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Terrain Mapping and Control Optimization for
a 6-Wheel Rover with Passive Suspension

Pascal Strupler, Cédric Pradalier, and Roland Siegwart

Autonomous Systems Lab, ETH Zürich, Switzerland
cedric.pradalier@mavt.ethz.ch

Summary. Rough terrain control optimization for space rovers has become a pop-
ular and challenging research field. Improvements can be achieved concerning power
consumption, reducing the risk of wheels digging in and increasing ability of over-
coming obstacles. In this paper, we propose a terrain profiling and wheel speed
adjustment approach based on terrain shape estimation. This terrain estimation is
performed using sensor data limited to IMU, motor encoders and suspension bogie
angles. Markov Localization was also implemented in order to accurately keep track
of the rover position. Tests were conducted in- and outdoors in low and high fric-
tion environments. Our control approach showed promising results in high friction
environment: the profiled terrain was reconstructed well and, due to wheel speed
control, wheel slippage could be also decreased. In the low friction sandy test bed
however, terrain profiling still worked reasonably well, but uncertainties like wheel
slip were too large for a significant control performance improvement.

1 Introduction

Since the first landing of a rover on the moon in 1970 by the Soviet Union,
these semi-autonomous, mobile explorers enjoy an increase in popularity. In
1997, the first successful rover named Pathfinder rolled over the Mars surface.
On Mars, this is still the only possibility to collect scientific data in such a
mobile and interactive manner. Since space rovers are a relatively new way to
explore extraterrestrial terrain, mission durations still vary a lot, but the latest
missions have been brought to an end due to the rover wheels getting stuck
in sand. The two current Mars rovers Spirit and Opportunity were already
able to stay operational for more than 5 years, which is 20 times the originally
planned mission duration. Nevertheless, they occasionally bogged themselves
down in the sand and Spirit was given up and stays immobile because of this
issue.

One way to reduce this problem is to minimize wheel slip. During wheel
slip the wheels don’t move as far as they are supposed to according to their
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rotational speed. On a sandy surface, this can result in wheels digging them-
selves in. One of the cause of wheel slippage is often wheels fighting each
other because of lack of knowledge about the involved terrain shape. In this
paper, we therefore propose a method to adapt the individual wheel speeds of
a rover according to the terrain profile. This leads to reduced wheel slippage
as well as reduced chances of wheels digging into sandy soil. Because of the
complexity of developing new and advanced sensors for space rover wheels,
our method is based on sensor input of commonly used and reliable rover
sensor technology like IMU (Inertial Measurement Unit), wheel encoders and
angle measurements of the bogie suspension system.

1.1 Related Work

Optimizing rough-terrain control for space rovers is a popular field of research.
One approach by Iagnemma et al. proposes to estimate force distribution on
the wheels by using approximated wheel-ground contact angles ([1] and [2]).
By computing the force distribution of a rover, it is possible to optimize
the torques applied on the wheels and therefore reduce wheel slip and power
consumption. The estimation of the wheel-ground contact angles is done using
simple on-board sensors like IMU inclinometer, joint angle sensors and wheel
encoders. Its accuracy strongly depends on dynamic angle measurements and
therefore no estimation can be computed when the rover is still. Furthermore,
wheel slip and smooth terrain profiles also result in poor wheel contact angle
estimation.

Thus Lamon et al. from ETH Zürich developed tactile wheels to measure
these wheel-ground contact angles instead of performing an estimation ([3]
and [4]). This method was first implemented on the rovers Octopus [5] and
Solero [6]. Later it was also applied to the 6-wheel Crab rover [7]. Although
the approach shows promising results [8], embedded wheel sensors are still too
complex and unreliable to be used in extraterrestrial environments.

