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Abstract.—In phylogenomics the analysis of concatenated gene alignments, the so-called supermatrix, is commonly
accompanied by the assumption of partition models. Under such models each gene, or more generally partition, is
allowed to evolve under its own evolutionary model. Although partition models provide a more comprehensive analysis of
supermatrices, missing data may hamper the tree search algorithms due to the existence of phylogenetic (partial) terraces.
Here, we introduce the phylogenetic terrace aware (PTA) data structure for the efficient analysis under partition models.
In the presence of missing data PTA exploits (partial) terraces and induced partition trees to save computation time. We
show that an implementation of PTA in IQ-TREE leads to a substantial speedup of up to 4.5 and 8 times compared with the
standard IQ-TREE and RAxML implementations, respectively. PTA is generally applicable to all types of partition models and
common topological rearrangements thus can be employed by all phylogenomic inference software. [Maximum likelihood;
partial terraces; partition models; phylogenetic terraces; phylogenomic inference.]

The gigantic amount of sequence data generated by
next-generation sequencing technologies has spurred
phylogenomics (Eisen 1998; Delsuc et al. 2005; Kumar
et al. 2012). Here, one aims to infer the tree of life from
multiple genes, loci, or even whole genomes, which
provide enough phylogenetic information to resolve
difficult branching orders (Bininda-Emonds et al. 1999;
Rokas et al. 2003; Dunn et al. 2008; Meusemann et al.
2010).

Phylogenomic inference methods are categorized
into supertree and supermatrix methods (De Queiroz
et al. 1995; Sanderson et al. 1998; Bininda-Emonds et al.
2002; Delsuc et al. 2005; Kupczok et al. 2010). Supertree
methods combine inferred (gene) trees into one
“supertree”. Supermatrix refers to the concatenation
of multiple sequence alignments from different
genes/sequences. Unavailable genes/sequences
constitute the so-called missing data in the supermatrix.
Standard phylogenetic methods are then used to infer
the species tree from the concatenated alignment.

Complex evolutionary scenarios of multi-gene
data sets raise additional difficulties for phylogenetic
inferences from supermatrices. For example, failure
to account for heterogeneous evolution caused
by heterotachy (Lopez et al. 2002), that is, when
evolutionary rates vary over time, leads to systematic
errors in phylogenetic reconstruction (Kolaczkowski
and Thornton 2004; Philippe et al. 2005).

To account for different evolutionary scenarios
partition models were introduced (Yang 1996) that allow
genes to evolve with different substitution models. Three
types of partition models Edge-Unlinked, Edge-Linked-
equal, and Edge-Linked-proportional are implemented in
many maximum likelihood (ML) software packages
(Table 1).

The EUL partition model, where each partition has
its own set of branch lengths, is the most general.
However, due to missing data an EUL model may lead

to phylogenetic terraces (Sanderson et al. 2011), where
different tree topologies have the same score (likelihood
or parsimony). The more restrictive EL partition models
could avoid terraces, but assuming these models in the
presence of heterotachy can be misleading (Sanderson
et al. 2015).

Large phylogenetic terraces may hamper a thorough
exploration of tree space by current search algorithms.
When encountering a large terrace during the tree search
a lot of computation time is spent on the evaluation
of trees with equal scores. Therefore, it is important to
detect terraces and to reduce computations.

Recently, we generalized the concept of terraces to
partial terraces (Chernomor et al. 2015) and provided
mathematical conditions to quickly identify their
occurrences for a species tree and a supermatrix. In
order to detect partial terraces during the tree search it is
enough to answer the question whether the topological
rearrangement applied to a species tree T changes
any of its induced partition trees. Here, an induced
partition tree is the subtree restricted to species present
in the corresponding partition. If some partition trees
remained unchanged, then T and the newly obtained
species tree TNEW belong to one partial terrace and we
only need to compute the score (likelihood or parsimony)
for partition trees that were affected by the topological
rearrangement. Chernomor et al. (2015) also predicted
the potential computing time saving when accounting
for (partial) terraces during the tree search. However, an
efficient implementation of the theoretical results was
not provided.

We note that before the terrace concept was introduced
(Sanderson et al. 2011), its properties were implicitly
exploited to speed up likelihood computations and the
Subtree Pruning and Regrafting (SPR) tree search under
the EUL model (Stamatakis and Ott 2008; Stamatakis
and Alachiotis 2010). The authors introduced and
implemented a data structure called pointer meshes,
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TABLE 1. Availability of partition models in ML tree search software

EL- EL-
Software equal proportional EUL

MetaPIGA (Helaers and Milinkovitch 2010) x x
PhyML (Guindon et al. 2010)
GARLI (Zwickl 2006) x x
RAxML (Stamatakis 2014) x x
TreeFinder (Jobb et al. 2004) x x x
IQ-TREE (Nguyen et al. 2015) x x x

EL, edge-linked; EUL, edge-unlinked.

which yielded a substantial computation time and
memory saving. However, it is not clear how to apply
the data structure to other topological rearrangements
or EL partition models.

