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The logic cost and speed of parallel multipliers implemented in both binary and ternary logic is
studied. Binary operand lengths of 8 through 32 bits and the corresponding ternary digit range of 6
through 21 are considered. For the particular design technique used, the binary versions are slightly
faster where the speed criterion is in terms of the longest logic path from operands to product.
Ternary designs show smaller total cost of gates and a major reduction in the number of required
inputs, indicating greatly simplified wiring interconnection complexity.
(Received June 1971)

1. Introduction
Recent technical literature shows an increasing incidence of
papers describing many-valued switching systems. Workable
algebras and minimisation techniques for such systems have
been proposed (Allen and Givone, 1968; Vranesic, Lee, and
Smith, 1970; Pugh, 1967). However, the fundamental question
of applicability of non-binary schemes within the framework
of present binary technology has seldom been critically
approached. It is apparent that when three-valued storage
elements become 'naturally' available, it will be sensible to use
them in conjunction with other ternary logic primitives. In fact,
a well-known argument is often encountered that since the
most efficient radix for implementation of switching systems is
the natural base (e = 2-71828 . . .) it seems likely that the
'best' integral radix is 3 rather than 2. Unfortunately there have
been few attempts to show the validity of this hypothesis in
the realm of currently available devices.
In this paper we take a close look at the possibility of using

ternary arithmetic circuitry to facilitate implementation of
large units required for parallel multiplication.

High speed parallel binary multiplication has been studied for
a number of years (Ramamoorthy and Economides, 1969;
Wallace, 1964). Implementations incorporating some of these
design ideas in prototype models (Habibi and Wintz, 1970;
Pezaris, 1971) and commercial production versions (Anderson,
Earle, Goldschmidt, and Powers, 1967; Control Data Cor-
poration, 1966) also exist.
Our aim is to design a ternary parallel multiplier and compare

it with a binary design for equivalent sizes of operands. The
comparison is made on the basis of gate and input costs and
speed in terms of delay along the longest logic path from oper-
ands to product, where each gate is assigned a unit delay T.
In the binary case AND-OR-NOT logic is assumed and in
ternary the switching primitives of Vranesic et al. (1970),
defined in Table 1, comprise the basic gates. A gate fan-in limit
of 8 is used throughout while fan-out problems are ignored
(binary fan-out problems are always worse than in the corres-
ponding ternary system).
The basic concepts used to speed up binary multiplication are

adapted and extended in the ternary design. Included are:
1. Digit grouping of the multiplier in pairs and appropriate

summand selection.
2. Carry-save reduction of the summands in a 'carry-save

adder (CSA) tree'.
3. Fast addition of the final two summands to obtain the

required product, using a design incorporating first-level
carry lookahead logic, essentially the same as in Flores
(1963).
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2. High-speed binary multiplier logic design
The numbers to be multiplied are considered as positive
integers represented by n bits, the multiplier being denoted as
D = dn. . . d2dl and the multiplicand denoted as M = mn. . .
m2m1. The multiplier is recoded in pairs using the Wallace
(1964) technique, given in Table 2. Bit pairs 44-i> i = 2, 4 , . . . ,
select the proper summands as a function- of the adjacent bit
on the right, d, _2. Note that all summands can be obtained by
shifting ( x 2) and/or complementing M. Negative versions of
M are handled in 2's-complement form. It is assumed that the
l's-complement is available at the output of the M register and
1 to be added in the low-order bit position is easily introduced
into the CSA summand reduction tree. Fig. 1 shows a schematic
of the multiplier for n = 24. There are 13 input summands to
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SUMMAND SELECTION

48 BIT PRODUCT

Fig. 1. Binary multiplier for 24-bit operands

Table 3 24-bit binary multiplier cost

SUBUNIT
AND-OR-NOT
GATES INPUTS

Multiplier
summand
Tree
Adder

recoding and
selection 1,564

3,954
737

Totals 6,255

3,745
9,158
2,216

15,119

the tree, one for each bit pair of D plus one last summand
which is either M or all zeroes, depending on whether or not
d2ir = 1, that is, the thirteenth summand results from recoding
an implied 00 digit pair to the left of d24.
Multiplier recoding and summand selection causes 4T delay.

The tree is constructed from binary full adders (the CSA
technique) and each level contributes 3T delay since input
complements are not assumed available. Since there are five
levels, the total tree delay is 15T. The final 48-bit adder is of the
first-level lookahead type with a group size of ,8 and it con-
tributes 8T of delay. The total delay through the 24-bit multi-
plier is thus 27T. The cost in gates and inputs is given in Table 3.
Similar computations were made for other operand lengths and
the results are presented in Section 4.