1.2 Goals and Limitations

Our objective is to develop an alternative approach on reducing wheel slip and
optimizing control of space rovers in rough terrain. In contrast to the work by
Iagnemma et al. mentioned above, our control should also yield good results
in smooth terrain. On the other hand, we want to avoid using tactile wheels
and other complex sensor systems in order to deliver a realistic approach
for current space rovers. Our core idea relies on profiling the terrain shape
using commonly used rover sensors such as IMU, wheel encoders and angle
measurements of the bogie suspension system. The terrain shape can then be
used to achieve wheel speed optimization.
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2 Simultaneous Mapping and Control (SMAC)

Our approach proposes a velocity controller based on on-line terrain profil-
ing, called SMAC (Simultaneous Mapping And Control). An overview of this
controller is shown in figure 1. In the state estimation part, the terrain shape
and the rover position are estimated. On one hand, terrain shape estimation
highly depends on the rover position, but on the other hand, the rover po-
sition estimate can be improved significantly by accounting for the terrain
shape in a probabilistic filter. Finally, knowing the terrain and rover posi-
tion, a wheel controller can be proposed which optimizes the wheel speed to
minimize theoretic slippage.

Fig. 1. State estimation and controlling (left), rover model (top right) and profiled
wheel path compared to the real terrain (bottom right).
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In the following, our implementation is explained using a parallel suspen-
sion bogie rover model, as shown in figure 1. However it is possible to adapt the
controller to other suspension systems by modifying the geometry equations
accordingly. Furthermore, we take the following assumptions:

1. We decouple both rover sides from each other and apply our method to
each side independently.

2. We do not actually profile the real terrain, but the path traversed by the
center of the wheels (see figure 1). From now on the term terrain designates
this wheel center path. Note that recovering the real terrain shape is not
possible due to ambiguities in corners.

3. The rover is assumed to drive straight and does not roll sideways. This
allow reducing the profiling problem to 2 dimensions. As another conse-
quence, all the wheel centers will follow the same terrain path which is
included in a vertical plane in 3D space (designated as wheel movement
plane, also take a look at figure 4 in section 3).

In this paper, we focus straight trajectories as a proof of concept for si-
multaneous mapping and control. This also allows applying the 2 dimensional
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modeling to each side of the rover independently. However, it is clear that con-
sidering curved trajectory would require to consider the full 3D complexity of
the problem, for which we cannot propose a solution at this stage.

2.1 Terrain Profiling

Terrain profiling allows us to approximate the terrain shape and - knowing
the rover position - to optimize the wheel speed. Our objective is to use space-
realistic sensors to achieve this goal: IMU, angle measurements of suspension
bogies and motor encoder readings. First of all, we assume that, lacking vi-
sual or other distant sensing devices, there is no possibility to foreknow the
terrain shape. The latter needs to be profiled in the instant the front wheels
are traversing it. Therefore, these front wheels can be seen as cantilever-based
tactile sensors. They can be used as profiling sensors while the two middle
wheels use the former profiled terrain for propagation estimation. During the
next iteration, the propagated middle wheels acts as new reference points for
the front wheels to profile the next terrain points and so on. Hence, the terrain
can be iteratively built up. This procedure is illustrated in the state estima-
tion part of figure 1. However, one can easily observe that errors in profiling
will accumulate since there are no measurements with absolute reference. To
partially mitigate that, the middle wheel position is estimated through a prob-
abilistic filter that reduces the displacement errors along driving direction and
thus also improves the quality of the terrain profile. This is described in the
next subsection 2.2.

The illustration of a parallel bogie rover in an arbitrary configuration is
shown in figure 1. The front and the middle wheels are connected with a
parallel bogie (to be called front left/right bogie). In the rear view, one can
see that the two back wheels are also connected with a parallel bogie (rear
bogie). A simplified model used for the upcoming computations is illustrated
in figure 2. Note that the parallel bogie-wheel connectors can be disregarded
since we only depend on relative wheel positions.