Here, we propose a more general phylogenetic terrace
aware (PTA) data structure, which works for all common
topological rearrangements and with EUL and EL
partition models. In the following, we provide the
theoretical background of phylogenetic partial terraces
and a rule to quickly detect them. We also formally
review the three partition models. Next, we describe
the PTA data structure and provide a dynamic
programming algorithm to build it. We reformulate
conditions to quickly identify partial terraces and discuss
additional timesaving features of different partition
models in ML inference. We implemented PTA and
the rule to detect partial terraces for EUL and EL
partition models in IQ-TREE. Finally, we analyze the
efficiency of PTA by examining 12 published alignments
and compare the results with the standard IQ-TREE
(Nguyen et al. 2015) implementation and with RAxML
(Stamatakis 2014).

BACKGROUND

Partial and Full Phylogenetic Terraces
Let k �2 denote the number of genes, loci, or codon

positions in a supermatrix. In the following we use
“partition” to generally refer to any subset of genomic
positions. Denote by Y1,Y2,...,Yk the species sets for the
k partitions and X =Y1∪Y2∪...∪Yk the set of all species.
The S1,S2,...,Sk denote the corresponding alignments
and S is the concatenated alignment (supermatrix) of
S1,S2,...,Sk . Stretches of gaps are added to S if a species
has no sequence for some partition (i.e., when Yi ⊂X).
Only these gaps are referred to as missing data.

For a species tree T and a partition Yi, the associated
induced partition tree, denoted T|Yi, is the tree obtained
from T by pruning species with no sequence for partition
Yi (i.e., missing sequences). Hence, for every species tree
there is a corresponding set of k induced partition trees.

If for two species trees T1 and T2 there exists a set
of indices J ⊆{1,...,k} such that ∀j∈ J the corresponding
induced partition trees T1|Yj and T2|Yj are identical then
T1 and T2 belong to one partial terrace (Chernomor et al.
2015). In this context, a phylogenetic terrace coined in

FIGURE 1. The species tree T and the two NNI neighboring trees
TNNI1 and TNNI2 , obtained by NNIs around the central edge e. NNI,
nearest neighbor interchange.

Sanderson et al. (2011) is a special case when J ={1,...,k}.
For clarity we call this case a full terrace. ∀j∈ J scores
(likelihood or parsimony) of T1|Yj and T2|Yj are equal.
Therefore, if during the tree search we identify a full
terrace, we need to compute the score of T1|Yj or T2|Yj
only once ∀j∈ J.

How to Identify Partial Terraces during the Tree Search
When searching for the optimal species tree we move

from one species tree T to another TNEW by means
of some topological rearrangements. In phylogenetic
software the most common topological rearrangements
are Nearest Neighbor Interchange (NNI), SPR, and Tree
Bisection and Reconnection (TBR) (Felsenstein 2004).

We now illustrate the necessary condition presented
in Chernomor et al. (2015) for the NNI to change the
topology of a given induced partition tree. Let T be a
species tree and e an interior edge of T. We denote by
e1,e2,e3,e4 edges adjacent to e and by A,B,C,D the taxon
sets leading from them, respectively (Fig. 1). Now, let
a new tree TNNI be obtained from T via NNI. Then
Proposition 1 (Chernomor et al. 2015) states that

For a partition with a taxon set Y the
topologies of T|Y and TNNI|Y are different
if and only if Y has at least one representative
taxon in each subset A,B,C,D. (C.1)

Condition (C.1) simply means that for an NNI to change
the topology of a partition tree T|Y all A∩Y,B∩Y,C∩Y,
and D∩Y must be non-empty.

In the following we discuss the three partition
models implemented in IQ-TREE and used to examine
the performance of the terrace aware data structure
proposed here.
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Partition Models
Partition models allow for different evolutionary

scenarios for each partition. More formally, each
partition Yi is assumed to evolve under its own
substitution model Mi and the model parameters of
each Mi are optimized separately on the corresponding
partition tree.

The log-likelihood of a species tree T under a partition
model M is the sum of partition tree log-likelihoods

�
(
T,M|S)=

k∑
i=1

�(T |Yi,Mi|Si). (1)

Here, the log-likelihood � of the partition trees depends
on the topology and the edge lengths of each T|Yi.
The relation of edge lengths between species tree
and partition trees is what distinguishes partition
models.

The most general EUL model, denoted by MEUL,
allows each partition tree T|Yi to have its own set of
edge lengths that are optimized separately per partition
tree. We denote a length of e on T|Yi by �i(e). The EUL
model implies that the species tree T has no defined edge
lengths. However, one can display the edge lengths for T,
for example, as the weighted average of corresponding
edge lengths on partition trees.

In contrast to EUL, the more restrictive EL models
assume a relationship between edge lengths of the
species tree and all partition trees. The EL-proportional
model, denoted by MELprop , assumes one set of edge
lengths, �(.), for the species tree T and rescales the
partition trees with specific positive rates r1,r2,...,rk

such that the weighted average rate is 1 (i.e.,
∑k

i=1 wiri∑k
i=1 wi

=1,

where wi is the length of the partition alignment Si).
The partition rates ri are optimized separately for each
partition tree.

The second EL model, EL-equal, denoted by MELequal ,
is a special case of MELprop with all the partition rates
equal to 1 (i.e., r1 =r2 =···=rk =1). This simply means
that the edge lengths of partition trees are equal to the
lengths of corresponding edges on the species tree. In
contrast to MEUL, which optimizes the edge lengths per
partition tree, EL models optimize edge lengths, �(.), on
the species tree.

