]

T. singidensis Saarim. and Härk. Tanzania Tanzania [131]

T. songolarum (Courtec.) Furneaux Congo Congo [132]

T. spiniformis R. Heim Central African Central African [19]

T. striatus (Beeli) R. Heim Sierra Leone

Sierra Leone, Kenya, Nigeria, Malawi, Burundi, Cameroon, Ivory
Coast, Uganda, Congo, South Africa, Tanzania, China, Malaysia,

India, Pakistan, Philippines, Thailand, and
Nepal

[14,17,21,24,30,37,40,64,66,72,94,133–135]
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Table 1. Cont.

Termitomyces Species Origin Known Distribution References

T. subclypeatus Mossebo Cameroon Cameroon [107]

T. subhyalinus Moncalvo, Vilgalys, Redhead et al. Africa Africa [136]

T. subumkowaan Mossebo Cameroon Cameroon [107]

T. titanicus Pegler and Piearce Zambia Zambia, Tanzania, Cameroon, Burundi, and South Africa [47,72,137–139]

T. tylerianus Otieno Kenya Kenya, Tanzania, China, and India [41,64,140,141]

T. umkowaan (Cooke and Massee) D.A. Reid South Africa
South Africa, Tanzania,

Cameroon, Kenya, and Ivory Coast, India, Nepal, Pakistan, and
Indonesia

[14,21,78,142–147]

T. upsilocystidiatus S.M. Tang, Raspé and K.D. Hyde China China [33]



J. Fungi 2023, 9, 112 9 of 31

Most type Termitomyces species have been discovered in Africa (67%), followed by
Asia (26%), and various other continents (7%) (Figure 2B). Accordingly, the greatest degree
of species distribution was recorded in Africa (56%), followed by Asia (39%), and other
continents (5%) (Figure 2C). Some widely distributed and common Termitomyces include
T. aurantiacus, T. bulborhizus, T. clypeatus, T. eurrhizus, T. heimii, T. medius, T. microcarpus,
T. schimperi, and T. striatus, all of which are found in different parts of Africa and Asia
(Table 1). On the other hand, T. acriumbonatus, T. albidolaevis, T. cartilagineus, T. floccosus,
T. fragilis, T. gilvus, T. griseiumbo, T. indicus, T. meipengianus, T. radicatus, T. sheikhupurensis,
T. singidensis, and T. upsilocystidiatus restricted in Asian countries.

4. Edibility and Socio-Economic Impact

Mushrooms have extensively been used as a food source for thousands of years due
to their unique flavor and beneficial food value [6,7]. Currently, mushrooms are being
used as functional food for the prevention of several human diseases [10,148,149]. Termite
mushrooms are known for their unique taste and flavor, and are particularly abundant in
Africa and Asia [34,46]. Almost all species of Termitomyces are edible; however, T. titanicus
is the world’s largest edible mushroom. It grows abundantly in West Africa as well as
Zambia where it is frequently consumed by local people [46,150]. The main reason for its
popularity is its nutritional value and beneficial medicinal properties [151–154].

Throughout Asia, ethnic and native people routinely consume Termitomyces dur-
ing the annual monsoon. It is commonly available at road-side stalls as well as in city
markets [12,155,156]. Members of the genus Termitomyces are primarily consumed by
Indian, Chinese, Laos, and Nepalese people but are also frequently consumed by the
populations of a variety of other countries including Thailand and Malaysia. How-
ever, in India, several species of Termitomyces are consumed in different states includ-
ing T. badius, T. clypeatus, T. eurrhizus, T. heimii, T. mammiformis, T. medius, T. microcarpus,
T. radicatus, T. reticulatus, T. schimperi, T. striatus, and T. globulus [12,58,157–159]. Some of
these species are also available in local markets with the price ranging between 0.50 and
2.45USD/kg depending upon the region of the point of sale [12,155]. In China, Termit-
omyces are locally known as “Jizong” (chicken mushrooms) and “Yizong” (ant planted
mushrooms) [32]. Several species of this genus are also famous for their edibility in-
cluding T. microcarpus, T. aurantiacus, T. bulborhizus, T. eurrhizus, T. globulus, and T. frag-
ilis [32,160]. According to Wei et al. [64], the Termitomyces species was sold on the market at
27.96 USD/kg in 2006, which was quite high. The diversity of edible Termitomyces is also
quite high in Nepal, where local and ethnic people consume different species of Termito-
myces including T. microcarpus, T. mammiformis, T. heimii, T. clypeatus, T. eurhizus, T. striatus,
and T. aurantiacus [76,92,102,161]. Aryal and Budathoki [14] have indicated that nineteen
species of Termitomyces are commonly consumed in different parts of Nepal. Specifically,
Termitomyces heimii is sold in markets throughout Nepal at 2.1 to 2.9 USD/kg [161]. “Hed
Khone” is the common name for Termitomyces in Thailand [162]. Termitomyces clypeatus,
T. fuliginosus, and T. globulus have been reported as edible species [163,164] and T. clypeatus
can be found in markets located in Sakon NaKhon Province selling for around 6.98 to
8.38 USD/kg (Figure 3) [163]. In Malaysia, Termitomyces is known by several names such as
“Cendawan busut”, “Cendawan meluku”, “Cendawan susu pelanduk”, “Cendawan anai-
anai”, “Cendawan guruh”, “Kulat tahun”, “Cendawan Tali”, or “Kulat Taun” [34,165–167].
Termitomyces clypeatus, T. eurhizus, and T. heimii are common edible mushrooms that are
indigenous to the Malay Peninsula [34,165,167]. A few varieties of Termitomyces are famous
in Laos for their edibility including Termitomyces aff. aurantiacus (local name: Phuak tab fai),
T. bulborhizus (local name: Pouak tam fan), T. clypeatus (local ame: Pouak jik), T. eurrhizus
(het khon kao), T. fuliginosus, T. heimii (het pouak) Termitomyces aff. heimii (local name:
Pouak tap kan yao), and T. microcarpus (local name: Poauk kai noi), all of which are avail-
able in local markets [85,168]. Two Termitomyces species, e.g., T. eurrhizus and T. microcarpus
frequently consumed in Sri Lanka [169,170].
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In Africa, Termitomyces is also widely prized for its edibility. Accordingly, near about
seven Termitomyces species, e.g., T. letestui, T. mammiformis, T. microcarpus, T. robustus,
T. schimperi, T. striatus, and T. titanicus, are consumed in Burundi [171,172], whereas only
four species are consumed in Rwanda [171,172]. Notably, T. microcarpus, T. robustus can
easily be found in markets in Rwanda during rainy seasons. In Namibia, only one species
of Termitomyces, e.g., T. schimperi, is routinely consumed by local people. It is locally known
as “omajowa”, while three other species have been found in this region: T. umkowaani,
T. microcarpus, and T. tyleranus. These have also been reported as edible mushrooms in
other parts of Africa [15].

