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In this thesis a terrain positioning method for underwater vehicles called the correlation

method is presented. Using the method the vehicle can determine its absolute position

with the help of a sonar and a map of the bottom topography. The thesis is focused

towards underwater positioning but most of the material is directly applicable to flying

vehicles as well.

  The positioning of surface vehicles has been revolutionized by the global positioning

system (GPS). However, since the GPS signal does not penetrate into the sea water

volume, underwater vehicles still have to use the inertial  navigation system (INS) for

navigation. Terrain positioning is therefore a serious alternative to GPS for underwater

vehicles for  zeroing out the INS error  in military applications.

   The thesis begins with a review of different estimation methods as Bayesian and extended

Kalman filter methods that have been used for terrain navigation. Some other methods

that may be used as the unscented Kalman filter or solving the Fokker-Planck equation

using finite element methods are also discussed.

   The correlation method is then described and the well known problem with multiple

terrain positions is discussed. It is shown that the risk of false positions decreases

exponentially with the number of measurement beams. A simple hypothesis test of false

peaks is presented. It is also shown that the likelihood function for the position under

weak assumptions converges to a Gaussian probability density function when the number

of measuring beams tends to infinity.

   The  Cramér-Rao lower bound on the position error covariance is determined and it is

shown that the proposed method achieves this bound asymptotically. The problem with

measurement bias causing position bias is discussed and a simple method for removing
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the measurement bias is presented.

  By adjusting the footprint of the measuring sonar beams to the bottom topography

a large increase in accuracy and robustness can be achieved in many bottom areas.

This matter is discussed and a systematic theory about how to choose way-points  is

developed.

   Three sea-trials have been conducted to verify the characteristics of the  method

and some results from the last one in October 2002 are presented. The sea-trials

verify to a very high degree the theory presented. Finally the method is briefly

discussed under the assumption that the bottom topography can be described by

an autoregressive stochastic process.
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1.1 Introduction
In this thesis a terrain positioning method for underwater vehicles called the

correlation method is presented. Using the method the vehicle can determine its

absolute position with the help of a sonar and a map of the bottom topography.

The thesis is focused towards underwater positioning but most of the material is

directly applicable to flying vehicles as well.

The positioning of surface vehicles has been revolutionized by the global

positioning system (GPS). However, since the GPS signal does not penetrate into

the sea water volume, underwater vehicles still have to use the inertial  navigation

system (INS) for navigation. A great problem with inertial navigation systems is

the drift of the gyros, i.e., the position error will grow exponentially with time. This

means that the underwater vehicle has to break the surface regularly to zero out

the position error by reading its GPS position. This is undesired in military

applications since it creates a risk of being revealed and the GPS signal may not

be available or may even be jammed. Terrain positioning is therefore a serious

Chapter 1
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2 1 Introduction

alternative to GPS for  zeroing out the positioning error of the INS. Certainly the

sonar emits a potentially revealing signal but the short duration of the sonar

pulse makes the risk of revealing very low.

During the last five years, three large sea-trials have been conducted to support

the presented theory. The test result has been very good and this thesis can

also be seen as a presentation of the theoretical basis for the trials.

Compared to other terrain navigation methods, including the traditional methods

for airial terrain navigation, the benefits of this method are

• Robustness

• High accuracy

• Minimal need of maps

In an attempt to make the thesis easy to read even for persons without immediate

knowledge  in estimation theory the method has been presented with numerous

figures and often with an intuitive approach but hopefully the cogency of the

thesis has not suffered from this.

1.2 Contributions
Optimal methods,  in a minimum mean square error (MMSE) sense, for terrain

navigation has been around for some time but as shown in this thesis the

performance can be considerably increased if the measurement of the terrain

topography is made in several points simultaneously. The thesis describes the

proposed method, its performance and presents briefly the result from one of

the sea-trials that have been conducted for verification of the theoretical findings.

This thesis is organized in the following chapters besides this introduction

chapter.

Chapter 2 Terrain navigation methods

In this chapter the Bayesian approach to terrain navigation is outlined and the

extended Kalman filter in a Bayesian perspective is presented. The extended

Kalman filter (EKF) has been used in terrain navigation since long ago and the

extended Kalman filter is here presented in a Bayesian setting.

The TERCOM terrain navigation method, which seems to be the first terrain
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navigation method to be used, is described together with some other methods.

The mass-point and particle filter, which have been used for flying vehicles with

good results, are also briefly described.

A navigation filter based on the unscented transform (UT) is briefly sketched.

This is a non-optimal filtering method that seems to fit the terrain navigation

problem well even if no one yet has presented the method in a terrain navigation

example. This goes also for the next method discussed. The amazing increase in

computational power lately means that filters based on solving the Fokker-Planck

equation are highly interesting and such filters may be a strong competitor to the

mass-point filter. A brief review of such a filter is presented. Compared to the UT-

filter this is an optimal method as the mass point filter is.

Finally this chapter ends with a review of some terrain navigation methods for

underwater vehicles that have been presented at conferences and in journal

papers during the last years.

Chapter 3 The positioning method

This chapter describes the background for the proposed terrain navigation method

as well  as the benefit of using it. It also touches briefly on the problem of false

correlation peaks due to terrain repeatability.

The computational demand for the correlation method is substantial and an

implementation method to handle this problem is presented.

The difference between  measuring the terrain topography as in traditional terrain

navigation for flying vehicles and as in  the proposed method is discussed and

it is shown that the proposed measuring method is superior with regard to

accuracy.

A great problem in terrain navigation is position bias due to measurement bias

and a simple method to eliminate it is presented.

The chapter ends with a discussion of how the position estimate can be improved

by using bottom sediment information and/or data from side-scan sonars as well

as from external sound sources.

Chapter 4 The likelihood function and the Kalman filter

An often quoted problem with the correlation methods is the problem of false

1.2 Contributions
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peaks due to terrain repeatability, i.e., positions which give high correlations but

still do not correspond to the true position. In the chapter it is shown that the risk

of false peaks decreases exponentially with the number of measurement beams.

A large number of measuring beams will thus eliminate the problem. A simple

hypothesis test of false peaks  is also presented. With the test false peaks can to

some degree be detected and a coarse  “false peaks filter” can be constructed.

As described in Chapter 2 the Bayesian approach means that the prior PDF for

the vehicle position is multiplied with the likelihood function from the

measurement. This means that if the prior PDF is Gaussian and the likelihood

function also is Gaussian the posterior PDF will  be Gaussian. In the chapter it is

shown that the likelihood function converges under weak assumptions to a

Gaussian PDF when the number of measuring beams tends to infinity.

A consequence of this is that a linear Kalman filter can be used for fusing the

position measurement with the prior position information. This simplifies greatly

the calculation of the posterior position PDF since an analytic expression can be

used instead of having to rely on numerical methods. This also means that the

robustness with regards to filter divergence is greatly improved and of course

the computational errors of the numerical methods are avoided.

Chapter 5 The Cramér-Rao lower bound

It is of course not satisfactory to simply have a position from a navigational

system. Information about the accuracy of the position is also needed so we

know to what degree the position figure can be trusted. However, in many cases

it is not an easy task to give an exact figure of the actual accuracy for a position

estimation method and it is in this context the Cramér-Rao lower bound (CRLB)

shall be seen. The CRLB gives the lowest possible position error variance, given

the prerequisites, for the position estimate regardless of the actual estimation

formula. By comparing the accuracy we achieve in simulation with the CRLB we

can judge whether the estimation  method has potentially good accuracy compared

to other methods. Thus the CRLB plays an important role in judging the accuracy

of the positioning method proposed in this thesis.

The chapter starts with a presentation of the original proof that H. Cramér gave of

the CRLB theorem in 1945 which is not so often quoted nowadays. Then some

special formulas for the terrain navigation problem are presented. As examples of

this are  cases with additional measurement noise. Another example is the CRLB

dependence on the bending of the measurement beams due to uncompensated
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temperature gradients in the sea.

Chapter 6 The characteristics of the position estimate

This chapter discusses the characteristics of the position estimate and the position

bias that may be the consequence of measurement bias, i.e., the case when the

measured depth in a position differs from the depth according to the map in the

same point due to a fix measurement error often caused by an incorrect height of

the actual sea level.

Chapter 7 Optimal beampattern and way-point selection

By adjusting the footprint of the measuring sonar beams to the bottom

topography a large increase in accuracy and robustness can be achieved in

many bottom areas. This matter is discussed in the first part of the chapter. Then

a systematic theory about how to choose way-points in a way that minimizes the

probability of failure for the positioning is developed. The chapter ends with an

example of how to choose a way-point.

Chapter 8 Sonars and the sea-trial October 2002

The chapter starts with a brief  review of sonars and their measurement errors but

the main content of the chapter is a review of a sea-trial. Three sea-trials have

been conducted to verify the characteristics of the  method. Some results from

the latest test in October 2002 are presented in the chapter. The sea-trials verify

to a very high degree the theory presented in the thesis.

Chapter 9 Terrain navigation for autoregressive bottom models

This chapter is freestanding from the previous chapters. It presents the

correlation method under the assumption that the bottom topography can be

described by an autoregressive stochastic process.

If the bottom topography could be described in statistical terms, for example as

a stationary stochastic process, qualitative and quantitative judgements could

be drawn about the positioning accuracy and adherent matters. This would be

of great advantage, but up to now the available models covering larger bottom

areas are very complex and the relevance of the models might be questioned.

However, it turns out that very simple autoregressive models can be of value

when describing local bottom characteristics.  The chapter discusses and draws

conclusions from such models.

1.2 Contributions
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Appendix A

The appendix discusses very briefly the inertial navigation system (INS). This

part may be of interest for readers unfamiliar with inertial navigation systems.

The chapter also briefly reviews a master thesis about implementing the calculation

of the likelihood function in a field programmable array (FPGA).  This is of great

interest if the positioning method is to be used for flying vehicles since the

performance of such an implementation makes the method also attractive in such

applications. For flying vehicles a radar with a narrow scanning beam or a scanning

laser beam may be used.

Appendix B

The positioning method requires a considerable amount of interpolation in the

underwater map to which many well known interpolation methods can be used.

However, the interpolation error will change the bottom spectrum by introducing

high frequency components which may influence the position accuracy. An

interpolation method that does not change the spectrum is thus of interest and

the chapter discusses such probabilistic methods after a short introduction about

reconstruction of signals from samples of the signal. The probabilistic methods

have a remarkable performance if the bottom characteristics are stationary and

known which, however, seldom is the case.

1.2.1 Published results
The major results in this thesis have been published in the following papers and

journal articles.

I. Nygren, Terrängnavigering för undervattensfarkoster. Resultat av

fältförsök 1998 (Terrain Navigation of Underwater Vehicles. Results from Sea-

Trial 1998), Report FOA–R—99-01298-313—SE, December 1999.

I. Nygren, A Method for Terrain Positioning of an AUV, Proceedings, 12th

International Symposium UUST01, Durham, New Hampshire, USA, 2001.

I. Nygren, A Method for Terrain Navigation of an AUV, Conference proceed-

ings, MTS/IEEE Oceans 2001.

I. Nygren, Recursive Terrain Navigation, Application of  the Correlator

Method, Report FOI–R—0764—SE, Sweden, August 2002.
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C-J. Andersson, I. Nygren, A Method for Terrain Positioning of Underwater

Vehicles, Proceedings, Undersea Defence Technology (UDT) Europe 2003.

I. Nygren, M. Jansson, Recursive Terrain Navigation with the Correlator

Method for High Position Accuracy, Proceedings, 13th International Sympo-

sium UUST03, Durham, New Hampshire, USA, 2003.

I. Nygren, M. Jansson, Robust Terrain Navigation with the Correlator

Method for High Position Accuracy, Conference proceedings, MTS/IEEE

Oceans 2003.

I. Nygren, M. Jansson, Terrain Navigation Using the Correlator Method,

Conference proceedings, IEEE Position Location And Navigation Sympo-

sium, Monterey, Cal., USA, April 27-29, 2004.

I. Nygren, M. Jansson, Terrain Navigation for Underwater Vehicles Using

the Correlation Method, IEEE Journal of Oceanic Engineering, July 2004,

Vol. 29, No. 3.

J. Carlström, I. Nygren, Terrain Navigation of the Swedish AUV62F,  Pro-

ceedings, 14th International Symposium UUST05, Durham, New Hampshire,

USA, 2005.

I. Nygren, M. Jansson,  A Terrain Navigation Method for UAVs and AUVs

Based on Correlation, IEEE Transactions on Aerospace and Electronic

Systems, to be published.

1.2 Contributions
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2.1 Terrain navigation methods in general
2.1.1 Introduction
Terrain navigation has up to now mostly been used for flying vehicles and has

during the last decennium become an accepted method to improve and aid  inertial

navigation systems. The first studies and tests were done in the late fifties but

most of the development work was done during the seventies. Lately the use has

been substantially increased due to the increased availability of high accuracy

digital terrain maps as a result of charting by satellites.

Examples of commercial terrain navigation methods within the flying community

are TERCOM [GO80], TERPROM [AR88], TERNAV [SK85, PUJP00], SITAN

[HOAN85], BITAN [CYYT92], LATAN [LA88] and others. TERCOM was the

first method to be used. The principle for all methods is to measure the terrain

profile along a flight passage as in Figure 2.1 and to compare it with a digital

map and by that establish a position. The comparison can be done as a batch

operation as in TERCOM or as a recursive operation as in TERPROM or SITAN.

Chapter 2

Terrain navigation methods
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The ground distance between the measurement points is in the range 30 – 150

meter and the sampling of the height is usually initiated by a clock. The radar

altitude meter has a beam width of about 50o to make banking of the vehicle

possible without losing ground contact.

