Ternary Quartics and 3-dimensional Commutative Algebras

Pavel Katsylo and Dmitry Mikhailov*

Communicated by E. B. Vinberg

Abstract

We find a connection between 3-dimensional commutative algebras with trivial trace and plane quartics and their bitangents.

1. Introduction

In this paper a structure of a commutative algebra on \mathbf{C}^{3} is called a 3-dimensional algebra. Let \mathcal{A} be the set of 3 -dimensional algebras. Consider \mathcal{A} as a linear space. Let $\mathcal{A}_{0} \subset \mathcal{A}$ be the linear subspace of algebras with trivial trace. By definition, $\eta \in \mathcal{A}_{0}$ if the contraction of the structure tensor of η is equal to zero.

By $P V$ we denote the projectivization of a vector space V. For $v \in V, v \neq$ 0 we denote by \bar{v} the corresponding point of the projective space $P V$.

Let $\eta \in \mathcal{A}_{0}$ be an algebra with trivial trace. Recall that an element $a \in \mathbf{C}^{3}$ is called an idempotent if $a \neq 0, a^{2}=a$. We say that an element $\bar{a} \in P \mathbf{C}^{3}=\mathbf{P}^{2}$ is a generalized idempotent if $a^{2}=\lambda a$, where $\lambda \in \mathbf{C}$. Every idempotent defines a generalized idempotent. Every generalized idempotent $\bar{a} \in \mathbf{P}^{2}$ such that $a^{2} \neq 0$ defines uniquely an idempotent $a^{\prime} \in \mathbf{C}^{3}$ such that $\bar{a}=\overline{a^{\prime}}$. Define the subscheme $X(\eta) \subset \mathbf{P}^{2}$ of the generalized idempotents by the following equation:

$$
\begin{equation*}
a^{2} \wedge a=0 \tag{0.1}
\end{equation*}
$$

Consider the open $\mathbf{S L}_{3}$-invariant subset

$$
\mathcal{A}_{0}^{\prime}=\left\{\eta \in \mathcal{A}_{0} \mid \operatorname{dim} X(\eta)=0\right\} \subset \mathcal{A}_{0} .
$$

Lemma 1.1. \mathcal{A}_{0}^{\prime} is nonempty

Consider $\eta \in \mathcal{A}_{0}$. The algebra η defines the quadratic mapping

$$
\mathbf{C}^{3} \longrightarrow \mathbf{C}^{3}, \quad a \mapsto a^{2}
$$

[^0]ISSN 0949-5932 / \$2.50 © Heldermann Verlag

This quadratic mapping defines the section $\tilde{\eta}$ of the vector bundle $T_{\mathbf{P}^{2}}(1)$ (see [3], Ch. 1). The scheme of zeros of the section $\tilde{\eta}$ is $X(\eta)$. We have

$$
\operatorname{deg} X(\eta)=c_{2}\left(T_{\mathbf{P}^{2}}(1)\right)=7
$$

for $\eta \in \mathcal{A}_{0}$ (see [3], Ch. 1).
Consider the open $\mathbf{S L}_{3}$-invariant subset

$$
\begin{aligned}
& \mathcal{A}_{0}^{\prime \prime}=\left\{\eta \in \mathcal{A}_{0}^{\prime} \mid X(\eta)=\left\{\overline{a_{1}}, \ldots, \overline{a_{7}}\right\}, a_{i}^{2} \neq 0,1 \leq i \leq 7,\right. \\
& \text { every } 3 \text { points of } X(\eta) \text { do not lie on a line, } \\
&\text { every } 6 \text { points of } X(\eta) \text { do not lie on a quadric }\} \subset \mathcal{A}_{0}^{\prime} .
\end{aligned}
$$

Lemma 1.2. $\mathcal{A}_{0}^{\prime \prime}$ is nonempty.
Consider the rational $\mathbf{S L}_{3}$-morphism

$$
\varphi: P \mathcal{A}_{0} \longrightarrow\left(\mathbf{P}^{2}\right)^{(7)}, \quad \eta \mapsto X(\eta)
$$

We use the standard notation $\left(\mathbf{P}^{2}\right)^{(7)}$ for the 7-th symmetric degree of \mathbf{P}^{2}.
Proposition 1.3. φ is a birational isomorphism.
In other words, a 3-dimensional algebra in general position with a trivial trace is uniquely (up to a scalar factor) defined by its generalized idempotents.

