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Ternary Codes of Minimum Weight 6 and the 
Classification of the Self-Dual 

Codes of Length 20 
VERA PLESS, MEMBER, IEEE, N. J. A. SLOANE, FELLOW, IEEE, AND HAROLD N. WARD 

Abstmct-Self-orthogonal ternary codes of minimum weight 3 may be 

analyzed in a straightforward mamer using the theory of glueing in- 

troduced in earlier papers. The present paper describes a method far 

studying codes of minimum weight 6: the supporta of the words of weight 6 

form what is c&xl a center set. Associated with each center set is a graph, 

and~tbegraphsthatcan~seinthiswayareknown.’Ibesetechniques 

areusedtoclasslfytheternaryselldualeodesofLengthu):tbereare24 

inequivalent codes, 17 of which are hlecomposable. Sk of the codea have 

mini~~u~~ weight 6. 

I. SELF-ORTHOGONAL TERNARY CODES OF 

MINIMUM WEIGHT 6 

A. Introduction 

L ET C be a self-orthogonal ternary code of length n, 
dimension k, and minimum weight d: we shall refer 

to C as an [n, k, d] code. It is often convenient to regard C 

as consisting of a number of components which are held 
together by glue. This glueing theory has been described 
in [2] and [3] and will be used in Sections II-IV below. It 

is most effective when the minimum weight of C is 3. The 
following theory applies to codes of minimum weight 6. 

B. Center Sets 

Let us assume then that C is a self-orthogonal code of 
length n and minimum weight 6. A hexad of C is the 
binary vector of length n which is the support of a pair of 
codewords 5 CE C of weight 6. These hexads in fact 
belong to E,,, the subspace of GF(2)” consisting of vectors 
of even weight. The usual inner product on GF(2)” and E,, 
will be denoted by cp(x,y). In particular + is a possibly 
degenerate symplectic form on E,, ([6, p. 4351, [9, p. 21). 

The assumptions about C imply that two distinct hex- 
ads of C meet in 0, 2, 3, or 4 coordinates. 

Proposition I: The binary sum of two hexads of C is a 
hexad of C if and only if the two hexads meet in three 
coordinates. 
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The proof is immediate. This implies that the hexads of 
C form what is called a center set. 

Definition: Let V be a finite dimensional vector space 
over GF(2) equipped with a symplectic form #J. A non- 
empty subset J of V is called a center set if it has the 
property that 

ifxandyareinJ,thenx+yisinJ 
if and only if J/(x, y) = 1. 

Proposition 1 implies the following theorem. 

Theorem 2: If C is a self-orthogonal ternary code of 
length n and minimum weight 6, the hexads of C form a 
center set in E,. 

The full theory of center sets will be published sep- 
arately [12]. Here we shall just state the results we need 
for the coding applications and refer the reader to [12] for 

proofs. 
Associated with any center set J are an undirected 

graph I and a linear group L. The vertices of I’ are 
identified with the elements of J, and two vertices x and y 
are joined by an edge if and only if +(x,y)= 1. The group 
L is the group of linear transformations on ‘v generated 

by the mappings 

tx: Y+-Y + 44&Y)-% YEV, 

for x E J. The mapping t, is called a transvection with 
center x ([5, p. lo], [8]). 

Proposition 3 [12]: The group L carries the set J onto’ 
itself, and the orbits of L in J are exactly the connected 

components of I. 
If I is connected, J is called a connected center set. The 

smallest example is the trivial center set, consisting of a 
single element x in a vector space V = (x). 

The advantage of this approach is that it is possible to 
give an explicit description of all the connected center 
sets. Thus let J be a nontrivial connected center set 
spanning its vector space V, with associated graph I and 

group L. 
Proposition 4 [12]: J is the entire collection of centers 

of the nontrivial transvections in L (whence the name 
“center set” for J). 

The radical of a symplectic form JI on V is the subspace 

radlC,={xEV/+(x,y)=OforallyEV}. 
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Let v= V/rad#, with - the corresponding quotient ho- 

momorphism of V onto I? Thus j is the image of J and & 
is the form on v induced by +. Let L be the linear group 
induced on v by L. Then L has J as the set of centers of 

its transvections. 
Proposition 5 [12]: If J is a connected center set span- 

ning V, then L acts irreducibly on I? 
Proposition 5 enables us to apply McLaughlin’s classifi- 

cation [8] of the irreducible groups generated by transvec- 
tions and to obtain the following result. 

Theorem 6: If J is a connected center set spanning V, 
then L is one of the following groups: 

1) the symplectic group of the form & 
2) the full orthogonal group of a quadratic form having 

F as the corresponding symplectic fo_rm; 
3) a symmetric group S, acting on V in one of the 

representations discovered by L. E. Dickson (see [4] 
and Section C below). 

If case 3) holds, the center set is said to be of symmetric 
type. These are the only ones that occur in the coding 
applications. 

Theorem 7 [12]: A connected center set which is 
formed from the hexads of a code as in Theorem 2 is of 
symmetric type. 

C. Connected Center Sets of Symmetric Type 

If J is any connected center set (not necessarily of 
symmetric type) spanning its vector space V, and x is an 
element of J, let T be the following subset of V: 

T={tErad\C/lx+tEJ}. 

Proposition 8 [12]: T does not depend on the choice of 
x and is a subspace of rad#. 

If V (resp. V’) is a vector space with symplectic form 4 
(resp. $‘), V is said to be isometric to V’ if there is a linear 

map 7~: V+ V’ such that #(u,v) = $‘(r(u),n(v)) for all 
U,VE v. 

We shall now describe all the connected center sets of 

symmetric type to within isometry. The subspace T is an 
important ingredient in the description. 

As before E, denotes the even subspace of GF(2)‘. Let e 

denote the all-ones vector in E, and let P, be the set of 

’ 
( 1 

pairs, or vectors of weight 2, in E,. If r is even let E: 

bi the quotient E,/(e), and P,! the image of P, in the 
quotient. E, and E: carry the usual inner product 9. In E,, 
rad+ = 0 if r is odd, rad+ = (e) if r is even; while in E,!, 
rad+ = 0. Finally let R,,, be any vector space over GF(2) of 
dimension m > 0 equipped with the zero form. 