The navigation method has two phases, one initial phase and one tracking phase.

During the initial phase the starting position is determined with an accuracy of

at least 100 meter. If the starting point is established by terrain reference it is

usually done by collecting a batch of height measurements and matching them

against the map by correlation. The search area in the matching process is

determined by the accuracy of the inertial navigation system and can be in the

range of 15 km x 15 km. When the starting position is established and the

tracking phase can begin the determination of the position is done recursively

at each new height measurement and often it is done by an extended Kalman

filter (EKF). Lately also sequential Monte Carlo filters (SMC) as particle filters

have been used [BE99, MM01, KA05].

Figure 2.1: The principle of a terrain navigating missile.
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For flying vehicles the vertical positions are of great interest besides the

horizontal position. For underwater vehicles the vertical position can easily

and accurately be determined by other means and the presentation will therefore

be focused on methods to determine the horizontal position. We will assume

that the movement of the vehicle in the horizontal plane is governed by the

first of the following two equations.  The height measurement is described by

the second equation.

x
t+1

=x
t
+u

t
+v

t
           t=0,1,2...                                                           (2.1)

y
t
=h(x

t
)+e

t
                        (2.2)

The vector x
t
 is the position of the vehicle in the horizontal plane and the

vector u
t
 is the displacement from the earlier position and the vector v

t
 is the

uncertainty in the displacement. The displacement can be thought of as coming

from the INS-system or by integrating the equations of the vehicle movement.

The measured height y
t
 is the height according to the map in the position x

t

with the addition of a measurement error e
t
. The error sequences v

t
 and e

t
 are

considered to be white with a zero mean and independent of each other.

2.1.2. The Bayesian approach to terrain navigation
The Bayesian method for recursive estimation is particularly suitable for

nonlinear problems which not easily can be linearized allowing an EKF-filter

to be used [BUSE71]. For applications of the Bayesian approach in terrain

navigation, see [RU85, BE99, METR02, KA05]. The Bayesian approach means

that Bayes formula is used to incorporate the measurement data into the

estimation and in most cases this also means that a numerical method has to be

used to establish a position. This can be computationally demanding. With

low order of the state vector the method is easily illustrated which can give

extra insight into the estimation problem. The idea behind the method is the

concept of a likelihood function [HAFO04]. The likelihood for the random

variable Y to have the value y when the random variable X has the value x is in

the discrete case

( ; ) Pr{ | }  for   state space of L = = = ∈x y Y y X x x x                                 (2.3)

where Pr{.} denotes the probability.

2.1 Terrain navigation methods in general
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In the continuous case the likelihood ( ; )L x y is defined correspondingly as the

value of the probability density function (PDF) for y at position x.  Since the

value of y is given by the measurement, the likelihood function is often

considered to be a function of x. For a random y the likelihood function is a

random function. The likelihood function can be seen as a measurement of

how likely it is to have the measurement y at position x in state space. If several

measurements from independent sensors are used the likelihood functions for

the different measurements can be multiplied by each other. This makes it easy

to incorporate measurements from different sources.

Figure 2.2 shows an underwater vehicle navigating according to the method

developed and proposed in this thesis. The vehicle measures the bottom

topography over a large bottom area with a large number of sonar beams  at

each sampling event. The assumption for the evolution of the state space is

Figure 2.2: A vehicle measuring the bottom topography simultaneously with

several sonar beams.
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x
t+1

=x
t
+u

t
+v

t
           t=0,1,2...                                                             (2.4)

Y
t
=H(x

t
)+E

t
                                                                                            (2.5)

where tx is the position in the horizontal plane at time t and tu  - the distance

between the positions - is provided by the INS system. The measured depths to

the bottom are collected in the matrixY
t
and the matrix ( )xH

t
collects the depths

according to the map if we are in position tx . The error in the INS system is

tv andE
t
is the error in the depth measurement (possibly including map errors,

interpolation errors etc.).   The number of measurement points (sonar beams) is

N. In order to simplify the discussion we vectorize (2.5)

( )t t t= +y h x e                                                                                          (2.5b)

and we will for simplicity assume that the measurement errors are independent

white Gaussian sequences. If the errors are correlated with a known covariance

matrix, this information can easily be incorporated (see Chapter 5).

It is well known that the optimal estimate in the linear and nonlinear cases is

given by the conditional mean in the sense that it minimizes any scalar-value

monotonically increasing cost function of the conditional mean square error

[TS02]. The conditional probability density function (PDF) is given by [JA70]

2

( | ) ( ) ( ; ) ( )
( | )

( ) ( ; ) ( )

R

p p L p
p

p L p d
= =

∫
y x x x y x

x y
y x y x x              

                                 (2.6)

where
2

( ; ) ( )
R

L p d∫ x y x x  can be interpreted as a normalizing constant. The PDF

p(y|x) is called the likelihood function and the most common notation is L(x;y)

since the likelihood function is often thought on as a function of  x. We  refer

to ( | )p x y as the posterior PDF, while ( )p x is referred to as the prior PDF.

The recursive procedure means that we will start from a given prior PDF that

we will propagate according to the movement of the vehicle and the uncertainty

2.1 Terrain navigation methods in general
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of the movement. The movement can, for example, be determined from an

INS system that has a specified uncertainty. We will denote the propagated,

but not measurement updated, PDF as ( )p− x . The next step in the recursive

procedure is to do the measurement update of ( )p− x by the multiplication of

( )p− x and ( | )L y x in order to arrive at the posterior PDF. In the following

section we will look at this in some more details.

A.  Propagation of the PDF for the vehicle position

Equation (2.4) describes how the position changes between two sampling

events. Figure 2.3 illustrates this. The left PDF (the previous posterior PDF)

has a bearing upon the vehicle’s position at sampling time t and the black pile

is the relative frequency of the number of realizations which have ended in

point tx , i.e. ( | )t tp x Y . The notation ( | )tp ⋅ Y  indicates that the PDF is based

on all measurements up to and including the measurement at time t. The

realizations are moved the distance tu but due to the uncertainty tv we will

have a spread in the new position. We multiply this new PDF - the small one in

the figure - by the relative frequency ( | )t tp x Y and total the contributions of

Figure 2.3: Propagation of the PDF for the vehicle position.
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all points in the left PDF by an integral to get the position PDF at time t+1. We

can express the propagation as

2

1 1
( | ) ( ) ( | )

tt t t t t t t t

R

p p p d+ += − −∫ v
x Y x u x x Y x

                                                   (2.7)

where ( )
t

p ⋅v is the PDF for the error term v
t
. This is the Chapman-Kolmogorovs

equation for the propagation of a Markov process [JA70]. See also Section

2.1.8 about how to calculate the integral expression when tu is not just a simple

fix translation.

B. The measurement update

   The measurement is made according to (2.5b). We assume the errors in the

depth measurements to be Gaussian. Therefore

11 1
( ; ) exp( ( ( )) ( ( )))

2(2 ) det( )

T

t t t t e t t
N

e

L
π

−= − − −x y y h x C y h x
C

            (2.8)

where eC is the measurement error covariance matrix. The function ( ; )
t t

L x y  is

our likelihood function since, for a given position tx , it gives the likelihood of

having the measurement value y
t
. The assumption that the errors of different

beams are uncorrelated makes the covariance matrix eC diagonal and, if the

measurement variance is the same in all beams, equal to 2

eσ I . Therefore the

likelihood function will be

2

,22
1

1 1
( ; ) exp( ( ( )) )

2(2 )

N

t t t k k t
N

kee

L y h
σπσ =

= − −∑x y x
                               (2.9)

where ,  and ( )t k k ty h x are the kth components of the vectors and ( )t ty h x , re-

spectively.

The next step in the recursion is to fuse the likelihood function for the

measurement with the propagated PDF of the position. The non-normalized

posterior PDF is obtained as

2.1 Terrain navigation methods in general
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1 1 1 1 1
( | ) ( ; ) ( | )

t t t t t t
p L p+ + + + +x Y x y x Y∼                                                     (2.10)

If the time between the measurements is large the variance in the propagated

PDF, ( )p− x , may increase so much that it will not noticeably improve the

estimation of the position based on the likelihood function. Hence, when the

prior PDF has a large variance the estimation problem becomes a maximum

likelihood (ML) estimation problem. The measurement update by Bayes formula

is further discussed in Section 3.3.

Bayesian estimation [HAFO04] is used in many scientific disciplines besides

engineering. In [RO01] and [BS02] the subject is treated in a more mathematical

way.  More easy to read are [TP01], [HL01], [WL90] and [AS72] and a tutorial

book is [SIL96]. A comparision between different estimatation methods for

nonlinear problems can be found in [FD05].

2.1.3. The extended Kalman filter from a Bayesian

perspective
It is often advantageous to think about a filter as consisting of a propagation

stage followed by a measurement update stage. In the extended Kalman filter

(EKF) the nonlinear equations for movement and measurement are linearized

in order to make a linear Kalman filter feasible [TS02, KSH00]. In studying the

filtering problem from a Bayesian perspective we look at the PDFs of the

involved stochastic variables whereby the filter procedure becomes quite natural.

The first equation (2.4) which describes the vehicle track with its stochastic

fluctuations, often called the process equation, is already in a linear form. We

will assume that the vehicle position at time t = 0 is Gaussian distributed and it

will be that also at time t = 1 provided v
t
 is Gaussian. The mean and covariance

are calculated from the PDF given by (2.7). See also Chapter 4 for explicit

expressions.

The measurement equation (2.5b) is nonlinear and is therefore linearized around

the predicted position. The Taylor expansion of the terrain surface h(x
t
) gives

| 1 | 1 | 1 | 1 | 1 | 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ...T

t t t t t t t t t t t t t t t th h − − − − − −= + − + − − +x x G x x x x H x x       (2.11)

where
| 1t t −G  is the gradient vector and 

| 1t t−H is the Hessian matrix in the predicted
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position. If we truncate the series after the second term the equation can be

illustrated by the tangent plane in the predicted position. The linearization

means that a tangent plane to the surface is placed in the predicted position,

see Figure 2.4. The likelihood function will be

2

22

2

| 1 | 1 | 122

1 1
( ; ) e xp( ( ( )) )

22

1 1
ˆ ˆ             e xp( ( ( ) ( )) )

22

t t t t

ee

t t t t t t t t

ee

L y y h

y h

σπσ

σπσ
− − −

= − − =

≈ − − − −

x x

x G x x
           (2.12)

In the Figures 2.4 and 2.5 the locus for the positions with the same depths as

the measurement is shown as a dashed line. The dashed line is also a symmetry

line for the PDF for the measurement error e
t
.

The PDF for the predicted position and the PDF for the measurement are

illustrated in Figure 2.6 while Figure 2.7 shows the PDF after the measurement

update. The update is made by point wise multiplications of the PDFs and will

give a Gaussian PDF if both involved PDFs are Gaussian, i.e., the errors v
t
 and

e
t
 are Gaussian distributed as well as the starting PDF.

Figure 2.4: A tangent plane is

placed in the predicted position.
Figure 2.5: The tangent plane with the

locus for all depths equal the measured

depth (the dashed line).

2.1 Terrain navigation methods in general
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As can be seen the result will to a high degree depend on how well the predicted

position is in agreement with the true position and how well the linearization

plane describes the actual terrain around the predicted position. If the predicted

position is close to the true position a better linearization can often be obtained

by adjusting the plane to more than just one terrain point. The procedure is

called stochastic linearization and means that the tangent plane is determined

from several points around the predicted position by the least squares method.

Considerable improvement of the accuracy of the position by using this

procedure is reported [YCH91].

Another step to improve the result is to adapt the following iterative procedure

which is easy to implement. After the posterior PDF has been calculated as

indicated above a new linearization is made around the obtained position and a

new posterior is calculated and so on. Only a few recursive steps are most often

needed for obtaining a good position. The procedure is called the iterative

EKF [TS02].

An improvement in the EKF-filter can be expected if also the second order

term is included in the Taylor expansion of the terrain topography [TS02]. In

this case we have a second order surface passing through the predicted point

and it is likely that this surface will give a better fit than the tangent plane. The

terrain equation will in this case be

Figure 2.6: The prior PDF and the

PDF for the measurement.

Figure 2.7: The posterior PDF, i.e. the

prior PDF is updated by pointwise

multiplication with the measurement

PDF.
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| 1 | 1 | 1 | 1 | 1 | 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ...T

t t t t t t t t t t t t t t t th h − − − − − −= + − + − − +x x G x x x x H x x       (2.13)

and the likelihood function

2

22

| 1 | 1 | 122
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| 1 | 1 | 1

1 1
ˆ( ; ) e xp( ( ( )) )
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1 1
ˆ ˆ             e xp( ( ( ) ( )

22

ˆ ˆ              ( ) ( )) )

t t t t

ee

t t t t t t t t

ee
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y h
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σπσ
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≈ − − − −
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x G x x

x x H x x

            (2.14)

The drawback of the second order filter is besides considerably more complex

calculations that the posterior function will no more be Gaussian even if the

measurement error and the prior are Gaussian.  The iterated filter is often used

but the use of the second order filter seems to be rare.

As can be understood the EKF filter is likely to diverge if the predicted position

is bad or if the linearization does not fit the terrain well. A practical way to

handle some of the divergence problems is to have several filters running in

parallel. If it can be assumed that the positions of the filters are distributed

Figure 2.8: A second order surface fitted to terrain surface at the predicted

point by a least squares approach.