3. Ternary multiplier design

Ternary multiplication is arranged following the basic structure
of Section 2. While we are still using the same operand names
M and D, all switching variables in this section are ternary
having truth values 0, 1 and 2. We also note that digit by digit
multiplication is never needed, since non-trivial summands can
be formed initially using the addition process only. The multi-
plier is recoded in digit pairs, the same grouping as in binary.
Whereas in binary all versions of M were easy to obtain, the
same is not true in ternary. Besides shifting (x 3) and/or
complementing M, it is necessary to generate ±2 x M and
+ 4 x M. An extension of the Wallace (1964) technique is used

for recoding the multiplier as shown in Table 4. The two non-
trivial summands, 2 x M and 4 x M, are obtained at the
start of the multiplication process by using both halves of the
adder. A new method of summand reduction in a tree structure
is proposed for ternary. Four summands are reduced to two at
each level. The sum of four ternary digits can have a maximum
value of 8, which can just be represented by two ternary digits,
each of value 2, one in the same digit position as the four
summand digits and the other in the next higher digit position.
It is convenient to call these the sum and carry-out digits,
respectively. This 4 to 2 summand reduction process makes the
reduction tree smaller than in the binary case, and in addition
the ternary equivalent of any binary multiplier has fewer
summands from the start.
This brief summary of the design technique for ternary

multipliers will now be expanded in terms of the switching
functions needed in the various subunits, and a 16-digit
multiplier will be used as a concrete example. Its schematic is
shown in Fig. 2. The incoming carry value Ci/2-i, to the digit
pair position didi_l, i = 2, 4, . . ., 16, which is simply the
adjacent bit, dt_2, in binary, is somewhat more complicated in
ternary. In general, it is a function of all preceding multiplier
digits, very analogous to the way in which carries are determined
in parallel binary adders. This is the motivation for the term
carry as used here. There is an incoming carry if the previous
digit pair, considered as a 2-digit ternary coded integer has a
value equal to or greater than 5 or has a value of 4 with a carry
in to its position. Some notation is helpful at this point. Let

for J, Ke {0, 1, 2}, 2m = /, represent 'l-out-of-9' decoding of
the multiplier digit pairs. Note that the (Z7K)m variables only
attain the values 2 or 0, since they each represent the presence
or absence (respectively) of specific digit pair values.
The summand selection variables Q are given by

Ql,m = (Zo,o
6-1.,, = (Z2, !

for
Cm = Gm

i ( o ^ n , !
,_! + (Z2>2)mCm_t

2

PmPm_l . . . P2G1

Table 4 A ternary multiplier recoding scheme
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.17

.34 18
2XM REGISTER

into the tree with a 1 to be added in the low-order position.
From the above equations, it is easily shown that the tree
inputs are available after l i t time units. This assumes that all
versions of M are available at the outputs of their registers
after 9T time units, as explained below.

Fig. 2(b) shows schematically how both halves of the 34-digit
adder are used simultaneously to form 2 x M and 4 x M.
The right-most 17 positions form 2 x M = M + M by
gating digits m16 through m^ into both adder inputs of positions
16 through 1. Note that although sum digit 17 may or may not
be 0, the carry out from position 17 is always 0, so that adder
positions 34 through 18 can be used to form 4 x M = M + 3M
by gating m16 through mt into positions 33 through 18 on one
side of the adder and gating m16 through m2 into positions 32
through 18 on the other side of the adder. Adder outputs 34
through 18 are then set into positions 18 through 2 of the
4 x M, with mt being set into position 1; and outputs 17
through 1 are set into the corresponding positions of the 2 x M
register. This is a convenient point to complete the discussion
of the adder. A first-level lookahead type adder has been
assumed similar to the standard procedure as in Flores (1963).
The general fan-in limit of 8 implies a group size of 8 for look-
ahead purposes and this results in a worst case delay of 8T
time units in producing all sum digits. The delay is derived as
follows. The propagate and generate functions for each digit
position i are formed in 3T as

Pi =

g, =

+ af1 +

6,) (a,

m.
followed by formation of all carries in 4T using standard binary
logic. A further IT is needed to compute the sum function

Fig. 2.

where

and
Gm

4XM REGISTER

(b)