J={~+~I~EP,,~ER,,,}; and T=R,,,. 
ii) V = E, I R,, with r even, r > 6, m arbitrary; 

1c/ agrees with $ on E,; rad+ = (e) + R,,,; 
J=(p+p[p~P,,pER,j; and T=R,. 

iii) V = E, I R,,,, with r even, r > 8, m arbitrary; 
I/I agrees with $I on E,; radrC/ = (e) + R,,,; 

J={p+p,p+e+plpEP,,pER,,,}; and T=(e)+ 
R 

iv) VmiEr’, r even, r>8; $=+; rad#=O; 

J= P:; and T=O. 

Let l? be the graph associated with any of the center 
sets in Theorem 9. Then we see that in all cases the 
number of vertices v is given by 

v=IJI= ; (Tj, 
( 1 

and that the graph is regular with valency 

k= (2r - 4)l T(, 

where ITI =2”, 2”, 2m+‘, or 1 in the four cases. We denote 
this graph by C,O, and the graph of the trivial center set by 

Cd. Since 

%=r+l+L 
k r-2’ 

the numbers v and k determine r and hence I TI. The first 
few values of the parameters (those for which the valency 
is < 24) are shown in Table I. 

We also see from Theorem 9 that in all cases the graph 
C,O can be constructed as follows (see Fig. 1). First con- 

struct the triangular graph T(r) whose 
( > 

1 vertices corre- 

spond to the pairs in an r-set, two pairs being joined by an 

edge if and only if they meet. Then replace each vertex by 
] TI disconnected vertices, vertices in different replace- 
ments being connected exactly when the original ones 

were. 
Finally we note that in all cases v= E,/radcp, J= image 

of P, under -, and z acting on J is isomorphic to the 

symmetric group S,. 

D. Examp Ies 

a) The [9,2,6] code with generator matrix 

u: 111 000 v: [ .,lll 000 111 111 1 
contains six vectors of weight 6: 2 U, rf v, & (U - v). 
The three hexads corresponding to these vectors are 

111 111 000 
000 111 111 
111 000 111 

Theorem 9 [12]: Suppose J is a nontrivial connected 
center set of symmetric type, spanning its vector space V. 
Then V and J are isometric to exactly one of the following 

four types : 

0 V= E,. I R,,,, with r odd, r > 3, m arbitrary; 
1c/ agrees with + on E,; rad# = R,,,; 

and form a connected center set J of size 3. The 
corresponding hexad graph I= C; is a triangle. 

b) The [10,4,6] Golay code g,, (see Section III) con- 
tains 30 hexads. These form two connected compo- 
nents of size 15, and the graph I? is 2Csi5. 

Other examples will be found in Sections III and IV. 
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TABLE I 
PARAMETERS OF NONTRMAL CONNECTED tiNTER SETS J OF 

SYMMBTRIC +h’PE (.%I3 THEOREM 9) 

v: 3 6 10 12 15 20 21 24 28 30 36 40 42 

k: 2 4 6 8 8 12 10 16 12 16 14 24 20 

r: 33536573 8 6 9 5 7 

ITI: 1 2 141218 1 214 2 

type: i i i i ii i i iii,ivii iii 

“: 45 55 56 66 78 91 

k: 16 18 24 20 22 24 

I-: 10 11 8 12 13 14 

ITI: 1 1 2 1 1 1 

type: ii,iv i ii,iii ii,iv i ii,iv 

o = IJI is the number of vertices, and k is the valency of the associated 
graph r= Cl. 

3 
CP 

(4 

6 
=4 

Fig. 1. Examples of graphs lY corresponding to connected center sets. 
(a) C; = T(2). (b) C$, obtained by replacing each vertex of C: by two 
disconnected vertices. 

II. CLASSIFICATION OF SELF-DUAL CODES OF 

LENGTH 20 

Encouraged by the application of self-dual codes in a 

recent attack on the projective plane of order ten [l], we 
have extended the classification of ternary self-dual codes 

that was begun in [7] and [3] (see also [ 111) to length 20. 
The result is as follows. 

Theorem IO: There are 24 inequivalent ternary self- 
dual codes of length 20. Of these 7 are decomposable 
(given in Table II) and 17 are indecomposable (given in 
Table III). The smallest group of any of these codes has 
order 512 (code #20), while the largest has order 223*36* 5 
(code # 1). Table IV gives the number of inequivalent 
maximal self-orthogonal codes of lengths 17, 18, and 19 
that can be obtained by contracting each of the codes of 
length 20 (cf. [3, Section VI]). 

We shall use the vocabulary and notation of [3]. Only a 
sketch of the proof will be given. Enough information will 
be given about the codes, however, to make it possible for 
the reader to verify the theorem by checking the group 
orders of the codes in Tables II and III. There are 

j4 (3’ + 1) = 9246374028206585446400 

distinct codes of length 20, which must be sorted into 
equivalence classes to prove the theorem. The decompos- 
able codes and the indecomposable codes with at least 
four vectors of weight 3 can be dealt with by the method 
of glueing: these codes are described in Section III. For 
the codes with either two or zero vectors of weight 3 we 
have made extensive use of the theory of center sets given 
in Section I: these codes are described in Section IV. 

The Tables only give A,, the number of codewords of 
weight 3, but the full weight distribution is then given by 

A,= 120+ 13A,, 

A,=4360+ 19/t,, 

A,,=26280- 145A,, 

A,,=25728 + 176A,, 

A,,=2560-64A,. (1) 

As in [2] and [3], G(C) denotes the group of all mono- 
mial transformations preserving the code C. G(C) is de- 
composed into G,(C) (permuting the components), G,(C) 
(fixing the components but permuting the glue vectors 
modulo the components), and G,(C) (fixing the compo- 
nents and the glue vectors modulo the components). The 

orders of these groups are g(C), g2(C), gi( C), and g,(C), 
respectively, and g(C) = ga( C)g,( C)g2( C). 

An essential tool for determining these groups was a 
computer program which found the distribution of the 
overlaps among the hexads of a code, and the connected 
components of the hexad graph I? (see Section I-B). 
Whenever a code is decomposed into components or 
blocks (as shown for example by the Roman numerals in 
Fig. 9), it is implied that this decomposition is well-de- 
fined, in other words is preserved by the group of the 
code. This decomposition was usually established by 
studying the output from the above computer program. 