2.1 Terrain navigation methods in general
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around the true position a better estimated position would be to take the mean

of the individual filters as the predicted position and linearize around that

position. As the new covariance the mean of the covariances of the individual

filters can be taken. Should any of the filters show divergence it will be closed

and a new filter will be started up based on the estimated position and its error

covariance.

The terrain navigation method SITAN (Sandia Inertial Terrain Aided Navigation)

as it is described in [HOAN85] is almost equivalent to the described EKF

method above even if the filter in that paper is presented by equations. In

[HOAN85] parallel filter structures and stochastic linearization is also discussed.

A multiple model approach is discussed in [META83].  The tracking phase of

the TERPROM is also almost equivalent to the described EKF method.

2.1.4 TERCOM
TERCOM (Terrain Contour Matching) was the first terrain navigation method

to be used. Measured height data along a straight line flight path were collected

in a vector which then was correlated with a digital map over the terrain. The

relative distance between the measurement positions was determined by the

INS-system or by integrating the equations for the vehicle movement. This

means that the distance and orientation between the measurement footprint

points will be afflicted with stochastic errors which will decrease the accuracy

of the positioning.

When a new height measurement is available the oldest measurement is thrown

away, cf. a FIFO-register. The early days requirement for a straight line vehicle

course, due to the computation burden in calculation the orientation of the

positions, is nowadays removed. The accuracy of the TERCOM method is in

the range 30 – 100 meter for hilly terrain [YCH91].

In the original TERCOM method the positioning was done in special navigation

areas, way-points, with hilly terrain for which accurate maps were available.

The vehicle moved between the way-points by help of the INS-system.

A similar correlation method is HELI/SITAN [HO90, HO91] also developed

at the Sandia Laboratories.
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2.1.5 The mass point filter
The mass point filter is a numerical method for solving the Bayesian filter

problem in an asymptotically optimal way. The state space is divided into a

grid and the continuous PDF is replaced by corresponding probability masses

in the grid points. A prerequisite is that the state space is of low order otherwise

the computational burden will be prohibitive since quadrature in high

dimensions has to be done.

The fix grid size can cause problems in areas with high PDF gradients so it is

desirable with a small grid size to have a good agreement between the discrete

and continuous PDFs. However, this can lead to increased computational burden

since a coarser grid could be sufficient in large areas of state space. A way to

handle this is to have a variable grid size determined by the gradient of the

PDF but of course this will increase the complexity of the calculations. As will

be seen later the involved PDFs are not particularly suited for the numerical

calculations in the mass point filter (Figure 3.3 and Figure 3.7). The method,

with some variations, is described in [BUSE71, BE99].

One of the advantages with the method is the optimality in the minimum mean

square sense but the numerical solutions lead of course to numerical errors.

2.1.6 The particle filter
The particle filter [AMGC02, BE99, GGBFJKN02, MLG99, DFG01, KA05],

is also a numerical method where a large number of samples of the state vector

is generated according to its PDF. Each sample is called a particle and the

procedure means that the density of particles in a position corresponds to the

value of the PDF at that position. The particle filter is asymptotically optimal

in a minimum mean square sense.

The Figure 2.9 shows a PDF and Figure 2.10 and 2.11 show the corresponding

particle cloud. The particle density in a point in Figure 2.10 corresponds to the

value of the PDF in that point.  In the simplest form of the particle filters, the

Bootstrap filter, the algorithm can be described as follows [BE98, FG00].  The

propagation of the posterior PDF is done by propagation of each particle

according to the propagation equation including the error term which should

be simulated with correct error PDF. Se Figure 2.11 and Figure 2.12.

2.1 Terrain navigation methods in general
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The measurement update is then done by calculating the normalized likelihood

value for each particle given the measurement y
t
. If M is the number of particles

and (.)
iep is the PDF for the measurement error then the normalized likelihood

for the particle i is [BE98]

1

( ( ))

( ( ))

i

i

i

e t t

i M
j

e t t

j

p y h x
w

p y h x
=

−
=

−∑                                                (2.16)

The numerator can be seen as the likelihood for receiving the measurement y
t 
at

the position i

t
x . The position estimate is

1

ˆ
M

i

t i t

i

x w x
=

= ∑                                    (2.17)

i.e., the mean.

The normalized likelihood function will be the PDF from which a new cloud of

particles is generated. The actual generation of new particles is a resampling

with replacement [FG00].

The number of particles needed to describe the PDFs of a problem is often

quite large 50000 – 100000 [GGBFJKN02] and by that the computations will

Figure 2.10: The particle cloud

corresponding to the PDF in Figure

2.9.

Figure 2.9: A PDF for generating the

particle cloud in Figure 2.10.
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be demanding. A practical problem that is often encountered is that the particles

tends to stick together in a single point after a number of iterations. This will

happen if the error terms are small and a fix for that problem is to add some

extra noise to the real noise.

A well working resampling algorithm is thus crucial for the method to avoid

particle sticking. A practical way to circumvent the problem can be to project

the result from the propagation phase on a known PDF family, i.e., mainly the

exponential family [SY98, AS01, BR96] or another family that reasonable well

can model the PDF described by the particle cloud. By this an analytic

expression can be found for the posterior PDF from which a new particle cloud

is generated. The procedure is of course an approximation of the propagated

PDF and the performance may differ depending on the application and choice

of PDF family to project on.

Figure 2.11: Down to the left is the initial particle cloud and up to the right

are the propagated particles, see also Figure 2.12.

2.1 Terrain navigation methods in general
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The particle filter method is asymptotically optimal but it should be noted that

methods that interpolate in the map introduces interpolation errors. In rough

hilly terrain linear interpolation, if used, can severely decrease the performance

of single beam methods.

It can often be that some parts of a system with advantage can be described by

a linear Kalman filter and for other parts of a system a particle filter description

is of advantage. A method to implement this is a procedure called Rao-

Blackwellization [DFG01].

A comparison between correlation, mass-point and particle filters is given in

[MWT02, METR02].

Figure 2.12: A close up of the propagated particles showing the particles with

and without noise error.
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2.1.7 The unscented transform
The filter based on the unscented transform (UT) is somewhat improperly called

the unscented Kalman filter (UKF). The basic idea is to approximate the PDF

with a small number of probability mass points [JU97, JUUH04, MDFW00,

HA01]. The performance of the filter should preferably be compared with the

extended Kalman filter. The method means that the PDF of the position, in this

case, is replaced by 5 discrete probability mass points (sigma points), one in

the mean and the other symmetrically situated around the mean. Figure 2.13

illustrates the procedure.

The coordinates and the probability weights (masses) are in the simplest form

of the transform determined in the following way. Let the PDF that should be

approximated have the mean x and the covariance P
x
. The coordinates and

weights for the sigma points are then given by Table 2.1 where n
x
 is the dimension

of the state vector and the number of sigma points is 2n
x
+1. κ is a scale factor

and ( )( )x x
i

n κ+ P means the ith column in that matrix. The square root can for

example be calculated by the Cholesky decomposition. The scalar scaling factor

Figure 2.13: The figure illustrates how the PDF is replaced by “Sigma points”

having the same mean and covariance as the PDF.

2.1 Terrain navigation methods in general
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κ governs the spread of the sigma points. A suitable value is often κ=2 if the

PDF is Gaussian like.

Each sigma point is propagated according to the propagation equation excluding

the noise term and the mean and the covariance is calculated for the propagated

sigma points and the covariance for the noise term is added as in the linear

Kalman filter. The posterior PDF is then calculated by multiplying the

propagated PDF by the likelihood function. The theory of UT filters is still

under development and more elaborate filters are around but the filter outlined

above would probably be sufficient for terrain navigation. However, no

application of the filter in terrain navigation is yet known.

The unscented transform can be seen as approximating the real PDF with a

Gaussian PDF with the same mean and covariance as the true PDF. In the cases

that the real PDF is close to Gaussian it may be an acceptable approximation.

The propagated PDF will also be Gaussian and the measurement update is just

multiplying a Gaussian PDF with the likelihood function which is easily done.

After normalization of the obtained posterior the mean and covariance are

calculated and a new set of sigma points is determined for propagation. The

mean is taken as the position estimate.

2.1.8 The stochastic differential equation
The motion of the vehicle and the measurement update can be modeled  by

stochastic differential equations and by solving the equations the evolution of

Table 2.1: Coordinates and weights for the sigma points.

Coordinates       Weight (Probability mass)

Central point 
0

= xX            /( )
i x

W nκ κ= +

Odd points    ( )( )i x x
i

n κ= + +x PX             { }/ 2( )
i x

W nκ κ= +

Even points  ( )( )i x x
i

n κ= − +x PX             { }/ 2( )i xW nκ κ= +

     i=1,2,...,2n
x



27

the position PDF in time and space can be determined and by that the position

of the vehicle. The stochastic differential equation corresponding to (2.1) is

[KL01, MI00, BR96]

( ) ( , ) ( , )
t

d t t dt t d= +x x x βf G                                                (2.18)

where

{ }T

t t
E d d dt=β β Q                         (2.19)

and describes the evolution of  the stochastic variable x in the case of additive

noise. In the equation f(x,t) and G(x,t) are deterministic vector valued functions

and
t

dβ is an increment of the Brownian movement, i.e., an independent

Gaussian distributed increment. The differential equation describes the

propagation phase in terrain navigation quite well. The function f(x,t) models

the convection or transportation and the function G(x,t) models the diffusion

rate. An engineering approach to stochastic differential equation methods can

be found in [MA82a, MA82b].

The weak solutions of (2.18) is the Fokker-Planck’s partial differential equation

(FPE) for the PDF of the stochastic variable x [GA04, RI84]. In the two

dimensional case we have

22 2
,

1 , 1

( ( , )( ( ) ( ) ) )( ( , ) ( ))( , ) 1

2

T

i ji

i i ji i j

p tp t fp t

t x x x= =

∂∂∂
= − +

∂ ∂ ∂ ∂∑ ∑
x x Q xx xx G G

         (2.20)

where p(x,t) is the PDF for the variable x at time t. The Fokker-Planck equation

is of the parabolic type and is well known in physics and is easy to solve

numerically [SM03, GOOR92, KICH91] if the dimension of the state vector is

low as in our case. The earlier mentioned methods, masspoint filter, particle

filter and the unscented Kalman filter can be thought of as numerical methods

to solve the FPE. As an example of that which relates to the particle filter  is the

“molecular dynamics method”  from the seventies. This also indicates that the

mentioned methods suffer from certain numerical errors due to the choosen

method.

In terrain navigation where the displacement of the position between two

sampling instances is given by the inertial navigation system the function f is a

constant independent of the position. The function G can also be considered

constant, i.e., ( , )t =xG G . The Fokker-Planck equation can now be written as

2.1 Terrain navigation methods in general
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22 2
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( , ) ( , ) 1 ( , )
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i i j

i i ji i j

p t p t p t
s

t x x x
µ

= =

∂ ∂ ∂
= − +

∂ ∂ ∂ ∂∑ ∑
x x x

             (2.21)

where we also have introduced the notation

, ,( ( ) ( ) )T

i j i js = x Q xG G                                                                               (2.22)

and

=µ f                                                                                                (2.23)

If we also adopt the notation common for partial differential equations in

physics [CO04] we can write (2.21) as

1
( ) ( )

2

p
p p

t

∂
= −∇ + ∇ ∇

∂
Siµ                                                                   (2.24)

where S is defined by (2.22) and • is the divergence operator and the del-

operator is defined as

1 2

[ , ]
x x

∂ ∂
∇ =

∂ ∂                                                                                            (2.25)

If we now introduce the transformation

t= −y x µ                                                                                          (2.26)

we can write (2.24) as

1
( )

2

p
p

t

∂
= ∇ ∇

∂
Si                                                                                         (2.27)

See also [ST97] which discusses  transformations of different forms of the FPE

to the simple basic form (2.27).

This type of partial differential equation is common in heat and diffusion problems

and can be solved readily by most PDE-solvers if the dimension of the state
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variable is low, i.e., ≤ 3. The dominating method to solve the parabolic type of

equations seems to be the finite element method (FEM) [JO87, TH97]. The

boundary conditions for a PDF can reasonable well be approximated by the FE

method without increasing the computational burden which is of great

advantage. Another advantage with the FE method is that it can handle situations

where the PDF behaves very differently in different parts of the domain

[DABJ74]. The computational power of today is sufficient to solve the FPE in

real time using the FE method without problems for slowly moving vehicles as

submarines and AUVs in the two dimensional state vector case.  The Figure

2.14 shows the evolution of  (2.27) for different times of a PDF for S=I. The

PDF at time t=0 consists of two uniform cylindrical peaks. From the figure it

Figure 2.14: The figure shows how the solution to the Fokker-Planck differen-

tial equation varies with time, i.e., the propagation of a multimodal PDF with

time. The time events is in scaled time and S=I.

t=0.2 ms. t=2.0 ms.

t=20.0 ms. t=30.0 ms.

2.1 Terrain navigation methods in general



30 2 Terrain navigation methods

can be seen that the influence of the diffusion term leads to the convergence

towards a Gaussian PDF if the noise is Gaussian. The influence of the diffusion

term at different times depends of course on the magnitude of the diffusion

function G(x,t). The graphs in Figure 2.14  are calculated by the PDE-solver in

[CO04].

Equation (2.18) describes the evolution of the state vector in time and a similar

equation can be formulated for the evolution of the continuous measurement

vector in time. The equations fused together leads to the Kushner equation

[MA82b, JA70, KU67] which gives the continuous measurement updated state

vector in time. In the case of discrete measurements the measurement update

may be done by using Bayes formula, i.e., (2.10).