Interestingly, T. heimii, T. medius, T. letestui, Termitomyces cf. eurhizus, and T. fuligi-
nosus are widely consumed in Côte d’Ivoire [13,109]. Termitomyces globulus, T. aurantiacus,
T. mboudaeina, T. clypeatus, T. striatus, T. macrocarpus, T. schimperi, and T. mammiformis are
well regarded in Cameroon for their edibility [93,173,174]. Nigerian people also routinely
consume Termitomyces in their diets in the form of T. mammiformis, T. robustus, T. clypeatus,
T. striatus, T. globulus, and T. microcarpus [90,151,175,176]. The native people of Menge
District, Ethiopia consume several Termitomyces species as food, e.g., T. clypeatus, T. eu-
rhizus, T. letestui, T. microcarpus, T. schimperi, T. robustus, T. striatus, and T. umkowaanii [118].
The populations of other African countries, namely Kenia, Sudan, Tanzania, Congo, and
Uganda, also consume Termitomyces as food [156,177–180]. Consumption of Termitomyces
varies depending on the region. Termitomyces mushrooms are typically eaten after being
cooked. For example, Burundi peoples use T. robustus and T. striatus to make Steak Ikiny-
inu [172]. In Thailand, Termitomyces species are frequently used to make spicy mushroom
salad and mushroom soup. According to the different previous reports, Termitomyces can
be preserved by drying and brining processes [162,172].

The development of non-wood forest products is the primary income source for
several ethnic groups in different regions of the world [181]. Many ethnic groups of people
collect different non-wood forest products (for example: honey, wild fruit, and edible
mushrooms) for resale in the marketplace as a way of earning income [181]. The socio-
economic development of products incorporating wild edible mushrooms is a traditional
practice among ethnic societies in Asia and Africa [182]. For example, the Benna and
Hehe ethnic groups of Tanzania collect 1000–1500 kg wild mushrooms per season and
consequently earn 500 to 650 USD [156]. However, Termitomyces is one of the most famous
wild edible mushrooms that has contributed to the socio-economic development of this
country due to its high market value. For example, certain tribal peoples (Santals, Bhumij,
Lodha, Munda, and others) from West Bengal, India sell Termitomyces at local village
markets or in small city markets and earn 0.5 to 2.5 USD/kg [12,155]. Manna and Roy [155]
have estimated that 9.83% and 10.29% of the total annual income of a Santal family can
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come from the harvesting of wild mushrooms of the Choupahari and Gonpur forest
areas, respectively.

5. Ethnomedicinal Importance

Folk medicine has long been a traditional practice and a key cultural element of ethnic
communities all over the world [183]. This type of practice can involve plants and plant
parts, as well as also other harvestable organisms including mushrooms [184,185]. The
ethnomedicinal importance of different Termitomyces species are summarized in Table 2.
Different ethnic groups have their own priorities in the way they choose to utilize natural
resources, for example some east Asian countries (China and Japan) have well-documented
their traditional knowledge of mushrooms and have also found ways to use this knowl-
edge in the present, but several countries have not retained this type of knowledge in a
well-documented form [186,187]. However, several members of the genus Termitomyces
have been recognized for their ethnomedicinal importance to different ethnic groups and
countries [14,72]. For example, T. microcarpus is widely distributed across certain continents
(Asia and Africa) and can be employed in different ethnomedicinal applications in differing
locations. In Nigeria (especially among the Yoruba people) this species is used to treat
gonorrhea [16,184], while in India it is used to treat fevers, colds, and fungal infections [188].
Furthermore, the native people of Tanzania and Nepal use it to boost the immunosystem
and consume it in the form of a tonic as an energy stimulant, respectively [14,72]. The
native people of the Kilum-Ijim forest area (Cameroon) use this mushroom to strengthen
bones in children and to treat fever [135]. However, a valuable publication by Aryal and
Budathoki [14] reported on the ethnomedicinal importance of Termitomyces in Nepal and de-
scribed nineteen Termitomyces species consumed by local and ethnic people in the treatment
of several diseases [14].