PTA DATA STRUCTURE

In this section, we introduce the PTA data structure,
which facilitates detecting and handling partial terraces
during tree search and provides an efficient analysis of
supermatrices. The PTA consists of the species tree, the
set of its induced partition trees, and the set of maps from
edges of the species tree to each induced partition tree.
In the following we introduce this map and an efficient
algorithm to build it.

a) b)

FIGURE 2. (a) Three adjacent edges on species tree T and (b) their
corresponding edges on partition tree T|Yi.

Map from the Species Tree onto Partition Trees
Let E denote the edge set of T and Ei the edge set of

T|Yi. We represent each edge e∈E by its split e=A|B,
where A and B are disjoint complementary non-empty
subsets of the leaf set X with |X|=n. Let ε denote the
empty edge or no edge, then for every partition Yi we
introduce the map

fi :E→Ei∪{ε},

fi(e)=
{

A∩Yi|B∩Yi, ifA∩Yi 
=∅ and B∩Yi 
=∅
ε, otherwise.

(2)

Basically, fi(e), if not equal to ε, is an edge on T|Yi
corresponding to e.

The collection of all maps F={
f1,...,fk

}
together with

the trees {T,T |Y1,...,T|Yk} forms the PTA data structure
for partition model analyses.

An Efficient Algorithm for Building F
We now describe a dynamic programming algorithm

to build F for unrooted bifurcating trees. It first assigns
fi for external edges and then proceeds toward internal
edges of the tree. More specifically, let e={x}|X\{x}∈E
be an external edge then

fi(e)=
{

ε,x /∈Yi
{x}|Yi\{x},x∈Yi

(3)

Obviously, Equation (3) follows directly from Equation
(2). Now, let e be an internal edge with two adjacent edges
e1,e2 (e.g., see Fig. 2a), where fi(e1) and fi

(
e2

)
were already

computed, we assign fi(e) as follows:

fi(e)=

⎧⎪⎪⎨
⎪⎪⎩

ε, fi
(
e1

)= fi
(
e2

)
fi
(
e1

)
, fi

(
e1

) 
=ε and fi
(
e2

)=ε

fi
(
e2

)
, fi

(
e1

)=ε and fi
(
e2

) 
=ε

e∗
i , otherwise,

(4)

where e∗
i is an edge on T|Yi adjacent to fi(e1) and

fi(e2) (Fig. 2b). Note that for an edge e where all four
neighboring edges have their maps computed, assigning
fi(e) from either side of e will have the same result.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/65/6/997/2281634 by guest on 16 August 2022



1000 SYSTEMATIC BIOLOGY VOL. 65

We provide the proof of correctness of Equation (4) in
Appendix 1.

The algorithm recursively computes fi using
Equations (3 and 4) by a single post-order tree traversal.
Thus, the time complexity of computing fi is linear in
the number of taxa.

The described algorithm builds F in O(nk) time, where
n and k are the number of species and partitions,
respectively. Note that F has to be recomputed each time
the topology of the species tree changed. This sounds
expensive at the first glance, but we will now show how
to efficiently update the PTA when an NNI is applied to
the species tree.

Identifying Unchanged Partition Trees with PTA
For a species tree T and a partition Yi condition (C.1)

provides a check whether an NNI applied to e changes
the topology of T|Yi. Using the map notation, (C.1) is
equivalent to

For a partition with a taxon set Yi the
topologies of T|Yi and TNNI |Yi are different if
and only if all fi(e1),fi(e2),fi(e3),fi(e4) 
=ε. (C.2)

Condition (C.2) follows directly from (C.1) and the
definition of fi(.).

Therefore, when an NNI is applied to e, one updates
each partition tree T|Yi using two rules:

1. If all fi
(
e1

)
,fi

(
e2

)
,fi

(
e3

)
,fi

(
e4

) 
=ε, then TNNI |Yi will
result from T|Yi by swapping the corresponding
edges. For example, if e1 and e3 are swapped on T,
then fi

(
e1

)
and fi

(
e3

)
are swapped on T|Yi.

2. Otherwise, the topologies of TNNI |Yi and T|Yi are
identical, TNNI and T belong to a partial terrace.
Thus, we keep the tree topology of T|Yi and have
to update fi(e) according to Equation (4).

Under the EUL partition model when computing the
log-likelihood of TNNI we only have to compute the log-
likelihood of TNNI |Yi when rule 1 applies. Otherwise the
optimal log-likelihoods of T|Yi and TNNI |Yi are equal.
This advantage comes from the fact that under the EUL
model the edge lengths of partition trees are optimized
independently. Therefore, if the topologies of TNNI |Yi
and T|Yi are identical, there is no need to optimize edges.
Thanks to this, the computing time for the EUL model
greatly benefits from partial terraces. In fact, when TNNI
and T belong to one full terrace, that is, when for all
partitions condition (C.2) is not satisfied, no likelihood
recomputation is necessary.