Fig. 2. The Crabli rover and its simplified rover model with bogie angle ϕ and IMU
angle β (crosses represent wheel positions).
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In order to profile the terrain at the front wheel, the position of the middle
wheel has to be defined first. Assuming its x-position is iteratively propagated,
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we can find the y-position by placing the middle wheel on our current terrain
profile:

xMW (x) = x (1)

yMW (x) = Terrain(x) (2)

The position of the front wheel can then be found using the IMU tilt angle β

and the front bogie angle ϕ:

xFW (x) = xMW (x) + lFB cos(−ϕ− β) (3)

yFW (x) = yMW (x) + lFB sin(−ϕ− β) (4)

where lFB denotes the distance between the middle and the front wheel (length
of the front bogie). Hereby, it is possible to profile new terrain points using
the current terrain, the middle wheel x-position and the configuration of the
rover.

To initialize the system, it is assumed that the rover starts on a flat ter-
rain. Unfortunately, from proprioceptive measurements only, it is not possible
to guess the shape of the terrain. As a result, even though the flat terrain
assumption is far from perfect it seems to be the only one available. Alterna-
tively, one could use exteroceptive measurements (e.g. from a stereo camera)
as a starting point for the terrain profiling. Although very relevant this has
not been addressed in the context of this paper.

2.2 Markov Localization

Markov Localization is used to estimate and propagate the middle wheel x-
position by fusing the wheel speed information and the rover configuration.
The general Markov Localization equation derived from Bayes’ law is given
by:

Bel(xt|zt...z0) = η p(zt|xt)

∫

p(xt|ut−1, xt−1)Bel(xt−1)dxt−1 (5)

where p(zt|xt) corresponds to the observation model predicting the observa-
tion zt (see below) given the middle wheel position xt, and p(xt|ut−1, xt−1)
is the rover motion model giving the rover displacement for a control input
ut−1.

Belief

The belief Bel(xt|zt...z0) is an arbitrary probability distribution for the middle
wheel x position. Since we do not account for the kidnapped rover problem
and the updates are quite frequent, the belief does not have to be computed
along the whole terrain. We can keep the width of the belief relatively narrow
(about 1-2 times the length of the rover) centered around the middle wheel
position. This saves a lot of computing power since the belief is involved in
the discrete convolution for the action update.
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Fig. 3. Markov localization: belief propagation based on sensor model and motion
model
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A sequence of beliefs resulting from our test data is shown in figure 3 (left).
In the beginning, the belief is relatively wide - the position is not known very
well yet. As soon as the rover reaches distinctive terrain, the belief gets more
narrow (which is due to the sensor model as we can see later). In the second
picture of the sequence, the belief gets steeper on the left side. Since the front
wheel of the rover is situated higher than the other wheels, it would not make
any sense for the rover to be placed more than 0.1 m to the left. In the third
illustration, the rover is in a very distinctive configuration. This configuration
can only appear if the middle wheel is positioned at the middle of the step
slope. Hence the resulting belief is very narrow and precise - the rover is
localized. Later, when flat terrain is reached, the belief starts to widen again.
This is caused by the convolution with the motion model.

Motion Update

During the motion update, the old belief Bel(xt−1) is convolved with the
action model p(xt|ut−1, xt−1). The latter defines the expected rover displace-
ment given the motor input. In our case, this is the result of combining two
probability distributions:

• A normal distribution centered around the value ut−1dt of the distance
traveled since the last update. This distribution models the ordinary mo-
tion of the rover without wheel slip.

• A sigmoid distribution (approximation of the uniform distribution) from
0 to the center of the normal distribution and modeling the uncertainty
resulting from slippage.

The equation of the motion model is given by:
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p(xt|ut−1, xt−1) =
∑

Sr

p(xt|ut−1, xt−1, Sr)p(Sr) (6)

p(xt|ut−1, xt−1, Sr) =

{

h(1−
1

e−xend(xt−m)
), if Sr = 1

N
(

xt−1 + ut−1dt, σ
2
)

, if Sr = 0
(7)

Where Sr is an indicator for wheel slip (Sr = 1 if the wheel is slipping, Sr = 0
otherwise). Although the slip indicator is binary, the use of a sigmoid distri-
bution means that any movement up to the desired one is considered equally
likely in case of slippage, thus covering the cases from the wheel slipping just
a bit up to 100% slippage.