2.2 Terrain navigation methods for underwater

vehicles
Terrain navigation has been used for underwater vehicles to a much lesser extent

than for flying vehicles. One of the main reasons for that is certainly the lack of

reliable and accurate underwater maps of a quality which would allow the

methods mentioned in Section 2.1 to be used.

The lack of maps of sufficient accuracy has lead to the development of other

methods which rely on measurements of distances to known underwater sound

sources. An example of such methods is hyperbolic acoustic navigation which

relies on acoustic sources which synchronically transmit a coded sound signal

at certain points of time and the receiver measures the time difference for the

arrival of the signals to the vehicle. Other systems rely on measuring bearing

and distance to one ore more sound sources. Often the sound sources are of

transponder type, i.e., the sound transmission is initiated by a start pulse, “wake

up signal,” from the receiver. The accuracy is relatively high, say 10 meter, if

the sound propagation conditions are good. In areas characterized by multipath

propagation, eg., archipelago areas, the methods will work less satisfactory.

Ground and flying vehicles use today to a high degree the global positioning

system (GPS) to determine the position. However, the high frequency GPS

signal in the 1.5 GHz radar band does not penetrate into the sea due to the high

attenuation caused by the sea water on the weak satellite signal. Therefore

systems have been developed with the GPS antenna or the whole receiver
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contained in a buoy floating on the sea surface with a transponder system hanging

below. The system can be deployed from air and the principle of operation is

that the transponder transmits the GPS position of the buoy on request.

However, during the last decennium some terrain navigation systems for

underwater vehicles have been developed and some of them have also been

tested in the real world. Below is a review of some of them.

2.2.1 Correlation navigation with a bathymetric sonar
In [BER93]  a correlation method is presented which uses a bathymetric sonar

with 60 measuring beams, a multibeam sonar. The correlation against the

underwater map gives rise to a large number of possible positions with about

the same correlation strength. See also Chapter 3 which shows how the number

of possible positions varies with the number of beam planes in the correlation.

Therefore, the author discusses the possibility to use probabilistic data

association (PDA) methods [BSFO88] to handle the uncertainty of the true

position caused by the large number of correlation peaks.  He discusses mainly

“nearest neighbour,”  “track splitting” and “Probabilistic Data Association Filter”

(PDAF).

The data association methods have been developed to discriminate target echoes

on a radar screen  from so called clutter which is echoes from weather

phenomena, from terrain, buildings and  random measurement noise.

A prerequisite for the probabilistic data methods is that the clutter is random in

both time and space and intensity. It is doubtful if this requirement is fulfilled in

the terrain navigation case since the correlation result for repeated measurements

over the same bottom location under the same conditions will give almost the

same result in the number of correlation peaks and their locations. This is

different to a radar which follows the target where the target background differs

all the time and the number of clutter echoes and their locations and strengths

also varies from radar scan to radar scan.

The author of [BER93] chooses, however, not to use the PDA-methods without

discussion but adapts the concept of  a “validation gate,” that is an area around

the predicted position which a priori cover a certain percent of probability that

the true position is within that area. A figure of 87 % is mentioned. The area is

an ellipse in the case of a Gaussian prior and the actual correlation is done in

the grid points in a gridded rectangle circumscribing the ellipse.

2.2 Terrain navigation methods for underwater vehicles
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The author also defines, without more exact discussion of its shape, a matching

strength function which, with the notation used in this thesis is,

2
59
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j j

y h
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 −
 = −
  
∑

x
x                                                     (2.28)

where y
j
 and h

j
(x) are the measured depth respectively the depth according to

the map for beam j in position x. The factor k
j
 takes the different measurement

accuracies for different sonar beams into account. The standard deviation σ is
assumed to be  σ=1.0 which is a reasonable value. We see that this measurement

strength function differs from the usual  maximum likelihood function in that

the sum of the absolute values is squared instead of the individual terms in the

sum. This will graphically show sharper correlation peaks but it does however

not improve the position accuracy.  The position error covariance at time t is

{ }ˆ ˆ( ) ( ( ) ( ))( ( ) ( ))
T

t E t t t t= − −S x x x x                        (2.29)

and the author defines the normalized matching strength function to be the PDF

for the position error and the covariance of that PDF to be S(t). Thus the mean

and covariance are calculated from the matching strength function but the posi-

tion estimate is taken as the position for the maximum of the function. The

covariance S(t) is used in the linear  Kalman filter for determining the vehicles

track. The covariance S(t) is also used to determine the validation gap.

However, it may be discussed if this is proper approximation of the position

error covariance. The position error seems to be more a function of the local

properties of the function around the maximum peak than the properties of  the

other smaller matching peaks in the neighbourhood of the maximum peak.

In the abstract to the thesis [BER93] the author mentions that the navigation

method, as it is presented, is not particularly robust. However, if the vehicle

speed is also measured and used in the Kalman filter for the vehicle position a

substantial increase in robustness and accuracy is achieved. This indicates that

the lack of robustness and accuracy is caused by an improper prior PDF, i.e.,

the validation gap is miss-placed.

Another thesis is [MA97] which is a simulation study of a single beam method
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which to some extents is similar to the TERCOM method. See also [MAST97].

However, the positions for high correlation in the validation zone are fused

together by the probabilistic PDAFAI approach [DOBS90]. This algorithm is

a further development of the PDAF algorithm to the extent that it also takes the

strength of the correlation into account. In the correlation the mean absolute

difference (MAD) algorithm is used and the number of measurements is 50

and the distance between the measurements is 5 meter which also is the grid

size of the map. The simulation study shows very small position errors. In the

MAD-algorithm the sum of the absolute beam errors between the measure-

ment and the map is used instead of the sum of the squares of the errors. This

measurement method was often used in early terrain correlation methods, for

example in TERCOM,  due to the computational load in calculating the corre-

lation sum. It has also the benefit not to enhance large measurement errors

(outliers) as the squaring of the errors does.

In the paper [SOA99] a method is described which has its roots in the analysis

of images and uses a multibeam sonar to sample depth data. From the depth

data a local map is first constructed and used for matching with the underwater

map, the reference map. The matching is done with differential map attributes

and by that it is very sensitive to noise in the map and therefore both maps are

carefully filtered in order to reduce the noise. The filtering is done with an

anisotropic diffusion operator, cf. diffusion in Chapter 2.1.8. The map attributes

should be invariant to rotation and translation.

The next step in the process is to determine characteristic points in the refer-

ence map and the local map since those are the points that will be matched

against each other. Characteristic points can, for example, be borders between

different terrain shapes. To each characteristic point an attribute vector, whose

elements are the attributes in that point, is attached. Examples of attributes are

gradients, curvature, Laplacian and the absolute depth if this is available.

The matching is done between the characteristic points by calculating the

Mahalonobis distance, based on the attribute vector, between the points. The

covariance of the attribute vector is considered known. If the distance is below

a certain threshold value the characteristic points are considered to refer to the

same points.

The matching process gives a large number of possible positions for the ve-

hicle and to choose among those an extended Kalman filter is used. The state

2.2 Terrain navigation methods for underwater vehicles
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vector in the filter consists not only of the positions but also the rotations of the

characteristic points in the reference map. The measurement vector consists of

the corresponding rotated and translated points in the local map.

In the paper [SCA99] another correlation method using a bathymetry sonar is

described but unlike the previous method no local map is constructed. The

bottom profile along a line is matched directly against the reference map. For

every possible location, (i,j), in the map and for every beam k in the beam

plane the absolute difference between the measured depth and the depth ac-

cording to the map is calculated

1 1 1

( , )
I J K

k ijk

i j k

h i j y p
= = =

−∑∑∑                                                          (2.30)

The horizontal uncertainty in the map and in the footprint of the measurement

beams is given by the factor p
ijk 

and without motivation these errors are consid-

ered Gaussian. Besides this stochastic approach a Fuzzy approach is also dis-

cussed.

In the paper a simulation study with a real underwater map using a Kalman

filter is described and figures of the radial position error is given. The stochas-

tic approach gives radial errors of ~110 meter and the fuzzy approach ~80

meter.

The terrain navigation method described in [BMB00] consists of three parts;

terrain matching, state estimator and a slant range corrector. The terrain match-

ing is a maximum likelihood estimation using not only the horizontal positions

but also the depth position. Nothing is mentioned how to calculate the position

error covariance matrix. In the state estimator the position from the terrain

matching is fused with the position from dead reckoning of the vehicle posi-

tion. The slant range corrector is a measurement of the distance and the verti-

cal angle to an external sound source (transponder) with a known position. The

information in the along direction of the vehicle is only used. The result from

the simulation study shows very small errors ( < 1 meter).

In [ MM01, JMHP04 ] no new methods are presented but instead interesting

results from  terrain navigation as a daily method for INS aiding of the under-

water vehicle Hugin which has a multibeam bathymetric sonar. They have used

the TERCOM method with the calculation of the position error covariance as

described in [BER93] but also the particle filter and the mass point filter have
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Figure 2.15: The figure shows how the Kongsberg Defence & Aerospace AS,

Division for Naval Systems, in Norway envisions terrain navigation for

submarines (Courtesy of Kongsberg Defence & Aerospace AS).

been tested.

Figure 2.15 from [FJ03] illustrates how the Kongsberg Company in Norway

envisions terrain navigation for submarines. The method they propose is basi-

cally a result from the research work published in this thesis.

2.2 Terrain navigation methods for underwater vehicles



36 2 Terrain navigation methods
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3.1 Introduction
The global positioning system (GPS) has implied a revolution within land, air

and sea navigation during the last decades. Unfortunately this does not include

navigation of underwater vehicles as submarines or autonomous underwater

vehicles since the GPS signal does not penetrate into the sea. Underwater vehicles

have therefore still to rely on dead reckoning, gyro compass or inertial navigation,

see Appendix A.

Inertial navigation has the great advantage to be independent of external signals

and is by that very attractive in military applications where the threat of jamming

is a great problem. However, inertial navigation has a great problem in the gyro

drift and biases in the gyros and accelerometers. Inertial navigation for

submarines where low drift system is an absolute requirement is very costly and

the system has to be re-initiated regularly with an accurate position. This can of

course be done by a differential GPS position but there is always a risk of being

detected or that the GPS signal is jammed. Terrain navigation is a possibility for

an underwater vehicle to establish a position fix without breaking the sea surface.

Chapter 3

The positioning method
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Terrain navigation and inertial navigation techniques can be said to be a

successful couple since they are complementary with regard to the position

errors and they both share the characteristic of being resistant to jamming.

Hence they together make a system which is negligible revealing.

Terrain navigation has up to today not been used to any larger extent for

underwater vehicles but that is certainly due to lack of high quality underwater

maps. However, the GPS system together with the multibeam bathymetric sonar

has also brought a revolution into mapping of the underwater world. The cost

today to chart an underwater area is only a fraction of what it was some decades

ago and the underwater maps are of a quality that was not reached before.

However, the extent of the mapped areas are still very limited and will so be for a

long time ahead. Remember that more than 70 % of the earth surface is sea area.

Some terrain navigation attempts [NY99, BER93, JMHP04, SCA99] have however

been done with multibeam sonars and methods similar to the TERCOM method

which was early implemented in the Tomahawk cruise missiles [MUOT82].  One

of the problems that has to be handled if the positioning is to be successful is

the problem with multiple correlation peaks.

Figure 3.1 shows a typical matching result when a beam plane of 60 sonar

beams are matched against an underwater map of size 5 km x 5 km. The peaks in

the figure correspond to positions where the measured profile well agrees with

Figure 3.1: Correlation peaks when matching with one beam plane.
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the map. As can be seen there are many likely positions for the vehicle.

However, if the matching is done simultaneously with several beam planes as

Figure 3.2 indicates the result will be very different as can be seen in Figures

3.3 and 3.4.  The distance between the beamplanes is 10 - 20 meters. As will be

shown later the number of likely positions will decrease exponentially with the

number of measurement beams.

Figure 3.2: The principle for assembling several beam planes from a bathymetric

sonar to form a 3D measurement of the bottom topography.

3.1 Introduction

Figure 3.3: Correlation peaks when

using two beamplanes.
Figure 3.4: Correlation peaks when

using three beamplanes.
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The measurement of the bottom topography, according to the proposed

method, should be done by a true 3D sonar. In some cases the 3D picture of

the bottom may be constructed by assembling beam planes from a bathymetric

sonar. In this case, however, there will be an error in the distance between the

beam planes and the angle between the planes and the performance will

therefore be degraded. These errors will however be very small if the

approximate method is applied to a submarine. A submarine has a very large

mass (~1600 ton or more) so the changes in speed or course during the  sampling

time of the bottom profile will be very small if the submarine is held on a steady

course. This has also been the experience of the sea-trials that have been

conducted with surface ships.

The problem with lack of high quality underwater maps can to some extent be

solved by the same method that was used, and still is in use, in the early days

of cruise missiles. The INS is only updated in special areas called navigation

cells which are chartered and have good properties for terrain navigation. The

navigation technique is therefore especially valuable for planned vehicle

operations of considerable duration such as reconnaissance operations.

3.2 The positioning method
Navigation according to the proposed method is therefore that the vehicle

moves between so-called “navigation cells,” as shown in Figure 3.5, with the

help of the conventional navigation system such as INS, or dead reckon/

Doppler-log.  When the vehicle is, according to its navigation system, within

the navigation cell it determines its position by measuring the bottom 3D

topography with a large number of sonar beams over a large bottom area as in

Figure 3.6. The measured area typically has the size of 40 m x 40 m to 300 m x 300

m depending on the actual depth. The bottom topography is then matched

with the underwater map by comparing the measurement with the map at every

point in the map.