Table 2. Ethno-medicinal importance of different Termito.2yces species.

Termitomyces
Species

Ethno-Medicinal
Importance Country Ethnic Group References

T. aurantiacus Used as tonic in fever Nepal NR [14]

T. badius
Used for the constipation,
Laziness, Indolence, and

inactiveness
Nepal NR [14]

T. clypeatus Used for the treatment of pox India Santal [189,190]

Used for the remedy of measles, yellow fevers Nepal NR [14]

Treating constipation and
gastritis in adults, and highly recommended

for underweight children
Ethiopia NR [118]

T. eurrhizus
Used for the treatments of

rheumatism, diarrhea, and lowering high
blood pressure

India

Santal, Kolha, Munda,
Khadia, Bhumija,

Bhuyan, Bathudi, Ho,
Kudumi, and Mankdias

[191]

Used for skin diseases with mixing the herb
(Cynodon doctylon) Nepal NR [14]

Used in fever and measles India NR [192]

Used for recovery
chicken pox India Santal [190]

T. globulus Used for wound healing Nepal NR [14]
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Table 2. Cont.

Termitomyces
Species

Ethno-Medicinal
Importance Country Ethnic Group References

T. heimii
Used in treatment for
fever, cold, and fungal

infections
India NR [188]

Used in blood tonics
during wound healing and blood coagulation India NR [193]

Syrup is used for
Jaundice and diarrhea Nepal NR [14]

T. letestui
Used in remedy of

inappetence, abdominal disorder, Indigestion,
and stomachache

Nepal NR [14]

T. mammiformis Used in abdominal
discomfort, cough and whooping cough India Mokokchung [194]

Used in increase body strengthen Nepal NR [14]

T. microcarpus Used in Bone
strengthening for children and Fever Cameroon local peoples from

Kilum-Ijim forest area [135]

Used in treatment for
fever, cold, and fungal

infections
India NR [188]

Used in gonorrhea
treatment Nigeria Yoruba [16,187]

Used for boosting
immune system Tanzania NR [72]

Tonic for stimulating power Nepal NR [14]

Used in constipation,
gastritis in adults, and highly recommended

for underweight children
Ethiopia NR [118]

T. reticulatus Used in rheumatism and lowering high blood
pressure India

Kharia, Mankidi,
Santal, Kolha, Munda,

Bhumija, Bhuyan,
Bathudi, Ho, Kudumi,
Mankidia and Birhor

[186]

T. robustus Used in anemia and high blood pressure Nigeria NR [195]

Used in constipation,
laziness, indolence, and inactiveness Nepal NR [14]

Used in Maagun Nigeria Yoruba [16]

T. schimperi Used in cut wound, and skin diseases Nepal NR [14]

T. tyleranus Used in chicken pox India Dangi [140]

T. umkowaan Used in mouthwash for buccal cavity
infection, and arthritics pain Nepal NR [14]

NR = Not reported.

6. Nutritional Prospects

Fruiting bodies of the Termitomyces species are known to offer a significant nutri-
tional value to humans [174,196,197]. According to various scientific investigations on
their proximate composition, several Termitomyces species regarded as a source of nu-
trition for humans because of their containing of protein, carbohydrates, and dietary
fiber [109,173,174,196,197]. Some examples of the proximate compositions of different Ter-
mitomyces are presented in Table 3. Additionally, T. eurrhizus, T. microcarpus, T. robustus,
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T. striatus, and T. umkowaan are known to contain a number of beneficial minerals (including
sodium, potassium, calcium, magnesium, zinc, copper, iron, phosphorus, and manganese)
and vitamins (vitamin A, thiamine, ascorbic acid, tocopherol, and others) [174,197] (Table 3). The
Termitomyces species is also known to contain different types of amino acids, e.g., histidine,
isoleucine, leucine, lysine, methionine, phenylalanine, threonine, valine, arginine, aspartic
acid, serine, glutamic acid, proline, glycine, alanine, cysteine, and tyrosine [196]. According
to Karun et al. [147], the uncooked T. umkowaan has greater crude fiber, ash, and minerals
compared to cooked conditions; however, there are no significant differences variations in
crude protein, fat, and carbohydrate.

Table 3. Proximate compositions of different Termitomyces species.