Ternary multiplier
schematic, (b) Adder

= ( Z l ' l ) m

= (Z 1 > 2 ) m + (Z2 > 0)

for 16-digit operands, (a) Overall
details for summand

m + ( Z 2 > J ) B "H(Z2i

generation

,2)m

The variables Gm, Pm, Cm are used to form the gating variables
Qx,m, hence they are 'binary-like', attaining the values 0 and 2
only. If Tm ; denotes the iih digit position of the mth summand
input to the ternary tree then

where Mlt is the ith digit position of 1 x M, M_lt is the /th
digit position of — 1 x M, etc. An example helps to visualise
how these equations (synonymous with their logic gate imple-
mentation) select the proper tree input summands. Suppose

D = 2011022101211210
Digit pair dl2dlt = 02, therefore (Zo 2)6 = 2 and all other Z
variables with subscript 6 are zero. Since d10dg = 21 has a
value of 7 > 5, the incoming carry C5 must be present, i.e.
have a logic value of 2. Note that C5 = 2, because (Z2 1)5 = 2,
causing Gs to have a value of 2. From the pattern of the above
equations for the Qx 6 variables, which directly implement the
selection procedure of Table 4 for the m = 6 digit pair, it is
clear that Q3 6 is the only one that has a value of 2. It is set to
2 by the term'(Z02)6C5. Since Q36 = 2, tree inputs T6i attain
the values of the summand variables M3 { which is exactly the
action called for by Table 4. It should be noted that when a
negative summand is to be used, 3's-complement arithmetic is
used, that is, the 2's-complement of the summand is introduced

bi

where (ap) is formed before the carries are available.
A description of the ternary tree summand reduction logic

remains. Letting the inputs to one position of 4 to 2 reduction
logic be a, b, c, and d, the sum and carry-out functions are

b e d

s = a" " "*

c = abc + abd + bed + p{abcd)22 + p(a + b + c + d)"

where

p = (a + b + c) (a + b + d) (a + c + d) (b + c + d) .

The delay through a 4 to 2 reduction level is clearly 5T and
thus through the complete tree of Fig. 2{a) is 1 5T. The above
discussion shows a 34T delay through the complete ternary

Table 5 16-digit ternary

SUBUNIT

Multiplier
recoding and
summand
selection
Tree
Adder

GATES
INVERTER

55
112
66

2 x 1 , 4 x 1
registers and
adder input
gating

Totals

—

233

multiplier cost

CYCLING AND/OR

32
331
165

71

599

1,523
916
330

172

2,941

INPUTS

4,114
3,880
1,596

340

9,930
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Multiplier gate cost comparisons

multiplier. The cost in gates and inputs is given in Table 5.
Again, as in the binary case, similar computations were made
for other operand lengths and the comparative results appear
in Section 4.

4. Comparative analysis
When comparing any arithmetic units that operate on number
representations in different bases, operand lengths should be
such that about the same range of values is accommodated in
each unit. It was arbitrarily decided to plot the comparison of
binary multipliers in the operand range 8 through 32 with the
corresponding ternary designs that are just large enough to
include the binary range for each operand length. In general,
if D ternary digits are to represent values representable by d
binary digits, then

3D - 1 > 2" - 1

22

20

18

16

14

12

10

8

6

4

2

BINARY-

TERNARY

or

binary a
ternary &

D = n = r0-631 <P
In the examples of the previous two sections we illustrated the
designs for d = 24 and£> = r0-631 x 24"1 = r15144*1 = 16.
In terms of value ranges, 224 - 1 = 16,777,215 and 316 - 1
= 43,046,720. This particular example illustrates that the com-
parison method chosen is in fact biased against ternary quite
strongly for certain operand lengths.
Fig. 3 shows the speed comparison in terms of logic delay T.

Whether or not delay through a 3-valued logic gate is com-
parable to delay through a 2-vaIued gate from a practical
standpoint is clearly technology dependent and likely to
change as circuit techniques evolve.
It is more difficult to decide upon measures for cost compari-

sons. One of the more conventional techniques is to use the
total number of gates and inputs as the two measures, and that
has been done here. The total number of inputs to gates is a
straightforward measure of the combination of circuit package
pin count and intra-package circuit connection complexity.
The difficulty is in arriving at a way of counting gate costs.
The basic assumption made here is that each binary gate has a
cost of one unit. Ternary AND, OR and INVERTER gates
are also assumed to have unit cost since they have circuit
implementations very similar to the binary gates. The two
versions of ternary CYCLING gates (mod 3 adder and mod 3
subtractor) are more expensive to implement than any of the
other gates, hence a weight of 3 units has been assigned to each
cycling gate. The effect of this choice is not too critical since
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cycling gates form a reasonably small portion of the total
number of gates, less than 20% in the n = 16 example detailed
in Table 5. Figs. 4 and 5 show the comparisons. Using the three
standard binary operand lengths of 16, 24, and 32, it is instruc-
tive to calculate some relative percentage comparisons between
the binary and ternary designs. At those binary operand lengths,
where the comparable ternary lengths are 11, 16, and 21,
respectively, the binary versions are about 17% faster on the
average. The gate cost in ternary is about 22% less than in
binary, while input count is about 38% lower.