More restrictive EL models require additional care.
Since under EL models the edge lengths of the species
tree and partition trees are linked, together with the
topological changes of T|Yi we also have to account for
changes in edge lengths. Using the map fi(.), the edge

TABLE 2. Benchmark alignments

Type Taxa Genes Length Missing Source
ID data

DNA1 128 34 29,198 30% Stamatakis and Alachiotis
(2010)

DNA2 180 15 14,912 60% van der Linde et al.
(2010)

DNA3 237 74 43,834 72% Nyakatura and Bininda-Emonds
(2012)

DNA4 279 27 42,666 79% Fabre et al. (2009)
DNA5 298 3 5074 34% Bouchenak-Khelladi et al.

(2008)
DNA6 372 79 61,199 66% Springer et al. (2012)
DNA7 404 11 13,158 60% Stamatakis and Alachiotis

(2010)
DNA8 435 18 16,016 73% Hinchliff and Roalson

(2013)
DNA9 767 5 5714 59% Pyron et al. (2011)
AA10 69 31 8546 35% Dell’Ampio et al. (2014)
AA11 70 35 11,789 34%
AA12 72 51 12,548 35%

lengths of the partition tree T|Yi are computed as

�i(e
′)=ri ×

∑
e∈E:fi(e)=e′

�(e), ∀e′ ∈Ei (5)

where ri is the rate of partition Yi. Therefore, each time
map fi(.) changes, the edge lengths on T|Yi will also
change. If the topology of T|Yi is not changed by the
NNI (i.e., condition (C.2) is not satisfied), four cases
are possible, which lead to varying computational time
savings (see Appendix 2).

For EL models PTA helps to save computation time
during edge length optimization. To speed up the
optimization of each edge e∈E, in Equation (1) one
only has to sum the log-likelihoods over those partitions
Yi where fi(e) 
=ε. This advantage is a result of using
induced partition trees instead of complete partition
trees (i.e., with a full set of species instead of Yi).

Since NNI changes one split of the species tree, namely,
the split associated with the edge NNI is applied to, F is
recomputed in O

(
k
)

time. Thus, the extra computations
needed to maintain F are negligible compared with the
expensive likelihood computations.

Although we only reformulated the condition for NNI,
we note that a similar reformulation applies to SPR and
TBR (see Appendix 3). Thus, the PTA can be employed
with all common topological rearrangements.

PERFORMANCE ASSESSMENT ON REAL ALIGNMENTS

We denote by IQ-TREEPTA, the IQ-TREE version
1.3.3 that implements the PTA data structure. The
performance of IQ-TREEPTA is compared with the
standard IQ-TREE implementation and with RAxML
version 8.1.24. We also tested RAxML with option
−U (denoted by RAxMLoptU), which disregards missing
data and results in memory and time saving for
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TABLE 3. Comparison of average CPU runtimes between standard RAxML and IQ-TREE and their implementations accounting for missing
data: RAxMLoptU (using −U option) and IQ-TREEPTA

(a) EUL model

Alignments Average CPU time (hh:mm:ss) Average IQ-TREEPTA speedup compared with

Type ID Missing data RAxML RAxMLoptU IQ-TREE IQ-TREEPTA RAxML RAxMLoptU IQ-TREE

DNA1 30% 02:10:00 02:09:12 01:07:19 00:34:04 3.82 3.79 1.98
DNA2 60% 01:01:39 01:02:50 00:54:02 00:21:12 2.91 2.96 2.55
DNA3 72% 04:36:37 04:16:38 02:47:39 00:43:00 6.43 5.97 3.9
DNA4 79% 05:17:08 04:41:59 03:00:21 00:40:24 7.85 6.98 4.46
DNA5 34% 00:46:31 00:48:38 02:18:17 00:52:03 0.89 0.93 2.66
DNA6 66% 16:00:06 15:39:31 07:37:09 03:02:09 5.27 5.16 2.51
DNA7 60% 02:51:22 02:50:35 05:55:22 01:23:02 2.06 2.05 4.28
DNA8 73% 02:38:09 02:38:15 02:43:44 01:08:53 2.3 2.3 2.38
DNA9 59% 03:47:55 03:50:47 04:03:38 01:41:37 2.24 2.27 2.4
AA10 35% 02:01:50 02:01:58 01:32:23 00:33:21 3.65 3.66 2.77
AA11 34% 03:22:05 03:20:06 02:11:54 00:50:27 4.01 3.97 2.61
AA12 35% 03:54:33 03:55:09 03:00:38 00:57:09 4.1 4.11 3.16

(b) EL-equal model

DNA1 30% 02:09:55 02:07:04 00:52:32 00:41:36 3.12 3.05 1.26
DNA2 60% 01:07:19 01:08:41 00:56:53 00:26:46 2.51 2.57 2.13
DNA3 72% 07:08:35 06:32:35 06:53:42 02:24:24 2.97 2.72 2.86
DNA4 79% 07:44:45 06:38:53 04:03:20 01:27:09 5.33 4.58 2.79
DNA5 34% 00:38:00 00:39:38 01:16:04 00:47:59 0.79 0.83 1.59
DNA6 66% 26:27:37 25:51:58 15:00:14 07:00:22 3.78 3.69 2.14
DNA7 60% 02:49:49 02:46:45 07:33:26 03:23:30 0.83 0.82 2.23
DNA8 73% 03:30:37 03:28:46 09:02:41 02:40:41 1.31 1.3 3.38
DNA9 59% 03:42:34 03:44:51 10:07:59 03:58:45 0.93 0.94 2.55
AA10 35% 02:16:18 02:19:46 01:09:14 00:53:16 2.56 2.62 1.3
AA11 34% 03:42:14 03:41:14 01:48:42 01:23:53 2.65 2.64 1.3
AA12 35% 04:58:53 05:00:15 02:15:39 01:46:46 2.8 2.81 1.27