Termitomyces
Species

Proximate Composition (% Dry Weight) Others
(mg/100 g Dry Weight) References

Carbohydrate Protein Fats Fiber Ash

T. aurantiacus 46.44 16.62 2.70 24.68 9.56 NR [173]

T. clypeatus 27.67 26.34 7.90 35.15 2.94 NR [163]

T. eurrhizus NR 29.40 6.27 26.64 11.52 Calcium (100), Iron (50), Magnesium
(160), and Potassium (2360) [197]

T. heimii 47.66 23.75 3.58 6.02 7.40 NR [109]

T. letestui 43.65 19.13 5.14 23.13 8.45 NR [173]

T. mammiformis 47.56 15.07 5.42 17.56 14.39 NR [173]

T. mboudaeina 45.33 17.26 2.63 24.10 10.68 NR [173]

T. microcarpus 44.23 30.69 2.17 11.60 11.30
Calcium (37.47), Magnesium (39.03),

Phosphorus (898.17), Potassium
(1112.76), and Sodium (12.91)

[174]

T. robustus 24.90 42.77 6.76 4.07 10.45

Calcium (60), Copper (0.90), Iron
(2.70), Magnesium (106), Phosphorus

(30.80), Potassium (1460), Sodium
(270), and Zinc (81)

[196]

T. schimperi 57.42 14.48 2.64 20.29 5.17 NR [173]

T. striatus 46.82 21.76 2.40 16.70 12.33
Calcium (26.39), Magnesium (28.47),

Phosphorus (739.06), Potassium
(1450.44), and Sodium (12.31)

[174]

T. titanicus 58.08 27.22 7.90 NR 6.80 NR [198]

T. umkowaan 45.26 18.89 4.50 15.73 2.58

Calcium (15.60), Copper (0.15), Iron
(6.80), Magnesium (25.10),

Phosphorus (63.73), Potassium
(75.40), Sodium (26.20), Zinc (2.20)

[143]

NR = Not reported.

7. Bioactive Compounds
7.1. Phenolic Compounds

Phenolic compounds are the most abundant secondary metabolite found in several
varieties of mushrooms [199–201]. The common chemical structure of the phenolic com-
pounds comprise one or more than one hydroxyl substituents attached to an aromatic
ring. Phenolic acids, flavonoids, lignans, stilbenes, and tannins are the major phenolic
groups [201]. Phenolic compounds are known to have a great impact on various biological
activities, e.g., antimicrobial, antioxidant, and anti-inflammatory properties [202]. However,
wild macrofungi can be a good alternative source of phenolic compounds. Many edible and
medicinally important macrofungi contain different types of phenolic compounds that may
have a great benefit to human health [9,203]. Members of the genus Termitomyces possess a
huge number of phenolic compounds and are well-documented to have originated from
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different corners of the world [196,204,205]. Most of these studies have been undertaken
to measure the total amount or the presence/absence of different phenolic compounds,
e.g., flavonoids, lignans, and stilbenes. The Termitomyces species is known to contain differ-
ent phenolic compounds including gallic acid, chlorogenic acid, caffeic acid, ellagic acid,
catechins, epicatechins, rutin, isoquercitrin, quercitrin, quercetin, and kaempferol (Table 4).

Table 4. Phenolic compounds present in different extracts of Termitomyces species.

Termitomyces Species Solvent Extraction Phenolic Compounds References

T. clypeatus
Ethanol Pyrogallol and Cinnamic acid [206,207]

Methanol p-Coumaric acid, Ferulic acid, Gallic acid,
p-Hydroxybenzoic acid, and Myricetin [205]

T. heimii

Methanol
Caffeic acid, Cinnamic acid, Coumaric acid,

Gallic acid, Gentisic acid, Protocatechuic acid,
Pyrogallol, Tannic acid, and Vanillic acid

[204]

Water
Cinnamic acid, Coumaric acid, Ferulic acid,

Gallic acid, Gentisic acid, Protocatechuic acid, Tannic acid,
and Vanillic acid

Ethanol Cinnamic acid and Pyrogallol [208]

T. letestui Methanol
Caffeic acid, Chlorogenic acid, p-Coumaric acid, Ferulic

acid, Gallic acid,
p-Hydroxybenzoic acid, and Myricetin

[205]

T. medius Ethanol Pyrogallol [209]

T. microcarpus

Ethanol Cinnamic acid, Gallic acid, Myrecetin,
Pyragallol, and Vanillic acid [210,211]

Water
Caffeic acid, Ferulic acid, Gallic acid,

Gentisic acid, Protocatechuic acid,
Syringic acid, and Vanillic acid

[204]

Methanol

Caffeic acid, Ferulic acid, Gallic acid,
Gentisic acid, Myricetin, p-Coumaric acid,

p-Hydroxybenzoic acid, Protocatechuic acid,
Tannic acid, and Vanillic acid

[204,205]

T. mummiformis

Water
Cinnamic acid, Gallic acid, Gentisic acid,
Protocatechuic acid, Syringic acid, and

Tannic acid
[204]

Methanol
Cinnamic acid, Gallic acid, Gentisic acid,
Protocatechuic acid, Syringic acid, and

Tannic acid

T. robustus Methanol and
Ethanol

Caffeic acid, Catechin, Chlorogenic acid,
Ellagic acid, Epicatechin, Gallic acid,
Isoquercitrin, Kaempferol, Quercetin,

