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Ternary Diophantine Equations via Galois
Representations and Modular Forms

Michael A. Bennett and Chris M. Skinner

Abstract. In this paper, we develop techniques for solving ternary Diophantine equations of the shape

Axn + Byn = Cz2 , based upon the theory of Galois representations and modular forms. We subse-

quently utilize these methods to completely solve such equations for various choices of the parameters

A, B and C . We conclude with an application of our results to certain classical polynomial-exponential

equations, such as those of Ramanujan–Nagell type.

1 Introduction

A recent approach to ternary Diophantine equations, based upon techniques from

the theory of Galois representations and modular forms (and motivated by ideas of
Frey [23], Hellegouarch [25] and Serre [51]), has achieved spectacular success in the
work of Wiles [55], proving Fermat’s Last Theorem. Subsequently, variants of these
methods have been applied by Darmon and Merel [19] and Kraus [30], [31] to cases

of the generalized Fermat equation

xp + yq
= zr,

1

p
+

1

q
+

1

r
< 1.

While it does not seem possible to fully deal with this equation by these techniques
(but see Darmon [17]), a number of partial (or even complete) results are available
in case (p, q, r) = (p, p, 2) (see [19] for p ≥ 5), (p, q, r) = (p, p, 3) (see [19] for

p ≥ 5), (3, 3, p) (see [30] for 3 ≤ p < 104), (4, p, 4) (see [14] for p ≥ 4), (2, 4, p),
(5, 5, p) and (7, 7, p) (see [22], [32] and [32], resp.). Further, this approach makes it
feasible to treat more general equations of the shape

(1.1) Axp + Byq
= Czr,

with A, B and C fixed nonzero integers. If (p, q, r) = (p, p, p), earlier results along

these lines are due to Serre [51] for A = B = 1, C = Lα (α ≥ 1), with

L ∈ {3, 5, 7, 11, 13, 17, 19, 23, 29, 53, 59}, L 6= p, p ≥ 11,

Kraus [29] for ABC = 15, Darmon and Merel [19] for ABC = 2, and Ribet [49] for
ABC = 2α with α ≥ 2.
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In this paper, we will restrict our attention to equation (1.1) in the case p = q and
r = 2; i.e., to

(1.2) Axn + Byn
= Cz2.

Our aims are twofold. Firstly, we wish to develop a catalogue of techniques for solving
a (relatively broad) class of ternary Diophantine equations. Secondly, we will apply
these methods to explicitly solve certain Fermat-type equations. Such results have

immediate applications to a variety of polynomial-exponential equations, such as
those of Ramanujan–Nagell type, as well as to other classical Diophantine problems,
including the occurence of powers in products of integers in arithmetic progressions.

We will suppose, here and henceforth, that A, B and C are nonzero pairwise co-
prime integers. As various authors have noted, if n is odd and a, b, c ∈ Z satisfy
Aan + Bbn

= Cc, then (ac, bc, c
n+1

2 ) is an integral solution to (1.2). With this in mind,

we will consider only primitive solutions (a, b, c) to (1.2), where we suppose that aA,
bB and cC are nonzero and pairwise coprime. We may weaken this hypothesis, at the
cost of a certain amount of simplicity.

Our main results, from the viewpoint of Diophantine equations, are as follows.

Theorem 1.1 If n ≥ 4 is an integer and

C ∈ {1, 2, 3, 5, 6, 10, 11, 13, 17},

then the equation

xn + yn
= Cz2

has no solutions in nonzero pairwise coprime integers (x, y, z) with, say, x > y, unless

(n,C) = (4, 17) or

(n,C, x, y, z) ∈ {(5, 2, 3,−1,±11), (5, 11, 3, 2,±5), (4, 2, 1,−1,±1)} .

If C = 1 this is a result of Darmon and Merel [19]. Our current methods are
unable to resolve the case C = 7. With further computation, we can extend Theorem
1.1 to include, for example, C ∈ {14, 15, 19}.

Theorem 1.2 Suppose that n ≥ 7 is prime. If

(C, α0) ∈ {(1, 2), (3, 2), (5, 6), (7, 4), (11, 2), (13, 2), (15, 6), (17, 6)},

then the equation

xn + 2α yn
= Cz2

has no solutions in nonzero pairwise coprime integers (x, y, z) with xy 6= ±1 and inte-

gers α ≥ α0, unless, possibly, n ≤ C or (C, α, n) = (11, 3, 13).



Ternary Diophantine Equations 25

We should mention that the proofs of the above two theorems require combina-
tions of every technique we have currently available. It is this application of more

traditional results in concert with our Proposition 4.4 that represents the main nov-
elty of this paper.

When AB is divisible by an odd prime and C = 1 or 2, as it transpires, we are
rather limited in the techniques we may apply. In the situation where A = C = 1
and B = pm for m ∈ N and p ≡ 3, 5 (mod 8) prime, distinct from 3 or k2 + 1 with
k ∈ N, Ivorra [27] has shown that equation (1.2) is insoluble in coprime integers

(x, y, z), provided n is a suitably large prime, relative to p. Such a result follows
from careful examination of elliptic curves with conductor 2α p possessing at least
one rational 2-torsion point. For small p, this is included in the following:

Theorem 1.3 Suppose that n ≥ 11 is prime, A, B are coprime integers, α, β are non-

negative integers with β ≥ 1. If

AB ∈ {2α11β , 2α13β , 2α19β , 2α29β , 2α43β , 2α53β , 2α59β , 2α61β, 2α67β}

for α = 0 or α ≥ 3, or if

AB ∈ {2 · 19β , 4 · 11β , 4 · 19β , 4 · 43β, 4 · 59β, 4 · 61β, 4 · 67β}

then the equation

Axn + Byn
= z2

has no solution in nonzero pairwise coprime integers (x, y, z), unless, possibly, n|AB or

we have AB, n and α as follows:

AB n α AB n α

2α19β 11 1 2α61β 13 0, 3

2α43β 11 0, 3,≥ 7 2α61β 31 ≥ 7

2α53β 11 2, 4, 5 2α67β 11 0, 3, 6

2α53β 17 0, 3 2α67β 13 0, 3

2α59β 11 ≥ 7 2α67β 17 0, 3,≥ 7

2α59β 29 6

Theorem 1.4 Suppose that n ≥ 11 is prime and α is a nonnegative integer. If B ∈
{5α, 11α, 13α}, then the equation

xn + Byn
= 2z2

has no solution in nonzero pairwise coprime integers (x, y, z), unless, possibly, n|B.

For even values of AB, we have:
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Theorem 1.5 Suppose that n ≥ 11 is prime, A, B are coprime integers, α, β, γ, δ are

nonnegative integers with α ≥ 6 and AB = 2α pβqγ , where

(p, q) ∈ {(3, 31) (β ≥ 1), (5, 11) (α ≥ 7), (5, 19), (5, 23) (β ≥ 1),

(7, 19) (γ ≥ 1), (11, 13), (11, 23) (β ≥ 1), (11, 29), (11, 31) (β ≥ 1),

(13, 31) (β ≥ 1), (19, 23) (β ≥ 1), (19, 29), (29, 31) (β ≥ 1)}.

Then the equation

Axn + Byn
= z2

has no solution in nonzero pairwise coprime integers (x, y, z), unless, possibly, n|AB or

we have AB, n and α as follows:

AB n α AB n α

2α5β23γ 11 ≥ 7 2α11β29γ 13 ≥ 7

2α7β19γ 11 ≥ 7 2α19β23γ 11 ≥ 7

2α11β23γ 11 ≥ 6 2α19β29γ 11 ≥ 7

where β, γ and δ are positive integers.

Finally, restricting to odd values of the variables x, y:

Theorem 1.6 Suppose that n ≥ 11 is prime and that α is a nonnegative integer. If

B ∈ {23α, 31α, 47α, 71α}, then the equation

xn + Byn
= z2

has no solution in nonzero pairwise coprime integers (x, y, z) with xy ≡ 1 mod 2,

unless, possibly, n|B.

We note that in a number of cases, we may extend the above theorems to include
analogous results with n = 7. We have, for the most part, omitted these for the sake

of concision.

2 Some Elliptic Curves

We begin by writing down some elliptic curves. We always assume that n is an odd
prime, that (a, b, c) is an integral solution to (1.2) with aA, bB and cC pairwise co-

prime, and that C is squarefree. Without loss of generality, we may suppose we are in
one of the following situations:

(i) abABC ≡ 1 (mod 2) and b ≡ −BC (mod 4).

(ii) ab ≡ 1 (mod 2) and either ord2(B) = 1 or ord2(C) = 1.
(iii) ab ≡ 1 (mod 2), ord2(B) = 2 and c ≡ −bB/4 (mod 4).
(iv) ab ≡ 1 (mod 2), ord2(B) ∈ {3, 4, 5} and c ≡ C (mod 4).
(v) ord2(Bbn) ≥ 6 and c ≡ C (mod 4).
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For instance, let us suppose that abABC is odd. Then we necessarily have c ≡ 0
(mod 2) and, since n is odd, aA ≡ ±1 (mod 4) while bB ≡ ∓1 (mod 4). Renam-

ing if necessary, we may assume b ≡ −BC (mod 4), whereby we find ourselves in
case (i). The other cases are achieved by similar reasoning; note that we are free to
replace c by −c, if necessary.

In cases (i) and (ii), we will consider the curve

E1(a, b, c) : Y 2
= X3 + 2cCX2 + BCbnX.

In cases (iii) and (iv), we will consider

E2(a, b, c) : Y 2
= X3 + cCX2 +

BCbn

4
X,

and in case (v),

E3(a, b, c) : Y 2 + XY = X3 +
cC − 1

4
X2 +

BCbn

64
X.

These are all elliptic curves defined over Q .
The following lemma summarizes some useful facts about these curves.

Lemma 2.1 Let i = 1, 2 or 3.

(a) The discriminant ∆(E) of the curve E = Ei(a, b, c) is given by

∆(E) = 2δiC3B2A(ab2)n,

where

δi =











6 if i = 1

0 if i = 2

−12 if i = 3.