Notes: The speedup is computed as ratios of average CPU runtime of the corresponding implementation to IQ-TREEPTA. The numbers in bold
face correspond to alignments where standard IQ-TREE was slower than RAxML, while IQ-TREEPTA was faster than or as good as RAxML.

alignments with missing data or many gaps (Izquierdo-
Carrasco et al. 2011). Note that RAxML implements
EUL and EL-equal models, but not the EL-proportional
model. Therefore, the last model was only examined
with IQ-TREE and IQ-TREEPTA.

We analyzed 12 (9 DNA and 3 AA) alignments (Table 2)
with the percentages of missing data ranging from 30%
to 79%. These were computed as the percentage of only
those gaps in the taxon-by-character supermatrix, which
were introduced due to unavailable sequences.

In our analysis each gene is treated as one partition
(e.g., alignment DNA1 has 34 partitions). For all partition
models we assumed the GTR+� (Lanave et al. 1984; Yang
1994) and the LG+� (Yang 1994; Le and Gascuel 2008)
models for all genes in the DNA and the AA alignments,
respectively. For each alignment and the three partition
models we performed 10 tree reconstruction runs for
each program. The 10 runs correspond to tree searches
with different starting trees. For each run IQ-TREEPTA
and IQ-TREE used the same set of 100 starting trees. For
RAxML and RAxMLoptU we could only use one starting
tree for each run. Therefore, the speedups between IQ-
TREE and IQ-TREEPTA are explained by accounting
for partial terraces, while the speedups between IQ-
TREE and RAxML include differences in the inference,

starting trees, and in accounting for partial terraces. All
computations were carried out on the Vienna Scientific
Cluster 3.

CPU Time Comparison
For each partition model and each alignment we

computed: (i) the average CPU time for 10 runs for each
program; and (ii) the speedup of IQ-TREEPTA compared
with other implementations: the ratio between the
average CPU time of each program and that of IQ-
TREEPTA.

Under the EUL model IQ-TREEPTA was the fastest
program for 11 out of 12 alignments (Table 3a and Fig. 3a).
Averaging over all alignments IQ-TREEPTA runs about
three times faster than the standard IQ-TREE and 3.79
and 3.69 times faster than RAxML and RAxMLoptU,
respectively. For four alignments (DNA5, DNA7, DNA8,
and DNA9), IQ-TREE was slower than RAxML and
RAxMLoptU (Table 3a). However, IQ-TREEPTA improved
the runtimes for all these alignments compared with IQ-
TREE and IQ-TREEPTA was faster than RAxML except
for DNA5.

Under the EL-equal partition model IQ-TREEPTA was
on average 2.0 times faster than IQ-TREE (Table 3b
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FIGURE 3. CPU time comparisons of different implementations under (a) EUL, (b) EL-equal, and (c) EL-proportional partition models. Each
boxplot shows the distribution of the runtime ratios for 10 runs between a comparing program and the mean runtime of IQ-TREEPTA. Boxes below
the horizontal line indicate instances where corresponding program is slower than IQ-TREEPTA. EUL, Edge-Unlinked and EL, Edge-Linked.

and Fig. 3b). The smallest speedups correspond to
alignments with the lowest percentages of missing data
(DNA1, DNA5, AA10, AA11, AA12). IQ-TREEPTA was
slower than RAxML and RAxMLoptU for DNA5 and

DNA7, equally fast for DNA9 and faster for the remaining
nine alignments.

Finally, since the EL-proportional model is not
available in RAxML it was only examined with IQ-TREE

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/65/6/997/2281634 by guest on 16 August 2022



2016 CHERNOMOR ET AL.—TERRACE AWARE DATA STRUCTURE FOR PHYLOGENOMICS 1003

TABLE 4. Comparison of average CPU runtimes between IQ-TREE
standard implementation and IQ-TREEPTA for EL-proportional model

EL-proportional model

Average IQ-TREEPTA
Average CPU time speedup

Alignments (hh:mm:ss) compared with

Type ID Missing data IQ-TREE IQ-TREEPTA IQ-TREE

DNA1 30% 00:55:13 00:43:01 1.28
DNA2 60% 00:55:46 00:26:29 2.11
DNA3 72% 06:47:13 02:09:24 3.15
DNA4 79% 04:12:05 01:26:35 2.91
DNA5 34% 01:02:34 00:58:22 1.07
DNA6 66% 20:41:03 08:25:47 2.45
DNA7 60% 06:33:40 03:18:51 1.98
DNA8 73% 07:45:27 02:31:37 3.07
DNA9 59% 09:27:22 04:18:24 2.2
AA10 35% 01:10:04 00:54:46 1.28
AA11 34% 02:02:09 01:36:36 1.26
AA12 35% 02:02:02 01:35:31 1.28

Note: The speedup is computed as the ratio of average IQ-TREE
runtimes to IQ-TREEPTA.

and IQ-TREEPTA. IQ-TREEPTA is on average 2.0 times
faster than the standard IQ-TREE (Table 4 and Fig. 3c).

