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Abstract 
We are prototyping a legged vehicle for an exploratory 

mission on another planet, conceivably Mars, where it is to tra- 
verse uncharted areas and collect material samples. This paper 
describes how the rover can construct from range imagery a 
geometric terrain representation - an elevation map that in- 
cludes uncertainty, unknown areas, and local features. First, it 
presents a new algorithm to construct an elevation map from 
a single range image. By virtue of working in spherical-polar 
space, the algorithm is independent of the desired map resolu- 
tion and the orientation of the sensor, unlike other algorithms 
that work in Cartesian space. Second, it presents a novel two- 
stage matching technique (feature matching followed by iconic 
matching) to identify the transformation T corresponding to the 
vehicle displacement between two viewing positions. Third, to 
support legged locomotion over rough terrain, it describes new 
methods to evaluate regions of the constructed elevation maps 
as footholds. 

1 Introduction 
We are prototyping a legged vehicle called the Ambler (fig. 1) 
for an exploratory mission on another planet, conceivably Mars, 
whcre it is to traverse uncharted areas and collect material 
samples. Planetary exploration poses significant challenges for 
rovers: unprecedented levels of autonomy and reliability due to 
communication delays that limit conventional Earth-based tele- 
opcration; and traversal of rugged, irregular terrain for which 
existing mechanisms and perception techniques are inadequate. 

Papers that describe the background of our work includc 
a coniprchcnsive account of the Ambler configuration [l] and 
an overvicw of the intcgrated research program [4]. The aim of 
this paper is to describe first results from the Ambler perception 
system. 

The Ambler perception system must build and maintain 
representations of the terrain and discrete objects--terrain maps 
that are appropriate for a wide variety of tasks, each with dif- 
ferent requirements. For example, locomotion and sampling re- 
quire detailed, local representations, while navigation and mis- 
sion planning demand broad, global descriptions. In this paper, 
we do not address the full scope of the perception system; we fo- 

‘This research was sponsored by NASA under Contract NAGW- 
1175. The views and conclusions contained in this document are those 
of the authors and should not be interpreted as rcprcsenting the official 
policies. cither expressed or implied, of NASA or the US. Govemmcnt. 
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cus only on building maps based on the observations of a single 
sensor, and using those maps to support locomotion. 

This paper addreses sensing in section 2, and presents a 
new technique for constTucting elevation maps in section 3. It 
presents a two-stage matching technique in section 4. as well as 
a rule for combining overlapping maps. It describes methods 
for analyzing map geometry for locomotion in section 5 ,  and 
documents experimental methods and results in section 6. It 
concludes by discussing limitiations and future work. 

Figure 1: The Ambler 

2 Active Range Sensing 
The Ambler perception system will use multiple sensing modal- 
ities. both imaging and non-imaging. Here we concentrate on 
active range sensors, which measure the distance to an object 
in the environment by observing the reflection of a reference 
signal (sonar, laser. radar, etc.) from the object. Active sensors 
offer two chief advantages: they provide range data without the 
numerous computations required by passive techniques such as 
stereo vision; and they are largely insensitive to illumination 
conditions, thus simplifying the image analysis problem (which 
is especially important for images of outdoor scenes in which 
illumination can be neither controlled nor predicted). 

We use the ERIM scanning laser range finder, which mea- 
sures the phase difference between an amplitude-modulated laser 
beam and its reflection from a point in the scene [9]. We mea- 
sure the coordinates of the point in a non standard spherical polar 
reference frame, in which p is the measured range, and 4 and 0 
are the vertical and horizontal scanning anglcs of the beam di- 
rection corresponding to row and column position in the image. 



The Cartesian coordinates of a point measured in spherical polar 
coordinates have been derived [3] as 

x=ps inO , y = p c o s ~ c o s B  , z=ps in4cosO . (1) 

3 Constructing Elevation Maps 
Applying eq. 1 to the measurements in a range image yields an 
elevation map. However, this map is non-uniform in Cartesian 
space, because the coordinate transformation is non-linear. Fur- 
ther, the map grows less dense and less accurate with increasing 
distance from the sensor. 