Sensor Update

The sensor model p(zt|xt) describes the probability of measuring the obser-
vations zt given xt. In our case, the measurements are the IMU tilt angle β,
the front bogie angle ϕ and the back bogie angle θ. But in order to reduce
computational complexity, we transform these measurements into the y po-
sition (height) of the front wheel yFW and the back wheel yBW . Using these
transformed measurements, we can write:

p(zt|xt) = p(yFW,t, yBW,t|xt) = p(yFW,t|xt)p(yBW,t|xt) (8)

Where we introduce the reasonable approximation of the probability distribu-
tions of yFW,t and yBW,t being independent and normally distributed around
the position that can be predicted from the terrain shape.

A sequence of sensor models from our test data is shown in figure 3 (more
precisely, the plots correspond to the posterior localization using the sensor
model and a uniform prior). The sensor model is depicted blue, the current
rover configuration green and the profiled terrain red. In the first diagram of
the sequence, one can see that there is more or less the same probability of this
configuration to be placed around the middle wheel position neighborhood.
In the next diagram the sensor model probability narrows a little bit due to
the front wheel position on the step. Eventually in the third diagram, the
configuration appears to be very distinctive and can only be placed in the
center of the step. This is also indicated by its narrow sensor model.

2.3 Wheel Speed Controller

Based on the approximated terrain and the current wheel positions, an optimal
speed for the front, middle and back wheels can be derived. The principle of
our approach is to compute the movement of the front wheel that would result
from applying the desired speed for a control interval. From this movement,
based on the known length of the suspension element, we can compute the
resulting displacement of the middle and rear wheel, and deduce their optimal
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speed. The challenge is that the terrain is necessarily unknown in front of the
front wheel, and consequently, the front wheel movement must be computed
by extrapolating the known terrain. Given the low speed we are considering,
we currently use a linear extrapolation based on the last measured terrain
slope.

3 Simulation and Testing

Fig. 4. The indoor test setup (left), the wheel tracking setup with HD webcam and
markers (center) and the outdoor setup (right)
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3.1 Goals

To measure a possible performance gain due to the new wheel speed controller
compared to the former situation, we intend to evaluate if the controller helps
decreasing wheel split and power consumption as well as improving the ability
to overcome obstacles.

3.2 Wheel Tracking System

In order to measure wheel slip, the difference between actual wheel velocity
(ground truth) and commanded velocity needs to be determined. Additionally,
we would like to compare the profiled terrain of the controller with the actual
path traversed by the wheels. Therefore we decided to implement an external
optical wheel tracking system. It is based on a camera recording the test runs
from aside the track. Markers placed on the wheels assure reliable detection of
the wheel centers. The origin of the 3D coordinate frame is placed below the
camera on the ground; y axis aligned with the camera. This setup is illustrated
in figure 4. For most of the tracking implementation, functionalities from the
OpenCV library were utilized. See [9] for more details on the tracking system
and its calibration.
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3.3 Testing Environment

Indoor

In a first approach, tests were performed indoor in the ASL Robolab at ETH
Zürich (see fig. 4). The HD webcam was set at the distance of 1.35m from the
track, which appeared to be a reasonable trade-off between track length and
resolution of wheel tracking. With this distance to the track, a resolution of
about 5.75 pixels/cm was achieved.

The track surface consisted of carpet to reduce wheel slip at first. The test
runs were performed using 3 different obstacles on the track: a step obstacle
(carpet surface), a hill obstacle (wooden surface) and a smooth step obstacle
(Wooden surface).

Outdoor

In a second stage, tests were also done outdoors in a sand pool (see fig. 4).
The distances and lengths of the track were similar to the indoor setup. Before
each run, the sand surface had to be made smooth and level. Tests with slack
sand where also performed to compare the influence of the different types of
sand consistencies.

The outdoor obstacles were slightly different from the indoor setup: a step
obstacle (bricks), a hill obstacle (wooden surface) and an asymmetric, irregular
obstacle (stones).