Quercitrin, and Rutin

[196]

T. shimperi

Water Caffeic acid, Gallic acid, Gentisic acid,
Protocatechuic acid, and Vanillic acid

[204]
Methanol

Cinnamic acid, Ferulic acid, Gallic acid,
Gentisic acid, Protocatechuic acid,

and Tannic acid

T. tylerance
Water Caffeic acid, Gallic acid, and

Protocatechuic acid
[204]

Methanol Caffeic acid, Gallic acid, Gentisic acid,
Syringic acid, and Tannic acid
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7.2. Polysaccharides

Polysaccharides obtained from edible mushrooms are one of the most interesting con-
stituents possessing a range of mediational properties, nutritional value, and antioxidant
proprieties [212,213]. Several previous studies [214–219] have reported on the polysaccha-
rides obtained from different Termitomyces species and also investigated their mediational
and nutritional properties, as has been summarized in Table 5.

Table 5. Sugar compositions of polysaccharide from different Termitomyces species.

Termitomyces Species Polysaccharide Fraction Sugar Compositions Medicinal Importance References

T. clypeatus Water-soluble
heteroglycan

D-glucose,
D-galactose,
D-mannose,
and L-fucose

Antioxidant properties [216]

T. eurhizus
Water-soluble

polysaccharide
(PS I and PS II)

D-glucose NR [217]

T. heimii Water-soluble
polysaccharide (THP-I) Glucose

Antimicrobial,
Anticancer, and

Antioxidant properties
[152]

T. microcarpus
Water soluble glucan D-glucose NR

[215,218]α-glucans (TM I) and
β-glucans (TM II) D-glucose NR

T. robustus

β-glucans
(PS I and PS II) D-Glucose

Macrophage,
Splenocyte, and

Thymocyte activation [219]

Water-soluble fucoglucan L-fucose and
D-glucose NR

T. striatus Heteropolysaccharide
(PS-I)

D-glucose,
D-galactose,

D-mannose and
L-fucose

NR [220]

7.3. Other Bioactive Components

A huge array of bioactive compounds has been reported to originate from different
Termitomyces species, including cerebrosides, ergostanes, fatty acid amides, serine, saponins,
and protease [221–224]. Among them, cerebrosides play an important role in the treatment
of several diseases. These include neurodegenerative disorders such as Alzheimer’s dis-
ease [222]. Monoglycylceramides are a group of glycosphingolipids commonly known
as cerebrosides. To date, different cerebrosides (Termitomycamides A to E) have been
extracted from T. titanicus [223] (Figure 4). Termitomycamide B and E showed the pro-
tective activity against endoplasmic reticulum stress-dependent cell death. Fatty amides
include nitrogen derivative fatty acids, alcohol, or olefines obtained from natural sources
or petrochemical raw materials [225]. Fatty acid amines have great industrial potential to
be used in many fields including water treatment, agrochemical production, personal care,
fabric softeners, paints, and coatings [225]. Importantly, five fatty acid amides have been
isolated from T. titanicus [223].
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8. Research on Antioxidant Activity

Free radicals are produced from molecular oxygen via various endogenous processes
(physiological and metabolic processes) and from a variety of exogenous sources (ioniz-
ing radiation, ultraviolet light, and various pollutants). They are generally referred to
as reactive oxygen species (ROS) [226–228]. The production of free radicals can have a
negative effect on the state of health of living organisms including humans [227–229].
All organisms can protect themselves from different free radical damage that is induced
by oxidative enzymes (catalase, superoxide dismutase, and peroxidase) and chemical
compounds (α-tocopherol, ascorbic acid, carotenoids, and glutathione) [230] due to their
antioxidant activity. When the mechanism of antioxidant fortification becomes disturbed
via free radical activity, it can lead to several diseases such as arteriosclerosis, cancer, cir-
rhosis, and rheumatoid arthritis, as well as certain degenerative processes associated with
aging [227–229].

The in vitro antioxidant activity of different Termitomyces species has been well investi-
gated in different countries across Asia and Africa. Different extracts obtained from various
Termitomyces species can exhibit beneficial antioxidant proprieties. The methanolic extracts
of T. eurrhizus [231,232], T. heimii [233,234], T. microcarpus [204,233], T. mummiformis [204],
T. robustus [232,235], T. sagittiformis [236], and T. schimperi [204] have exhibited beneficial
antioxidant activity. Another extraction procedure using ethanol revealed significant ac-
tivity via different antioxidant screening methods on T. microcarpus [210], T. heimii [208],
T. medius [237], T. clypeatus [154], T. eurrhizus [231,232], and T. reticulatus [238]. Polysaccha-
rides obtained from (crude or purified) Termitomyces have been determined to be efficient
in reducing ROS and have exhibited effective antioxidant activity. Examples of this include
the heteroglycan of T. clypeatus [216] and crud polysaccharides of T. medius [239]. However,
many other extraction procedures employing water and/or chloroform have also been
used to evaluate the antioxidant activity of different Termitomyces species [154,204,231,232].
Some examples of antioxidant activity of Termitomyces species are shown in the Table 6.
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Table 6. In vitro antioxidant activity from different Termitomyces species.