One could circumvent the former difficulty by using a map 
structure that is not a regularly spaced grid. such as a Delaunay 
triangulation. However, this is not practical because of the com- 
plex algorithms required to access data points and their neighbor- 
hoods. Another approach is to interpolate between data points to 
build a dense elevation map on a grid, either by approximating 
the surface between data points (e.g.. as a bicubic surface), or 
by globally fitting a surface under some smoothness assumptions 
(e.g., regularization). However, both of these approaches have 
signficant limitations: they make assumptions on the local shape 
of the terrain which may not be valid in the case of rough ter- 
rain; and they depend heavily on the resolution and position of 
the grid (Le., they cannot compute an estimate of the elevation 
at an (x,y) position that is not a grid point without resampling 
the grid). 

We propose an alternative, the locus algorithm, that uses a 
model of the sensor to interpolate at arbitrary resolution with- 
out making any assumptions on the terrain shape other than the 
continuity of the surface. 

3.1 Locus Algorithm 
The problem of finding the elevation z of a point (x, y) is equiv- 
alent to computing the intersection of the surface observed by 
the sensor with the vertical line passing through (x, y). The basic 
idea of the locus algorithm is to convert the latter formulation 
into a problem in image space (specifically, spherical-polar space 
rather than row-column space, fig. 2). A vertical line' is a locus 
(curve) in image space, whose equation as a function of 4 is 
derived by inverting eq. 1. assuming x and y constant: 

Similarly. the range image can be viewed as a surface p = I(q5,8) 
in (4 - 8) space. The problem then is to find the intersection, 
if it exists. between a curve parameterized by 4 and a discrete 
surface. Since the surface is known only from a sample of data, 
the intersection cannot be computed analytically. 

Instead, we must search along the curve for the intersection 
point. Lct &4) be the image column closest to &(q5), and let 
4(d,) p,(q5j)-I(dj, dl(4j)). The search proceeds in two stages. 
First, we locate the two scanlines of the range image, 41 and 
42, between which' the intersection must be located. i.e.. such 

zWe have generalized the locus algorithm from the case of a vertical 
line to the case of a general line in space [3], which allows us to build 
maps using any reference plane, not just the xy plane. We present the 
case of the venical line to simplify exposition. 

X 

Figure 2: Imaging geometry (top), 1-D locus (bottom) 

that sgnA(41) # sgnA(4z). Second, we apply a binary search 
between 41 and &. The search stops when 16 - qL+iI < c (i.e., 
the resolution of the elevation is controlled by the parameter c). 
Third, since there are no pixels between 91 and 42, we perform 
Lagrangian interpolation for 41 < 4 < 42, using as control 
points the four pixels that surround the intersection point. The 
result is a value 4 that is mappcd to p and 0 by eq. 2. and 
then mapped to an elevation value by eq. 1. Repeating this for 
vertical lines at every desired (x, y) point yields a dense elevation 
map of the desired resolution, as required. 

3.2 Range Shadows 
Objects in the environment may cast range shadows (cause oc- 
clusions). It is important to identify the occluded regions, be- 
cause if we apply the locus algorithm there directly, then the 
surface would be smoothly interpolated, possibly incorrectly. In 
turn, this could lead the rover to plan a path through that region, 
expecting it to be traversable when in fact it is unknown. 

One could detect empty regions in the elevation map given 
by eq. 1, without interpolation. This does not work, because the 
size of the shadow regions may be on the order of the average 
distance between data points (this is especially true for distant 
regions in which the distribution of data points is sparse). 

Another approach is to incorporate the detection of shadow 
regions into the locus algorithm, again working in image space. 
We observe that a range shadow corresponds to an occluding 
edge in the image. As in fig. 3. an (x,y) location in the map is 
in a shadow area if its locus intersects the image at a pixel that 
lies on such an edge. We implement this idea by first detecting 
edges in the range image by using the GNC algorithm [2]. Then, 
when we apply the locus algorithm and observe that the locus of 
a given location intersects the image at an edge pixel, we mark 
that location as lying in a range shadow. 