3.4 Result Discussion

In this subsection we would like to discuss the results of a part of the test
runs performed indoors and outdoors. As can be seen later, it is really hard to
find a right measure for performance. In our current setup, the performance
improvement on wheel slippage due to the controller is small with respect to
the measurement noise. Therefore, it has not been possible to end up with
quantitative performance metrics describing wheel slip performance or power
consumption. In the following, a qualitative analysis of the performance is
proposed.

Indoor

The obstacle traversed by the Crabli rover was a 8 cm high step covered by
carpet. The situation is shown in fig. 4.

The resulting terrain shape profiled by the controller is plotted in dia-
gram 5 as a blue line. The red line originates from the wheel tracking and is
seen as ground truth. The most noticeable difference is the slope at the step.
The real terrain features a sharp rise followed by an even curve. By contrast,
the profiled terrain has an almost constant slope which is more flat. This is
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actually due to the short wheel slip that occurs when the front wheel touches
the step. At that instant, the rover stands still before the front wheel moves
up, causing the middle and rear wheels to slip. Our controller is not able
to sense this slip though and assumes that the rover is still moving forward.
Combined with the new velocity component in vertical direction according to
the changing rover configuration, the slope angle appears to be flatter than
the one from the ground truth. This effect can also be shown using the dia-
gram of the y and x-position over time: As one can see in diagram 6 the y
position of the terrain can be followed quite nicely only having a small lag.
Whereas the x position of the profiled terrain deviates from the ground truth
in the moment of a wheel reaching the step (diagram 6). Other than that, the
qualitative appearance of the profiled terrain matches the one from tracking.

Fig. 5. Profiled terrain compared to tracked terrain (front, middle and back wheel)
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Fig. 6. Profiled terrain compared to tracked terrain, x and y position vs. time (front
wheel)
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Incorporating this profiled terrain shape, the controller adapted the wheel
speeds accordingly. This can be seen in diagram 7. There are some key dif-
ferences between the computed speed by the controller and the real wheel
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speeds. First of all, it can be observed that the decelerations of the controller
are about 30% lower than in reality. This condition is due to the lower slope
gradient of the profiled step. Next the motor speed slow-down lags behind
the real wheel deceleration. This is mostly caused by the delay of the front
wheel moving up when reaching the step. At that time, the rover stands still,
which cannot be sensed by the controller. For the front wheel, in contrast to
the middle and back wheel, the controller does not know yet the shape of the
terrain ahead. Hence it is not possible to introduce a foresighted controlling
for the front wheel. At around 16s, the middle wheel reaches the terrain. Here
the lag of the front and back wheel deceleration appears to be smaller. Finally
at 24s, the back wheel moves up. One can observe that the deceleration lag
seems to be larger again. This issue is more complex: It is probably due to
a small dent, located at 0.07 to 0.11m in the profiled terrain. This dent was
formed by the profiling front wheel during the middle wheel moving up the
step face. In the current situation, the middle wheel is situated at this asperity.
At the instant when the back wheel starts to move up, the rover configuration
change is interpreted differently by the controller. This configuration change
is equivalent to the back wheel remaining level and the middle and front wheel
moving down. Whereas the middle wheel moves down anyway due to the dent.
At this stage, it is not clear how this perceptual ambiguity can be identified
and solved.

Fig. 7. Front, middle and rear wheel speed

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

[s]

[m
/s

]

Frontwheel speed by motor and tracking

 

 

Speed from tracking

Motorspeed

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

[s]

[m
/s

]

Middlewheel speed by motor and tracking

 

 

Speed from tracking

Motorspeed

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

[s]

[m
/s

]

Backwheel speed by motor and tracking

 

 
Speed from tracking

Motorspeed

Fig. 8. Smooth step obstacle and small hill



12 Pascal Strupler, Cédric Pradalier, and Roland Siegwart

Tests run on a smooth step obstacle and a small wooden bump lead to
similar results, with an even better terrain profiling: because there are no
sudden change of direction such as on the step obstacle, no wheel slip occur
and the terrain profiling performance improves. More details on these test
results can be found in [9].