Termitomyces
Species

Sample Type/Solvent
Extraction or Fraction

Antioxidant Activity
[EC50 or IC50 (µg/mL)] References

T. clypeatus

Fruitbody/Water
soluble heteroglycan CFI (462.10), RP (260), and SOD (180) [216]

Mycelia/Water CFI (3060), DPPH (27.59), OH (21.94), NO (169.92), SOD (91.55),
and TAC (64.36)

[154]

Mycelia/Ethanol CFI (4486.66), DPPH (86.84), NO (247.38), OH (40.67), SOD (133.08),
and TAC (70.57)

Fruitbody/Ethanol CFI (210), DPPH (3220), RP (1770), SOD (330),
and TAC (1300) [206]

T. eurrhizus

Fruitbody/Ethanol ABTS (185.19), CFI (1533.70) DPPH (387.89–712.76), and HFRSA
(357.4)

[231,232]
Fruitbody/Water ABTS (78.90), CFI (1046), DPPH (298.50–715.27),

and HFRSA (407.50)

Fruitbody/Methanol CFI (1201.90) and DPPH (171–717.65)

T. heimii

Fruitbody/Phenolic DPPH (490), OH (21), SOD (190), and RP (1310) [240]

Fruitbody/Ethanol DPPH (1250) and RP (575) [208]

Fruitbody/Methanol ABTS (185.26), CFI (216.50), DPPH (136.30–148.50), OH (162.47),
and RP (257.70–833) [233,234]

T. medius

Fruitbody/Ethanol CFI (680), DPPH (500), RP (2050), and SOD (1400) [237]

Fruitbody/Crude
polysaccharides CFI (150), OH (960), RP (1950), and SOD (410)

[239]

Fruitbody/Polyphenol CFI (540), DPPH (600), LPA (1650), OH (19.5),
RP (1550), and SOD (425)

T. microcarpus

Fruitbody/Ethanol CFI (140), DPPH (1980), RP (1650), and SOD (295) [210]

Fruitbody/Polyphenol CFI (1300), DPPH (600), OH (16), RP (1700),
and SOD (350) [211]

Fruitbody/Methanol ABTS (206.36), CFI (240.90), DPPH (181.50–1600), OH (207.26), RP
(276.24), and SOD (172.70) [204,233]

Fruitbody/Water DPPH (2800) [204]

T. mummiformis
Fruitbody/Water DPPH (1180)

[204]
Fruitbody/Methanol DPPH (3700)

T. reticulatus Fruitbody/Ethanol ABTS (1370), DPPH (4920), LPA (2053), and RP (2587) [238]

T. robustus

Fruitbody/Methanol DPPH (716.60–4780), LPO (430), and RP (1240) [232,235]

Fruitbody/Ethanol DPPH (710)
[232]

Fruitbody/Water DPPH (714.93)

T. sagittiformis Fruitbody/Methanol DPPH (27760) and FRAP (22.10) [236]

T. schimperi
Fruitbody/Aqueous DPPH (2100)

[204]
Fruitbody/Methanol DPPH (1800)

T. tylerance
Fruitbody/Aqueous DPPH (2760)

[204]
Fruitbody/Methanol DPPH (1240)

Chelating ability of ferrous ions = CFI; Superoxide radical scavenging = SOD; DPPH radical scavenging
activity = DPPH; Hydroxyl radical scavenging effect = OH; NO radical scavenging effect = NO; Total antioxidant
activity = TAC; ABTS free radical scavenging activity = ABTS; H2O2 free radical scavenging activity = HFRSA;
Lipid peroxidation activity = LPA; Ferric-reducing antioxidant power = FRAP; Reducing power assay = RP; Half
maximal effective concentration = EC50; Half-maximal inhibitory concentration = IC50.
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9. Research on Antimicrobial Activity

Presently, modern healthcare practices face a significant challenge in their battle
against microbial drug-resistance as many antimicrobial agents are losing their efficacy.
For example, cephalosporin and quinolones (β-lactam antibiotics) are routinely being used
to treat E. coli infection, but currently they have begun to lose their effect [241,242]. The
importance of developing alternative therapies and agents against drug resistant bacteria,
as well as other potentially dangerous micro-organisms, have also been indicated by
the World Health Organization [243]. Many antibiotics have been derived from natural
sources and these have been developed as safe supplements in the administration of
antimicrobial therapies [244]. Wild edible mushrooms contain a wide range of low- and
high-molecular weighted compounds that could be developed as safe and natural sources
of antibiotics. Several reports have indicated that macro fungi possess good antimicrobial
properties that can further be employed in the pharma industry [6,245,246]. Members of
the genus Termitomyces have shown significant results in reacting against various human
pathogenic bacteria and some fungal pathogens, but no studies have yet been undertaken
involving other microorganisms [133]. Among the various Termitomyces species, T. clypeatus,
T. eurrhizus, T. heimii, and T. robustus showed significant antimicrobial activity against
different pathogenic microorganisms [234,247–251]. Some polysaccharides (endo- and
exo-polysaccharides) from T. heimii also showed significance antimicrobial activity against
different micro-organisms [152,251]. The antimicrobial activities of different Tremitomyces
species have been summarized in Table 7.