We also found it helpful to consider the sums 

where Qi is the class of inequivalent ternary self-dual 
codes of length 20 containing exactly 2i words of weight 
3. These numbers may be calculated directly (without 
knowing the codes), as in Theorem 2 of [3]. In particular 

T,= 
4049 

211.33.52 ’ 

1 
T, = - 

26.33 ’ 

T,= 
209 

28.35.5.7 * 
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TABLE II 
$ELF-DUALTERNARYCODESOF LENGTH~O 

(a) DECOMPOSAEKE CODES 

# 
g2 glue 

' *3 g0 g1 

1 5e4 40 4a5 1 5: 

2 4e3t2e4 24 64.482 2 2.4! aaaooo, oaaaoo. ----II _---__ 

3 g12 4 +2e 16 190080~482 1 2! 

4 4e3tf4te4 16 64.1.48 8 4! (a000)(2111)~. --I. 

5 2e3tg10te4 12 6'*360.48 4 2! aOx0, OayO. --I- 1-1- 

6 e3+P13+e4 10 6.5616.48 2 1 $00. 

7 h16+e4 8 (28.168).48 1 1 

TABLE III 
SELF-DUALTERNARYCODESOPLRNGTH~O 

(b)INDECOMPOSABLECODES 

18 e3+gg+g8 2 6.1-l 27.32 1 See Figure 5. 

- 

19 10f2 .o 1 25 5! See Figure 7. 

20 4f4t2f2 0 1 27 4 See Figure 8. 

21 5f4 0 1 210 10 See Figure 9. 

22 4f5 0 1 2'5! 8 See Figure 10. 

23 2gg+f2 0 1 26.34 2 See Figure 11. 

24 2g10 0 360* 23 2 x x+y, -x+y x. - - 1 - I_ _ 
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TABLE IV 
THE NUMBER OF MAXIMAL SELF-ORTHOGONALCODESOFLENGTH 

17, 18, 19 

Parent Code Number of Children of Length 
of Length 20 L?- L!! 22 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

0 

0 

2 1 

5 2 

4 2 

7 3 

7 3 

6 3 

4 2 

4 2 

4 2 

6 2 

4 2 

13 4 

8 3 

7 3 

9 3 

6 2 

16 5 

12 4 

4 1 

5 1 

3 1 

10 1 

6 1 

2 1 

These numbers provided intermediate checks on the 
calculations. For example, summing g(C)-’ for codes 
# 19 through #24, we have (see Table III) 

-+L 111 1 

25.5! 27.4 + 29. 10 + 2.5!.8 + 26.34.2 

1 
+ 4049 = T 

3&.23.2 = 2'1.33.52 0, 

verifying that these are all the codes of minimum weight 
6. A direct proof of this fact is given in Section IV. 

Finally we mention two corrections to [7]. In Table 1, p. 
659, the order of the group of the Golay code g,, (there 
called G,,) is given incorrectly: it should be 25. 32. 5 * 11. In 
the penultimate line of that table the code 4 C,( 12) should 
carry an asterisk, since it is indecomposable. 

III. CODES OF LENGTH 20 WITH A, > 4 

The decomposable codes (see Table II) and the inde- 
composable codes with A, > 4 (#8-16 of Table III) are 
efficiently ‘described as being made up of various compo- 
nents held together by glue vectors. We first list the 
components and then supply some additional notes on 

codes #8, 10, 12, and 13. 
In describing the glue vectors in the Tables, an overbar 

indicates the negative of a vector. 

l23456789lOll 

+Jjgq 

“IIIII100000 
v I I10001 II00 
w00011122200 

x 12012012000 

Y01220120100 

z 10202102100 

Fig. 2. The [11,4,6] code Y,~, generators r, s, t for its glue, and six 
special codewords of weight 6 in yI1. (The vertical lines separating 
coordinates 3 and 4, and 6 and 7 are drawn only for convenience: this 
division of coordinates is not preserved by the group. Similar remarks 
apply to Figs. 2, 4, and 10). 

A. The Component Codes (see also [3]) 

The code e3 is a [3,1,3] code with generator matrix 
(111). The glue words are + (z, where (I = 120. Also go= 
6,g, =2. 

The code e, is a [4,2,3] self-dual code with generator 
matrix 

1110 [ 1 0121 

and has no glue. Also g,=2]5,(, g,= 1. 
The code f, is the free (or empty) code, indicating a 

block of n independent coordinates. 
The code g,, is the [12,6,6] self-dual Golay code. There 

is no glue. Also go=2]%i2]=27*33*5* ll= 190080, g,= 1, 

and A,- - 2.132. There are 132 hexads, and the hexad 
graph I? consists of a single connected component Cz’ 

(see Section I). 
The code g,, is the [11,5,6] code consisting of the 

vectors c such that Oc E g,,. If a vector u of weight 5 is 
chosen so that 1 u E g,, then the glue words for g, i may be 
taken to be +u. Also go=(X,1]=24~32~5*11=7920, g,= 
2, A,=2.66, I-= C;?. 

The code y,i is the [ 11,4,6] code with generator matrix 
shown in Fig. 2. The figure also shows generators r, s, and 
t for the glue. For this code A,=2*21 and I’=2C,3+ Csis. 
Let us denote the hexads forming the two C; components 
by {u,u, w} and {n,y, z} respectively. Codewords corre- 
sponding to these hexads are shown in Fig. 2. The group 

G,( y , ,) contains 

~1=(4,7)(5,8)(6,9)(10, ll), 

producing the permutation (u,u) on the hexads, 

~~=(1,8)(2,7)(3,9)(10, 11)diag{23 l3 23 l’}, 

producing (u, w); and G,(y,,) contains - 1, 

7r3=(1,4)(3,7)(6,8)diag{1212 22 1 24}, 
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123456789 

%~I 

rl I1000000 

5100200002 
t I00002200 

Fig. 3. The [9,3,6] code g, and generators r, s, t for its glue. 

producing (u,x)(u,y)(w, t) on the hexads, and 

~~=(lO,ll)diag{ I9 22}. 

Thus go=(3!)2, g, =23, g=25-32=288. 
The code g,, is the [10,4,6] code consisting of the 

vectors c such that OOc E g,,. If x and y are chosen so that 

llxEg,z, 12yEg,,, then the glue words for g,, may be 

taken to be 

+x of weight 4, 

k Y of weight 4, 

*tx+y) of weight 5, 
(2) 

*-+x-Y) of weight 5. 

Also go= 23.32. 5 = 360, g, = 23 (generated by - I, (x,y), 
and (y, -y)), A,=2-30, !Z=2Ci5. 

The code g, is the [9,3,6] code with generator matrix 
shown in Fig. 3. The figure also shows generators r, s, and 
t for the glue. For this code g,=l, g,=2*9.8*6=864, 
A,=2.12, r=4C;. 