3.3 Uncertainty 
We have developed a probabilistic model of the uncertainty on 
the sensor measurements, according to which the measured range 
errors are normally distributed with standard deviation propor- 
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range profile in image 
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Figure 3: Shadowed area (left), discontinuity (right) 

tional to the square of measured range ( [ 3 ] .  p. 7). The range 
measurement uncertainty is oriented along the direction of mea- 
surement (fig. 4). 

Figure 4: 1-D uncertainties on sensor and map 

To identify the uncertainty on the elevation value at each 
grid point (x ,y ) .  as part of the locus algorithm we transform 
the uncertainty on a sensor measurement so that it is oriented 
along the z axis ( [ 3 ] ,  pp. 25-27). This conversion is non trivial. 
since the the range uncertainty is distributed across a region in 
the elevation map. According to this model, the distribution of 
elevation errors is approximately normal, with standard deviation 
proportional to the product of measured range and elevation. 

4 Combining Elevation Maps 

We have so far addressed the problem of building a representa- 
tion of the environment from sensor data collected at one fixed 
location. But over the course of a mission, the rover must 
deal with a stream of images. Processing multiple views yields 
at least two benefits. First, by identifying the transformation 
between viewing positions the perception system can indepen- 
dently estimate the vehicle displacement. Second, merging maps 
into a composite can a) increase the resolution of the parts of 
indiviual elevation maps originally measured at a distance from 
the vehicle, and b) add information about previously occluded 

We propose a two-stage approach, using feature matching 
and iconic matching together. The former has been studied ex- 
tensively; the latter has been successfully applied to incremental 
depth estimation [5 ]  and map matching [ 8 ] ;  to our knowledge, 
they have not been used together. The result is an estimate T of 
the transformation between the two views. We then apply T to 
each of the maps, and merge them into one common, composite 
elevation map. 

areas. 

4.1 Feature matching 
Given an initial estimate TO of the transformation, and two ele- 
vation maps, we seek a better estimate TF of the transformation 
by extracting three-dimensional features from the elvation maps, 
and then identifying the correspondences between them. 

Feature extraction We extract from each elevation map a 
set of three-dimensional features, F,! and 62. This begins by 
extracting points of high surface curvature, based on the magni- 
tude of the two principal curvatures of the elevation map surface. 
Then we group the extracted points, and classify each group as a 
point, line segment, or region, according to its size, elongation, 
and curvature distribution. 

Feature correspondence We identify the correspondence 
between the features extracted from elevation maps 1 and 2 
using the predict-and-verify paradigm. The best correspondence 
determines the transformation TF such that F$ z T&). 

We identify (predict) candidate matches based on the sim- 
ilarity of the length of the lines and the similarity of the cur- 
vature strength of the points. Each candidate is a set of pairs 
S k  = (F& F;&), and each of the Sk induces a rigid transformation 
T F ~ .  

w e  evaluate (verify) each candidate transformation TFk by 
computing the distance D between the features: 

k 

where the distance d ( . )  depends on the feature type. The search 
in the space of candidate matches begins with T F ~  = TO, and 
continues in a depth-first fashion, considering all of the pairings 
& and transformations TFk. The pairing minimizing D, say SK, 
is the final match between the two maps, and TF t TFK is the 
best transformation. 

4.2 Iconic matching 
Given the estimate TF and a pair of range images, the iconic 
matching algorithm seeks the transformation TI that minimizes 
an error function computed not at distinct features, but over all 
measurements. The idea is to iteratively adjust the transforma- 
tion parameters so as to minimize the error function, taking into 
account all of the data. 

1) Compute map from image 1 According to the formu- 
lation of the locus algorithm, a point in the Zh elevation map 
lies at the intersection of a line containing this point (e.g., the 
line H(x)  in fig. 2) with a locus of points projected onto the i'* 
range image. Let ( U ,  v) be that line, parameterized respectively 
by a point and a unit vector.' Let A(u, v) be the function that 
maps the line to a point in the i"l elevation map (this function 
is computed by the generalized locus algorithm). So the first 
step of the iconic matching algorithm is to computcfi(u,v). for 
which the lines ( U ,  v) are vertical. 