Table 7. Different Termitomyces species with antimicrobial activities.

Termitomyces
Species

Solvent
Extraction

Inhibition Growth of
Microorganism

Experimental
Method References

T. clypeatus Water
Candida albicans, C. glabrata,

Enterobacter aerogenes, Escherichi coli, Salmonella typhi,
and Staphylococcus aureus Disc diffusion [247,248]

Methanol Pseudomonas aeruginosa

T. eurhizus

Methanol Escherichia coli and
Proteus vulgaris Disc diffusion

[231,247]Water Bacillus brevis and Vibrio cholera Disc diffusion

Ethanol B. brevis and V. cholera Disc diffusion

Methanol V. cholera Disc diffusion

T. heimii

Water

Escherichia coli, Klebsiella
pneumoniae, Pseudomonas sp.,

Staphylococcus aureus, and
Streptococcus pyogenes

Well diffusion

[234,251]

Water
Escherichia coli, Ralstonia sp.,

Salmonella sp., Staphylococcus
aureus, and Streptococcus sp.

Disc diffusion

T. letestui Water Escherichia coli, Salmonella typhi, and Staphylococcus
aureus Disc diffusion [249]

T. microcarpus Methanol Bacillus cereus and Proteus vulgaris Disc diffusion [247]

T. robustus

Ethanol Candida troplicalis, Escherichia coli, and Shigella
dysenteriae Well diffusion

[196,250]
Ethanol Aspegillus fumigatus, Staphylococcus aureus and

Trichoderma rubum Well diffusion

Methanol Staphylococcus aureus Well diffusion
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Table 7. Cont.

Termitomyces
Species

Solvent
Extraction

Inhibition Growth of
Microorganism

Experimental
Method References

Termitomyces sp.

Chloroform
Candida albicans, C. parapsilosis, Escherichia coli,

Klebsiella pneumonia, Pseudomonas aeruginosa, and
Staphylococcus aureus

Well diffusion

[252]Ethanol

Candida albicans, C. parapsilosis, Escherichia coli,
Klebsiella

pneumoniae, Pseudomonas aeruginosa, and
Staphylococcus aureus

Well diffusion

Water

Candida albicans, C. parapsilosis, Escherichia coli,
Klebsiella

pneumoniae, Pseudomonas aeruginosa, and
Staphylococcus aureus

Well diffusion

T. striatus

Dichloromethane
Bacillus subtilis, Escherichia coli, Pseudomonas

aeruginosa, and
Staphylococcus aureus

Disc diffusion

[133]Methanol
Bacillus subtilis, Escherichia coli, Pseudomonas

aeruginosa, and
Staphylococcus aureus

Disc diffusion

Water
Bacillus subtilis, Escherichia coli, Pseudomonas

aeruginosa, and
Staphylococcus aureus

Disc diffusion

10. Research on Human Diseases
10.1. Research on Anticancer Activity

Presently, cancer therapies, e.g., radiotherapy and chemotherapy, can have a variety
of effects on the immune system [253]. Immunomodulatory agents derived from biolog-
ical sources have received attention for their minimal or non-existent side effects on the
human immune system. Among them, mushrooms may be a great alternative source in
the development of effective cancer treatments [254,255]. However, the mechanism of
the immunomodulatory effect of mushroom polysaccharides is not yet clear. Generally,
mushroom polysaccharides do not assert cytotoxic effects on tumor cells but can enhance
an immunomodulatory response [256]. Many recent studies have claimed that mushrooms
have potential to be used in the development of cancer therapies [255,257–259]. Termito-
myces have not yet been fully investigated for use in the development of cancer treatments
when compared to other edible mushrooms. However, a few studies involving the Termito-
myces species viz. in vivo study of water-soluble crude polysaccharides of T. heimii have
indicated an effective decrease in hyperplasia on colon cancer in Swiss albino rats when
induced by 1, 2-dimethylhydrazine. Consequently, they could be used in the development
of treatments for other forms of cancer [152]. In this regard, T. schimperi combined with
kaolin has exhibited mutagenic potential [153]. Ergostane is a steroid hydrocarbon that has
strong potential to be used in the development of new therapeutics in the treatment of a
number of diseases (e.g., several types of cancer). Very limited research has been conducted
on ergostane obtained from Termitomyces to date. Njue et al. [224] isolated five types of
ergostane (namely dimethylincisterol, 5α,8α–epidioxy-(22E,24R)-ergosta-6,9(11),22-trien-
3β-ol, 5α,8α–epidioxy-(22E,24R)-ergosta-6,22-dien-3β-ol, 5α,6α-epoxy-(22E,24R)-ergosta-
8(14),22-diene-3β,7α-diol and (22E,24R)-ergosta-7,22-diene-3β,5α,6β-triol) and betulinic
acid (Figure 5) from T. microcarpus that exhibited potential against cancer with leukemia
SR line, the melanoma LOX IMVI line, the breast cancer cell line T-47D, colon cancer cell
lines, as well as some ovarian, prostate, and CNS cancer cell lines. The aqueous extract
of T. clypeatus displayed cytotoxicity against several cell lines (U373MG, MDA-MB-468,
HepG2, HL-60, A549, U937, OAW-42, and Y-79). However, it exhibited higher activity
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against the cell line U937 and significantly decreased tumors, while increasing hemoglobin
and RBC counts, and increasing the mean survival time of all subjects [154].
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Figure 5. Anticancer compounds isolated from T. microcarpus (modified from Njue et al. [224]).
Dimethylincisterol (A), 5α,8α–epidioxy-(22E,24R)-ergosta-6,9(11),22-trien-3β-ol (B), 5α,8α–epidioxy-
(22E,24R)-ergosta-6,22-dien-3β-ol (C), 5α,6α-epoxy-(22E,24R)-ergosta-8(14),22-diene-3β,7α-diol
(D), (22E,24R)-ergosta-7,22-diene-3β,5α,6β-triol (E) and betulinic acid (F).