Fix $\eta \in \mathcal{A}_{0}^{\prime \prime}$. Let a_{1}, \ldots, a_{7} be the idempotents of the algebra η. Let

$$
\pi=\pi(\eta): Z=Z(\eta) \longrightarrow \mathbf{P}^{2}
$$

be the blowing up of $X(\eta)$ in \mathbf{P}^{2}. It is well known that Z is a Del Pezzo surface of degree 2. We use some facts on the Del Pezzo surfaces, see [2], Ch. 5, section 4 for details. Let

$$
\beta=\beta(\eta): Z \longrightarrow \mathbf{P}^{2 *}=P \mathbf{C}^{3 *}
$$

be the canonical double covering with a nonsingular quartic $Y=Y(\eta) \subset \mathbf{P}^{2 *}$ as the branch locus.

The $\mathbf{S L}_{3}$-module $S^{2} \mathcal{A}_{0}$ contains with multiplicity one a submodule isomorphic to $S^{4} \mathbf{C}^{3}$. Therefore, there exists a unique (up to a scalar factor) nontrivial quadratic $\mathbf{S L}_{3}$-mapping

$$
\varepsilon: \mathcal{A}_{0} \longrightarrow S^{4} \mathbf{C}^{3} .
$$

Lemma 1.4. $\varepsilon(\eta) \neq 0$.
Consider the quaternary form $\varepsilon(\eta)$ on the space $\mathbf{C}^{3 *}$. This quaternary form defines a quartic $Y^{\prime}=Y^{\prime}(\eta) \subset \mathbf{P}^{2 *}$. Consider the 28 linear forms $a_{1}, \ldots, a_{7},\left(a_{i}-a_{j}\right)^{2}, 1 \leq$ $i<j \leq 7$ on the space $\mathbf{C}^{3 *}$. These linear forms define 28 lines $A_{1}, \ldots, A_{7}, A_{i j} \in$ $\mathbf{P}^{2 *}$.

Theorem 1.5. 1. Y is isomorphic to Y^{\prime}.
2. The 28 bitangents to Y^{\prime} are $A_{1}, \ldots, A_{7}, A_{i j}, 1 \leq i<j \leq 7$.

The authors thank B.Broer for a useful discussion.

2. Proofs

Let e_{1}, e_{2}, e_{3} be the standard basis in \mathbf{C}^{3}, and x_{1}, x_{2}, x_{3} the dual basis in $\mathbf{C}^{3 *}$. The group $\mathbf{S L}_{3}$ acts canonically in the space $S^{a} \mathbf{C}^{3} \otimes S^{b} \mathbf{C}^{3 *}, a, b \geq 0$. For $a, b \geq 1$ consider the linear $\mathbf{S L}_{3}$-mapping

$$
\Delta=\sum \frac{\partial}{\partial e_{i}} \otimes \frac{\partial}{\partial x_{i}}: S^{a} \mathbf{C}^{3} \otimes S^{b} \mathbf{C}^{3 *} \longrightarrow S^{a-1} \mathbf{C}^{3} \otimes S^{b-1} \mathbf{C}^{3 *}
$$

It is well known that the representation of the group SL_{3} in the space $V(a, b)=\operatorname{ker} \delta$ is irreducible (see [1], part III, section 13). Assume that $V(a, 0)=$ $S^{a} \mathbf{C}^{3}, V(0, b)=S^{b} \mathbf{C}^{3 *}$.

A structure of a commutative algebra on \mathbf{C}^{3} is a symmetric bilinear mapping

$$
\mathbf{C}^{3} \times \mathbf{C}^{3} \longrightarrow \mathbf{C}^{3}
$$

The set of such symmetric bilinear mappings is $\mathbf{C}^{3} \otimes S^{2} \mathbf{C}^{3 *}$. Therefore, the linear space \mathcal{A} of 3-dimensional algebras is $\mathbf{C}^{3} \otimes S^{2} \mathbf{C}^{3 *}$. The contraction of structure tensors of algebras is the mapping

$$
\Delta: \mathbf{C}^{3} \otimes S^{2} \mathbf{C}^{3 *} \longrightarrow \mathbf{C}^{3 *}
$$

Therefore, the linear space \mathcal{A}_{0} of 3 -dimensional algebras with trivial trace is $V(1,2)$.
¿From the Littelwood-Richardson rule we get the following $\mathbf{S L}_{3}$-module decomposition

$$
V(1,2) \otimes \mathbf{C}^{3} \otimes \mathbf{C}^{3} \simeq \mathbf{C}^{3} \oplus 2 V(0,2) \oplus 2 V(2,1) \oplus 2 V(1,3) \oplus V(3,2)
$$

(see [1], App. A). Thus there exists a unique (up to a scalar factor) nontrivial trilinear SL_{3}-mapping

$$
\mu: V(1,2) \times \mathbf{C}^{3} \times \mathbf{C}^{3} \longrightarrow \mathbf{C}^{3}
$$

Let us give the explicit form of μ :

$$
\mu\left(e_{i_{1}} \otimes x_{j_{1}} x_{j_{2}}, e_{i_{2}}, e_{i_{3}}\right)=\Delta^{2}\left(e_{i_{1}} e_{i_{2}} e_{i_{3}} \otimes x_{j_{1}} x_{j_{2}}\right) .
$$