5. Conclusions
An attempt was made to design ternary parallel multipliers
with propagation delays along the longest logic path compar-
able to those of their binary equivalents. Actual designs show
the delays slightly favouring the binary case.
Circuit cost in terms of gate count is lower in ternary designs

although not significantly enough to be of major importance.
The key result is exhibited by Fig. 5, showing considerable

reduction in the number of inputs in ternary cases. This may be
sufficient to permit physical implementation of ternary
multipliers at a size level where construction of the binary
equivalents is currently not feasible because of wiring inter-
connection complexity.
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Correspondence
To the Editor
The Computer Journal

Sir,
The generalised Euler transformation

A recent paper by Wynn (1971) discusses the generalised Euler
transformation

s=0 s=
where us = zsvs. An important matter in the use of this transform-
ation is the choice of a suitable value for z, and Wynn suggests that
z be chosen as the limit as s -* <x> of the ratio «s+i/«« (provided that
this limit exists). In fact this does not generally lead to the best value
ofz.
Consider, for instance, the well-known series

in which us = (— i)s(s + I)"1. The ratio u,+Ju, tends to —1, and
putting z = — 1 gives the transformed series

Ml + Ki) + Ki)2 + Hi)3 + . . . ] .
This converges more rapidly than the original series; but we can do
better still by putting z = - J, which gives

*[1 + 0 + i(i)2 + 0 + Ki)4 + . . . ] .
A more startling example is given by taking

us = i[(f)s + (t)5] .
In this case us+Jus -»• §, and the transformed series with z = I is

2 - 2 + 22 - 23 + 24 - . . . ,
which is divergent. Yet by taking z = £ we get the rapidly convergent
series

1 + 0 + (£)2 + 0 + (i)4 +
A theoretical method for finding the optimum value of z was

given by me in an earlier paper (Scraton, 1969). This method cannot
be used, however, if one knows nothing about the terms us except
their numerical values, and as far as I am aware no computational
algorithm has yet been devised for finding the optimum value of z
in these circumstances.

Yours faithfully,
R. E. SCRATON

Department of Mathematics
University of Bradford
Bradford 7
14 March 1972
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To the Editor
The Computer Journal

Sir,
In his letter on high level languages in Vol. 15, No. 1, 1972 of this
Journal, J. Palme gives an example of a spelling mistake which he
says would be detected in ALGOL but not in FORTRAN.
Provided the incorrectly written variable did not also occur on the

left hand side of an assignment statement it would be detected by a
good FORTRAN compiler as an undefined variable.

Yours faithfully,
H. W. BRADLY

3 Belleville Drive
Oadby
Leicester LE2 4HA
24 March 1972

To the Editor
The Computer Journal

Sir,
G. M. Bull's article 'Dynamic debugging in BASIC (February,
1972) was chiefly valuable in spreading the gospel about the great
advantages of interpretive compilers for use in time sharing. How-
ever, his implementation contains little that is new; all his facilities
except breakpoints and the trace feature have existed for several
years on the Conversational Programming System (CPS) running on
360/40's and up. CPS, with a choice of PL/1 or BASIC, remains
(until TSO proves otherwise) the best general purpose time sharing
system available on IBM computers.

Yours faithfully,
DAVID SILBER

Reference
IBM MANUAL GH2O-O758. Conversational Programming System

(CPS) Terminal User's Manual.
P.S. Speaking of time sharing, does it not seem odd to anyone else
that there has been no demand to form a BCS Specialist Group on
Time Sharing?

Erratum
There was an error in the paper 'File design fallacies' by S. J.
Waters (this Journal, Vol. 15, No. 1, p. 1). The formula on the 9th
line of page 2 should read:

Track Hit Ratio = 1 - (1 - Record Hit Ratio) Number of Re-
cords in Track so that the multiplier should be a power.
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