The proposed navigation method has some important characteristics [NY01a,

NY01b, NY02, NY99, NYJA04a, NYJA04b, NYJA04c, JCNY05]:

• Robustness with respect to the navigation filter divergence
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Figure 3.6: The bottom topography measurement with the correlation method.

The vehicles are measuring the bottom topography by several sonar beams.

Likely positions are positions with the same bottom topography.

Figure 3.5: A map with indicated navigation cells.

3.2 The positioning method
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• Low requirements on availability and quality of underwater maps

• Very low risk of revealing when a 3D-sonar is used since the

duration of the sonar ping is  ~1 ms.

• Very high accuracy of the position

• Ability to determine own bearing

• High ability to determine the position in flat bottomed areas

• Ability to do own mapping of the bottom topography.

Other important characteristics are:

• Very low initialization requirements

• The system can be used by a stationary vehicle

• Very short time for a position fix from a non-initiated system

Most of these characteristics will be shown to be true in the coming chapters.

The vehicle position is thus established by computing the correlation sum for

every point in the map and taking the position with the minimum correlation

sum as the true position. The correlation sum in a map position is

2

,

1

( ) ( ( ))
N

t t k k t

k

T y h
=

= −∑x x                                                                       (3.1)

That is, calculating the sum of the squared differences of the measured depth

,t ky  at sonar beam k with the corresponding map depth ( )k th x at beam k at

position tx . The measurement is done at time t. The number of measurement

beams is N. By letting the depth values be deviations from the respective mean

values, the bottom profiles are compared and the influence of the actual sea

level is eliminated. However, it should be noted that the absolute depth value

occasionally may be needed for a unique position.

We know from Chapter 2 that the PDF for the position is the result of multiplication

of the prior PDF and a likelihood function

1 1 1 1 1
( | ) ( ; ) ( | )

t t t t t t
p L p+ + + + +x Y x y x Y∼                                                              (3.2)

It is therefore of interest and quite illustrative to look at the shape of the likeli-

hood function calculated according to (2.8) and the posterior PDF at different

numbers of measurement beams to see the great difference between using only
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one beam as in single beam methods, the traditional method, and using the

many beam method as proposed in this thesis.

Figure 3.7 shows the non-normalized likelihood function for a measurement

with only one beam, which is the usual way that the measurement is done in

terrain navigation. Figure 3.8 shows the likelihood function corresponding to a

measurement with 9 x 9 beams. The size of the map is 4 x 4 km in both cases. It

can be seen from the figures that the larger number of beams drastically reduces

the number of likely positions. It will be shown in Chapter 4 that the secondary

false correlation peaks are due to terrain repeatability and that they will de-

crease exponentially with the number of measurement beams, i.e., the size of the

Figure 3.10: The measurement

updated prior for 9 x 9 measurement

beams.

Figure 3.9: The measurement

updated prior for one measurement

beam.

Figure 3.8: Likelihood function when

using 9 x 9 measurement beams.

Figure 3.7: Likelihood function when

using one measurement beam.

3.2 The positioning method
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correlation area properly sampled. The reason for naming them to be false is that

they disappear when N tends to infinity and there will only be one peak left, the

true position.

3.3 The Bayesian and the maximum likelihood

method (ML)
3.3.1  An illustrating example
An underwater vehicle is assumed to move from a position A to a position B by

the help of an inertial navigation system (INS). When the vehicle assumes it is

in position B it measures the depth for aiding in the determination of the posi-

tion. Figure 3.11 shows the bottom profile at position B.

By assuming error distributions of the position errors of the INS-system and the

depth measurement we can simulate the journey from A to B by a Monte Carlo

experiment. Figures 3.12 and 3.13 show the joint PDF of position and depth

measurement from an experiment with Gaussian error distributions. In the con-

tour plot Figure 3.13 the line p(x,y=y
m
)  represents the outcomes of the experi-

ment that have the measured depth y
m
, i.e., p(x|y=y

m
)p(y=y

m
). The likelihood

function at position x is the relative frequency of the outcomes at position x that

has the measured depth y
m 

, i.e., p(x,y=y
m
)/p(x).

Let us now extend the Monte Carlo experiment by also examining the position

accuracy. The likelihood function (2.8) can also be seen as the likelihood func-

tion in maximum likelihood estimation (ML). Figure 3.14 shows the outcome of

this part of the maximum likelihood experiment. The likelihood function is calcu-

Figure 3.11: The bottom profile around position B. Alternative possible

positions according to the measurement are indicated.
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lated using N=51 measuring beams instead of 1 beam as in the previous experi-

ment. The likelihood function will differ slightly from realization to realization

and in the figure the mean of all realizations is shown. From the figure we clearly

see that the maximum likelihood estimation gives a much better accuracy than

Figure 3.12: Illustration of the joint probability density function, centered

around position B, of the position and the measured depth.

Figure 3.13: A contour plot of the joint density function p(x,y) of position and

depth in Figure 3.12.

3.3 The Bayesian and the maximum likelihood method (ML)
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indicated by the mean likelihood function which is natural since the horizontal

position of each individual likelihood function varies according to the posi-

tions given by the histogram. The Cramér-Rao lower bound, see Chapter 5,

gives 6.29 as the lowest error variance we can achieve and we reached 6.46. The

error distribution is asymptotically Gaussian, that is when the number of trials

tends to infinity it will become Gaussian. We conclude from the figure that we

are close to the asymptotic distribution.

Instead of the Bayesian estimation thinking we can perceive the situation as

having two measurements of the position at B, one from the INS-system and

one from the maximum likelihood estimation.  A way of fusing the measure-

ments together is to use the linear fusing method discussed in Section 3.3.2

which will give a minimum variance estimate of the position.

Since the linear fusing method will give the smallest position error variance, we

will use this method in the practical estimation of the position. The involved

distributions are also close to Gaussian due to the large number of measuring

Figure 3.14: A histogram for the outcomes of the Monte Carlo positioning

experiment. The dotted curve is the mean of the likelihood functions for each

outcome. The variance calculated from the mean likelihood function is 10.7.
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beams we are typically using (~400).

We may interpret the situation as follows. When we are in position A all we can

say about our future position at B is contained in the joint PDF of the position

and an assumed future measurement. However, when we are in position B our

position is no longer stochastic but deterministic but unknown by us. Even if

we do not know the position ourself others may know it and by that it is strictly

not stochastic any more. We are thus in a position to estimate the position by

linearly fusing the positions given by the INS-system and the maximum likeli-

hood estimation method.

3.3.2  The linear fusing method
Linear fusing is a way to present the Kalman equations when several sensor

data are fused together into a single mesurement. The method means that a new

estimate is formed by a linear combination of independent unbiased estimates.

The linear fusing method is equivalent to the linear Kalman filter. In the case we

have two estimates of the position we calculate the fused estimate of 1 2ˆ ˆ and x x as

[KSH00, CANY05]

1 1 2 2 1 2ˆ ˆ ˆ{ } { } { } ( )E E E= = + = +µ x A x A x A A µ                                                (3.3)

The new estimate should be unbiased

1 1 2 2ˆ ˆ ˆ{ } { } { }E E E= +x A x A x                                                                                 (3.4)

which gives

1 2+ =A A I                                                                                   (3.5)

The covariance of the fused estimate is

1 1 2 2 1 1 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 2 1 1 1 1( ) ( )T T T T= + = + − −xx x x x x x x x xP A P A A P A A P A I A P I A          (3.6)

which is quadratic in A
1
. Completing the square gives the minimum trace of

the covariance matrix for

3.3 The Bayesian and the maximum likelihood method (ML)
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2 2 1 1 2 2

1

ˆ ˆ ˆ ˆ ˆ ˆ1

−
 = + x x x x x xA P P P                                                                                   (3.7)

1 1 1 1 2 2

1

ˆ ˆ ˆ ˆ ˆ ˆ2

−
 = + x x x x x xA P P P                                                                                   (3.8)

and the minimum covariance of the fused estimator as

1 1 2 2

1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ
− − −= +xx x x x xP P P                                                                                              (3.9)

and the fused estimate as

2 2 1 1 2 2 1 1 1 1 2 2

1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 2ˆ ˆ ˆ
− −

   = + + +   x x x x x x x x x x x xx P P P x P P P x                             (3.10)

By recursion the expressions in (3.9) and (3.10) can easily be generalized to M

measurements

1 1
ˆ ˆ ˆ ˆ

1
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− −

=
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=

= ∑xx x xx P P x                                                                                                (3.12)

Assume now, to begin with, that the frequency distributions p
1
 and p

2
 of

1 2ˆ ˆ and x x ,  respectively, are Gaussian with dimension n. We multiply the PDF’s
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P

                          (3.13)

and it is well known [AN79, MA82a] that this function, when normalized, is a

Gaussian PDF with a covariance and a mean of
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2
1 1
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1
i i
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=
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The linear fusion can thus also be seen as a multiplication of the PDFs if the

involved PDFs are Gaussian.

However, since no explicit expression is known for the variance of the maximum

likelihood estimate (MLE) we have to resort to the Cramér-Rao expression for

the variance. This will in many cases give an accurate approximation of the

variance of the maximum likelihood estimate since the convergence towards

the Cramér-Rao limit is mostly quite fast [AZ96, KA93]. The matter will be

further touched on in Chapter 6 and 8 where some graphs will show the rapid

convergence in our case.

3.3.3  Multiple likelihood peaks
The difference between the Bayesian method and the linear fusing of the prior

PDF and the maximum likelihood estimate is illustrated in Figure 3.15 where a

step in the Bayesian recursion is illustrated. To the left in the figure is the

previous estimated PDF for the position and to the right is that PDF propa-

gated and it is our estimated position PDF before our measurement of the

position. Now assume that our measurement gives a bimodal likelihood func-

tion due to terrain repeatability. The right  peak of the likelihood function has

the highest amplitude and from our knowledge of the measurement error we

conclude that the highest peak indicates our position with high probability.

Still, after fusing the likelihood function and the prior position PDF the left peak

will give the maximum posterior position. The mean position would be between

the peaks but close to the left peak. The Bayesian approach will thus give

different positions depending on if the mean or the maximum a posterior (MAP)

position is used as the estimated position.  It may also give a position which

has a low probability according to the measurement. The maximum likelihood

estimation, which is asymptotically unbiased, will choose the higher peak as

the true one and the linear fusing method will thus fuse this peak with the prior

position PDF. This estimated position will thus differ from the one estimated by

the Bayesian approach.

3.3 The Bayesian and the maximum likelihood method (ML)
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In Chapter 4 it will be shown that not only the probability of wrong position due

to false peaks will decrease exponentially but also that the amplitudes of the

false peaks will decrease exponentially with the number of measurement beams.

Figure 3.15: Illustration of the prior position PDF and a bi-modal likelihood

function.

Figure 3.16: Illustration of the posterior (measurement updated prior)

position PDF .
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Figures 3.9 and 3.10 show the non-normalized measurement-updated PDF for a

real map. A comparison between figures shows that the variance is much smaller

when correlation with many measurement beams is used.

If we look closer at the correlation peak in Figure 3.10 we will find that it is

approximately a Gaussian curve. Figure 3.17 shows the N-normalized likelihood

function from a positioning in a sea-trial and the Gaussian shape is clearly

visible. The curve in Figure 3.17 is N-normalized, i.e., if the curve is self-multi-

plied N times (the number of beams) we will have the true likelihood function. It

will be shown in Chapter 4 that the likelihood function converges to a Gaussian

function when the number of measurement beams tends to infinity.  It will also

be shown that this Gaussian curve, if normalized to have unit volume, will

asymptotically coincide with the PDF of the estimation error in the maximum

likelihood estimation. That is, the unit normalized likelihood function when the

number of measurement beams is large will also be the PDF for the position

error.

If the time between the measurements is large the variance in the propagated

PDF, ( )p− x , may increase so much that it will not noticeably improve the

estimation of the position based on the likelihood function. A typical RMS-

error of the prior PDF in submarine applications may be ~3000 meter while

maximum likelihood estimation gives an RMS-error of, say, less than a meter.

Figure 3.17: A typical N-normalized likelihood function from a sea-trial (400

beams).

3.3 The Bayesian and the maximum likelihood method (ML)
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Hence, when the prior PDF has a large variance, the estimation problem becomes

a maximum likelihood estimation problem without prior PDF.

A problem both in the Bayesian method and the linear fusing method is the

problem with multiple peaks, false peaks, due to terrain repeatability since the

likelihood function (2.8) is not a one to one function, see Figure 3.11. Figure 3.18

shows a terrain profile and the vehicle measures the depth y when it is in the

position x
0
. The PDF for the measurement error is assumed to be symmetric with

cut tails. Positions outside the range of the PDF can not be explained by the

measurement error and the likelihood function for the true position which is the

one marked with x
0
 in the figure.

Now, as can be seen from Figure 3.18 there are other positions that will give the

same depth measurement but of course the vehicle can only be at one place at

a time. As common in the Bayesian method to use the mean as the probable

position may lead to an estimated position between the peaks of the posterior

PDF with no likelihood. This is not acceptable from a physical standpoint.

Therefore all likely positions according to the likelihood function have to be

evaluated one by one. A technique for handling such situations is track split-

ting which is frequently used in tracking of flying objects [BSFO88]. In this

technique parallel tracks are formed and as soon as a track is found false it is

terminated. However, this is not as easy as expected and does not give an

answer in real time about which peak represents the true position which may be

Figure 3.18: The figure illustrates how false likelihood peaks arise due to terrain

repeatability. True position is x
0
.
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needed by the guidance system because its action may depend on the estimated

position.