(b) The conductor N(E) of the curve E = Ei(a, b, c) is given by

N(E) = 2αC2
∏

p|abAB

p,

where

α =



























































5 if i = 1, case (i)

6 if i = 1, case (ii)

1 if i = 2, case (iii), ord2(B) = 2 and b ≡ −BC/4 (mod 4)

2 if i = 2, case (iii), ord2(B) = 2 and b ≡ BC/4 (mod 4)

4 if i = 2, case (iv) and ord2(B) = 3

2 if i = 2, case (iv) and ord2(B) ∈ {4, 5}
−1 if i = 3, case (v) and ord2(Bbn) = 6

0 if i = 3, case (v) and ord2(Bbn) ≥ 7.

In particular, E has multiplicative reduction at each odd prime p dividing abAB.

Also, E has multiplicative reduction at 2 if ord2(Bbn) ≥ 7.
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(c) The curve Ei(a, b, c) has a Q-rational point of order 2.

(d) Suppose p is an odd prime dividing C. The curve Ei(a, b, c) obtains good reduction

over Q( 4
√

C) at all primes ideals dividing p. Over any quadratic field K, the curve

Ei(a, b, c) has bad reduction at all prime ideals dividing p.

Proof Part (a) of this lemma is just a straightforward calculation using the well-

known formula for the discriminant of an elliptic curve given by a Weierstrass equa-
tion [52, III, §7]. Part (b) follows from Tate’s algorithm for computing the reduced
fiber of a Neron model of Ei(a, b, c) together with Ogg’s formula for the conductor
[53, IV, §9]. The computations are somewhat involved at the prime 2. The stated

results follow most easily from combining Propositions 1 to 7 with Tableau IV of
Papadopolous [46]. By way of example, in case (i), we find that ord2

(

c4(E)
)

=

4, ord2

(

c6(E)
)

≥ 6 and ord2

(

∆(E)
)

= 6 and so may apply Proposition 1 and
Tableau IV of [46] to conclude that α = 5. Part (c) follows from the fact that

(X,Y ) = (0, 0) is a Q-rational point of order 2 on Ei(a, b, c) for each choice of i

(cf. [52, III, 2.3]).

To prove part (d), let p be an odd prime dividing C . Consider the elliptic curves

E ′
1 : U 2

= V 3 + 2c
√

CV 2 + BbnV,

E ′
2 : U 2

= V 3 + c
√

CV 2 +
Bbn

4
V,

and

E ′
3 : U 2

= V 3 +
c
√

C

4
V 2 +

Bbn

64
V,

defined over Q(
√

C). Note that the coefficients of the defining equations are integral

except possibly at prime ideals dividing 2 and that the discriminants of these curves
are each a power of 2 times AB2(ab2)n and hence coprime to p. It follows that these
curves have good reduction at each prime ideal of Q(

√
C) (and hence of Q( 4

√
C))

dividing p [52, VII, 5.1].

For i = 1 or 2, the substitution Y = C3/4U , X = C1/2V yields an isomorphism
over Q( 4

√
C) between Ei(a, b, c) and E ′

i . The substitution Y = C3/4U − 1
2
C1/2V ,

X = C1/2V yields an isomorphism over Q( 4
√

C) between E3(a, b, c) and E ′
3. Combin-

ing this with the preceding observation on the reduction of the E ′
i ’s at a prime ideal

dividing p gives the first half of part (d).

For the second half of (d), observe that Ei(a, b, c) having good reduction over the
quadratic field Q(

√
D) (D squarefree) at each prime ideal dividing p is equivalent

to the Q(
√

D)-quadratic twist of Ei(a, b, c) having good reduction at p. The substi-
tutions in [52, X, 2.4] yield a Weierstrass model ED for the Q(

√
D)-quadratic twist

having discriminant exactly divisible by either p3 or by p9. In either case, this model
is minimal at p and has bad reduction at p (cf. [52, VII, 1.1, 5.1]. This completes the

proof of Lemma 2.1.

We will have recourse to the following.
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Corollary 2.2 If n ≥ 7 is prime and abAB is divisible by an odd prime p, then the

j-invariant j(E) of the curve E = Ei(a, b, c) satisfies

ord p

(

j(E)
)

< 0.

In particular, if ab 6= ±1 then Ei(a, b, c) does not have complex multiplication.

Proof By part (b) of Lemma 2.1 the curve E = Ei(a, b, c) has multiplicative reduc-
tion at each odd prime p dividing abAB. In particular, E does not have potentially
good reduction at such a prime p. It then follows that for such a prime p the j-

invariant j(E) of E is not a p-adic integer [52, VII, 5.5]. Similarly, if 2|ab then, since
n ≥ 7, it follows from Lemma 2.1 that E has multiplicative reduction at 2 and hence
j(E) is not a 2-adic integer. In particular, it follows that if ab 6= ±1, then j(E) is not
an integer. From the well-known fact that the j-invariant of an elliptic curve with

complex multiplication is an algebraic integer [53, II, Theorem 6.1], we see that if
ab 6= ±1, then E cannot have complex multiplication.

3 Galois Representations

Let E = Ei(a, b, c) for some 1 ≤ i ≤ 3 and some primitive solution (a, b, c) to (1.2).
We associate to the elliptic curve E a Galois representation

ρE
n : Gal(Q/Q) → GL2(Fn).

This is just the representation of Gal(Q/Q) on the n-torsion points E[n] of the el-
liptic curve E, having fixed once and for all an identification of E[n] with F2

n. We

continue to make our assumptions that aA, bB and cC are pairwise coprime and that
C is squarefree. Without loss of generality we may also suppose that A and B are
n-th-power free.

Corollary 3.1 If n ≥ 7 is a prime and if ab 6= ±1, then ρE
n is absolutely irreducible.

Proof Since the representation ρE
n is odd, meaning that the image of any complex

conjugation has eigenvalues 1 and −1, and since n is odd, ρE
n is absolutely irreducible

if and only if it is irreducible. Thus we need only rule out the case that ρE
n is reducible.

If ρE
n is reducible, then E has a Q-rational subgroup of order n. Combining this

with part (c) of Lemma 2.1 it follows that E has a Q-rational point of order 2n. By
the work of Mazur [39] and Kubert [33] this cannot happen if n ≥ 17. It also follows
from their work that if 7 ≤ n ≤ 13 then the only elliptic curves over Q having a

Q-rational subgroup of order 2n also have complex multiplication. Our hypothesis
that ab 6= ±1 together with Corollary 2.2 implies that E does not have complex
multiplication and therefore does not have a Q-rational subgroup of order 2n. It
follows that ρE

n is irreducible, as claimed.

We can associate to each representation ρE
n a number NE

n called the conductor of
ρE

n . It is defined in [51]; an immediate property of this definition is that N E
n divides

N(E). This can be a strict divisibility, as the following lemma shows.
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Lemma 3.2 If n ≥ 3 is a prime and ρE
n is associated to a primitive solution (a, b, c) of

(1.2), then

NE
n = 2β

∏

p|C,p 6=n

p2
∏

q|AB,q6=n

q,

where

β =

{

1 if ab ≡ 0 (mod 2) and AB ≡ 1 (mod 2)

α otherwise,

for α as defined in the statement of Lemma 2.1.

Proof If p 6= n is a prime at which the curve E has multiplicative reduction (i.e.,

p ‖ N(E)), then a result of Serre (cf. [51, (4.1.1.2)]) shows that if also n| ord p

(

∆(E)
)

then p does not divide NE
n ; otherwise p ‖ NE

n . It then follows from this and from
parts (a) and (b) of Lemma 2.1 that NE

n divides 2β
∏

p2
∏

q, where the first product
is over primes p 6= n dividing C and the second product is over primes q 6= n

dividing AB, and that
∏

q divides NE
n . To prove that NE

n actually equals the given
formula requires an analysis involving the definitions of the p-parts of N(E) and N E

n

for primes p 6= n dividing 2C .

Let Tn be the n-adic Tate module of the curve E. Fix an isomorphism Tn
∼= Z2

n and
let ρ : Gal(Q/Q) → GL2(Zn) be the Galois representation coming from the action of

Gal(Q/Q) on Tn. Let p 6= n be a prime dividing 2C and let Dp and Ip be, respectively,
a decomposition group and inertia subgroup at the prime p.

Suppose pr ‖ N(E) and pr0 ‖ NE
n . A comparison of the definitions of the p-parts

of N(E) and NE
n shows that

r − r0 = dimFn
(E[n]Ip ) − rankZn

(T
Ip
n )

where the superscript ‘Ip’ denotes the part fixed under the action of the inertia group
Ip. Since p|N(E), the curve E does not have good reduction at p, and hence

rankZn
(T

Ip
n ) ≤ 1 [52, VII, 7.1].

If dimFn
(E[n]Ip ) = 0 then there is nothing to prove. Suppose then that

dimFn
(E[n]Ip ) ≥ 1. Since the determinant of ρE

n is unramified away from the prime
n, the group ρE

n(Ip) is contained in a unipotent subgroup of GL2(Fn) and therefore

has order dividing n. Since ρE
n is equivalent to the reduction of ρ modulo n and since

the kernel of the reduction map GL2(Zn) → GL2(Fn) is a pro-n-group, it follows
that ρ(Ip) is a pro-n-group. In particular, ρ|Ip

factors through the maximal pro-n-

quotient of Ip, say I(n)
p , which is isomorphic to Zn.

Let τ ∈ Ip be an element mapping to a topological generator of I (n)
p . Let α, β ∈

Q
×
n be the eigenvalues of ρ(τ ) and let σ ∈ Dp be any lift of a Frobenius element.

From the well-known action of Frobenii on tame inertia we have that ρ(στσ−1) =

ρ(τ p). It follows that {α, β} = {αp, β p}. In particular, α and β must be primitive
nk-th roots of unity, for some nonnegative integer k. Note also that β = α−1 since
det

(

ρ(τ )
)

= 1, and hence α + α−1
= trace(

(

ρ(τ )
)

is in Zn. Since Qn(α + α−1) has

degree nk−1(n − 1)/2 over Qn if k ≥ 1, it follows that k = 0. Therefore α = β = 1
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and rankZn
(T

Ip
n ) = 1. It then follows from the definition of N(E) that p ‖ N(E) (i.e.,

E has multiplicative reduction at p). From part (b) of Lemma 2.1 it follows that this
can occur only if p = 2 and we are in case (v) with β = α = 0 and ord2(Bbn) ≥ 7.
Suppose then that we are in this case.