Figure 3 shows that IQ-TREEPTA is typically faster
than the other three programs. We also computed the
speedup between pairs of runs with the same starting
trees (Online Appendix Fig. S1, available on Dryad
at http://dx.doi.org/10.5061/dryad.v02t3). While IQ-
TREEPTA found ML trees faster than IQ-TREE for all
the cases, except runs for DNA5 under EL-proportional
model, the running times of RAxML and RAxMLoptU
were not significantly different.

Log-Likelihood Comparison
The results discussed in this section are based on

the log-likelihoods reported by the respective programs.
Note that after a major bug fix in RAxML included in
version 8.1.24, the log-likelihoods reported by RAxML
and IQ-TREE are directly comparable. That means
that for the same tree topology with given branch
lengths and same model parameters, the two programs
return virtually identical log-likelihoods (Stamatakis A.,
personal communication).

Under the EUL model the log-likelihoods of the best-
found trees obtained by different programs are quite
similar with maximal difference of 50 (Fig. 4a) except for
DNA1, DNA3, and DNA6, where the IQ-TREEPTA ML
trees have log-likelihoods, which are 200, 190, and 100
units higher than RAxML trees, respectively. The log-
likelihoods from 10 IQ-TREEPTA runs have consistently
small variance, whereas the other programs sometimes
show large variances (RAxML for DNA3 and DNA6,
IQ-TREE for DNA9).

Under the EL-equal model the log-likelihoods of the
best-found trees obtained by different programs are
similar for most alignments (Fig. 4b) except for DNA3.

The DNA3 alignment showed the largest variance of log-
likelihoods over 10 runs: ±150 units for RAxML and±100
units for IQ-TREEPTA.

Under the EL-proportional model the average log-
likelihoods for IQ-TREEPTA and IQ-TREE runs agree on
nine alignments (Fig. 4c) while not for DNA3, DNA6, and
DNA9. For DNA3 and DNA6 IQ-TREEPTA found trees
that have on average 100 units higher log-likelihoods
than IQ-TREE, whereas for DNA9 the IQ-TREEPTA trees
showed 250 units smaller log-likelihoods. Finally, for
DNA3 IQ-TREE showed large variance of ±100 units in
log-likelihoods obtained from 10 runs.

The tree searches with RAxML and RAxMLoptU
given the same starting tree resulted in identical ML
trees. While the tree searches with IQ-TREE and IQ-
TREEPTA with the same set of starting trees resulted
in topologically different trees, but with sometimes
identical log-likelihoods (Online Appendix Figs. S2–
S4, available on Dryad). The search algorithm in both
versions is the same, but re-optimization of some edge
lengths can take place in IQ-TREE when an induced
partition topology is not modified by the topological
rearrangement, whereas IQ-TREEPTA leaves some or all
edge lengths unchanged. This can create small numerical
differences in likelihoods and therefore at some point
different NNIs can be preferred by IQ-TREE and IQ-
TREEPTA, which results in different search paths. As a
consequence this might lead to topologically different
trees obtained by the two versions. These findings
indicate that accounting for partial and full terraces
influences the tree search and should not be ignored.
The influence of partial/full terraces deserves further
investigation and the development of new terrace-aware
tree searches.

CONCLUSIONS

We introduced a PTA data structure for an efficient
phylogenomic inference from supermatrices. PTA
consists of the species tree, the set of its induced
partition trees, and the set of maps, which map the
edges of the species tree to the induced partition trees.
This mapping is a key benefit of PTA compared with
pointer meshes (Stamatakis and Ott 2008; Stamatakis
and Alachiotis 2010). The mapping enables an easy
topological synchronization between the species tree
and partition trees after each topological rearrangement
such as NNI presented here. We note that PTA can
also be employed for SPR and TBR rearrangements
following the conditions of Chernomor et al. (2015) (see
Appendix 3 for more details). Thus, PTA is a general
data structure that can be incorporated into existing ML
software packages (cf. Table 1).

In the presence of missing data, to reduce computation
time PTA exploits partial terraces and avoids
unnecessary likelihood computation. The use of the
induced partition trees in PTA saves time during edge
length optimization, which is particularly helpful for
the EL partition models. The overhead of maintaining
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Log−likelihood comparison

FIGURE 4. Log-likelihood comparisons of different implementations under (a) EUL, (b) EL-equal, and (c) EL-proportional partition models.
Each boxplot shows the distribution of the log-likelihood differences for 10 runs between a comparing program and the mean log-likelihood of
RAxML standard (panels a and b) or IQ-TREE standard (panel c). Boxes below the horizontal line indicate that the corresponding program has
a smaller log-likelihood than RAxML mean log-likelihood (panels a and b) or IQ-TREE mean log-likelihood (panel c). RAxML and RAxMLoptU
have identical log-likelihoods given the same starting tree. We therefore omit RAxMLoptU in the plot.

the PTA mapping is negligible compared with the time-
consuming likelihood computation and the observed
speedup is correlated with the amount of missing
data.