In practice the individual PDFs for the measured position candidates may not be

so well separated as assumed above. However, we can draw the important con-

clusion that in Bayesian terrain navigation the maximum a posteriori (MAP)

position estimate is to prefer instead of the mean estimate when the posteriori

PDF has multiple peaks [GDW00]. Then we note that the linear fused estimate is

not so influenced by false peaks as the Bayesian MAP position if the peaks are

not so well separated. We also note that a position variance calculation based

on the variance of the Bayesian posterior PDF is influenced by false peaks.

False peaks will also give a position bias if the position is calculated as the mean

of the Bayesian posterior. It is only when we have a large number of measure-

ment beams that the two methods of calculation of the position and position

error will coincide. A broad discussion about the role of the mean-measure and

other measures in Bayesian inference can be found in [HAFO04]. In [CA88]

multiple peaks in maximum likelihood estimation are discussed.

3.4 Concluding remarks about the basic ter-

rain navigation method
Determining the position of underwater vehicles using the proposed correlation

method has been studied over the past years. The correlation method has proven

to be robust, highly precise and minimally revealing. It is also easily implemented

and demands a minimum of underwater maps.

The proposed method do only terrain positioning in the navigation cells but, of

course, the method is also suitable for continuous navigation if the required

maps are available.

The terrain positioning can easily be aided by side-scan and sediments maps or

by directions to external sound sources since likelihood functions from

independent measurements are simply fused by multiplications if the processes

are Markov which they often can be considered to be.

3.4 Concluding remarks about the basic terrain navigation method
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3.5 A way of implementing the approximate

method
When an approximate 3D picture of the bottom is to be assembled from several

beam planes it is also possible to correlate each beam plane against the

underwater map separately at each ping and then join them together. This will

shorten the time delay for a position estimate after the last ping. Figure 3.19

shows the beam footprint pattern from 5 beam planes which are moved around,

as a packet, in the map to find the position where it fits the best. The best fit is

considered to be the position where the correlation function

2

1

( , ) ( ( ) )
N

i i

i

T d y h d
=

= − −∑x x                                                                            (3.16)

has its minimum. In the expression  y
i
  is the measured depth at beam i and h

i
(x)

is the corresponding depth according to the map in position x and d is the

difference between the actual sea level and the reference level of the map (the

measurement bias). The total number of beams is N.

Usually the correlation function (3.16) is calculated for all beam planes at once

but the correlation function can also be written as

Figure 3.19: Beam footprint pattern from five beamplanes to be moved around

in the map.
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where the correlation sum for each beam plane is calculated separately with the

same reference point and after the final measurement (ping) they are summed

up. The calculation for the separate beam planes must use the same reference

point so the calculation is equivalent to matching all beam planes simultaneously.

The measurement bias shall be determined when all the final measurements are

done in order to have the best accuracy. Since the partial correlation sum is

2 2 2

, , , , , ,

1 1 1

( , ) ( ( ) ) ( ( )) 2 ( ( ))
k k kN N N

k k i k i k i k i k i k i k

i i i

T d y h d y h d y h N d
= = =

= − − = − − − +∑ ∑ ∑x x x x

                                                                                                                              (3.18)

the sum , ,

1

( ( ))
kN

k i k i

i

y h
=

−∑ x  has thus also to be calculated. When all measure-

ments are done the estimated position can be determined by minimizing T(x, d)

by some numerical procedure. This 3D minimization problem can, however, be

simplified by first minimizing T(x,d) with respect to d and substituting the

expression for d into (3.18) making it a 2D minimization problem. Then the

estimated position is the x that minimizes

2

2

, , , ,

1 1 1 1

1
( ( )) ( ( ))

k kN NM M

k i k i k i k i

k i k i

y h y h
N= = = =
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∑∑ ∑∑x x                                         (3.19)

The estimated measurement bias is then calculated as (see also Chapter 5)

1

1ˆ ˆ( ( ))
N

i i

i

d y h
N =

= −∑ x                                                                                          (3.20)

Using this implementation method the total computational load for a position

estimate is divided into parts which are computed sequentially at the ping

events. The time between the pings (measurements) is often quite large (~ 10 s)

3.5 A way of implementing the approximate method
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so there will be sufficient time for the calculations even if a general computer is

used for the calculation. Another advantage is that the position accuracy can

be monitored as a function of the number of measurements (pings) by calculation

of the Hessian in the position of maximum of the likelihood function. This is of

interest since assembling of beam planes for forming a 3D picture of the bottom

is just an approximation. When assembling beam planes there will always be a

stochastic error in the distance and angle between the beam planes. The more

planes that are added the larger will the error between the first and the last

plane be. It is thus of interest to use as few beamplanes as possible. In the sea-

trial that has been conducted, with the equipment that has been used, the

number of beam planes should not be more than 11if the distance between the

planes is 25 meter. An increase above that will in most cases not improve the

position accuracy. By studying the Hessian after each measurement it is possible

to interrupt the collection of beam planes when the increase in accuracy falls

below some value.

3.6 Comparison between the single beam mis-

sile method and the correlation method
The main purpose of the correlation method in recursive applications is to make

a linear Kalman filter feasible, to achieve high position accuracy and robust-

ness. Therefore the method, even in a recursive application with dense sam-

pling, always uses a large number of measuring beams. However, even for an

equal total number of measurement beams, the correlation method will always

give a smaller position error compared to the traditional terrain navigation method

with a single measuring beam. This because the distances between the foot-

prints of the measurement beams are random variables in the single beam meth-

ods but fix known values in the correlation method.

The implication of this can easily be illustrated in the one-dimensional case. If

we look at a single beam method as a batch method we collect N depth measure-

ments. Then we perform a correlation against the map and we will have a situa-

tion as depicted in  Figure 3.20. In the correlator method we have fixed known

distances between the nominal sampling points which are indicated by circles in

the figure. In the single beam methods we have errors in determining our posi-

tion and these errors are indicated by ε
k
. These position errors will cause errors

in the map heights determination.

A first order approximation will give us the likelihood function
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where x
k
 is the believed position at time instant k and ε

k
 is the random position

error from that position. We can see this as having an additive white measure-

ment noise with the total covariance matrix

2 2

,
1...

( )
i e

i N

diag εµσ σ
=

= +C                                                                              (3.22)

where the terrain constant µ  is the expected value of the square of the terrain

gradient

2
h

E
x

µ
 ∂  =   ∂   

                                                                                                 (3.23)

The terrain constant µ is assumed to be the same in all points and it is a

characteristic of the actual terrain. Flat terrain will have a small µ-value and

more hilly terrain will have a higher µ-value. Figure 3.21 shows the one-sided

spatial power spectral density, ( )
h

S ω , for a one dimensional terrain profile.

For a stochastic variable h(x) the expected value of the square of a derivative of

the variable is [NR75]

3.6 Comparison between the missile method and the correlation method

Figure 3.20: The figure illustrates that an offset from the nominal sampling

positions, caused by the uncertainty in the position, causes an additive height

error.
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∫               (3.24)

Figure 3.21: The figure shows the spatial one-sided power spectral density for

a terrain profile.

Figure 3.22: The position error variance as a function of the position error variance
in sampling of the terrain topography. Synthetic AR(1) terrain with a pole in 0.98.
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The spectrum of a terrain profile can often be assumed to have an exponential

form 0 0
( ) exp( / )

h
S Sω ω ω= − where 0

ω is a characteristic of the actual terrain.

In such a case we have

3

0 0
2Sµ ω= .                                         (3.25)

We note the heavy dependence on the high frequency content in the terrain

profile. The assumption of the same µ-value for all sampling points will give the

following simple expression for position the error covariance matrix in  the two

dimensional case

1
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1 11 1 22 2

 2
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                                      (3.26)

or

2

 2
(1 )Single beam ETL

e

εσ
µ

σ
= +R R                                                                              (3.27)

where R
ETL

 is the position error covariance for the proposed method. Chapter 5

and 6 will go into the details of the expression. The orders of the two terms in

the first factor of (3.26) are about the same in flat areas so even for the same

number of measuring beams the correlator method clearly gives smaller position

errors.  Figure 3.22 shows how the resulting position error varies with the position

error in sampling the terrain topography. The figure shows the result from a one

dimensional  Monte Carlo simulation with a synthetic AR(1) terrain topography.

Figure 3.22 seems to indicate that the relation should be more quadratic instead

of linear but in (3.21) we have only included the linear term, adding another term

in the Taylor expansion would add a quadratic term as well. The expression also

explains why the performance of the missile method in rough terrain is lower

than expected from the terrain roughness only. The expression (3.26), given the

assumptions made, is formally equivalent to the solution of the algebraic Riccati

equation for the estimation error in linear Kalman filtering.

The difference in accuracy between the two methods can also be illustrated in

the 1D-case if we make some approximations. It follows from the central limit

theorem that the expected function of the likelihood function is a Gaussian

3.6 Comparison between the missile method and the correlation method
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function.  If we therefore replace the likelihood function, when we measure with

only one beam, with its expected Gaussian function and assume that the vehicle

position at the sampling event has a Gaussian error, we can directly apply the

equations for the linear Kalman filter (see Chapter 4). We also assume that the

likelihood function and the position error PDF are the same at all sampling events.

The starting PDF is assumed to have a variance of 2

0σ and it is assumed that

during the propagation it will broaden to 2

0ασ  where α>1. The likelihood

function, normalized to a PDF, is assumed to have a variance of 2

Lσ . The posterior

PDF will therefore have the following variance according to the  “parallel resistor

formulae” for adding variances

2 2 2

0

1 1 1

L
σ ασ σ

= +                                                                                                  (3.28)

If we now simplify our discussion by assuming that the propagation constant

and likelihood function will be the same in all following steps we will come to the

following result

2 2 2 1

0

1 1 1 1 1
1

N N N

L
σ α σ σ α α −

 = + + + +  
…

                                                          (3.29)

For infinitely many steps we will have

Figure 3.23: Illustration of a recursive step under the simplified assumptions
given in the text.The posterior PDF and the likelihood function almost coincide.
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2 2

1 1 1

1 1/
L

ασ σ
=

−                                                                                                (3.30)

The procedure is illustrated in Figure 3.23. For large N the starting distribution

has no influence on the estimation and for large propagation errors the

estimation is only dependent on the last likelihood function. Now, it must be

noticed that replacing the likelihood function with its estimated function is a

rather cruel action.

3.7 Determining the measurement bias
Position bias can be caused by many sources but caused by measurement bias

it is seldom any problem since in many cases the errors in the height measure-

ments will give a diagonal position error covariance matrix  2
e eσ=C I . In this

case  the bias is easily removed by reducing the measured heights and the map

heights by their means before the correlation process.  Figure 3.24 shows how

measurement bias occurs when the sea level differs from the reference level of

the map.

The upper figure in Figure 3.25 shows the measured profile and the map profile

3.7 Determing the measurement bias

Figure 3.24: The vehicle measures the depth from the actual sea level. The depth
in the underwater map is from the reference level.
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from a sea trial performed in 1998. As can be seen there is a measurement bias.

By sliding the measured profile downwards as in the lower figure in Figure 3.25

the correlation error sum will decrease as shown in Figure 3.26 to a minimum

before rising. The measurement bias is taken as the displacement which gives

the minimum correlation error sum. Formally we can determine the minimum as

follows.

Assume that we have a measurement bias of d in each measurement beam. We

consider d to be an unknown constant. Our correlation function in the true

position x
0,
 when our measurement is y, can then be written as

1

0 0 0
( ) ( ( ) ) ( ( ) )T

e
T d d−= − − − −x y h x u C y h x u                                               (3.31)

The column vector u has ones as elements. T(x
0
) is a function of the bias d and

taking the first derivative with respect to d and equalling it to zero gives

1

0
( ( ) ) 0T

e
d− − − =u C y h x u

or

1
1 1

0
ˆ ( ( ))

T T

e ed
−− − = − u C u u C y h x            (3.32)

In the case we have

Figure 3.25: Illustration of measured
depth and depth according to the
underwater map. Sea-trial 1998.

Figure 3.26: The correlation function
in the true position as a function of
the measurement bias.
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and if we have the same measurement uncertainty in all beams

0 0

1 1

1 1ˆ ( ) ( )

N N

i i

i i

d y h y h
N N= =

= − = −∑ ∑ x x   (3.34)

where the scalars y and h are the mean values of the elements in respective

vector. The true position may be situated between the steps in the matching

process and in this case the above estimation of the measurement bias will not

be correct. However, the error due to that may often be neglected.

3.8 Incorporation of  sediment data in the

correlation
3.8.1 Introduction
Even if the proposed correlation method increases the navigation performance

substantially in flat bottom areas compared to single beam methods there will of

course be a limit when the method no longer is sufficient for establishing a

position. One way to push this limit is to also include  the sediment profile or

side-scan pictures in determining the position.

Whether our estimation is to be considered as Bayesian or a linear fusing

process it is easy to include disparate independent measurements of the state

of a Markov process since for a Markov process we have the conditional PDF

1 2 1 2
( | , ,..., ) ( | ) ( | )... ( | )

N N
p x y y y p x y p x y p x y=                                         (3.35)

and thus for the likelihood function

1 2 1 1 2 2
( ; , ,..., ) ( ; ) ( ; )... ( ; )

N N
L x y y y L x y L x y L x y=                                 (3.36)

3.8 Incorporation of sediment data in the correlation
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Not only physical measurements but also subjective information can be used

for formulating a likelihood function. If the measurements are not independent

that has to be taken into account.