The code g, is the [8,2,6] code with generator matrix 

[ 

1110 1110 
0121 1 0121 ’ 

and may be formed by doubling each codeword of e4. 
There are four dimensions of glue. Also go= 1, g, =2’*3, 
A,=2.4, l?=4C;. 

The codes gl,, Y,~, glo, g,, and g, are all subcodes of g,,. 
The code p13 is a [ 13,6,6] code described in Section VI 

of [3]. It is dual to the [13,7,4] code generated by the lines 

t,,t,,* * * , t,, of the projective plane of order 3. We label 
the points of the plane Q,, * . . , Q,,, and take ti to be the 
ith cyclic shift to the right of the line 

The code h,, is the unique [ 16,8,6] self-dual code. It has 
generator matrix [Zs 1 ZZ,], where ZZs is an 8 X 8 Hada- 
mard matrix. There is no glue, and go = 2’. 168 = 2”. 3.7 = 
43008, g, = 1, A,=2.112, r=2C$. (This code was de- 
noted by 2fs in [3], but it is now convenient to regard it as 
a component in its own right. This renaming changes the 

values of go, g,, and g,, but not of course of g itself.) 
The code h15 is the [ 15,7,6] code consisting of the 

vectors c such that Oc E h,,. If a vector u of weight 5 is 
chosen so that 1 u E h16, then the glue words for h,, may 
be taken to be +u. Alsogo=26.3*7=1344,g,=2, A,=2- 

70, r = c;; + c;;. 

The code h,, is the [14,6,6] code obtained by deleting 
two coordinates from the same side of h,,. If x and y are 
chosen so that 1 lx E h,, and 12y E h,, then the glue words 

for h,, are given by (2). Also go = 96, g, = 8 (as for glo), 
g=28.3=768, A,=2*42, l-= Cf;+2C:. 

The code q14 is the [ 14,6,6] code obtained by deleting 
one coordinate from each side of h,,. The glue words are 

formally the same as for g,, and h,,. Also go= 84, g, = 8, 
g=25-3-7=672, A,=2.42, I’=2C&? 

B. The Groups of Codes # 8, IO, 12, and 13 

Code # 8: G, contains an S, on the first three e3 and 
on the second three e,, and the two sets of three may be 
exchanged. Thus g, = 2 .62. Then G, is generated by - Z 
and (19,20)diag{ l9 29 l’}, so that g, =4. 

Code # 10: G2 contains monomials which accomplish 
the permutations (I, II) and (I, III)(II, IV) on the e3 compo- 

nents. Then G, is generated by -Z and by 

(13,14)(17,18)(15,19)diag{23 19, 23 1 23 l}, 

(13,14)(17,18)(16,20)diag{13 23 16, l3 2 l3 2}, 

(15,16)(19,20)(13,17)diag{ l6 23 13, 2123 122}, 

(15,16)(19,20)(14,18)diag{ l9 23, 1213 212}, 

each of which multiplies a different e3 component by 2. 
Code # 12: G, contains (II, III) on the e3 components. 

G, contains only half of G,(y,J, since the element 
(lo,1 l)diag{ l9 22} of G,(y,,) is missing. 

Qo Q, Q2 Q3 Q4 Q, Qs Q7 Qs Q9 Qlo QII Q12 

110 10 0 0 0 0 10 0 0’ 

Then p13 consists of the vectors Haiti with zai=O. The Code # 13: G, contains -I, as well as eight elements 
glue words for p,3 are + to. Also go= IPGL,(3)1 =24.33* 13 which when restricted to the g,, component form the full 

=5616, g,=2, A,=2.78, I-= C;;. group G,(glo). Thus for code # 13 g, =2.23. 

The code P,~ is the [ 12,5,6] code consisting of the 

vectors c such that COED,,, i.e. which vanish at the point 
Q12. The glue words forp,, may be taken to be 

IV. CODES OF LENGTH 20 WITH A, 7 0 OR A, = 2 

of weight 4, A. A Theorem about Glueing 

2 t; of weight 3, 

t(th- t;) of weight 5, 
(3) The following result underlies much of glueing theory 

+(tb+ t;i of weight 6, 
but does not appear to have been stated explicitly before 
now. It will be used in the proof of Theorem 12. 

where the primes indicate that the last coordinate is 

deleted. Also go = 432, g, = 2, A, = 2.42, I? = C:t + Cz. 
Theorem 11: Let C be a self-dual code of length n = n, 

+ n, over GF(q). Partition the generator matrix of C as 
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follows: 

where k, and kb are to be chosen as large as possible. 
Then 

0 k,=rankD=rankE, 
ii) kb=fn-(n,-k,), 
iii) the code generated by the rows of A and D is the 

dual of the code generated by the rows of A. 

Proof: i) The assertion is that the rank of E (and D) 
coincides with the number of rows of E. Suppose on the 
contrary that there is a nontrivial linear combination of 
the last kd rows which has the form u0 (with length 
(u) = n,, length (0) = nJ. But then u is in the code gener- 
ated by the rows of A (by definition of A), implying a 
dependency among the rows of the 
contradiction. 

ii) and iii) Since C is self-dual, 
orthogonal to the rows of A. Thus 

k,+k,<n,-k,. 

Similarly 

Therefore 

kd+kb<nb-kb. 

generator matrix, a 

the rows of D are 

(4) 

(5) 

But since C is self-dual, equality holds in (6) and hence in 

(4) and (5). Q.E.D. 

Remarks: a) Theorem 11 implies that the space of glue 
vectors of the left (spanned by the rows of D) is isomor- 
phic to the space of glue words on the right (spanned by 
the rows of E). 

b) A special case of the decomposition of C used in the 
proof of Theorem 11 (when C is the Golay code of length 
24, A = (l*), and B is a [ 16,5,8] code) is the starting point 
for one of the constructions of the Nordstrom-Robinson 

code (cf. [6, p. 731). 

B. Codes of Length 20 and Minimum Weight 6 

Theorem 12: If C is a ternary self-dual code of length 

20 and minimum weight 6, its hexad graph I has 60 
vertices and is regular with valency 8. 

Proof: From (1) A,= 120, so C contains 60 hexads. 