(U, v) representation is not the minimal representation of lines in 
space [7]. We have implemented our algorithms with the non-redundant 
(a, b , p ,  q) representation [3]. but for clarity of exposition we will utilize 
the (U, v) representation. 



2) Gradient descent. The iconic matching algorithm now 
semhes for the “best” transformation parameters by iterative 
gradient descent on an error function E (to be defined below). 
Let v = [a, p, y,t,, t,, t,] represent the transformation parame- 
ters, where the first three are the rotation angles and the last three 
comprise the translation vector. The error E reaches a minimum 
when = 0. Assuming a reasonably accurate initial estimate 
of by TF, the minimum error can be achieved by an iterative 
gradient descent of the form 

(4) 

where U’ is the estimate of v at iteration i. 
At each iteration, the algorithm a) applies the updated 

transformation to the measurements in range image 2, b) com- 
putes the error between the first and second (transformed) mea- 
surements. and c) updates the transformation parameters. Iter- 
ation continues until either the variation of error AE is small 
enough (convergence). or E iwlf is small enough (smaller than 
what can be reasonably achieved given the characteristics of the 
scnsor). 

2a) Apply transformation In order to evaluate the esti- 
mated transformation, we must first apply it to the second range 
image or to the second elevation map. We will employ the 
generalized locus algorithm to accomplish this. 

The function A ( u , v )  computes an elevation map from 
range image 2. If (U‘, v’)  = (Ru + t, Rv)  is the line (U, v )  in 
elevation map 1. transformed by TI. then A(u’, v’) represents 
the elevations in map 2 of the same grid locations at which ele- 
vation have been computed in map 1. (Incidentally, this demon- 
strates one important advantage of the generaliied locus algo- 
rithm: even though the transformed line (U‘, v’) can be anywhere 
in the coordinate system of image 2 - and in general is not par- 
allcl to the map z axis - the locus algorithm computesfi(u’, v’)  
directly, without intexpolation or resampling.) Now if we refer 
both elevation estimates to the same frame, say by applying the 
inverse of TI to f2(u‘, v’), then we can oompare the two directly. 

To distill this analysis into a single equation, let g(u, v, TI) 
bc the elevation in map 2 at the “location” (U, v). referred to map 
1: 

where T;’ = (RI, 2 ’ )  = (I?-’, -R-’i). and (U’, v’)  = (Ru + 1, Rv). 

2b) Compute error To determine the quality of the match 
between the measurements referred to a common coordinate 
frame by step 2a. we take the error function to be 

g(u, V ,  TI)  = T;-’cfi(~’, v’)) = R ’ f i ( ~ ’ ,  v’)  + t’ , ( 5 )  

where the summation is taken over all (u,v) where bothJ(u, v)  
and g(u, v,  TI) are defined. In words, E is the sum of the squared 
differences between the elevation at a location in the first map 
and the elevation at the same location computed from the second 
map using TI. Technically, E should be divided by the number 
N of common points. since the overlap region between the two 
maps is not known in advance. However, we empirically observe 
that N does not vary significantly between iterations, so for now 
we neglect to normalize. 

2c) Update transformation parameters The update rule 
is given by eq. 4. What remains to be determined in that equa- 
tion is the partial derivative of the error function with respect to 
each of the transformation parameters. 

From eq. 6. the derivative of E is 

From eq. 5. the derivative of g is 

We can compute analytically the derivatives appearing in the 
last two terms in eq. 8. To compute the derivative of A(u’, v’)  
with respect to v, we apply the chain rule and compute the 
derivative with respect to each component of v. This completes 
the identification of g, and thus, of the new transformation 
parameters vi+’. 