We implemented PTA in IQ-TREE (Nguyen et al. 2015).
Since IQ-TREE applies NNIs to search the tree space,
we used the rule to identify partial terraces for NNI-
based searches. Analysis on real alignments showed that
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accounting for partial terraces, as expected from theory,
substantially speeds up the tree search under partition
models. Our analysis also revealed a high variability in
log-likelihoods for different runs for both RAxML and
IQ-TREE. This reinforces the observation (Nguyen et al.
2015) that one should run each program as often as
possible to ensure more reliable results and one should
also use different programs.

As a further step, we plan to implement the PTA data
structure into the phylogenetic likelihood library (Flouri
et al. 2015) and to perform the analysis also with SPR.
Here, careful considerations are necessary to achieve a
high parallel efficiency (Kobert et al. 2014).

While the PTA helps to speed up tree search, it
would also be interesting to derive a tree search strategy
that specifically exploits the special structure of large
(partial) terraces. Here, it is desirable to direct the
search to “escape” large partial terraces. Otherwise,
a lot of computations might be unnecessarily spent
evaluating less promising trees. Nevertheless, the PTA
developed here can be useful. For example, one can
choose topological rearrangements on the species tree
such that all partition trees are changed. The resulting
species tree will most likely belong to another partial
terrace, thus providing the potential to explore another
region of the tree space. To the best of our knowledge,
since the introduction of the terrace concept (Sanderson
et al. 2011) no terrace-aware search strategy has been
introduced. Such a search strategy will be essential to
adequately cope with gappy phylogenomic data.
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APPENDIX

The Correctness of Equation (4)
Proof.—Figure 2a in the main text illustrates T around
e1,e2,e, where A,B,C are the three corresponding
species sets. We note that e= (A∪B)|C, e1 =A|(B∪C),
e2 =B|(A∪C). From the definition of map fi(.) it follows

that

fi(e)=
{

(A∪B)∩Yi|C∩Yi, (A∪B)∩Yi 
=∅ and C∩Yi 
=∅
ε, otherwise ,

(A.1)

fi
(
e1

)=
{

A∩Yi|(B∪C)∩Yi, A∩Yi 
=∅ and (B∪C)∩Yi 
=∅
ε, otherwise ,

(A.2)

fi
(
e2

)=
{

B∩Yi|(A∪C)∩Yi, B∩Yi 
=∅ and (A∪C)∩Yi 
=∅
ε, otherwise .

(A.3)
We now consider the four cases from Equation (4):

1. If fi
(
e1

)= fi
(
e2

)=ε, then from Equations (A.2) and
(A.3) it follows that at least two of the three
intersections A∩Yi, B∩Yi, and C∩Yi are empty.
Therefore from Equation (A.1) we have fi(e)=ε.
Otherwise if fi(e1)= fi

(
e2

)
and are different from

ε, then we have A∩Yi =
(
A∪C

)∩Yi and B∩Yi =(
B∪C

)∩Yi, from which it follows that C∩Yi =∅and
thus fi(e)=ε.

2. fi
(
e1

) 
=ε and fi
(
e2

)=ε. From fi
(
e1

) 
=ε it follows that
A∩Yi 
=∅ and (B∪C)∩Yi 
=∅, while from fi

(
e2

)=ε,
B∩Yi =∅ or

(
A∪C

)∩Yi =∅. Since A∩Yi 
=∅ then(
A∪C

)∩Yi 
=∅, and therefore B∩Yi =∅ and C∩Yi 
=∅. Since sets A∩Yi and C∩Yi are not empty while
B∩Yi is, then

fi(e)=(
A∪B

)∩Yi |C∩Yi =A∩Yi|
(
B∪C

)∩Yi = fi
(
e1

)
.

3. fi
(
e1

)=ε and fi
(
e2

) 
=ε. Similar to condition (2), we
have fi(e)= fi

(
e2

)
.

4. If fi
(
e1

) 
= fi
(
e2

)
and are both not equal to ε. From

fi
(
e1

) 
=ε we have that A∩Yi 
=∅, from fi
(
e2

) 
=ε it
follows that B∩Yi 
=∅, and since fi

(
e1

) 
= fi
(
e2

)
then

C∩Yi 
=∅. Therefore, fi(e)= (A∪B)∩Yi|C∩Yi 
=ε is
an edge on subtree T|Yi incident to fi

(
e1

)
and fi

(
e2

)
(Fig. 2b).

Thus, Equation (4) is correct.

Applying NNIs for EL Partition Models
Under EL models together with the topological

changes we also have to consider the changes of edge
lengths on the partition tree after the NNI was applied
to T.