If u is any one of these hexads, each hexad v connected to 
u comes from a vector of weight 6 projecting onto a vector 
of weight 3 on the 14 coordinates outside u. Let B be the 

code of length 14 supported on the coordinates outside u 
and consisting of the vectors of C whose supports miss u. 
By Theorem 11 these projections of weight 3 are exactly 

the vectors of B 1 of weight 3. Now B 1 has no vectors of 
weight 1 (since they would project from vectors of weight 
6 meeting u in five places); and the weights in B are 0, 6, 

9, or 12. B has dimension 10 - 6 + 1 = 5, by Theorem 11 ii). 
If we set up the MacWilliams identities connecting B I 
and B, it turns out that these restrictions imply that the 
number of vectors of weight 3 in B 1 is eight, independent 
of the weight distribution of B. Thus the valency of the 
vertex u is eight, as required. Q.E.D. 

Using Theorem 12 we may establish the following theo- 
rem. 

Theorem 13: There are exactly six codes of length 20 

and minimum weight 6: these are # 19-#24 of Table III. 

Sketch of Proo$ From Table I we see that there are 
only two connected graphs with valency 8: Csi2 and Csi5, 
Furthermore there are only two ways these components 
can be combined to produce a graph with 60 vertices: 

either by taking four components of type Csi5, or five of 

type Csi2. Thus I=4Ci5 or SC,“. In addition, the 
Assmus-Mattson theorem [6, th. 29, p. 1771 shows that 
the hexads form a l-design. Thus each coordinate position 
is covered by 60 x 6/20 = 18 hexads. 

C. The Codes with r = 4Cj5 

We must investigate how the four copies of Csi5 can fit 
together in the code. Each Csi5 is isometric to the set of 
pairs Ps in the even subspace E6 of GF(2)6 (this is case ii) 
of Theorem 9 with r=6, R,,, =O). Furthermore P6 spans 

E6* 

Now let us examine the copies of Csi5 regarded as made 
up of hexads. Let J,, . . . ,J4 denote the four components, 
regarded as consisting of binary vectors of length 20 and 
weight 6, let E(‘) be the binary span of Ji, and let W be the 

binary code of length 20 spanned by the union of 
J,; . . , J4. The form + on W is the natural inner product, 
as before. Then each Ji is isometric to P6, each E(‘) is 
isometric to Es, and each Eci) contains an element e(‘) 

(say) which corresponds under the isometry to the all-ones 
vector e6 in E,. Also rad(+l EC’)) = (e”)) and rad+= 
+w . . . 3 ,e”). Of course some of the &) ‘may coincide 
and we shall show that there are exactly two distinct e(‘)‘s: 

To do this we use a tool helpful in constructing the 
codes: we consider the coordinate functionals as linear 
functionals on Wand the EC’). A linear functional on Es is 

conveniently represented by taking a word in GF(2)6 and 
forming its inner product with the members of E6. A word 
and its complement will produce the same functional on 
E,, so that the weight of the word may be taken to be 0, 1, 
2, or 3. A functional produced by a word of weight w will 
be called a w-set functional. A w-set functional takes the 
value 1, or registers, on w(6- w) members of P,, namely 
those half in and half out of the given word. Thus the 
possible number of times a functional can register on P6 
-the size of the functional-is 0, 5, 8, or 9. Since a 
coordinate functional registers on 18 hexads, the two sums 

18=9+9+0+0 and 18=5+5+8+0 

represent the only dispositions of sizes of a coordinate 
functional on the four Ji’s. It is the odd-size functionals 
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that register on e,. That means each coordinate registers 
on two of the e@). As no e(‘) is 0, there are at least two 

distinct e(‘) and dim (rad+) > 2. 
On the other hand, let e,e be the all-ones word in 

40 c GF(2) ‘O Let a prime denote the mapping E,,+ . 

E,,/(e,,) = E&. E;, is nonsingular under the inherited 
symplectic form, and W’ c((rad+)‘)l. As dim (rad+)’ > 1, 
dim W’ < 17, and dim W < 18. But W/rad+ is the orthog- 
onal direct sum of the images in W/radcp of the four E”), 
and each image has dimension 4 and is nonsingular. Thus 
dim( W/i-ad+)= 16. As dim (rad+) > 2, we must have 
dim W = 18 exactly, dim (rad @) = 2, and e,, E rad +. Since 
e6 is the sum of three mutually disjoint pairs, each eti) is 
the sum of three mutually orthogonal hexads, so that 
wt(e(‘))=2 (mod4). That means e,, is not one of the eta, 

so the e(‘> must coincide in pairs and the two different 
ones sum to e,,; they are complements. We shall take 
e(‘) = e(=) and e(3) = e(4)e 

The next step is to consider how many coordinate 
functionals of each size there can be. Let A(s) be the 
number of coordinate functionals whose size on EC’) is s, 
so that 

I2 h(s) =a (7) 
s=O,5,8,9 

and 

wt(e(‘)) =f;.(5) +&(9) (1 <i(4). (8) 

Since Et’) contains 15 hexads, the coordinate functional8 
register 15 X 6 = 90 times on them. Thus 

90= 5f;:(5) + 8f(8) + S&(9). (9) 

Furthermore, since E(l) and Ec2) have the same radical, if 
a functional is of odd size on EC’) it must be of odd size 
on EC’). Thus the only types of functionals that can occur 
are the following: 

e(l) + + e(=) 

Number f% f4@) f (9) fO> f#) 
SizeonE 5 5 ‘9 8 0 
Size on EC’) 5 5 9 0 8 
Size on Ec3) 8 0 0 5 5 
Size on Ec4) 0 8 0 5 5 

This implies that 

f,(5) =f2(5) =f&9 +fdQ 

f,(9) =f2c% 

f3(5) =f4(9 =fi@) +fi(Q 

f369 =f4W 

From (9)-(14) we have 

fi@) =f# = a’> 

f3@) =f4@) = a, 

fiW =f269 = h 

f3W =f4P) = b’ bvh 

and 
10a + 9b + 8a’= 90, 

lOa’+9b’+8a=90, 

2a+b+2a’+b’=20. 

4 

f,(s) 

0 
0 
9 
9. (10) 

(11) 

(12) 

(13) 

(14) 
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In particular 2a + b=2 (mod8), so from (8) wt(e(‘))=2 
(mod8). Similarly wt(ec3))=2 (mod 8). Without loss of 
generality we may take wt(e(‘)) = 2 or 10. 