If 2-B then 2|b and n| ord2

(

∆(E)
)

, and so it follows from the aforementioned
result of Serre that 2-NE

n , which agrees with the given formula. If 2|B then, since
n- ord2(B) by hypothesis, n- ord2

(

∆(E)
)

whence, again by Serre’s result, 2 ‖ Nn(E),
which also agrees with the given formula.

We now wish to connect the representations ρE
n with representations arising from

modular forms. We begin by summarizing what it means for ρE
n to be modular.

Let Fn be an algebraic closure of the finite field Fn. Let ν be any prime of Q

extending n. To any holomorphic newform f of weight k ≥ 1 and level M there is
associated a continuous, semisimple representation

ρ f ,ν : Gal(Q/Q) → GL2(Fn)

unramified at all primes not dividing Mn and such that if f (z) =
∑∞

n=1 cnqn,
q := e2πiz, then

(3.1) trace ρ f ,ν(Frob p) ≡ cp (mod ν)

for all p not dividing Mn. Here Frob p is any Frobenius element at the prime p.
If the representation ρE

n , with scalars extended to Fn, is equivalent to some ρ f ,ν

then we say that ρE
n is modular and that it arises from the newform f (or that f gives

rise to ρE
n).

Lemma 3.3 Suppose that n ≥ 7 is a prime and that ρE
n is associated to a primitive

solution (a, b, c) to (1.2) with ab 6= ±1. Put

Nn(E) =











NE
n n-ABC,

nNE
n n|AB,

n2NE
n n|C.

The representation ρE
n arises from a cuspidal newform of weight 2, level Nn(E), and

trivial Nebentypus character.

Proof Applying work of Breuil, Conrad, Diamond and Taylor [4] (or even, since,
by part (b) of Lemma 2.1, the curve E does not have conductor divisible by 27, ear-

lier work of Conrad, Diamond and Taylor [12]) we may conclude that E is modular.
In particular this means that the the representation ρE

n is modular. We also know
by Corollary 3.1 that ρE

n is irreducible. It then follows from work of Ribet [21, The-
orem 6.4] that ρE

n arises from a cuspidal newform with weight 2, level Nn(E), and

trivial Nebentypus character. The key point is that if n-ABC then n-Nn(E) by part (b)
of Lemma 2.1, and so ρE

n|Dn
is ‘finite’ in the sense of [21]. Similarly, if n|AB, then E

has multiplicative reduction at n by part (b) of Lemma 2.1, and so ρE
n|Dn

is ‘Selmer’
in the sense of [21].
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To make use of this lemma we need to carefully analyse the newforms of level
Nn(E) from which our representations can arise. We begin this study in the next

section.

4 Eliminating Newforms

We will use a number of different methods to eliminate the possibility of certain new-
forms of level Nn(E) giving rise to the representation ρE

n . These are collected in the
main propositions of the following subsections. Variants upon Propositions 4.3 and

4.6 occur, in varying degrees of explicitness, in earlier work of Serre [51] and Kraus
[31] (in the first instance) and Darmon and Merel [19] (in the second). Proposi-
tion 4.4 appears to be new. As we shall observe in Section 5, many of our Diophantine
problems require simultaneous application of Propositions 4.3, 4.4 and 4.6.

4.1 An Absence of Newforms

Proposition 4.1 Suppose n ≥ 7 is a prime and that E = Ei(a, b, c) is the curve associ-

ated to a primitive solution of (1.2). If

Nn(E) = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60

then ab = ±1.

Proof This is essentially the same argument by which Fermat’s Last Theorem was
reduced to the modularity of semistable elliptic curves.

If ab 6= ±1, then, as a consequence of Lemma 3.3, there exists a cuspidal newform
of weight 2 and level Nn(E). However, it follows from combining Theorems 2.5.2,
4.2.4, 4.2.7 and 4.2.11 of [42] that there are no non-zero cuspforms of weight 2 and
level equal to any of the numbers N listed in the statement of the proposition. From

this contradiction it follows that ab = ±1 whenever Nn(E) is one of the listed num-
bers.

Of course, this list is quite small and one quickly finds oneself considering Nn(E)
for which the corresponding space of cuspforms is non-zero (for example if A = B =

C = 1 and ab is odd then Nn(E) = 32 and there exists a cuspidal newform of weight
2 and level 32). Thus one needs other ways to establish that a given newform of level
Nn(E) cannot give rise to ρE

n .

4.2 Congruences

By Lemma 2.1, the curves Ei(a, b, c) all have rational 2-torsion. In consequence, we

may restrict the possibilities for the Fourier coefficients of the newforms that can
give rise to ρE

n . Since our curves need not have full rational 2-torsion, we have more
difficulty exploiting such arguments than was the case for equations of the shape
xn + yn

= Lαzn, investigated by Serre in [51].
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Lemma 4.2 Suppose n ≥ 7 is a prime and E = Ei(a, b, c) is a curve associated to a

primitive solution of (1.2). Suppose also that p is an odd prime not dividing nN E
n . Then

either

trace ρE
n(Frob p) = ±(1 + p)

or

trace ρE
n(Frob p) = ±2r,

for some integer r ≤ √
p.

Proof Suppose first that p|ab. Then E has multiplicative reduction at p. From the

well-known theory of Tate-curves [53, V] (see also [52, Appendix C, §15]), it follows
that trace ρE

n(Frob p) = ±(1 + p).

Suppose then that p -ab. In this case the curve E has good reduction at p since
p -Nn(E). From the Weil-bounds we know that the number of points Np on E in the

finite field Fp is given by

Np = p + 1 − ap

for some integer ap satisfying −2
√

p ≤ ap ≤ 2
√

p. Since p is odd and E has a
Q-rational 2-torsion point, 2 divides Np and hence also ap. Since

trace ρE
n(Frobp) ≡ ap (mod n)

(cf. [53, II, 10.1]) the lemma follows.

As an immediate consequence of this lemma we obtain the following.

Proposition 4.3 Suppose n ≥ 7 is a prime and E = Ei(a, b, c) is a curve associated to

a primitive solution of (1.2) with ab 6= ±1. Suppose further that

f =

∞
∑

m=1

cmqm (q := e2πiz)

is a newform of weight 2 and level Nn(E) giving rise to ρE
n and that K f is a number field

containing the Fourier coefficients of f . If p is a prime, coprime to nN E
n , then n divides

one of either

NormK f /Q

(

cp ± (p + 1)
)

or

NormK f /Q (cp ± 2r),

for some integer r ≤ √
p.

When applying this proposition to a specific newform we often find it necessary
to consider cp for more than one p. The primes p we use vary from form to form.
We leave these ad hoc arguments to later sections.
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4.3 Images of Inertia

Very often the spaces of cuspforms of level Nn(E) contain newforms associated to
elliptic curves with rational 2-torsion. Consequently, the results of neither of the

preceding subsections can be used to show that these curves cannot give rise to the
representation ρE

n . However, as a consequence of part (d) of Lemma 2.1 we have a
good understanding of ρE

n(Ip) for an inertia group Ip corresponding to an odd prime
p dividing C . Often this can be shown to be inconsistent with the properties of the

action of inertia on the n-adic Tate-module of the elliptic curves associated to the
newforms.

Proposition 4.4 Suppose n ≥ 3 is a prime and E = Ei(a, b, c) is a curve associated to

a primitive solution of (1.2). Suppose also that E ′ is another elliptic curve defined over

Q such that ρE
n
∼= ρE ′

n . Then the denominator of the j-invariant j(E ′) is not divisible by

any odd prime p 6= n dividing C.

Proof Suppose p 6= n is an odd prime dividing C . As in the proof of Lemma 3.2, let
ρ : Gal(Q̄/Q) → GL2(Zn) be the Galois representation on the n-adic Tate-module
of E. Since, by part (d) of Lemma 2.1, E obtains good reduction over Q( 4

√
C,

√
−1)

at all prime ideals dividing p, we have #ρ(Ip)|8 (cf. [52, VII, 7.1]). If #ρ(Ip) = 2,
then there exists a quadratic field K such that the restriction of ρ to Gal(K/K) is
unramified at all prime ideals dividing p, hence E obtains good reduction over K at
all such prime ideals, contradicting the second half of part (d) of Lemma 2.1. Thus

4|#ρ(Ip). Since ρE
n is equivalent to the reduction of ρ modulo n and since the kernel

of this reduction is a pro-n-group, it follows that 4|#ρE
n(Ip).

On the other hand, if E ′ is another elliptic curve defined over Q such that p divides

the denominator of j(E ′), then E ′ has potentially multiplicative reduction at p [53,
VII, 5.5]. Hence Ip acts on E ′[n] via a quotient of Z/2 × Zn (this follows from the
theory of Tate curves [53, V] (but see also [52, Appendix C, §15]). In particular, 4
fails to divide #ρE ′

n (Ip). It follows that ρE ′

n is not isomorphic to ρE
n .

4.4 Hecke Characters and Complex Multiplication

Unfortunately, we will sometimes encounter elliptic curves of conductor Nn(E) hav-
ing rational 2-torsion and integral j-invariants. These cannot be excluded by the
arguments of the preceding subsections. In cases where these curves have complex
multiplication they can be treated by variations on the methods of [19]. Before stat-

ing our main result of this subsection, we recall some properties of modular forms
having complex multiplication.