The algebraic structure corresponding to $\eta \in V(1,2)$ is the bilinear symmetric mapping

$$
\mu(\eta, \cdot, \cdot): \mathbf{C}^{3} \times \mathbf{C}^{3} \longrightarrow \mathbf{C}^{3}
$$

Example 2.1. Consider the algebra

$$
\eta_{0}=\frac{1}{4}\left(e_{1} \otimes x_{3}^{2}+e_{2} \otimes x_{1}^{2}+e_{3} \otimes x_{2}^{2}\right)
$$

The multiplication table of η_{0} is as following:

$$
e_{1} * e_{2}=e_{2} * e_{3}=e_{3} * e_{1}=0, \quad e_{1}^{2}=e_{2}, \quad e_{2}^{2}=e_{3}, \quad e_{3}^{2}=e_{1}
$$

It can be easily checked that the subscheme $X\left(\eta_{0}\right) \subset \mathbf{P}^{2}$ of the generalized idempotents of η_{0} is

$$
X\left(\eta_{0}\right)=\left\{\overline{\theta e_{1}+\theta^{2} e_{2}+\theta^{4} e_{3}} \mid \theta \in \mu_{7}\right\}
$$

where $\mu_{7}=\left\{\theta \in \mathbf{C} \mid \theta^{7}=1\right\}$.

We have $\eta_{0} \in \mathcal{A}_{0}^{\prime}$. It follows that \mathcal{A}_{0}^{\prime} is nonempty. It can easily be checked that $\eta_{0} \in \mathcal{A}_{1 \prime}^{\prime \prime}$. Therefore, $\mathcal{A}_{0}^{\prime \prime}$ is nonempty. This proves of Lemmas 1.1 and 1.2.

It can easily be checked that $\varphi^{-1}\left(X\left(\eta_{0}\right)\right)=\left\{\bar{\eta}_{0}\right\}$. It follows from (0.1) that a fiber of φ of general position is a point in $\operatorname{PV}(1,2)$. Hence φ is a birational isomorphism. This proves Proposition 1.3.

Fix $\eta \in \mathcal{A}_{0}^{\prime \prime}$ and let a_{1}, \ldots, a_{7} be the idempotents of η.
Consider the cubic mapping

$$
\psi=\psi(\eta): \mathbf{C}^{3} \longrightarrow \wedge^{2} \mathbf{C}^{3} \simeq \mathbf{C}^{3 *}, \quad a \mapsto a^{2} \wedge a
$$

Lemma 2.2. Consider a_{i} as a linear form on $\mathbf{C}^{3 *}$. Let $Q_{i}=Q_{i}(\eta)$ be the cubic corresponding to the cubic form $\psi^{*}\left(a_{i}\right)$. Then the cubic Q_{i} contains each of $\overline{a_{1}}, \ldots, \overline{a_{7}}$ with multiplicity ≥ 2.

Proof. It is obvious that $Q_{i} \ni \overline{a_{1}}, \ldots, \overline{a_{7}}$. Let us prove that Q_{i} contains $\overline{a_{i}}$ with multiplicity ≥ 2. We have

$$
\begin{gathered}
\psi^{*}\left(a_{i}\right): a \mapsto a^{2} \wedge a \wedge a_{i} \in \wedge^{3} \mathbf{C}^{3} \simeq \mathbf{C}, \\
\psi^{*}\left(a_{i}\right)\left(a_{i}+t b\right)=\left(a_{i}+t b\right)^{2} \wedge\left(a_{i}+t b\right) \wedge a_{i}=a_{i}^{2} \wedge a_{i} \wedge a_{i}+ \\
t\left(\left(2 a_{i} * b\right) \wedge a_{i} \wedge a_{i}+a_{i}^{2} \wedge b \wedge a_{i}\right)+o(t)=0+t \cdot 0+o(t)
\end{gathered}
$$

for any $b \in \mathbf{C}^{3}$.

Lemma 2.3. Consider $\left(a_{i}-a_{j}\right)^{2}, i<j$ as linear forms on $\mathbf{C}^{3 *}$. Let $Q_{i j}=$ $Q_{i j}(\eta)$ be the cubic corresponding to the cubic form $\psi^{*}\left(\left(a_{i}-a_{j}\right)^{2}\right)$. Then $Q_{i j}$ is the union of the line $\left\langle\overline{a_{i}}, \overline{a_{j}}\right\rangle$ and the quadric containing the points $\overline{a_{1}}, \ldots, \widehat{\overline{a_{i}}}, \ldots, \widehat{\overline{a_{j}}}, \ldots, \overline{a_{7}}$.