Consider now a fixed component space Et’). If we think 
of it as a copy of E6, then given one of the six members of 
the 6-set underlying E6, say x, we can sort the w-set 
functionals on EC” according to whether x is or is not in 
the w-set. Let a,,, be the total number of coordinate 
functionals (on GF(2)=4 which are w-set functionals on 
EC’), and let p,,,(x) be the number whose w-set contains X. 

Now look at the hexads corresponding to the five pairs 

containing x. The total number of times all the coordinate 
functionals register on these hexads is 5 x 6=30. A w-set 
functional containing x registers 6 - w times on the five 
hexads, and one not containing x registers w times. We 

thus have 

30= i: ((6~w)~,(x)+w(a,v-P,(X))} 
w=l 

=a,+2a2+3a3+4p,(x)+2~,(x). 

Such an equation holds for each of the six members x. 
For the component space E(l) we have a, =2a, a== a’, 
and a, = b; similar equations hold for the others. Finally, 

a,=Zg,(x) and 2a,=Zg,(x). 
Armed with all this, one can set up the four codes 

(#20, 22, 23, 24 of Table III) that have the graph 4Csi5. 
Only code #23 has wt(e(‘)) =2; the others have wt(e(‘f)= 
10 and accordingly a = a’, b = b’. We shall illustrate the 
procedure for code #20; here a = 4 and b = 2. Thus 4= 

2p,(x) +p2(x) for any component space and any x, so that 
p,(x)=O, 1, or 2. 

We select component space E(l), for example, and think 
of the six members of the 6-set involved as numbered 1 to 
6. A w-set functional will be described by giving the 
numbers in its w-set, as will a pair corresponding to a 
hexad. From 8 = X$,(x) we find three possible patterns 
for the eight l-set coordinate functionals (up to order and 

renumbering): 

11223344 
12334455 
1 2 3 4.5 5 6 6. 

In the first possibility, pi(x) = 2 implies p=(x) = 0. Thus 
the four 2-set coordinate functionals would all have to be 
56. But then the hexad corresponding to 56 could only 
have the two 3-set functionals registering on it, and would 
not be a hexad. So this case is eliminated. The second case 
is ruled out similarly, as is one of the two possible patterns 
for the 2-set functionals in the third case. The only possi- 
ble pattern for the 14 coordinate functionals that register 
on any of the hexads of EC’) is 

1 2 3 4 5 5 6 6 13 14 23 24 125 126 

(with a suitable numbering). These (more aesthetically set 
out, the pairs and triples written vertically) label 14 posi- 
tions in Fig. 8. 

To complete the code we lay out the coordinate func- 
tionals for one of the component spaces having the other 
e@; we select one having one of its 2-set functionals in the 
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same position as one labeled 5. Call this component Ec3) 
and indicate its 6-set with primes. The hexad correspond- 
ing to 56 from E(l) must be orthogonal to all hexads of 
E”). The only positions in which it can meet a hexad from 
Ec3) are the 5’s and 6’s. If, for example, the 2-set func- 
tional 1’4’ is at one of the 5’s, the hexad corresponding to 
1’5’ will show 1’3’ must also be at one of the 5’s or 6’s. 
Arguing repeatedly in this way, we find that all the 2-set 
functional8 for Ec3) are in the 5 and 6 locations. Corre- 
spondingly, at the 2-set functionals for E(l) we must have 
the l-set functionals 5’ and 6’ for Ec3). For if not, suppose 
1’ were one of them. Then some other number r’ would 

not appear. The hexad for l’r’ would then meet the hexad 
for 12 only once (at the 1’ spot), violating orthogonality. 
Finally, to settle on the dispositions in Fig. 8 (allowing 
renumbering) we invoke things like the orthogonality of 
the hexads for 15 and 1’4’. 

To obtain the basis for the code (which is still hy- 
pothetical at this point!) we begin by filling in ternary 
words of weight 6 whose supports are the hexads corre- 
sponding to 12, 13, 14, 15, and 16. These can all be filled 
in with ones, by scaling, since any two of the words 
overlap in three positions where they must totally agree 
(or totally disagree). Similarly we fill in words for the 
hexads 1’2’, 1’3’, 1’4, 1’5’, 1’6’. This time some twos are 
needed to obtain orthogonality with the first collection of 
words. These twos are forced once some free scaling 
choices have been made. The final pattern appears in Fig. 

8 (with the pairs corresponding to the ten hexads being 
used as row labels). 

D. The Codes with I’= 5 Cl2 

Now the prototype of the component spans is the 
orthogonal sum E, I R,, and the center set is the set of 
sums p + p for p E E,, p E R, (see Theorem 9). The sizes of 
linear functionals on E3 I R, are 6 and 8, those of size 8 
being the ones that vanish on R,. As before, each coordi- 
nate functional registers on 18 hexads, but the only way 
18 can be a sum of 6’s and 8’s is 

18=6+6+6+0+0. 

Thus no coordinate functional has size 8 on any compo- 
nent space, and each coordinate is covered by three 
components. Since the coordinates register 12 x 6 = 72 
times on the hexads of a component, 72/6= 12 of the 
coordinate functionals are nonzero on a component space. 
That is, each component covers 12 coordinate positions. 

If we think of a particular component space as a copy 
of E,l. R,, the members of R, will each be sums of two 
orthogonal hexads and thus have weights 0, 4, 8, or 12. 
There are two cases: no member of R, for any component 
corresponds to a word of weight 4; or some member does. 
Each leads to a code (# 19 and #2 1, respectively) and we 
shall sketch how code # 19 (associated with the Petersen 
graph) arises. 

Since for a component space there are three nonzero 
radical words (the words corresponding to the nonzero 
members of RJ supported on 12 positions with weights 8 

or 12 in the case at hand, the weights are in fact all 8. As a 
consequence two hexads in the component that are not 
connected, differing by a radical word, meet in two posi- 
tions. 

Consider the ternary span S of the words of weight 6 in 
a component. S is supported on the 12 positions of the 
component, and covers all 12. With S considered as a 
code of length 12, S L has no words of weight 1. Since S 
has at least 24 words of weight 6 (two for each hexad), the 
MacWilliams identities show dims > 4. But S is con- 

tained in the subcode B (of the whole ternary code C 
under consideration) of words that are 0 outside the 
support of S. From Theorem 11, B has dimension 10-8 
plus the dimension of the subcode of C that is 0 on the 
support of S. Since length 8 will support at most two 

dimensions of orthogonal words of weight 6, dimB < 4. 
Thus in fact S = B and dim B = 4. Moreover, the words of 
weight 6 outside the support of S must be (after scaling 
and arranging) the following rows and their negatives (on 

the eight outside positions): 

11111100 
11220011 
11002222 
0 0 1 1 2 2 1 1. 