4.3 Combination Rule 
Once the matching algorithms identify the transformation cor- 
responding to the displacement between two viewing positions, 
we apply it pairwise to the sequence of images, producing a 
single. composite elevation map as follows. We simply add 
non-ovexlapping points to the composite map. For overlapping 
points, we replace fi ( U ,  v )  by the maximum likelihood estimate 

(9) 

where 6 1  and u2 are the standard deviations of the uncertainty 
distributions on the two elevation estimates. 

5 Evaluating Footfalls 
A perceptual task unique to legged locomotion is to evaluate 
terrain regions as footfall locations (foot placements). This is 
essential for locomotion over the rugged terrain that could be 
encountered on the surface of other planets such as Mars. In 
this section, we describe several methods to evaluate elevation 
map regions as footfall locations. These methods operate on 
the geometric structure of the surface described by the elevation 
map, for now ignoring important material properties of the soil 
such as load-bearing strength. compliance, and coefficient of 
friction. While incomplete, these mcthods are considerably more 
sophisticated than othcrs reported in the literature, which require 
operator interaction [6]. 

An Ambler foot is modeled by a flat disk 30 cm in diam- 
eter. The problem is to find the “best” foot-shaped subregion B 
in a given region R of a given elcvation map (R is computed 
elsewhere based on the currcnt heading and gait). We have de- 
veloped five solutions, corresponding to different measures of 
“besf” and present them in increasing order of sophistication. 

Max-min Find B that minimizes the difference zrmu - z~,, of 
extremal elevations. There are cases where this method prefers a 
flat surface punctuated by a single spike rather than an undulating 
surface. This is obviously undesirable. 

Planar fit Find B that best fits a plane, subject to the con- 
straint that the plane normal is approximately parallel to the leg. 
This method suffers the same deficiency as above. 
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Support area Find B that minimizes the depth of penetra- 
tion dq, into the soil required to achieve the minimum necessary 
support area Adm (contact area between foot and terrain, or the 
number of map points within the circumference of the disk that 
are above the plane of the foot). This method is superior to the 
previous two to the extent that it better accounts for the shape 
of the terrain. However, there are cases that it fails to distin- 
guish, e.g., two sinusoidal surfaces with the same frequency but 
different amplitudes. This method should, but does not, select 
the surface with smaller amplitude variations. 

Free volume Find B that minimizes the &ee (unoccupied) 
volume between the foot and soil, V E Nz,, - E:, z;. This 
method correctly discriminates the two sinusoidal surfaces de- 
scribed above. However, it does not take into account the distri- 
bution of “holes” in the surface or the consequences of applying 
force to (stepping on) the surface. 

Equilibrium Find B that minimizes V and E. where E 
,,/- is the first moment of the mass distribution about 
the center of the foot. and m, = xi@- - zi). The second 
condition ensures the footfall of greatest “equilibrium” (balance) 
with respect to holes in the surface. The idea is that as the foot 
contacts sandy soil, the sand fills the holes with a minimum 
of foot penetration into the soil, and as the foot contacts rocky 
soil, it exerts the minimum lateral forces on potentially unstable 
materials. 

6 Experiments 
First, we evaluated the locus algorithm on synthesized range im- 
ages with additive Gaussian noise by comparing its performance 
to that of Cartesian space interpolation algorithms (cf. section 
3). The results show that the locus algorithm is more stable with 
respect to surface orientation and noise level than the others ([3], 
p. 25). We conclude that this is due to performing the interpo- 
lation in image space instead of first applying eq. 1 to the data 
points. 

Second, we tested the locus algorithm on a variety of real 
range images of uneven terrain. Qualitatively, the algorithm 
produces elevation maps that capture the structure of the tcrrain, 
correctly identifies shadowed regions, and computes meaningful 
uncertainty estimates that increase with distance. We have not 
quantitatively examined the accuracy of these elevation maps, 
since we lack ground truth elevation data. 

Third, we tested our two-stage approach to combining el- 
evation maps painvise on a sequence of real range images of 
rugged terrain. In the first stage. feature matching provides 
an initial estimate TF of the displacement between consecutive 
maps; in the second stage, iconic matching starts with TF and 
estimates the best transformation TI. We then apply TI pairwise 
to merge the sequence of maps into a composite. 