3.8.2  Incorporation of sediment data
Flat bottom areas are often characterized by soft sediment layers and sediment

rocks (here taken together as sediment layers) on a more hilly rough crystalline

underground of primary rock or moraine ridges, or similar objects, from the last

glacial period. The ridges may have been created at the edge of the ice cap or

created by ice river deltas. The Baltic sea, for which the navigation method has

Figure 3.28:  An example of a parametric sonar manufactured by Innomar, Ger-

many. Secondary frequency 4...12 kHz and penetration depth down to 50 meter.

Size 250 x 350 x 80 mm.

Figure 3.27: The sediment profile along a line in the test area during the October

2002 sea-trial.
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been developed and tested in, has also during the millenniums undergone many

different courses of events as sea and inland sea to what it is today as a

brackish sea. The size has also varied through the millenniums. During the

different time periods different kinds of sediments have been deposited on the

bottom and by that created a profile structure which varies with the location

(Figure 3.27). A general description about the sediment structures in the Swed-

ish coastal waters can be found in [CKN92].

Figure 3.29: Sediment profile at way-point 2C in the October 2002 sea-trial. Note

that the vertical scale is exaggerated, see Figure 3.30.

Figure 3.30: The picture shows an area, 200 meter x 200 meter, around way-point

BP2C in the October 2002 sea-trial.

3.8 Incorporation of sediment data in the correlation
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For measuring the sediment profile a sub bottom profiler is used, (Figure 3.28)

which transmits a sound pulse of a few kHz down into the sediments and records

the returning reflections from the different layers. Figure 3.29 shows the sedi-

ment profile at the way-point BP2C in the October 2002 sea-trial (Chapter 9). The

picture is created from repeated sound pulses transmitted about 2 meter apart.

Each pulse gives a vertical line in the diagram. The received return signal is low-

pass filtered to enhance the horizontal structure in the picture. This will also

mean that the appearance of the picture will depend on the actual filter. The

beamwidth of the receiver is about 19o.

With a sub bottom profiler the sediments down to several hundreds of meters

can be inspected which is sufficient for the conditions in the Baltic sea even if the

sediments layers in the south Baltic can be very thick. South of the so called

Tornquist line the thickness is several kilometers.

When using the sediment profile for military navigation purposes one needs a

transmitter with a very narrow sound beam, i.e., a parametric sonar, to keep the

revealing distance short. This can also be done by lowering the transmitter to

near the bottom. However, one must be aware of that the reflecting energy will

spread spherically from the sediment layers.

To study the possibilities to use the sediment layers for navigation a way-point

in the October sea-trial was placed in a very flat area as shown in Figure 3.30,

Figure 3.31: The likelihood function

for 5 beam planes at way-point BP2C.

Horizontal scale in  10th of meter.

Figure 3.32: The likelihood function

for 11 beam planes at way-point BP2C.

Horizontal scale in  10th of meter.
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where a unique terrain positioning based on the topography only was believed

to be difficult.

The terrain positioning based on the topography gave about the same result for

all five positionings at the way-point. Figures 3.31 and 3.32 show the likelihood

functions when using 5 and 11 beam planes and we see from the figures that we

have false peaks. The result is somewhat better for 11 beam planes which gives

Figure 3.35:  Resulting likelihood function. The position RMS-error dropped

from  57 to 15 meter in the east direction and from 143 to 21 meter in the north

direction.

Figure 3.33: Likelihood function

around the true position based on

the topography at way-point

BP2C.

Figure 3.34: Likelihood function

based on the first sediment layer at

way-point  BP2C.

3.8 Incorporation of sediment data in the correlation
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a correct position but a large position error. If a true 3D sonar had been used the

likelihood function would probably have been more distinct. The true peak is the

one to the far right.

Suppose now that we use the distance to the first reflecting layer in Figure 3.29.

We measure, in this example, with only one sub bottom profiler beam (normally

several sub profiler beams would be used) and we assume that we have the same

accuracy as before, i.e., 0.5 meter RMS. The likelihood functions for the topo-

graphic measurement and the sediment  measurement can be seen in Figure 3.33

and 3.34.

As can be seen from Figures 3.27, 3.29 and, 3.34 the sediment layer has a more

broken surface than the bottom surface. This is common in the archipelago areas

of the Baltic. Multiplying the two likelihood functions will give the  resulting

likelihood function  (Figure 3.35). As can be seen in this case the position error is

considerably smaller and the likelihood function more distinct.

To conclude the use of sediment data to improve the positioning. Underlying

sediment layers are naturally more broken than the current bottom surface and

if used for positioning they can considerably improve the position accuracy in

flat bottom areas.

The best positioning result in flat terrain areas will be achieved if a true 3D sonar

is used due to the higher accuracy of the distance between the individual beam

footprints and if the 3D sonar also have a sub bottom profiler function. A para-

metric sub bottom profiler will give very narrow beams at the low frequencies

used and it is ideal for military use. The sonars may transmit simultaneously  but

the duration of the sub profiler pulse will be considerable longer.

3.9 Incorporation of side-scan data in the

correlation
To improve the positioning by using side-scan pictures might not be as easy as

to use sediment data.  There are several reasons for that. First of all much of the

information in a side-scan picture is from the light and shades from the height

variations of the bottom. This information is, however, already in the usual 3D

sonar data set. This information also decreases as the bottom becomes flatter,

i.e., when the extra information is most needed. Secondly, the information from
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the bottom texture which is not in the usual 3D sonar data set varies with time

and may not be appropriate after some years. Thirdly, a side-scan picture depends

very much on the side scan sonar attitude and distance to the bottom which will

make the matching  difficult and not as easy as for the topographic height

information.

Figure 3.36 shows two side-scan pictures over the flat bottom area for which the

sediment  profile was used for the positioning. The pictures are taken only a few

hours apart. From the pictures we see that there is some texture information that

might be used. A drawback for military use is the long time it takes to collect the

side scan data and the revealing distance is also much longer than for a

bathymetric sonar.

3.10 Incorporation of  external sound sources

in the correlation
Submarines with their long flank arrays can determine the bearing to sound

sources with high accuracy. In the case the position of the sound source is

known this information can be used to formulate a likelihood function which in

some cases, i.e., in flat areas, can improve the position estimate based on terrain

positioning and the inertial navigation system.

Figure 3.36: Side-scan pictures from two passages over way-point  2C.

3.10 Incorporation of external sound sources in the correlation
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Suppose the external sound source is at the position (x
ss
, y

ss
) as shown in

Figures 3.37 and 3.38. While the vehicles position is at (x, y) and the measured

bearing to the sound source is θ
0
. If we assume that the measurement error is

Gaussian distributed we will have the following likelihood function

2

022

1 1
( , ) exp( arctan )

22

ss

ES

ss

x x
L x y

y yθθ

θ
σπσ

 −−
= − − 

                                  (3.37)

Where σθ 

2  is the uncertainty in the angle measurement. The Figures 3.39 , 3.40

and 3.41 show an example of a prior PDF, the likelihood function and the

posterior PDF. The likelihood function calculated from the external sound

source will not be Gaussian in a Cartesian coordinate system.

The likelihood function along the arc segment with radius R, see Figure 3.38,

and centered around the point (x,y) is

2

2 2
( ) exp( )

2
ES

s
L s

R θσ
−∆

∆ ∝ −                                                                                  (3.38)

Where ∆s is the distance along the circular arc, i.e., ∆s= R∆θ and R and
 
∆θ are

defined in Figure 3.38.  For large R this will approximately also be the likelihood

function along the tangent in the point (x,y). The improvement of the accuracy

by measuring the bearing to the external sound source is determined by

calculating the  Fisher information matrix

Figure 3.37: External sound source

and own vehicle measuring the

bearing to the source.

Figure 3.38: Definitions of

variables.
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where subindex TP refers to terrain navigation and ES to the external sound

source. The approximation for large distances R will give the inverse information

Figure 3.39:. The prior position PDF. Figure 3.40: The likelihood function

for the bearing measurement.

Figure 3.41: The posterior PDF for the position.

3.10 Incorporation of external sound sources in the correlation
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matrix in the principal directions of the likelihood function for the external sound

source as

2 2

1 0

0
ES

Rθσ−  
=  ∞ 

J                                                                                    (3.40)

By repeating the procedure recursively with the same sound source  an

improvement in the position estimate can be achieved. Figure 3.42 illustrates the

procedure. Up to the left in the figure is the PDF for position of the vehicle after

the terrain measurement update in position A. Across to the right is the PDF for

the bearing measurement and the two PDFs are fused together by multiplying

the PDFs as described earlier. This fused PDF is then propagated as described

in Chaper 2  to time t
2
 and is indicated to the left at position B. At time instant t

2

a new bearing measurement is done which is fused with the previous propagated

PDF and the resulting PDF is then propagated and so on. As understood this

scheme can be applied to aiding from several external sound sources.

In the cases the distance to the sound source is large the PDF from the bearing

measurement can be approximated to be Gaussian and again we can use a linear

Kalman filter.

Figure 3.42: Recursively determining of bearing to external sound source.
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4.1 Introduction
The problem with false correlation peaks has already been touched on in Chapter
3 where the Figures 3.7 and 3.8 show the large difference between using one or
many measurement beams. The false peaks are due to terrain repeatability and of
course the larger the measured bottom area is, the more unique the measured
area will be and thereby fewer false peaks. The traditional way of selecting
among the correlation peaks is to fuse with the prior position PDF or to use a
validation gap. But even so, the false peaks may influence the estimated position
and the position error covariance if the Bayesian approach to terrain positioning
is used. It is thus important to reduce the number of false peaks and we have
already seen that increasing the number of measurement beams is an effective
method for achieving that.

In studying the problem of how false correlation peaks depends on the number
of measuring beams two approaches are selected. In the first one we calculate
how the probability for detecting a false position due to terrain repeatability
depends on the number of measurement beams, i.e., the size of the correlation
area. In the second approach we study how the amplitudes of the correlation

Chapter 4

The likelihood function

and the Kalman filter
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peaks vary with the number of measurement beams. In both case it turns out  that
the false peaks will disappear as the number of beams increases. A method of
how to test if a correlation peak corresponds the true position or not is also
introduced.

Later in the chapter the shape of the likelihood function is discussed. It is shown
that if a large number of measuring beams are used the likelihood function will be
close to Gaussian, bias free, and coincide with the PDF for the position error if it
is estimated by the maximum likelihood method.

Since the normalized likelihood function and the position error is Gaussian, a
linear Kalman filter based on the normalized likelihood function can be used to
estimate the position.

4.2 False peaks
4.2.1 The probability for false position
Let us for simplicity study the problem with false positions in one dimension
[NY01a, NY01b]. Assume that we have a stochastic bottom profile as in
Figure 4.1. The sonar, which has N measurement beams, has  measured the
profile in area 1 and it is found to be

y = h
1 
+ e                                                                                                                    (4.1)

where e is the measurement  error. Now we are comparing this measurement with
the underwater map in area 2 which has the bottom profile h

2
. In the following, we

will assume that the elements in the vectors 1h and h
2
 are correlated Gaussian

sequences. Let

Figure 4.1: A bottom profile section.
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∆h=h
1
- h

2
                                                                                                              (4.2)

Now we want to find the probability that the absolute value of the elements in
the vector |∆h| < ε

h 
since this means that the two bottom profiles are very close

to each other. The notation |∆h| <ε
h 

means that the absolute value of every

element in the vector ∆h should be smaller than ε
h
. Since we assumed 1h and h

2

to be Gaussian, we have

1

/ 2

1 1
( ) exp( )

2(2 ) det( )

T

N
p

π
−∆ = − ∆ ∆h h C h

C
                                   (4.3)

where C is the covariance matrix of ∆h. The simplest way to calculate the
probability that the two bottom profiles are close to each other may be to first
decorrelate the vector ∆h by a mode decomposition of the covariance matrix

C = ULUT                                                                        (4.4)

where U is the eigenvector matrix and L is the eigenvalue matrix. Making the

substitution ∆h = Uy makes it possible to compute an upper bound of the
probability  that the difference in depth profiles of the two locations is less
than a small number.
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   (4.5)

The hypercube ε encloses the hypercube hε .The covariance matrix is assumed

to be positive definite, i.e., all eigenvalues λ
i  
> 0, so each factor

21
exp( ) 1

22
i

i

ii

y
dy

ε

ε λπλ−

− <∫                                                                                (4.6)

4.2 False peaks
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if ε > 0. The probability that the terrain repeats itself will thus decrease
exponentially with  N.

It is easy to show that the above conclusion is valid also for non-Gaussian

correlated sequences h since any PDF can be approximated as closely as desired

by a sum of Gaussian PDFs p
m
(y), [AS72, AN79]. Equation (4.5) can therefore be

written as
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M M

m m
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p y d p y d
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ε ε ε ε

ε ε

= =− − − −

∆ ≤ ≤ ≤

= =∑ ∑∫ ∫ ∫ ∫

h y

y y
                                                        (4.7)

For every fix M the probability will exponentially approach zero when N increases
above all bounds.

Figure 4.2 illustrates the exponential decrease in probability that the terrain
repeats itself, according to (4.5),  for two synthetic bottom profiles generated by

Figure 4.2: Probability that the bottom repeats itself.
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passing white noise through an AR(1)-filter with a pole in a = 0.96 and a = 0.99,
respectively.

4.2.2 The amplitude of the false peaks

In the previous section the probability of  false peaks  was studied. Here instead
the amplitudes of the false peaks are studied. Let us formulate the ratio between
the ordinates of the likelihood function in the false position x

f
 and in the true

position x
0
 when the measurement is taken at the true position x

0
, see Figure 4.3
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Now, the only way for the ratio q not to approach zero when N tends to infinity

Figure 4.3: A likelihood function with a secondary peak at position x
f
 caused by

terrain repeatability. True position at x
0
.