Because any two of the hexads represented in this 

pattern meet in four places, they all belong to different 
components, necessarily the components other than the 
one being studied. On the other hand, if one has such a 
pattern of words of weight 6 in the code (covering eight 
positions) the hexads will be in four different blocks, and 

the subcode of C that is 0 on these positions will have 
dimension 4. The MacWilliams identities again imply that 
the code has at least 24 words of weight 6. But no hexad 
from such a word can belong to any of the four compo- 
nents represented, since it would have to meet the repre- 
senting hexad in two or three places. Thus in fact this 
subcode is the span of the words of weight 6 giving the 
hexads of the fifth component, and it contains no other 
words of weight 6. 

There are then exactly five such patterns, one for each 
component (two components cannot occupy the same 12 
positions). Consider the patterns for components A and B 
(using letters as labels). The hexad for component A 
appearing in the pattern for component B must be disjoint 

from all the hexads in the pattern for component A, by 
the discussion above. That means at most two positions of 
the pattern for component B occur in the one for compo- 
nent A. Since the hexads for component C in the two 
patterns meet in at least two positions, this means the two 
patterns share exactly two positions. They are then the 
unique two positions not covered by either component A 
or component B (but the pattern shows that they are 
covered by components C, D, and E). Thus the 20 coordi- 
nate positions can be taken in groups of two, one group 
for each pair of components. Furthermore, the hexad 
from component B in the pattern for component A (for 
example) will occupy the six positions labeled AC, AD, 

and AE. This gives a recipe for the 20 hexads occurring in 
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the five patterns, and it has been used in Fig. 7. The row 

labels indicate the components in which the displayed 
hexads lie. This completes the sketch of the proof of 
Theorem 13. 

# 17. e,+f,+2t+f, 

e3 -fg- fq f4 fl 

I 2 3 4 5 6 7 8 9 1011 121314151617181920 

E. Codes of Length 20 with A, = 2 

Theorem 14: There are exactly two codes of length 20 

with A, = 2: these are # 17 and # 18 of Table III. 

Outline of Proof We consider the [ 17,8,6] subcode 
which is zero on the support of the words of weight 3. Its 
dual has ten words of weight 4 and the valency of a hexad 
is determined in part by whether there are words of 

weight 4 supported on the hexad. In one case (code # 17) 
the hexad graph for the length 17 code is Ci”+ C$+ C$, 
and in the other (code # IS), it is 2Cd + 2C:f, having two 
isolated hexads. In some ways the analysis here is easier 
because of the presence of the C$ since these have r =9 
(see Theorem 9), which is larger than the values of r 
occurring in the codes with A, = 0. 

Fig. 4. Code #17. 

#IS. e3 + gg + 9* 

I 2 3 4 5 6 7 8 9 IO II 12 I3 14 15 I6 17 I8 I9 20 

I I I 

I I I I I IO00 

I I IO00 I I I 

120120120 

I I IO1 I IO 

01210121 

F. The Groups of Codes # 17- 24 

00011100000010220000 
00010110010000200010 

00010200001202000100 

12000000000010012002 

Fig. 5. Code #18. 

Code # I7 (see Fig. 4): The group G,/ 2 Z is transitive 
on coordinates {4,5, * * . , ll}, the stabilizer of 4 has orbits 
{4}, {8}, {5,6,7,9,10,11}, the stabilizer of 4 and 5 has 
orbits {4}, {5}, {8}, {9}, {6,7,10, ll}, and the stabilizer of 
4, 5, and 6 is the identity. Thus g, =2*8*6.4. 

Code .# I8 (see Fig. 5): The group G, is generated by 
-Iand 

a,=(4,8,6,5,12,9,11,10)(14,19,18,15)(16,20) 

~negate{5,7,9,10,11,16,20}, 

7~2=(4,5)(7,8)(10,11)(14,18), 

r3=(13,20)(15, 19)(16,17)negate{ 1,2,3,15,19}, 

7r4=(13, 16)(14,18)(17,20) 

.negate{ 1,2,3,13,14,16,17,18,20}. 

Let H be the subgroup of G,/ -t- I defined by the action 
on the coordinates {4,5,. . . ,12} ; H is generated by (the 
restriction of) 7~, and ?T=. Then H is doubly transitive on 
thesenine coordinates, and the stabilizer of two points has 
order 2, so that ] H ] = 9.8.2. Finally the action of G,/ ? H 
on the coordinates { 13,14,. . * ,20} is generated by 7~~ and 
r4, and has order 4. Thus gl=2.9.8.2.4=27.32. 

Code # 19: (See Section D and Figs. 6 and 7). The ten 
blocks are labeled with pairs of letters from 

{A, B, C, D, E} and are in one-to-one correspondence with 
the nodes of the Petersen graph shown in Fig. 6. The 

group G, is isomorphic to S,, the group of the Petersen 
graph. For example it may be generated by the permuta- 
tions on the blocks induced by (A, B) and (A, B, C, D, E). 
The group G, is generated by -I and 

Fig. 6. The Petersen graph, which is the complement of the triangular 
graph T(5). The nodes are labeled with pairs of letters from 
(A, B, C, D, E }, and two nodes are joined by an edge if and only if the 
corresponding pairs are disjoint. The group of the Petersen graph is 
S,, corresponding to all permutations of the five letters. 

~A=(1,2)(3,4)(5,6)(11,12)negate{l,2,3,4}, 

7~g=(5,6)(7,8)(9,10)(15,16)negate{5,6,7,8}, 

~c=(9,10)(11,12)(13,14)(19,20)negate{9,10, 11,12}, 

9rD=(13, 14)(15,16)(17,18)(3,4)negate{ 13,14,15,16}, 

A 
9 

C 

D 

E 

A 

B 

C 

D 

E 

Fig. 7. Code #19. 
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# 21. 5f4 

T II m m P 
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FIRST SET OF FIRST SET OF 
FUNCTIONALS FUNCTIONALS 

SECOND SET OF SECOND SET OF 

14’ 3’ 3’ 4’1 1 I$$1 F”NCT’ONALS 

Fig. 8. A generator matrix for code #20 is enclosed by the double 
lines. At the top of the figure are the linear functionals defining the 
first Ci5 component, and below them the linear functionals defining 
the second Ci5. By evaluating these functionals at the pairs shown on 

the right, the ten rows of the generator matrix are obtained. 

and has order 25. These are labeled so that rri only affects 
the blocks containing the letter i. 