Let K be an imaginary quadratic field and fix an embedding of K into C (via which

we identify K with a subfield of C). Let OK and AK be the integer ring and adele ring of
K, respectively. By an algebraic Hecke character of K we will mean a homomorphism
χ : A

×
K → C× that is the identity on K× and trivial on C× and on an open subgroup

of
∏

p
O

×
K,p, where p runs over the prime ideals of K. We define the conductor of χ
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(an integral ideal) by

nχ :=
∏

p

p
rp ,

where
rp = max{r > 0 : χ(1 + p

r−1) 6= 1}
if χ(OK,p) 6= 1 and 0 otherwise. To obtain from χ a Hecke character in the usual
sense, we associate to each fractional ideal a an adele aa ∈ A

×
K that is trivial at infinity:

at a prime ideal p, aa,p = πr where π is some uniformizer at p and r = ordp(a). The
adele aa is not well-defined, but if (a) is coprime to nχ then χ(aa) is well-defined. We

write χ(a) for this value. The character a 7→ χ(a) Norm(a)−
1
2 is a Hecke character on

the group of fractional ideals of modulus nχ. The following lemma is a consequence
of [42, Theorem 4.8.2].

Lemma 4.5 Let K be an imaginary quadratic field. Let dK be the discriminant of K

and let χK =
(

dK

·

)

be the usual Dirichlet character associated to K. If χ is an algebraic

Hecke character of K of conductor nχ, then

fχ(z) =

∞
∑

n=1

(

∑

(a,nχ)=1
Norm(a)=n

χ(a)
)

e2πinz,

where a runs over integral ideals of K, is a newform of weight 2 and level Nχ = |dK | ×
Norm nχ with Nebentypus character given by m 7→ χK (m)χ((m))|m|−1.

We will say that a newform f has complex multiplication (or CM) by an imaginary
quadratic field K if f = fχ for some algebraic Hecke character χ of K.

Proposition 4.6 Suppose n ≥ 7 is a prime and E = Ei(a, b, c) is a curve associated

to a primitive solution of (1.2) with ab 6= ±1. Suppose that ρE
n arises from a newform

having CM by an imaginary quadratic field K. Then one of the following holds:

(a) ab = ±2r, r > 0, 2-ABC and 2 splits in K.

(b) n = 7 or 13, n splits in K and either E(K) has infinite order for all elliptic curves of

conductor 2n or ab = ±2r3s with s > 0 and 3 ramifies in K.

Before beginning the proof of this proposition, we recall the Galois representations
associated to newforms having CM.

Suppose K is an imaginary quadratic field and χ is an algebraic Hecke character

of K. Let L ⊆ C be the subfield generated by the values of χ. This is a finite extension
of K. Let n be a prime, ν be a prime of L over n and µ be the prime of K under
ν. Define αν to be the character A

×
K → L×

ν obtained by composing the natural

projection A× → K×
µ with the inclusion K×

µ ↪→ L×
ν . Then αν agrees with χ on

K× and χν = χα−1
ν defines a continuous character A

×
K → L×

ν that is trivial on
K×. It then follows from class field theory that χν determines a continuous character
Gal(K/K) → L×

ν that is unramified away from µ and nχ. We will also denote this
character by χν .
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Since χν is continuous, it actually takes values in O
×
L,ν , where OL,ν is the ring

of integers of Lν . Let Fν = OL,ν/ν. Reducing χν modulo ν we obtain a char-

acter χν : Gal(K/K) → F×
ν . Let ρχ,ν : Gal(Q/Q) → GL2(Fν) be the induction

to Gal(Q/Q) of the character χν . It follows easily from the definitions and from
the Fourier expansion of fχ that if p -2Nχ then ρχ,ν is unramified at p and that
trace ρχ,ν(Frob p) is the reduction modulo ν of the p-th Fourier coefficient of fχ.

Thus ρχ,ν is equivalent to the representation ρ fχ,ν (upon extending scalars for the

former to Fν).

Lemma 4.7 Suppose n ≥ 3. Let K, χ, and ν be as in the preceding paragraphs.

(a) ρ fχ,ν |Gal(K/K) is abelian.

(b) If n is inert in K then ρ fχ,ν

(

Gal(K/K)
)

has order divisible by (n2 − 1).

(c) If n splits in K then ρ fχ,ν

(

Gal(K/K)
)

has order divisible by (n − 1)2.

Proof As mentioned above, ρ fχ,ν is equivalent to ρχ,ν , so it suffices to prove the

lemma with ρ fχ,ν replaced by ρχ,ν .

Let χ ′
ν be the conjugate character of χν (so if σ ∈ Gal(Q/Q) acts non-trivially

on K, then χ ′
ν(τ ) = χν(στσ−1) for all τ ∈ Gal(K/K)). From the definition of ρχ,ν

it follows that ρχ,ν |Gal(K/K) is isomorphic to χν ⊕ χ ′
ν . This is obviously abelian, so

part (a) of the lemma is true.

Let µ be the prime of K above n in the definition of χν . It follows from class field
theory that the image under χν of an inertia group at µ is just χν(O×

µ ). From the
definition of χν it follows that this last group is isomorphic to (Oµ/µ)×. Part (b) of
the lemma follows from this, for if n is inert in K (so (n) = µ) then |(Oµ/µ)×| =

(n2 − 1). Suppose then that n is split in K. Let µ ′ be the conjugate of the prime µ (so
(n) = µµ ′). Then χν , and hence χν , is unramified at µ ′, but ramified at µ. Similarly,
χ ′

ν is unramified at µ, but ramified at µ ′, and the image under χ ′
ν of an inertia group

at µ ′ is just χν(O×
µ ) which is isomorphic to (Oµ/µ)×. Part (c) follows easily.

We now prove three lemmata that are key to the proof of Proposition 4.6.

Lemma 4.8 Suppose that n is a prime and that E = Ei(a, b, c) is a curve associated

to a primitive solution of (1.2) with ab 6= ±1. Suppose that ρE
n arises from a newform

having CM by a field K

(a) The image of ρE
n is the normalizer of a Cartan subgroup.

(b) The image of ρE
n is the normalizer of a split Cartan subgroup if and only if n splits

in K.

(c) If Ea,c has multiplicative reduction at n, then the image of ρE
n is the normalizer of a

split Cartan subgroup.

Recall that a Cartan subgroup of GL2(Fn) is a maximal abelian subgroup. Such a
subgroup has order either (n2 − 1) (in which case it is isomorphic to F

×
n2 ) or (n − 1)2

(in which case it is isomorphic to F×
n × F×

n ). In the first case we say that the Cartan
subgroup is non-split and in the second that it is split.
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Proof Parts (a) and (b) follow immediately from Lemma 4.7.

Let G be a Cartan subgroup such that the image of ρE
n is the normalizer of G. If E

has multiplicative reduction at n, then the restriction of ρE
n to a decomposition group

Dn at n is isomorphic to δω ⊕ δ, where ω is the character giving the action of Dn on

the n-th roots of unity and δ is an unramified character of order at most 2. It follows
that n splits in K. From part (b) of the lemma it then follows that G is split. This
proves part (c).

Lemma 4.9 Suppose that n ≥ 7 is a prime and that E = Ei(a, b, c) is associated to a

primitive solution of (1.2) with ab 6= ±2r . If ρE
n arises from a newform having CM by

a field K, then one of the following holds:

(a) The image of ρE
n is the normalizer of a non-split Cartan subgroup.

(b) n = 7 or 13, n splits in K and either E ′(K) has infinite order for all elliptic curves

E ′ of conductor 2n or ab = ±2r3s with s ≥ 0 and 3 ramifies in K.

Proof By part (a) of Lemma 4.8 the image of ρE
n is the normalizer of a Cartan sub-

group. Suppose that this image is not the normalizer of a non-split Cartan subgroup.
Then E[n] consists of two K-rational subgroups of order n that are either stable or

interchanged by the action of any element in Gal(Q/Q). In particular, the set of
these two subgroups is defined over Q . Therefore E defines a Q-rational point on
the curve Xsplit(n) defined in [43]. By [43, Proposition 3.1], if n ≥ 11, n 6= 13, then
E has potentially good reduction at all primes p 6= 2. This contradicts part (b) of

Lemma 2.1 since we have assumed that ab 6= ±2r. It remains to deal with the cases
n = 7, 13.

Suppose then that n = 7 or 13. By part (b) of Lemma 4.8 it follows that n splits
in K. Also, E together with one of its K-rational subgroups of order n defines a K-
rational point x on the modular curve X0(2n) (recall that E has a Q-rational point of
order two). If E ′ is an elliptic curve of conductor 2n, then the curve X0(2n) has as a

quotient over Q the curve E ′. If E ′(K) has finite order then the image on the curve
E ′ of the point x has finite order. It then follows from [39, Corollary 4.3] that E has
potentially good reduction at all primes p 6= 2 except possibly at p = 3 if 3 ramifies
in K. Since we have assumed ab 6= ±2r, this contradicts part (b) of Lemma 2.1 unless

ab = ±2r3s with s > 0 and 3 ramifies in K.

Lemma 4.10 Suppose n ≥ 3 is a prime and that E = Ei(a, b, c) is a curve associated

to a solution of (1.2). Suppose also that ρE
n arises from a newform having CM by a field

K. If the image of ρE
n is the normalizer of a non-split Cartan then n does not divide ab.

Proof If n|ab, then by part (b) of Lemma 2.1 the curve E has multiplicative reduc-
tion at n. From part (c) of Lemma 4.8 it then follows that the image of ρE

n is contained
in the normalizer of a split Cartan subgroup.

We are now in a position to prove Proposition 4.6. Suppose first that ab 6= ±2r and
that ρE

n arises from a newform having CM but that conclusion (b) of the proposition
does not hold. Then by Lemma 4.9 the image of ρE

n is the normalizer of a non-split
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Cartan. Also, by part (c) of Lemma 2.1 the curve E has a Q-rational point of order 2.
It then follows from [19, Theorem 8.1] that the j-invariant j(E) of the curve E lies

in Z[ 1
n

]. If p is an odd prime dividing ab, then by Corollary 2.2 a positive power
of p divides the denominator of j(E). From these two observations it follows that
ab = ±nt for some t > 0 (since we are assuming that ab 6= ±1), but this contradicts
Lemma 4.10.