Proof. It is obvious that $Q_{i j} \ni \overline{a_{1}}, \ldots, \overline{a_{7}}$. We have to prove that $Q_{i j}$ contains the line $\left\langle\overline{a_{i}}, \overline{a_{j}}\right\rangle$. We have

$$
\begin{gathered}
\psi^{*}\left(\left(a_{i}-a_{j}\right)^{2}\right): a \mapsto a^{2} \wedge a \wedge\left(a_{i}-a_{j}\right)^{2} \in \wedge^{3} \mathbf{C}^{3} \simeq \mathbf{C}, \\
\psi^{*}\left(\left(a_{i}-a_{j}\right)^{2}\right)\left(t_{i} a_{i}+t_{j} a_{j}\right)=\left(t_{i} a_{i}+t_{j} a_{j}\right)^{2} \wedge\left(t_{i} a_{i}+t_{j} a_{j}\right) \wedge\left(a_{i}-2 a_{i} * a_{j}+a_{j}\right)= \\
t_{i}^{3} a_{i}^{2} \wedge a_{i} \wedge\left(a_{i}-2 a_{i} * a_{j}+a_{j}\right)+t_{i}^{2} t_{j}\left(a_{i}^{2} \wedge a_{j} \wedge\left(a_{i}-2 a_{i} * a_{j}+a_{j}\right)+\right. \\
\left.\left(2 a_{i} * a_{j}\right) \wedge a_{i} \wedge\left(a_{i}-2 a_{i} * a_{j}+a_{j}\right)\right)+t_{i} t_{j}^{2}\left(a_{j}^{2} \wedge a_{i} \wedge\left(a_{i}-2 a_{i} * a_{j}+a_{j}\right)+\right. \\
\left.\left(2 a_{j} * a_{i}\right) \wedge a_{j} \wedge\left(a_{i}-2 a_{i} * a_{j}+a_{j}\right)\right)+t_{j}^{3} a_{j}^{2} \wedge a_{j} \wedge\left(a_{i}-2 a_{i} * a_{j}+a_{j}\right)=0 .
\end{gathered}
$$

Consider the rational morphism

$$
\Psi=\Psi(\eta): \mathbf{P}^{2} \longrightarrow \mathbf{P}^{2 *}, \quad \bar{a} \mapsto \overline{\psi(a)} .
$$

It is not defined exactly on $X(\eta)$. Let

$$
\mathbf{P}^{2} \stackrel{\pi}{\leftrightarrows} Z=Z(\eta) \xrightarrow{\beta} \mathbf{P}^{2 *}
$$

be the regularization of $\Psi, \Psi=\beta \circ \pi^{-1}$. It is well known that Z is a Del Pezzo surface of degree $2, \pi$ is the blowing up of the seven points $\overline{a_{1}}, \ldots, \overline{a_{7}}$ in \mathbf{P}^{2}, β :
$Z \longrightarrow \mathbf{P}^{2 *}$ is a double covering with the nonsingular quartic $Y=Y(\eta) \subset \mathbf{P}^{2 *}$ as the branch locus (see [2], Ch. 5).

Let us prove Lemma 1.4 and Theorem 1.5. Consider the nontrivial homogeneous SL_{3}-equivariant mapping of degree 6

$$
\begin{gathered}
\gamma_{i}: V(1,2) \longrightarrow V(0,12)=S^{12} \mathbf{C}^{3 *} \\
\gamma_{1}: \eta \mapsto \psi^{*}(\varepsilon(\eta)), \quad \gamma_{2}: \eta \mapsto\left(\operatorname{det}\left(\frac{\partial \psi^{*}\left(e_{i}\right)}{\partial x_{j}}\right)\right)^{2} .
\end{gathered}
$$

It can be checked that the $\mathbf{S L}_{3}$-module $S^{6} V(1,2)$ contains $V(0,12)$ with multiplicity one. Thus $\gamma_{1}=c \gamma_{2}$, where $c \neq 0$. This implies Lemma 1.4 and statement 1. of Theorem 1.5.

The second part of Theorem 1.5 is a corollary of Lemmas 2.2 and 2.3 (see [2], Ch. 5, Section 4)

References

[1] Fulton W. and Harris J., "Representation Theory," Springer-Verlag, 1991.
[2] Hartshorne R., "Algebraic Geometry," Springer-Verlag, 1977.
[3] Okonek Ch., M. Schneider, and Spindler H., Vector Bundles on Complex Projective Spaces, Birkhauser, 1980.

Independent University of Moscow,
Bolshoi Vlasievkii 11,
121002, Moscow, Russia.
katsylo@ium.ips.ras.ru

Received December 9, 1994
and in final form January 30, 1997

[^0]: *Research supported by Max-Planck-Institute fur Mathematik and Grant NMQZ000 of the International Science Foundation.