Code # 20: (see Section C and Fig. 8). The group G, is 
a Klein group of order 4 acting on the blocks {I, II, III, 
IV}; there is an isomorphic action on the four C,” com- 
ponents. The group G, is best described in terms of the 
arguments { 1,2,. . . ,6, l’, . . . ,6’} of the linear functionals. 

It is generated by 

(LW,4), (LWZ4, 

(1’,2’)(3’,4’), (1’2 3’)(2’,4’), 

t&4)(5’, 0 (5,6)(3’,4’), 

(with suitable signs), and by - I, and has order 2’. 
Code # 21 (see Fig. 9): G, is a dihedral group of order 

10 on the blocks, generated by (I, II, III IV,V) and 
(I, II)(III, IV). G, contains - I, 

(1,2)(3,4)(5,6)(7,8)diag{24 116}, 

(3,4)(5,8)(6,7)(11,12)diag{12 22 116}, 

and their images under G,. These generate a group of 
order 8 on block I, a group of order 8 on block II, and a 
group of order 8 on the remaining three blocks. Thus 

g,=2.S3. 
Code # 22 (see Fig. 10): G2 contains (I, II) and (1,111) 

(II,IV), and has order 8. G, contains -Z and an 5, on 
any one block, so g, = 2 * 5!. 

Code # 23: The components of this code are 2g,+f2, 
but in order to determine its group it is better to observe 
that it contains two copies of yii having a pair of coordi- 
nates (10 and 11 in Fig. 11) in common. G, contains 

~1=(4,7)(5,8)(6,9)(10,11)diag{118 22}, 

~2=(1,8)(2,7)(3,9)(10,11)diag{23 l3 23 l9 22}, 

a,=(1,4)(3,7)(6,8)(1’,4’)(3’,7’)(6’,8’) 

*diag{ 1 2 l2 22 1 22, 1 2 l2 22 1 22, 22}, 

which generate a subgroup H of order 72. When restricted 
to the coordinates { 1, * * * ,9,10,11} this subgroup is iso- 

morphic to G,(y,i)/( - Z,n,)-see Section III. Nothing 

I 2 3 45 6 7 891011 121314151617181920 I 2 3 45 6 7 891011 121314151617181920 

I I I II200 I I I II200 

, I I II200 , I I II200 

I I I I I200 I I I I I200 

I I ,I 1200 I I ,I 1200 

1200 1200 I I I I I I I I 

221 10012 221 10012 
221 10012 221 10012 

221 10012 221 10012 

22110012 22110012 

0012 0012 221 I 221 I 

Fig. 9. Code #21. 

# 22 4f5 

I II UI IY 

, 2 3 4 5 6 7 8 9 IO II 12 I3 I4 I5 I6 I7 I8 1920 

I I 01 I I I 

I I IO1 I I 

I I I IO1 I 
I , IIIOI 

I I I I I IO 

I 2 01 I I I 
I 2 101 I I 

I 2 II01 I 

I 2 I II01 

I 2 I I I IO 

Fig. 10. Code #22. 

# 23. 2gg+ f2 

I 2 3 4 5 6 7 8 9 I’ 2’ 3’ 4’ 5’ 6’ 7’ 8’9’ IO II 

Fig. 11. Code #23. 

else in G, (except -I) acts on coordinates { 1, * * * ,9}. 

However G, also contains 

n;=(4’,7’)(5’,8’)(6’,9’)(10,11)diag{ 118 22}, 

~;=(1’,8’)(2’,7’)(3’,9’)(1O,ll)diag{ l9 23 l3 25}, 

$=(1’,5’)(2’,6’)(3’,4’)(7’,9’)diag{ l9 26 l’}, 

?~~=(l’,4’,8’,2’,5’,7’)(3’,6’,9’)(10,ll)diag{l~ 26 l’}, 

which generate a group of order 36 on coordinates 

{l’,***, 9’, 10, 1 1 }, isomorphic to a subgroup of H of index 
2. Finally G, contains -I, so that g, =2*72*36. 

Code #24: G, coincides with G,(g,,-,), of order 23. 
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A Multiplication-Free Solution for Linear 
Minimum Mean-Square Estimation 

and Equalization Using the 
Branch-and-Bound Principle 

TSUN-YEE YAN AND KUNG YAO, MEMBER, IEEE 

Abstmct-An optimal linear mean-square estimation algorithm is de- 

rived under the constraint tbat tbe algorithm be multiplication-free. A 

classicaf linear estimation problem with block length N generally requires 

N2 multiplications. For many on-line signal processing shuations a large 

number of muftipiications is objectionable. Tbis clam of estimation prob- 

lems includes the classical linear filtering of a random signal in random 

noise, as well as the linear equaliition of digital data over a dispersive 

channel with additive noise. Here we consider the linear estimation prob- 

lem on a binary computer where the estimation parameters are constrained 

to be powers of two and thus all multiplications are replaced by shifts. 

Then the optimal constrained linear estimation problem resembles an 

integer-programming problem except that the allowable discrete pointa are 

nonintegers. The branch-and-bound principle is nsed to convert this tub& 

mixation problem to a series of convex programming problems. An algo- 

ritbm is given for the solution as well as numerical results for filtering and 

data equaliiation. These examples show tbat the multiplication-free con- 
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straint does not generally increase tbe mean-square error significantly 

compared with the classical optimal solution. Furthermore, the intuitive 

“round to the nearest power of two” procedure for tbe estimation parame- 

ters can be inferior to tbe optimal branch-and-bound solution. 

I. INTRODUCTION 

R 
ECENT ADVANCES in semiconductor technology 
have made digital data processing readily available, 

using either large general purpose scientific computers or 
special purpose microprocessors. Although micro- and 
minicomputers are inferior to the big machines both in 
on-line storage space and operating time, their signifi- 
cantly lower costs have made them extremely attractive in 
many modern communication, radar, and information- 

processing systems. Since most of these small machines 
are relatively slow, good algorithms are particularly im- 
portant if real-time signal processing is required. 

Any algorithm implemented on a computer is con- 
taminated by various kinds of quantization errors caused 
by the finite word length of the machine [l], [2]. There are 
the usual analog-to-digital (A/D) quantization errors at 
the input of the digital system, as well as internal 
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