Suppose next that ab = ±2r with r > 0. Suppose also that 2|ABC (in which
case, 2|B). From Lemma 3.2 it follows that 2 ‖ Nn(E). On the other hand, it is
clear from Lemma 4.5 that if χ is an algebraic Hecke character and 2 divides Nχ

then so does 4. This contradicts the hypothesis that Nn(E) = Nχ for some χ. We
may therefore suppose that 2 fails to divide ABC . From part (b) of Lemma 2.1 we
know that E has multiplicative reduction at 2, and from Lemma 3.2 we know that
2-Nn(E) (i.e., ρE

n is unramified at 2). Thus trace
(

ρE
n(Frob2)

)

= ±3 (cf. the proof of

Lemma 4.2). Since n ≥ 7, this trace is not zero. This, however, is equivalent to the
splitting of 2 in K, since, by hypothesis, ρE

n is isomorphic to an induced representation
of the form ρχ,ν . This completes the proof of Proposition 4.6.

5 Theorems 1.1 and 1.2 for n ≥ 7 Prime

In general, the major difficulty in applying the results of the previous section lies in
actually deriving data for the newforms at a given level, for instance in computing
systems of Hecke eigenvalues for a basis of representatives for the Galois conjugacy
classes of newforms. Thanks to some remarkable work of William Stein [54], this

has recently become realistic, at least provided the desired level is not too large. An
invaluable resource in this area is Stein’s Modular Forms Database (see the website
http://modular.fas.harvard.edu/Tables/).

In what follows we give details of the proof of Theorem 1.1 in the cases C = 2, 5
and 17. These examples require application of all the assorted techniques described
in the previous section. For other values of C we direct the reader to our Appendix
where we provide sufficient data to reconstruct our proofs; further information is

available from the authors on request. For our data, we rely extensively on the tables
of Stein [54].

5.1 xn + yn
= 2z2

Suppose that (a, b, c) is a primitive solution of xn + yn
= 2z2, where n ≥ 7 is a

prime. In this case ab is necessarily odd and we can assume that we are in case (ii).

Thus the elliptic curve we consider is just E = E1(a, b, c) and Nn(E) = NE
n = 256

by Lemma 3.2. It turns out that there are six newforms of weight 2, level 256, and
trivial character. Moreover, these newforms all have complex multiplication by either
Q(

√
−1) or Q(

√
−2). We give a complete proof of this.

Lemma 5.1 There are six cuspidal newforms of weight 2, level 256, and trivial Neben-

typus character.
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Proof Let Snew
r be the space of weight 2 cuspforms on the usual congruence sub-

group Γ0(2r) spanned by the newforms. Similarly, let Sold
r be the space of weight 2

cuspforms on the congruence subgroup Γ0(2r) spanned by oldforms. Let dnew
r and

dold
r be the respective dimensions over C of the spaces Snew

r and Sold
r . From the theory

of newforms we have that

dold
r =

r−1
∑

j=1

(r − j + 1)dnew
j .

Combining this with the well-known formula for the dimension of the space of all

cuspforms of weight 2 on Γ0(2r) (see [42, Theorem 4.2.11]) one finds that

dnew
j = 0, 1 ≤ j ≤ 4; dnew

5 = dnew
6 = 1, dnew

7 = 4, dnew
8 = 6.

In order to ‘write down’ these newforms we first describe some algebraic Hecke
characters.

Let K be either Q(
√
−1) or Q(

√
−2). Denote by O and by AK the ring of integers

and the adeles of K, respectively. Let w be the unique prime of K above 2 and fix
an embedding of K into C. We identify K with a subfield of C via this embedding.
Suppose that χ : O

×
w → C× is a character such that χ is the identity on the units of

O and trivial on 1 + wr for some positive integer r. We extend this to a character of
A
×
K by setting χ to be trivial on C× and on O

×
v if v 6= w and to be the identity on K×.

(Here we have used that A
×
K = K×C×

∏

v O
×
v where v runs over the primes of K.) By

abuse of notation we will also denote this character by χ.

Let r(K) = 6 if K = Q(
√
−1) and let r(K) = 5 if K = Q(

√
−2). The tables

below give the values on coset representatives of generators of O
×
w /(1 + wr(K)) of

some characters χ : O
×
w → C×.

K = Q(
√
−1)

χ i 2i − 1 3

χ1 i i −1

χ2 i −i −1

K = Q(
√
−2)

χ −1 3 1 +
√
−2

χ3 −1 1 1

χ4 −1 1 −1

χ5 −1 1 i

χ6 −1 1 −i

From these tables one easily sees that the conductor of each χi is wr(K). It then

follows from these tables and from Lemma 4.5 that each fχi
is a newform of weight 2,

level 256, and trivial character. Moreover, the fχi
are all distinct, hence it follows from

Lemma 5.1 that the set { fχi
: i = 1, . . . , 6} is the set of all newforms of weight 2,

level 256, and trivial character.
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We can now apply the results of Subsection 4.4 to prove that ab = ±1. Suppose
ab 6= ±1. From Lemma 3.3 it follows that ρE

n arises from a newform of weight 2,

level 256, and trivial character. We have just observed that such a form has CM by
either Q(

√
−1) or Q(

√
−2). Let K be either Q(

√
−1) or Q(

√
−2) and suppose ρE

n

arises from a newform of level 256 with CM by K. Then, since ab is odd it follows
from Proposition 4.6 that n = 7 or 13 and that n splits in K. This can only happen

if n = 13 and K = Q(
√
−1). Suppose then that this is the case. Since 3 does not

ramify in K it follows from Proposition 4.6 that E ′(K) has infinite order for all elliptic
curves E ′ of conductor 26. However, both the elliptic curve of conductor 26 denoted
26B in Cremona’s tables [13] and its K-quadratic twist, denoted 208D in Cremona’s

tables, have rank zero. Thus the curve 26B has rank zero over K, a contradiction.
This completes the proof of Theorem 1.1 when C = 2 and n ≥ 7 is prime.

5.2 xn + yn
= 5z2

Suppose now that (a, b, c) is a primitive solution of the equation xn + yn
= 5z2,

for n ≥ 7 prime. We will write N for Nn(E) where E is the corresponding curve
Ei(a, b, c). We will also write cp for the p-th Fourier coefficient (equivalently, p-th
Hecke eigenvalue) of a newform.

We distinguish two cases, according to whether ab is even or odd. In the first
instance, it follows from Lemma 3.2 that N = 50. There are just two newforms of
this level, corresponding to elliptic curves over Q . Each of these forms has c3 = ±1,
so it follows from Proposition 4.3 that neither can give rise to ρE

n . This contradicts

Lemma 3.3.

If ab is odd, then Lemma 3.2 implies that N = 800. From Stein’s tables [54] we

find that there are 14 Galois conjugacy classes of forms at this level; we list some
Hecke eigenvalues for a number of these:

newform cp

800, 2(B) c3 = 1
800, 5(E) c3 = 1
800, 6(F) c3 = −1

800, 9(I) c3 = −1

800, 10 c3 = ±
√

5, c19 = ∓3
√

5

800, 11 c3 = 1 ±
√

5

800, 12 c3 = ±2
√

2

800, 13 c3 = ±
√

5, c19 = ±3
√

5

800, 14 c3 = −1 ±
√

5

Here (and henceforth), we refer to forms via Stein’s numbering system (where the
additional letter designation is the isogeny class of the corresponding elliptic curves
over Q as tabulated by Cremona [13], provided the form has Q-rational Fourier

coefficients).

For the forms in the above table, considering c3 and applying Proposition 4.3 en-
ables us to eliminate the possibility of our representations arising from all but forms
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in the classes 800,10 and 800,13. For such forms c3 = ±
√

5 and so, by Proposi-
tion 4.3, if ρE

n did arise from one of these, then n must divide one of −5,−1, 11.

Since n ≥ 7 it must be that n = 11. For these forms we also have c19 = ±3
√

5,
whence, again by Proposition 4.3, 11 must divide one of −45,−41,−29,−9, 36, 355.
Since this fails to occur, none of the forms in the classes 800,10 and 800,13 can give
rise to ρE

n .

Next, we observe that the forms 800,3(C) and 800,7(G) correspond to isogeny
classes of elliptic curves all having j-invariants with denominators divisible by 5 (this
can be observed from Cremona’s tables [13]). Proposition 4.4 implies that these
forms cannot give rise to ρE

n .

Finally, the forms 800,1(A), 800,4(D) and 800,8(H) each correspond to isogeny
classes of elliptic curves having complex multiplication by Q(

√
−1) (hence the cor-

responding newforms have CM by Q(
√
−1)). Invoking Proposition 4.6 and arguing

as we did for C = 2 shows that these forms also cannot give rise to ρE
n.

In conclusion, we have shown that ρE
n fails to arise from a newform of weight 2,

level N = 800 and trivial character. This contradicts Lemma 3.3 and hence ab cannot
be odd if ab 6= ±1. Since ab also cannot be even, it follows that the only primitive
solutions (a, b, c) to xn + yn

= 5z2, n ≥ 7 a prime, are given by ab = −1 and c = 0.

5.3 xn + yn
= 17z2

Let us now suppose that (a, b, c) is a primitive solution to the equation xn+yn
= 17z2,

where n > 7 is prime. Again, we write N for Nn(E). If ab is even, it follows that
N = 578; at this level, there are 9 classes of newforms to consider. The first of
these corresponds to an elliptic curve over Q . Since the strong Weil curve in the
isogeny class 578,1(A) has j-invariant with denominator 1088 = 26 · 17, we may

apply Proposition 4.4 to conclude as desired. The remaining 8 classes of forms of
level 578 have Fourier coefficients cp in fields of the shape K = Q(θ) where f (θ) = 0
for f as given in the following table (we also list relevant values of cp).

newform f (θ) cp

578, 2 θ2 − 2 c5 = θ, c11 = −4θ
578, 3 θ2 − 8 c3 = θ
578, 4 θ2 − 2 c3 = θ
578, 5 θ3 + 3θ2 − 6θ − 17 c3 = θ, c11 = θ2 − 7

578, 6 θ3 − 3θ2 − 6θ + 17 c3 = θ, c11 = −θ2 + 7
578, 7 θ3 − 3θ2 + 1 c3 = θ, c5 = θ2 − 3θ + 2
578, 8 θ3 + 3θ2 − 1 c3 = θ, c5 = −θ2 − 3θ − 2
578, 9 θ4 − 4θ2 + 2 c3 = θ, c5 = 2θ

For each of these and each prime p ∈ {3, 5, 7, 11}, we compute NormK/Q (cp ± 2r),

where |r| <
√

p or |r| =
p+1

2
. Considering newform 578,2, we find that

|NormK/Q (c5 ± 2r)| ∈ {2, 14, 34}

and
|NormK/Q (c11 ± 2r)| ∈ {4, 16, 28, 32, 112}.
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Applying Proposition 4.3 thus leads to a contradiction since n > 7 is prime. Similarly,

|NormK/Q (c3 ± 2r)| ∈ {4, 8}

and

|NormK/Q (c3 ± 2r)| ∈ {2, 14}

for newforms 578,3 and 578,4, respectively, while, for newforms 578,5 and 578,6, we
have

|NormK/Q (c3 ± 2r)| ∈ {1, 9, 17, 71}.