10.2. Research on Other Human Diseases

According to Anchang et al. [260], T. titanicus was capable of increasing hemoglobin
levels (12.2 g/dl) and white blood cells (26300 cells/mm3) when compared to treatments
involving vitamin B complex on albino rat models; however, they may also be used in the
treatment of Noma disease (cancrum oris) A preliminary study of polysaccharide T. eurhizus
exhibited antiulcerogenic properties in mice models. This could be useful in the treatment
of gastroduodenal diseases that are caused by non-steroidal anti-inflammatory drugs [214].
A water-soluble polysaccharide fraction obtained from T. eurrhizus was found to dose-
dependently inhibit the replication of intracellular amastigotes of Leishmania donovani in
macrophages [261].

On the other hand, some previous studies reported that Termitomyces contains alpha-
emitting radioisotopes (137Cs, 40K, 226Ra, 232Th, and 235U) and may have negative effects on
human health [262,263]. Notably, Termitomyces also accumulate various amounts of arsenic
(As) which is a significant risk to human health when consumed [264].

11. Enzymes for Industrial Implementation

There has been a recent trend toward employing biological processes over chemical
processes for industrial applications in order to reduce the resulting amounts of environ-
mental pollution, wherein fungal enzymes can play an important role in the textile, leather,
paper, and pulp industries, and particularly in the food industry [265–268]. For exam-
ple, Xylanase can be produced by a large number of fungal genera, including Aspergillus,
Fusarium, Penicillium, Pichia, and Trichoderma, and is widely used in the production of
biofuels, in the food production industry, as well as in the paper and pharmaceutical
industries [267,268]. However, very few reports have been made available involving the
genus Termitomyces that establish whether it can be used in industrial applications, whereas
research on the enzyme production of Termitomyces could be widely used for various indus-
trial purposes. Accordingly, Majumder et al. [265] reported on metalloprotease (κ-casein
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specific) obtained from T. clypeatus, which is a new source of milk-clotting protease that
can be used as a substitute for chymosin in cheese production. Another report on the
same species has confirmed that it produced extracellular alkaline protease, which could
efficiently depilate goat skin and separate bird feather vanes from the shaft [268]. Many
other Termitomyces species that produce a wide range of lignocellulolytic enzymes have
been summarized in Table 8. These lignocellulolytic enzymes can potentially be used in a
number of important industries.

Table 8. Enzyme isolated from different Termitomyces species.

Termitomyces Species Enzyme References

T. clypeatus

Lignocellulases [269]

Carboxymethyl Cellulase
[270]

Xylanase

Cellobiose Dehydrogenase [271]

T. eurrhizus α-galactosidase [272]

T. heimii Lignocellulases [273]

Termitomyces sp. OE147 Cellobiose Dehydrogenase [274]

12. Future Prospects and Conclusions

Currently, mushrooms and natural compounds derived from mushrooms have become
a popular supplementary food and have been recognized as a potential health promoter.
However, at present, many ongoing research studies have focused on the industrial devel-
opment of wild edible mushrooms and their cultivation. Artificial cultivation techniques
of wild edible mushrooms, especially Termitomyces, have not yet been available to date,
but several researchers have been attempting to develop artificial techniques for the cul-
tivation and mass production of termite mushrooms. The taxonomic implementation of
Termitomyces is based on multi-gene phylogenetic concepts employed in conjunction with
detailed morphology. The Termitomyces species are known to possess several nutritional
and mediational prospects that involve a wide array of secondary metabolites, vitamins,
and micro-nutrients. These are known to possess beneficial antimicrobial, anticancer, and
antioxidant properties, indicating that they can possibly be a source in future drug devel-
opment efforts. Termitomyces can be used in the food industry, while different enzymes
derived from Termitomyces can be used in several industrial applications including those
of the textile, leather, paper, and pulp industries. The ethno-medicinal importance of this
genus needs to be further explored in terms of its prominence in various ethnic communi-
ties. Moreover, the traditional knowledge of this species that can be obtained from local
communities in different regions may play a significant role in contributing to modern
medical research, which may help researchers discover alternative natural sources for use
in antibiotic development.
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