If the central edge e has the same corresponding
subsplit before and after NNI, the edge lengths on
partition tree are not changed. Otherwise, from Equation
(5) it follows that the corresponding edge fi(e) before
NNI, if not equal to ε, should have its length decreased
by ri�(e), and the corresponding edge fi(e) after NNI, if
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FIGURE A.1. Cases that do not change the topology of the partition tree under the EL models. Each tree is a species tree: before NNI (T,
first row) and after NNI (TNNI , second and third rows). The edges and the species sets leading to them are the same as in Figure 1 (e.g., on T
the upper left edge is e1 with the species set A and so on). Here, fi(.) of gray colored edges is equal to ε and gray triangles correspond to taxa
sets, which are absent on the considered partition tree: T|Yi,TNNI1 |Yi or TNNI2 |Yi. The black colored parts correspond to the topologies of these
induced partition trees. The arrows show edges that were swapped during NNI around the central branch e on T.

a) b)

FIGURE A.2. General representations of (a) SPR and (b) TBR, where the triangles denote the subtrees below the corresponding edges. SPR,
subtree pruning and regrafting, TBR, tree bisection and reconnection.

not equal to ε, should have its length increased by the
same amount. Here, �(e) is the length of e on species
tree T.

To save computing time one reoptimizes only edges in
the vicinity of topological changes (Stamatakis et al. 2005;
Guindon et al. 2010; Nguyen et al. 2015), in the following
we assume that for the NNI one has to optimize five
edges: e and its incident edges e1,e2,e3,e4.

There are four different cases depending on the
number of edges e,e1,e2,e3,e4 on T that map to ε before
NNI (Fig. A.1).

In case 1, when one out of fi
(
e1

)
,fi

(
e2

)
,fi

(
e3

)
,fi

(
e4

)
is

equal to ε, the two NNIs change the corresponding edge
lengths and the resulting partition trees, TNNI1 |Yi and
TNNI2 |Yi, have different edge lengths. In case 2, when the
map of two non-incident edges is equal to ε, only one NNI
changes the edge lengths. For example, in Figure A.1,
where fi

(
e1

)= fi
(
e3

)=ε, NNI1 does not change the edge
lengths, because the fi(.) of e,e1,e2,e3,e4 is not changed,

while after NNI2 fi(e) is equal to ε. In case 3, when the
map of two incident edges and as a result also fi(e) are
equal to ε, both NNIs change the edge lengths, but the
induced partition trees resulting from the NNIs have the
same edge lengths.

In case 4, when at least any three out of
fi
(
e1

)
,fi

(
e2

)
,fi

(
e3

)
,fi

(
e4

)
are equal to ε, the map fi(.)

of all e,e1,e2,e3,e4 is not affected by the NNI and is
equal to ε before and after an NNI is applied to the
species tree T. Therefore, together with the topology
also the edge lengths remain unchanged and as a result
no recomputation is necessary for such a partition
at all.

Although for cases 1–3 the edge lengths of partition
trees are affected by the topological rearrangement and
also have to undergo optimization, these computations
are still less demanding than if the topology of the
partition tree would be changed. Therefore, taking into
account this information during the tree search still
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leads to speedups as shown in the results section for EL
models.

Details of Using PTA with SPR and TBR
Complexity of updating.—For an SPR (and similar for
a TBR) the time needed to recompute F depends on
the length of the move, that is, the number of edges
between the cut edge and its reinsertion. Nevertheless,
since phylogenetics software packages mainly apply
short moves (e.g., RAxML, see Stamatakis et al. 2005),
recomputation time of F is close to O(k) also for SPR and
TBR.

Detection of partial terraces with PTA in SPR- and TBR-
based tree searches.—Here, we present reformulations
of Propositions 2 and 3 (Chernomor et al. 2015) in
terms of PTA maps. We follow the notations introduced
in the original paper. Let TSPR and TTBR denote the
species trees obtained from T by one SPR and one TBR,
respectively. Any SPR and TBR can be represented in the
forms shown in Figure A.2.

Condition for SPR: If an SPR is applied to a species tree
T by pruning the subtree below edge a and regrafting it
onto bn (Fig. A.2a), then for a partition with a taxon set
Yi the following is true

(i) the topologies of T|Yi and TSPR|Yi are different, if
fi(a) and at least three from fi

(
b1

)
,fi

(
b2

)
,...,fi(bn)

are different from ε;

(ii) this SPR corresponds to an SPR on T|Yi obtained by
pruning the subtree below edge fi(a) and regrafting
it onto edge fi

(
bk

)
, where k =max1�x�n{x|fi(bx) 
=

ε}.
Condition for TBR: If a TBR is applied to a species tree

T by cutting edge e and reconnecting bn and cm with a
new edge (Fig. A.2b), then for a partition with a taxon
set Yi the following is true

(i) the topologies of T|Yi and TTBR|Yi are different, if
at least one of the following conditions is satisfied:

– at least one from fi
(
b1

)
,fi

(
b2

)
,...,fi(bn) and at

least another three from fi
(
c1

)
,fi

(
c2

)
,...,fi(cm)

are different from ε;
– at least one from fi

(
c1

)
,fi

(
c2

)
,...,fi(cm) and at

least another three from fi
(
b1

)
,fi

(
b2

)
,...,fi(bn)

are different from ε;

(iii) this TBR corresponds to a TBR on T|Yi obtained
by cutting the edge fi(e) and reconnecting edges
fi(bk) and fi

(
ch

)
, where k =max1�x�n{x|fi(bx) 
=ε}

and h=max1�y�n{y|fi(cy) 
=ε}.
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