In this last case, if |NormK/Q (c3 ± 2r)| ∈ {17, 71}, then, necessarily, θ ≡ 0 (mod ν)
for ν a prime lying above 17, or θ ≡ ±4 (mod ν) for ν a prime lying above 71. Since
c11 = ±(θ2 − 7), for these forms, it follows that a11 ≡ ±7 (mod 17) or a11 ≡ ±9

(mod 71). In either case, this contradicts the Weil-bounds.

To this point, we have not had to impose conditions upon the prime n, other than
that n > 7. For newforms 578,7 and 578,8, we encounter difficulties regarding the
exponent n = 17. Indeed, if θ ≡ 4 (mod ν) or θ ≡ −4 (mod ν), where θ3 − 3θ2 +
1 = 0 or θ3 + 3θ2 − 1 = 0, respectively, and ν is a prime lying above 17, then the

Weil-bounds are, in fact, satisfied and we fail to obtain a contradiction through the
application of Proposition 4.3. To dispense with the cases n > 7, n 6= 17, we note
that, computing NormK/Q (cp ± 2r) for p = 3 and p = 5 and corresponding values
of r, we fail to encounter common prime divisors q with q ∈ {11, 13} or q ≥ 19.

The same is true for newform 578,9. This completes the proof of Theorem 1.1 for
C = 17, xy even and n ∈ {11, 13} or n ≥ 19 prime.

If our primitive solution (a, b, c) has ab odd, we are led to consider N = 9248. This
is the largest level we treat in proving our theorems. The newforms at this level are
listed as 9248,1 through 9248,52 in Stein’s tables [54]. Forms 9248,1, 9248,2, 9248,3,
9248,4, 9248,8 and 9248,9 all correspond to isogeny classes of elliptic curves over

Q with j-invariants having denominators divisible by 17, enabling the application
of Proposition 4.4. Further, the newforms given as 9248,5, 9248,6, 9248,7, 9248,11,
9248,12, 9248,28 and 9248,35 have complex multipication by Q(

√
−1), while forms

9248,25 and 9248,32 have CM by Q(
√
−17). Again, it is straightforward to show

that the elliptic curve denoted 26B in Cremona’s tables has rank 0 over Q(
√
−17).

We note that curve 14A has in fact rank 1 over Q(
√
−17); this is not problematic,

however, as we have assumed that n > 7. Since 3 fails to ramify in Q(
√
−1) or

Q(
√
−17), we conclude via Proposition 4.6 that none of these forms can give rise

to ρE
n .

For the remaining Galois conjugacy classes of forms, we appeal to Proposition 4.3.
The newforms 9248,10, 9248,13, 9248,14, 9248,15, 9248,16 and 9248,17 have, in
each case,

|NormK/Q (c3 ± 2r)| ∈ {2, 4, 6, 8, 10, 14},

contradicting n > 7 prime. For newforms 9248,18 through 9248,52, we apply Propo-
sition 4.3 with p ∈ {3, 5, 7}, except in the cases of newforms 9248,26 and 9248,29.
For example, to treat form 9248,50, we begin by noting that the Fourier coefficients
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lie in the field K = Q(θ) where

θ16 − 200 θ14 + 15408 θ12 − 606064 θ10 + 13415544 θ8

− 172411616 θ6 + 1260850112 θ4 − 4778571328 θ2 + 7056672016 = 0.

Since we have

206025387902086071557248 c3

= 16482564302003137 θ15 − 3150534822488198910 θ13

+ 225733574609412418090 θ11 − 7932867313835453957656 θ9

+ 147269823725942615164172 θ7 − 1434284473544094023001032 θ5

+ 6665637208828211295207992 θ3 − 10915582211641463120052640 θ

and

412050775804172143114496 c5

= 16482564302003137 θ15 − 3150534822488198910 θ13

+ 225733574609412418090 θ11 − 7932867313835453957656 θ9

+ 147269823725942615164172 θ7 − 1434284473544094023001032 θ5

+ 6665637208828211295207992 θ3 − 11121607599543549191609888 θ

we may conclude that

NormK/Q (c3 ± 2r) ∈ {24 · 232, 24 · 472, 24 · 30232},
and

NormK/Q (c5 ± 2r) ∈ {210, 212, 212 · 1932, 210 · 172 · 16632}.

It therefore follows from Proposition 4.3 that this form cannot give rise to a repre-
sentation ρE

n with n ≥ 7 prime. The newforms listed as 9248,26 and 9248,29 may be

eliminated through similar arguments, only applied to the Fourier coefficients c3 and
c29. We note that we are unable to deal with the equation x11 + y11

= 17z2 by these
techniques since, for example, the newform 9248,30 has coefficients

c3 c5 c7

θ −2θ3 + 3θ2 + 16θ − 12 3θ3 − 4θ2 − 23θ + 16

and

c13 c19 c23

2θ3 − 3θ2 − 14θ + 11 2θ3 − 4θ2 − 15θ + 14 −θ3 + 2θ2 + 7θ − 6
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where

θ4 − 2θ3 − 7θ2 + 10θ − 3 = 0.

If θ ≡ 2 (mod ν) for ν a prime lying above 11, it follows that a3 ≡ 2 (mod 11),
a5 ≡ 5 (mod 11), a7 ≡ 0 (mod 11), a13 ≡ 9 (mod 11), a19 ≡ 6 (mod 11) and
a23 ≡ 8 (mod 11). None of these contradict the Weil-bounds. For p ≥ 29, we may
possibly have ap = 0,±2,±4,±6,±8,±10, a complete residue system modulo 11.

To prove the full statements of Theorems 1.1 and 1.2, we are led to consider the
following levels N :

N ∈ {1, 2, 4, 8, 9, 18, 25, 32, 36, 49, 50, 72, 98, 121, 169, 225, 242, 256, 288, 289, 338,

392, 450, 484, 578, 676, 800, 968, 1352, 2304, 3872, 5408, 6400, 7200, 9248}.

We list relevant data for these levels in our Appendix. As noted in our introduction,
we are unable to fully extend Theorem 1.1 to the case C = 7. In fact, the techniques
of the preceding sections may be used to deduce the insolubility of the corresponding
equation xn + yn

= 7z2 in pairwise, coprime, nonzero integers (x, y, z), provided xy

is even. If, however, xy is odd, we are led to consider weight 2 newforms of level 1568.
Four classes of newforms, namely those denoted 1568,4, 1568,6, 1568,8 and 1568,9
in Stein’s tables [54], correspond to elliptic curves over Q with rational 2-torsion, no
CM and j = −64. None of our methods suffice to eliminate the possibility of ρE

n

arising from such a form.

6 Theorems 1.3, 1.4, 1.5, 1.6

The proofs of the theorems referenced here are intrinsically easier than those for The-
orems 1.1 and 1.2. Indeed they essentially amount to observing that there are no
elliptic curves over Q with a Q-rational 2-torsion point and conductor N for

N ∈ {1, 2, 3, 5, 6, 10, 11, 13, 19, 22, 26, 29, 32, 38, 43, 44, 53, 58, 59, 61, 67, 76, 86, 88,

93, 95, 104, 106, 110, 115, 118, 122, 133, 134, 143, 152, 172, 186, 190, 230, 232,

236, 244, 253, 256, 266, 268, 286, 319, 341, 344, 352, 403, 416, 424, 437, 472,

488, 506, 536, 551, 608, 638, 682, 736, 806, 874, 899, 928, 992, 1102, 1280,

1376, 1504, 1696, 1798, 1888, 1952, 2144, 2185, 2272, 2432, 2816, 3328}.

For example, to prove Theorem 1.3 for AB = 2α19β , with αβ ≥ 1, we are led
to consider N = 19 (for α = 6), N = 38 (for α ≥ 7), N = 76 (for α = 2),
N = 152 (for α ∈ {2, 4, 5}), N = 608 (for α = 3) and N = 2432 (for α = 1). For
the newforms in the following list, we have one of c3 ∈ {±1,±3}, c5 ∈ {±1, 3} or
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c7 = ±1:

newform newform newform newform

19, 1 608, 2 2432, 3 2432, 13
38, 1 608, 3 2432, 4 2432, 15

38, 2 608, 4 2432, 5 2432, 16
76, 1 608, 5 2432, 6 2432, 17

152, 1 608, 6 2432, 7 2432, 18
152, 2 2432, 1 2432, 8 2432, 19

608, 1 2432, 2 2432, 9 2432, 20

In each case, we deduce a contradiction for n > 7 from consideration of just a sin-
gle Fourier coefficient. For the remaining newforms (17 classes), we combine in-
formation from c3, c5 and c7 as in the preceding section. In each case, we obtain a

contradiction for n > 11 prime.

Further details for other values of AB are given in our Appendix; in most situa-
tions, it proves sufficient to apply Proposition 4.3 with one of p = 3, 5, 7 or 11.

7 The Equation xn + yn
= 2z2: Small Values of n

To extend the results of the previous sections to all integral values of n ≥ 4, we may

appeal to a variety of arguments, well summarized in Poonen [47]. We will provide
details in case A = B = 1 and C = 2 and note that other equations of the shape (1.2)
may be dealt with in a similar fashion.