Outdoor tests on sand

During the indoor tests, we were able to achieve good terrain profiling and to
some extend good wheel speed controlling in high friction environment. The
next question was about how the controller would perform on low friction
surfaces like sand. One test to be discussed incorporated a step obstacle shown
in figure 10. Looking at the corresponding terrain diagram (fig. 9, left) the
terrain profiling seems to be reasonably good. However when plotting the
y wheel position against time (see fig. 9, right), lag can be noticed. This
increasing lag is responsible for the late wheel speed decelerations observed
in the wheel speed diagrams (fig. 10). One may note that some of the wheel
decelerations contributed just about 30% of what would have been needed to
match speeds. This issue can be once again explained by the lower gradient of
the step slope in the profiled terrain. As during the indoor test, this happened
due to the fact that the rover stood still as the front wheel touched the step
face. Now it even takes more time for the slipping middle and rear wheel to
build up enough normal force for the front wheel moving up. Additionally the
front wheel also slips when moving up - thus using extra time which flattens
the slope even more. The high velocity peak at the end is caused by the wheels
falling of the second step.

Fig. 9. Profiled terrain compared to tracked terrain (front, middle and back wheel),
as a function of distance (left) and time (right)
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During the outdoor tests, a lot more test runs were performed and an-
alyzed, with similar results: in most cases, the terrain profiling works well,
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but a significant resulting control performance improvement did not follow.
This probably stems out from the lag and strong coupling between the control
input and the terrain estimation, as well as out of the impossibility to sense
wheel slippage. Should simple sensors such as desktop mouse movement esti-
mator be integrated in future rover, our approach could naturally integrate
their input to improve both the terrain profiling and as a result the wheel
speed control. More details about this test can also be found in [9].

Fig. 10. Illustration of a step obstacle on a sand surface and measured front wheel
speed while passing the step. Note in particular the dig-in that occurs each time a
wheel climbs the step
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4 Conclusion and Outlook

This paper presented an approach for simultaneous terrain profiling and con-
trol for 6-wheel rovers with passive suspension. The approach is based on a
probabilistic filtering of the vehicle suspension deformation to jointly estimate
the rover displacement and the shape of the terrain. Based on this terrain, a
wheel speed controller was implemented to minimize the discrepancy between
the ideal speed of a wheel following the terrain without slipping and the speed
applied by the wheel controller.

Experiments indoor and outdoor have shown that the terrain profiling
approach is sound and behave well even in presence of slip. However, at this
stage of the implementation, it was not possible to demonstrate a significant
control performance improvement resulting from the terrain profiling. The
main reason for this lack of performance is mostly the delay introduced in by
the terrain estimation, and the absence of wheel-slip sensing leading to noise
in the terrain profile.

As for computational load, the SMAC controller was only occupying 10-
15% of the capacity of an Atom-based embedded PC (FitPC2). In cases where
the computational load would have to be reduced, there would be enough pa-
rameters to influence the controllers computational need. Especially narrowing
down of the updated belief yields large differences.

On the hardware side, future work will need to consider integrating ground
tracking sensors (e.g. optical mouse sensors) close to the wheels to detect
and estimate wheel slippage. On the software side, it would be theoretically
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feasible to put the terrain estimation in the same Bayesian framework as the
current wheel localization. Such a joint estimation would be similar to what
is currently implemented in the state of the art of simultaneous localization
and mapping (SLAM). Although the computational cost would certainly be
higher, a more robust estimation might be possible. Integrating a sensor for
wheel sinkage would also help improving the profiling and mitigate the multi-
pass effect when 3 wheels drive on the same track.

As a last remark, we would like to point out an alternative application for
our SMAC implementation: Since the terrain profiler performs relatively well,
one could think of using it for improving odometry or just helping localization
on pre-planned path. Let’s think of the rover Opportunity on Mars: These
rovers plan paths ahead while standing still. Then in a second phase they try
to follow this path using mostly odometry. Integrating the terrain estimator or
just the terrain-base wheel localization would certainly improve the odometry
performance, without having to resort to a full 6-degrees-of-freedom odometry.
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