Figure 5 shows the result of feature matching in a case 
where a significant displacement separates two maps (rotation 
by about 30°,  translation by about 2 m). The top image supcr- 
imposes the two maps’ features after applying TF to one map; 
note that the linear features agree closely. The bottom image 
shows the correspondences between the map features. where the 
lower left shows the area common to both maps after applying 

Figure 5: Feature matching results 

Next, the iconic matching algorithm starts with TF and 
computes TI. For the pair of maps shown in fig. 5. the algo- 
rithm converges after approximately 30 iterations. The number 
of iterations required proves to vary considerably between differ- 
ent data sets. In practice. we find that TF is usually sufficiently 
accurate to ensure convergence of the gradient descent algorithm 
to the global minimum. During testing with synthetic images we 
observed convergence to the global minimum despite errors in 
the initial estimate exceeding 1.5 m in translation and 10’ in 
rotation. 

Figure 6 shows the result of combining four elevation maps 
as an isoplot surface at 10 cm resolution. Using one of the 
maps (chosen arbitrarily) as ground truth, the RMS elevation 
error of the composite elevation map (approx. 6 cmhixel) is 
commensurate to the reso1:::on of the laser scanner (approx. 8 

Figure 6: Four clcvation maps combined 

Finally, we tested a partially integrated Ambler system at 
an experimental testbed (fig. 7): a single leg with a fully opera- 
tional controller; the range finder mounted above the leg; and a 
25 m2 “sandbox” of terrain to be traversed. The perception sys- 
tem communicates with other modules through queries, which 
typically are requests for the elevation map at a given resolution 
within a polygonal region. We evaluate the selected footfall lo- 
cation by servoing the leg there, thus closing the loop between 
perception and action. Visual inspection of the servoed positions 

1001 



shows the selected locations to be reasonably accurate; quanti- 
tative error measurements are not yet available. Dozens of trials 
on different terrains suggest that the perception algorithms pro- 
vide reliable and reasonably accurate descriptions of the terrain 
that suffice for moving the leg and executing footfalls. 

Figure 7: Single leg testbed 

7 Discussion 
In this paper we presented techniques to build terrain maps based 
on the observations of a single range sem, and to use those 
maps to support locomotion: a new algorithm to build elevation 
maps at arbitrary resolution, including elevation uncertainty and 
unknown areg; a new two-stage matching algorithm to identify 
vehicle displacement between frames and construct composite 
elcvarion maps; and new methods for geometrically evaluating 
a r e s  of the composite elevation map as footfall locations. 

Preliminary experiments demonstrate that an integrated 
system can build and use maps to select footfall locations. This 
illustrates the advantages of working in image space rather than 
in Cartesian space. 

While the first results are encouraging, further work is re- 
quired both in map building and map analysis. For the former, 
we must complete an automatic calihation procedure to more 
accurately relate sensor and vehicle coordinate systems. incor- 
porate elevation uncertainties in map matching (as distinct from 
map merging, where the maximum likelihood estimate includes 
uncertainty), and formally study the convergence properties of 
the iconic matching algorithm. For the latter, we must inves- 
tigate more sophisticated footfall evaluations that take into ac- 
count not only the local geometry of the terrain, but also ge- 

ometric uncertainty and material properties of the soil such as 
load-baring strength, compliance. and coefficient of friction. 
Further, we must better integrate the algorithms into the Am- 
bler system, and make more quantitative assessments of their 
performance. 

The work reported in this paper addresses a small fraction 
of the problems faced in developing a complete perception sys- 
tem for the Ambler. The scope of future research includes two 
broad categories: navigation and sampling. For the former. we 
aim to increase map coverage by processing multiple views from 
multiple sensors, and to determine vehicle position by landmark 
triangulation. For the latter, we intend to use surface topogra- 
phy to identify promising sample sites, and to build models of 
discrete objects both to select particular samples and to guide 
sample acquisition. 
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