We begin by noting that if n = 2 or 3, this equation has infinitely many solutions
in pairwise coprime integers x, y and z. In this second instance, parametrizations for
these may be found in work of Rodeja [50] and provide an alternative approach to

dealing with the exponents 6 and 9 than the one we pursue here. In case n = 4, this is
a classical result (see e.g. Mordell [44, p. 18]). For n = 5, the fact that the only solu-
tions in pairwise coprime integers x, y and z are (x, y, |z|) = (3,−1, 11), (−1, 3, 11)
and (1, 1, 1) follows from work of Bruin [5], based on Coleman–Chabauty tech-

niques for determining rational points on curves of genus two.

We are left to treat n = 6 and 9. In these cases, the desired result follows from
arguments of Poonen [47] treating the analogous equation xn + yn

= z2. If n = 6,
we have

(x2 + y2)(x4 − x2 y2 + y4) = 2z2

and hence

x4 − x2 y2 + y4
= εu2,

where ε ∈ {±1,±3}. Since 2z2 is positive, we may suppose that ε ∈ {1, 3}. In each
case, the above equation defines an elliptic curve with rank 0 over Q . It is easy to

check that the torsion points over Q correspond to solutions (x, y, z) to our original
equation with xy = ±1.

If n = 9, we may write

(x3 + y3)(x6 − x3 y3 + y6) = 2z2
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and hence have
x6 − x3 y3 + y6

= εu2,

where, again, ε ∈ {1, 3}. As observed by Poonen [47], the curve εV 2
= U 6 −

U 3 +1 admits two nonhyperelliptic involutions, with corresponding quotients elliptic

curves birational to
εY 2

= X3 − 21X + 37

and
εY 2

= X3 − 9X + 9.

If ε = 1, the first of these curves has rank 0 over Q and a torsion group of order
3, corresponding to the known 6 rational points with U = 0, 1,∞ on V 2

= U 6 −
U 3 + 1. Similarly, if ε = 3, the second curve has zero rank over Q and trivial torsion,

corresponding to the two rational points with U = −1 on 3V 2
= U 6 −U 3 + 1. Since

we assume that x and y are coprime, it follows that xy = ±1. This completes the
proof of Theorem 1.1 in case C = 2.

For other values of C , we argue similarly, appealing to recent work of Bruin [6],

who deduced the conclusion of Theorem 1.1 in cases

n ∈ {4, 5, 6, 9} for C ∈ {2, 3, 5, 6, 10, 11, 13, 17},
n = 7 for C ∈ {6, 10, 11, 13, 17}, n = 11 for C ∈ {10, 11, 13, 17},

n = 13 for C = 13 and n = 17 for C = 17.

8 Applications to Polynomial-Exponential Equations

Through easy specialization, the results of Theorems 1.1 through 1.6 may be applied

to a variety of classical problems on polynomial-exponential Diophantine equations.
For small values of the exponents (i.e., those not covered by these theorems), we are
typically left to determine the set of integral points on certain curves of genus one or
two; extensive literature on such problems exists.

8.1 Powers in Recurrence Sequences

An immediate application of Theorem 1.1 with C = 2 yields:

Proposition 8.1 The Diophantine equation 2x2 − 1 = yn has only the solutions

(x, y, n) = (1, 1, n) and (x, y, n) = (78, 23, 3) in positive integers x, y and n with

n ≥ 3.

Proof For n ≥ 4, this follows from Theorem 1.1 with C = 2. The equation

2x2 − 1 = y3 yields an elliptic curve, birational to Y 2
= X3 + 8, denoted 576A in

Cremona’s tables [13], of rank 1. It is easy to show, via, say, lower bounds for lin-
ear forms in elliptic logarithms (as implemented, for example, in SIMATH), that the
only integral points on this curve are given by

(X,Y ) = (−2, 0), (1,±3), (2,±4), (46,±312)
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and hence the only solutions to 2x2 − 1 = y3 are with (x, y) = (0,−1), (±1, 1) and
(±78, 23).

A consequence of this is that any solution in positive integers x and y to an equa-
tion of the shape

x2n − dy2
= 1,

with d a positive nonsquare integer and n > 2, necessarily satisfies either

(x, y, n, d) = (23, 156, 3, 6083)

or

xn + y
√

d = (T1 + U1

√
d)2k+1

for k a nonnegative integer. Here, T1 and U1 are the smallest positive integers for

which T2
1 − dU 2

1 = 1. To see this, define sequences of integers T j and U j by

T j + U j

√
d = (T1 + U1

√
d) j .

It is easy to show that T2k = 2T2
k − 1 and so

xn + y
√

d = (T1 + U1

√
d)2k

implies that xn
= 2T2

k − 1, contradicting the above proposition unless Tk ∈ {1, 78}.
Since Tk ≥ T1 > 1, it follows that Tk = 78 and hence d = 782 − 1 = 6083 =

7 · 11 · 79. Working backwards from the equation 2 · 782 − 1 = 233 implies that

(x, y, n, d) = (23, 156, 3, 6083), as claimed. We remark that this result strengthens
the main theorem of [9].

8.2 The Ramanujan–Nagell Equation and Generalizations

An old question of Ramanujan [48], answered in the affirmative by Nagell [45] is
whether all solutions in integers (x, n) of the equation

x2 + 7 = 2n

correspond to n = 3, 4, 5, 7 and 15. Subsequently, connections between this result
and questions in coding theory and group theory have been noted and various gener-
alizations explored. One such approach involves replacing 7 by any fixed odd integer;

in this situation, the definitive result is the following, combining theorems of Beukers
[2] and Le [34], [35].

Theorem 8.2 (Beukers, Le) Let D be an odd, positive integer. Then the equation

x2 + D = 2n

has at most one solution in positive integers x and n, unless D = 7, 23 or 2k − 1 for some

k ≥ 4. The solutions in these exceptional cases are given by
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(1) D = 7, (x, n) = (1, 3), (3, 4), (5, 5), (11, 7), (181, 15)
(2) D = 23, (x, n) = (3, 5), (45, 11)

(3) D = 2k − 1 (k ≥ 4), (x, n) = (1, k), (2k−1 − 1, 2k − 2).

Further, the equation

x2 − D = 2n

has at most three solutions in positive integers x and n, unless D = 22m − 3 · 2m+1 + 1
for m ≥ 3 an integer. In these cases, this equation has four positive solutions, given by

(x, n) = (2m − 3, 3), (2m − 1, m + 2), (2m + 1, m + 3) and (3 · 2m − 1, 2m + 3).

In the case where D > 0, this has been generalized still further, through use of the
primitive divisor theorem of Bilu, Hanrot and Voutier [3], culminating in the recent
result of Bugeaud [7] (sharpening earlier work of Le [36]).

Theorem 8.3 (Bugeaud) Let D be an odd, positive integer. Then the equation

x2 + Dm
= 2n

has at most one solution in positive integers x, m and n, unless D = 7, 23 or 2k − 1 for

some k ≥ 4. The solutions in these exceptional cases are given by

(1) D = 7, (x, m, n) = (1, 1, 3), (3, 1, 4), (5, 1, 5), (11, 1, 7), (181, 1, 15), (13, 3, 9)
(2) D = 23, (x, n) = (3, 5), (45, 11)
(3) D = 2k − 1 (k ≥ 4), (x, n) = (1, k), (2k−1 − 1, 2k − 2).

Applying Theorem 1.2 and a result from [1], the following result, in conjunction
with Theorem 8.2, strengthens and generalizes Bugeaud’s theorem.

Theorem 8.4 Let D be an odd, positive integer. Then the equation

x2 + Dm
= 2n

has no solutions in integers (x, m, n) with m > 1, unless

(|x|, m, n, D) = (13, 3, 9, 7).

The only integer solution (x, m, n) to the equation

x2 − Dm
= 2n,

with D > 1, m > 2 and n > 1, is given by

(|x|, m, n, D) = (71, 3, 7, 17).

Further, if x2 ± D = 2n has a solution in integers x and n, then

n < 5.55 log(|D|)

unless (|x|, D, n) = (3,−1, 3) or (181, 7, 15).
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We note that this result was obtained independently by Ivorra [26] (with the ex-
ception of the upper bound for n). The restriction to n > 1 derives from the un-

fortunate fact that we are unable to apply the techniques of Theorem 1.2 to resolve
the Diophantine equation x2 − 2 = yk in integers x, y and k. The exclusion in case
x2 − Dm

= 2n of D = 1 is to avoid the (almost) trivial case that 32 − 1m
= 23. We

observe that the equation |x2 − yn| = 1 in integers x, y, n > 1 has been completely

solved by Chao Ko [28].

Proof Applying Theorem 1.2, we find that the equation

xm + 2n ym
= z2

has no solution in odd, paiwise coprime integers x, y and z, with xy 6= ±1, provided
m ≥ 7 is prime and n ≥ 2. It follows, if D > 2 is odd, that

x2 ± Dm
= 2n

is insoluble for all m ≥ 7 prime (provided n ≥ 2). Since xD ≡ 1 (mod 2) and n ≥ 2,
if m is even,

x2 + Dm ≡ 2 (mod 4),

a contradiction. If x2 − D2
= 2n has a solution, then, factoring the left hand side, it

follows that D = 2k − 1 and |x| = 2k + 1 for some positive integer k. Since an old
result of Lebesgue assures us that 2k − 1 is never a perfect power, provided only that
k ≥ 2, it follows that x2 − Dm

= 2n is insoluble for D > 1 and m > 2 even.

It remains to deal with x2 ± Dm
= 2n with m ∈ {3, 5}. In the first case, we may

apply work of Coghlan [10] to conclude that the only solution to x2 − D3
= 2n with

D > 1 odd and n > 1 is given by (|x|, D, n) = (71, 17, 7), while the sole solution

to x2 + D3
= 2n with n, D > 1, D odd, corresponds to (|x|, D, n) = (13, 7, 9). If,

on the other hand, m = 5, applying work of Bruin [5], we find that the equation
x2 ± D5

= 2n has no solutions whatsoever with n, D > 1 and D odd. This result
depends upon explicit determination of the rational points on certain curves of genus

2, via an elaboration of the method of Coleman and Chabauty; the reader is directed
to [5] for an excellent overview of this subject.

Finally, we note that the upper bound upon n is an immediate consequence of
Corollary 1.7 of [1]. This completes the proof of Theorem 8.4.

Examination of the above proof reveals that one may obtain similar results,
through application of Theorem 1.3, with 2n replaced by kn for, by way of example,
k ∈ {11, 13, 19, 29, 43, 53, 59, 61, 67}.

A second generalization of the Ramanujan–Nagell equation involves equations of
the form

(8.1) x2 + D = yn

for fixed integer D 6= 0. A fine summary of the extensive body of work on such
equations can be found in Cohn [11]. While these equations are, for each D 6= 0,
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effectively solvable via lower bounds for linear forms in (complex or p-adic) loga-
rithms of algebraic numbers, it can be an extremely involved computational problem

to apply such methods to explicitly find all the solutions to an equation of type (8.1).
Techniques to fully solve (8.1), for instance in case D = 1, 2, 3, 4, 5, 6, have tradi-
tionally instead relied upon factorizations in Q(

√
−D) and straightforward algebraic

arguments; recently, the primitive divisor theorem of Bilu, Hanrot and Voutier [3]

has played a prominent role (see e.g. [7] and [8]). If D < 0 or if D > 0 and D ≡ 7
(mod 8), however, these methods will in general fail to solve (8.1), due to the pres-
ence of infinite units in the quadratic field in question, or to the splitting of the prime
2, respectively. Results based upon the techniques of this paper do not, for the most

part, encounter these difficulties. In particular, in case D > 0 and D ≡ 7 (mod 8),
we may prove the following:

Proposition 8.5 If n ≥ 3 is an integer and D ∈ {55, 95}, then the only positive

integral solutions x, y of the Diophantine equation

x2 + D = yn

are given by (x, y, n, D) = (3, 2, 6, 55), (3, 4, 3, 55), (419, 56, 3, 55), (11, 6, 3, 95),

(529, 6, 7, 95).

Proof We first note that, from work of Ljunggren [38], we may assume, in each case
under consideration, that y is even. A solution to x2 + D = yn with n odd thus cor-
responds to a solution in coprime integers (y,−1, x) to an + Dbn

= c2 with ab = −y

even. By Theorem 1.5, we may therefore suppose, without loss of generality, that
n ∈ {3, 4, 5, 11} if D = 55 and n ∈ {3, 4, 5, 7, 19} if D = 95. For n = 4, we may solve
(8.1) by writing D as a difference of squares. If, however, n ∈ {3, 5, 7, 11, 19}, we may
reduce equation (8.1) to a system of n-th degree Thue equations and solve them us-

ing lower bounds for linear forms in logarithms of algebraic numbers, in conjunction
with lattice basis reduction techniques. Nowadays, for equations of small degree (say
< 30 or so), it is a relatively routine matter (at least generically) to solve such equa-
tions (see e.g. Lesage [37] and Mignotte and de Weger [41] for explicit applications

of these techniques to equation (8.1)). We suppress the details.

With some work, we can extend this result to treat equation (8.1) for the following
squarefree values of D ≡ 7 (mod 8), D ≤ 400:

D = 143, 159, 167, 191, 215, 239, 263, 311, 319, 327, 335, 359, 383, 397.

We note that, following arguments of Ivorra [27], it should be possible to characterize

those primes D ≡ 7 (mod 8) for which the methods of this paper lead to solution of
(8.1).
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10 Appendix

In what follows, we will tabulate certain data which should enable the reader to re-

construct our proofs of particular instances of Theorem 1.1, 1.2, 1.3, 1.4, 1.5 and
1.6. As mentioned previously, this is derived principally from Stein’s modular forms
database.

We begin by listing those newforms to which Propositions 4.4 and 4.6 can be prof-
itably applied. For the first two of our theorems, we may utilize Proposition 4.6 to
deal with those newforms encountered with complex multiplication by an imaginary

quadratic field. We list these forms (and the corresponding fields) in Table 1.

newform CM field newform CM field newform CM field

32, 1 Q(
√
−1) 2304, 16 Q(

√
−1) 6400, 7 Q(

√
−1)

36, 1 Q(
√
−3) 2304, 17 Q(

√
−3) 6400, 8 Q(

√
−1)

49, 1 Q(
√
−7) 2304, 18 Q(

√
−6) 6400, 13 Q(

√
−1)

121, 1 Q(
√
−11) 2304, 22 Q(

√
−3) 6400, 18 Q(

√
−2)

225, 1 Q(
√
−3) 2304, 23 Q(

√
−6) 6400, 19 Q(

√
−1)

225, 2 Q(
√
−3) 2304, 24 Q(

√
−2) 6400, 20 Q(

√
−1)

225, 6 Q(
√
−15) 2304, 26 Q(

√
−6) 6400, 32 Q(

√
−2)

256, 1 Q(
√
−1) 3872, 1 Q(

√
−1) 6400, 40 Q(

√
−10)

256, 2 Q(
√
−2) 3872, 2 Q(

√
−1) 6400, 42 Q(

√
−2)

256, 3 Q(
√
−1) 3872, 8 Q(

√
−1) 6400, 44 Q(

√
−2)

256, 4 Q(
√
−2) 3872, 15 Q(

√
−1) 6400, 52 Q(

√
−2)

288, 1 Q(
√
−1) 3872, 17 Q(

√
−1) 6400, 60 Q(

√
−10)

288, 2 Q(
√
−1) 3872, 20 Q(

√
−1) 6400, 63 Q(

√
−2)

288, 4 Q(
√
−1) 3872, 22 Q(

√
−1) 6400, 65 Q(

√
−10)

484, 2 Q(
√
−11) 3872, 26 Q(

√
−1) 6400, 70 Q(

√
−2)

800, 1 Q(
√
−1) 5408, 1 Q(

√
−1) 6400, 71 Q(

√
−5)

800, 4 Q(
√
−1) 5408, 5 Q(

√
−1) 6400, 73 Q(

√
−2)

800, 8 Q(
√
−1) 5408, 11 Q(

√
−1) 9248, 5 Q(

√
−1)

800, 11 Q(
√
−5) 5408, 15 Q(

√
−1) 9248, 6 Q(

√
−1)

800, 14 Q(
√
−5) 5408, 20 Q(

√
−13) 9248, 7 Q(

√
−1)

2304, 1 Q(
√
−1) 5408, 23 Q(

√
−1) 9248, 11 Q(

√
−1)

2304, 2 Q(
√
−1) 5408, 25 Q(

√
−1) 9248, 12 Q(

√
−1)

2304, 3 Q(
√
−2) 5408, 29 Q(

√
−13) 9248, 25 Q(

√
−17)

2304, 8 Q(
√
−1) 5408, 32 Q(

√
−1) 9248, 28 Q(

√
−1)

2304, 9 Q(
√
−1) 6400, 1 Q(

√
−1) 9248, 32 Q(

√
−17)

2304, 10 Q(
√
−1) 6400, 6 Q(

√
−1) 9248, 35 Q(

√
−1)

2304, 11 Q(
√
−2)

Table 1

Let us note that the elliptic curve denoted 14A in Cremona’s tables has rank 0 over
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Q(
√
−3) and Q(

√
−7), and rank 1 over the fields Q(

√
−5), Q(

√
−6), Q(

√
−10),

Q(
√
−13) and Q(

√
−17). It follows, for the forms listed above, that we encounter

difficulties with exponent n = 7 only for the newforms with CM by one of these 5
fields (e.g. forms 800,11, 800,14, etc.). As noted in Subsection 5.2, we may in fact
employ Proposition 4.3 to treat the case n = 7 for forms 800,11 and 800,14 (and, in-
deed, in several of the the other remaining cases). Similarly, curve 26A has rank 0 over

Q(
√
−3) and Q(

√
−13), and positive rank over Q(

√
−1), Q(

√
−10) and Q(

√
−17).

For each of these last five mentioned fields, curve 26B has rank zero. We may thus
eliminate the possibility of solutions corresponding to n = 13 for all of the above
forms.

We are able to apply Proposition 4.4 precisely when we encounter modular forms,
of level a multiple of C2, corresponding to elliptic curves over Q with j-invariants
having denominators divisible by odd primes dividing C . For the values of C occur-

ing in Theorems 1.1 and 1.2, these are just the following forms:

newform newform newform newform

72, 1 450, 1 800, 7 2304, 15
98, 1 450, 3 2304, 4 9248, 1

225, 3 450, 4 2304, 5 9248, 2
288, 3 450, 5 2304, 6 9248, 3

288, 5 450, 6 2304, 7 9248, 4
289, 1 578, 1 2304, 12 9248, 8
392, 3 676, 1 2304, 13 9248, 9
392, 5 800, 3 2304, 14

For the remaining forms corresponding to equations covered by Theorems 1.1
through 1.6 (the vast majority), we apply Proposition 4.3. In most instances, we are
able to conclude as desired through consideration of only the Fourier coefficients c3,

c5, c7 and c11. For certain newforms, however, we need to compute somewhat futher.
Below, we list all the forms for which this is the case:

newform coefficients newform coefficients newform coefficients

67, 1 c17 800, 10 c3, c19 2185, 7 c3, c7, c13

133, 1 c3, c13 800, 13 c3, c19 3328, 35 c3, c7, c19, c23

169, 1 c5, c17, c19 806, 9 c3, c23 3328, 37 c3, c7, c19, c23

169, 2 c3, c23 899, 5 c3, c19 3328, 39 c3, c7, c19, c23

225, 4 c7, c13 1102, 7 c7, c31 3328, 40 c3, c7, c19, c23

225, 5 c7, c13 1280, 2 c3, c13 3872, 35 c3, c5, c17

268, 1 c17 1280, 8 c3, c13 3872, 37 c3, c5, c17

344, 1 c13 1280, 13 c3, c13 9248, 26 c3, c29

344, 3 c3, c19 1280, 16 c3, c13 9248, 29 c3, c29

424, 1 c3, c13 1696, 15 c3, c19

488, 3 c3, c19 2144, 1 c17

638, 1 c3, c13 2144, 2 c17

638, 2 c3, c13 2185, 1 c11, c19

682, 3 c3, c23 2185, 2 c7, c17
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Further data is available from the authors on request, including complete lists of
the Fourier coefficients employed in the application of Proposition 4.3.
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