4.2 False peaks
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is that there is a symmetry in the terrain which extends into infinity. This is not
the case for a natural terrain and we conclude that secondary peaks will disappear
as the number of beams increase.

An increase in the number of measurement beams not only decreases the number
of false likelihood positions but it also makes the peak of the likelihood function
much sharper that is the position accuracy increases as will be shown in
Chapter 5.

We conclude from the above that false positions will not be a problem if a large
number of measuring beams is used. This has also been the experience from our
sea trials. When it occasionally still happens in flat bottom areas the simplest
way to eliminate the problem is to increase the size of the total sonar footprint
since the probability of a false position decays exponentially with the size of
that area.

4.2.3 False peaks, hypothesis testing
In Chapter 3, Figure 3.15, a positioning example was shown where multiple like-
lihood peaks were assumed to have occurred. Multiple likelihood peaks appear
if we have too few measurement beams in relation to the height variations in the
terrain. We can distinguish between two cases. The first case occurs if we are
using very few beams in a rough terrain and the second case occurs if we have
many measurement beams but the terrain is very flat. In the last case the likeli-
hood function will be close to  Gaussian.

Assume that we have two likelihood peaks which are close to each other in
magnitude but the one with index 1 is slightly higher than the one with index 2.
Since peak no. 1 is the highest we will assume that it shows the true position.
Our question is now if this is just due to the randomness of the measurement
error or is this position really the true position. The correlation function at the
true position and at the false position is respectively

1 1 1( ) ( ) ( )T TT = − − =x y h y h e e                (4.9)

and

2 2 2 1 1( ) ( ) ( ) ( ) ( )

         2

T T

T T T

T = − − = − + ∆ − + ∆

= + ∆ ∆ + ∆

x y h y h y h h y h h

e e h h h e
               (4.10)
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Now, define the stochastic variable ξ as

2T Tξ = ∆ ∆ + ∆h h h e                             (4.11)

and it is clear that depending on the sign of ξ either of the positions will have the

highest magnitude of the likelihood function.  Since we know the positions, we

also know the vector ∆h. For large N the stochastic variable ξ will mostly be

positive which means that position 2 will have a larger correlation sum and it is

unlikely that it is the true position. When 0ξ < position 2 will have the smallest

correlation sum and by that be the most likely positions, i.e. the hypothesis fails.
Thus, when

2T T∆ ∆ < − ∆h h h e                (4.12)

position 2 will be the likely to some extent. The stochastic variable to the right is
a sum of Gaussian zero mean variables and thus a zero mean Gaussian variable.

The variance of the individual variable in the sum is 2 24
i e

h σ∆ since we have

assumed the measurement error variance in all beams to be 2
e

σ . The variance for

the right hand side in (4.12) will be 2 2

1
4 ( )

N

e ii
hσ

=
∆∑ . We can illustrate expres-

sion (4.12) by Figure 4.4 where the shaded area corresponds to the probability

4.2 False peaks

Figure 4.4: The PDF for the right hand side of (4.12). The vertical line corresponds
to the left hand side of (4.12). The shaded area corresponds to the probability
that position 2 is the true position.
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that position 2 is the true position. When the difference in terrain profiles be-
tween the two positions will tend to zero the probability will tend to 0.5.

The Gaussian assumption about the measurement error is very convenient to
use but the real PDF for the measurement error will have the tails cut. That
means that it is possible to tell if the difference between the measured profile
and the map profile can be explained by the measurement error or not. If it can
not be explained the position is truly false. Since the right hand side in (4.12) is
a sum of scaled stochastic variables from the same zero mean measurement error
PDF the criterion is as easy to use as in the case of the Gaussian assumption of
the measurement error. By applying the criterion (4.12) to all points in the map
and setting the likelihood function to zero for the positions where the criterion
is not fulfilled the map can in some sense be cleaned from false positions.

4.3 The shape of the likelihood function
We have seen in the previous chapter, Figure 3.17 that the likelihood function
resembles  a Gaussian curve. It is also true that the likelihood function converges
under mild conditions towards a Gaussian curve when the number of measuring
beams increases, see for example [CA88, KH49, PE95, SESI93, VA98]. This can
also be shown plausible by a Taylor expansion of the likelihood function around
the point of its maximum and by assuming certain conditions for the derivatives
of the likelihood function. Let us look at the one-dimensional case and let the
Taylor expansion be around x = 0

22 2
2 4

2 2
1 1

1
( ; ) exp( ( ) )

2

N N
k k

k ke

h h
L x y C x x H x

x xσ = =

  ∂ ∂  = ⋅ − +   ∂ ∂     
∑ ∑                     (4.13)

where the derivatives are taken at  x = 0. The function H(x ) is  the remainder term
and is assumed to be bounded for all x. The constant C is a normalizing constant
making ( ; ) 1L x y dx

∞

−∞
=∫ . When developing the expansion the measurement error

has been assumed to be a white sequence and the terms that tend to zero when
N increases have been set to zero. We can also write the equation as
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For small x we can neglect the second term within the brackets in comparison to

1 assuming that 
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which corresponds exactly to the variance given by the CRLB in Chapter 6. This
is important since it means that the normalized likelihood function is the same as
the position error PDF. From Figure 4.5 which is from a sea-trial it can be seen that
the likelihood function agrees well with a Gaussian curve.  Another proof  of the
asymptotic convergence towards a Gaussian curve is given below.

Figure 4.5: Comparison between the likelihood function and the Gaussian PDF.
Data from WP3 in the October 2002 sea-trial.

4.3 The shape of the likelihood function
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4.3.1 The convergence of the likelihood curve
We will assume that the terrain profile h(x) is continuous with continuous
higher derivatives. When measuring the terrain profile we will have a certain
error,  e, which we will assume Gaussian distributed. The number of measure-
ment beams is N. The measured profile can thus be written y(x

0
)=h(x

0
)+e, where

x
0
 is the true position.

The likelihood function can in the one dimensional case be written as
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were C is a constant. We know that 0( ; ( ))
N

L x y x converges to a Dirac pulse

when N→∞ but we want to show that 0( ; ( ))
N

L x y x also tends to a Gaussian

curve when  N→∞.  Besides our previous assumptions about the measurement
noise we assume that for a given fix N the likelihood function and its derivatives
to be continuous so a Taylor expansion of the likelihood function around x

0
=0

is permissible. Accordingly
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We recognize that the likelihood function L
N
(x;y(x

0
)) is not uniformly convergent

and we therefore introduce the variable z through the transformation
N

x zσ=
where
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which will give us a uniformly convergent series, see Figure 4.6. The likelihood
function can now be written
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4.3 The shape of the likelihood function

Figure 4.6: Illustration of the difference between the likelihood function and the
Gaussian function.
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where we introduced the partial sum S
M
 (N) of M terms as
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Now, since every term in the sum is strictly monotonically decreasing with  M
and can be made as small as desired by choosing a sufficiently large N, the
partial sum S

M
(N) can be made arbitrarily small for any choice of  M. This means

that S
M
(N) →0 when N→¥ independent of M, [RÅWE95, p. 181], and that the

likelihood function converges to a Gaussian curve in the transformed space.
Since the transformation does not affect the vertical scale, this will also be true
in the non-transformed space.

4.3.2 The convergence of the N-normalized likelihood

curve
It is often of interest to look at a likelihood expression where the exponent has
been normalized with the number of beams since the true likelihood function in
most cases will just be a very narrow peak when plotted due to the rapid
variance decrease with the number of beams. The N-normalized likelihood
function is
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Since the N-normalized likelihood function is just the Nth root of the true
likelihood function it will also be a Gaussian PDF if it is normalized to have the
volume one. The expected value of the exponent in (4.22) in the true position is
-1/2. Often one plots the N-normalized likelihood function under the assumption

of 2 1
e

σ = . The N-normalized likelihood functions for different N in a certain

position will in most cases be close to each other.

4.3.3 The convergence of the likelihood curve in

frequency space
It is also possible to come to the same conclusion as above by assuming that the
bottom was created by a band limited stationary stochastic process with a cer-
tain autocorrelation function. Let us look at the one-dimensional case and let us
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assume that the bottom topography was created by a stationary stochastic

process h(x). Our measurement of the vector h(x) is y , i.e. y
t 
= h(x

t
) + e

t 
where e

t

is the Gaussian measurement error. The dimension of the vectors is N.

We have
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where the bottom signal to noise ratio is 2 2/h eκ σ σ= , τ = x
t 
- x and ( )hr ⋅ is the

normalized autocorrelation function for the bottom profile.

As an example assume that the bottom is created by a band limited stochastic

process, see Figure 4.7. The band limited assumption is a very mild assumption

and always fulfilled for real terrains and it may therefore be proper to say that this

discussion is valid for any physical terrain. The autocorrelation function is
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After Taylor expansion we have the normalized autocorrelation function

22
2 40( ) 1 ( )

24 2
h

B
r O

ω
τ τ τ

 
= − + + 

                                                                        (4.25)

4.3 The shape of the likelihood function

Figure 4.7: Power spectrum for a band-limited process.
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The remainder term is small in the neighbourhood of τ=0 which is the surround-
ing we are interested in. Disregarding the remainder term we have
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where
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 A well known approximation formula which is valid with good accuracy in our
case is
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 In Figure 4.8 we compare this approximation with a Gaussian curve and we see
that the larger theκ -value is, the more the likelihood curve tends towards a
Gaussian function. In areas of interest for terrain navigation, the terrain variations

Figure 4.8: Comparison between the expected likelihood functions for a
stochastic band-limited bottom profile and Gaussian curves.
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are usually much larger than the ones in Figure 4.8.  We observe here that large
κ values also mean large bottom gradients. Equation (4.27) can be used as an
indicator of the suitability for terrain positioning.

4.4 The linear Kalman filter
The linear Kalman filter equation can be derived in many ways; Stochastic
differential equations as in [KL01],  least  squares as in [STBO97], minimum
mean squares as in [BRHW97],  by the orthogonality principle as in [KSH00]  to
mention a few.

An approach that is suitable in the context of this thesis may be an approach
based on Bayes theorem [BRHW97]. Let the vehicle position and our
measurement be given by the equations

( 1) ( ) ( ) ( )k k k k+ = +x F x v                                                                               (4.29)

( ) ( ) ( ) ( )k k k k= +y H x e                (4.30)

where v(k) and e(k) are white, independent, Gaussian sequences with covari-

ances Q(k) and R(k).

4.4.1. The conditional mean

Let *ˆ ( ( ), ( 1),..., (0)) ( )k k= − =x g y y y g y be our estimate of the position based

on all available measurements. We can have different criteria for the optimality of
the estimate. One criteria is the minimum mean square estimate, that is, the
estimator that makes the mean square error (mse) of the estimate as small as
possible. The expression for the mse is

{ } { }
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* *
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                           (4.31)

since x̂  is a deterministic function of y*. Completing the square will give

4.3 The shape of the likelihood function
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which will have a minimum for

{ }*ˆ |E=x x y                                                                                (4.33)

Thus, the conditional mean is the estimator that minimizes the mse of the estimate
in both linear and nonlinear estimation problems. Still, the conditional mean may
not be the best criteria for deciding upon the position in terrain navigation.
Suppose we have a posterior position PDF as indicated in Figure 4.9 then the
mean would give a position between the peaks which is an unlikely position. The
only case when the maximum a posteriori or maximum likelihood estimate coin-
cide with the minimum mean square estimate  is when the posterior PDF is sym-
metric and unimodal [JA70, TS02].

4.4.2. The linear Kalman filter
We will assume that the starting position of the vehicle is Gaussian distributed

0 0( , )x PN . Then the position, just before measurement update, will be

0 0k

− =x F x                                                                                      (4.34)

Figure 4.9: Bimodal  posterior position PDF.
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where we have simplified the time step notification and will thus also be Gaussian
distributed. For the time step k we will have

1 ( ) ~ ( , ) ( , )T

k k k k k k k k
p − −

−= +x x P F x F P F QN N                                   (4.35)

Our measurement y is also assumed to be Gaussian distributed. From (4.30)
we have for the prediction

 ( ) ~ ( , )T

k k k k k k
p − − +y H x H P H RN                                                     (4.36)

The conditional density of y
k
 given x

k
 is

( | ) ( , )
k k k k k

p y x H x R∼ N                                                                    (4.37)

Now we apply the theorem of Bayes to the Gaussian densities (4.35), (4.37)
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p p
p

p
=

y x x
x y

y
                                                                         (4.38)

The calculation of (4.38) can be simplified by observing that if two Gaussian

PDFs, 1 1( , )µ CN and 2 2( , )µ CN are multiplied by each other the result, after

normalization is
1 11 1 1 1 1 1

1 2 1 1 2 2 1 2( , )
− −− − − − − −     + + +     C C C µ C µ C CN , i.e., the co-

variances are added together by the parallel resistor formula and the new mean
is a weighted, by the covariances, sum of the individual means.

Otherwise, inserting (4.35), (4.36) and (4.37) into (4.38) will after some calcula-
tions, give

( | ) ( , )p =
x x

x y µ CN                                                                                         (4.39)

where
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4.4 The linear Kalman filter
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and

11 1T

k k k k

−−− −  = +   xC P H R H                                                                (4.41)

We can also view the mean in the measurement space

1( ) ( )T T

k k k k k k k k k k

− − − − −= + + −yµ y H P H H P H R y y                                         (4.42)

from which we clearly see that the new position is a weighted mean of the
propagated position in measurement space and the measured position.  A maybe
simpler approach would be to directly transform the measurement uncertainty
covariance to state space and add it to the 

k

−P by the  parallel resistor formula.

Assume that a Gaussian stochastic vector x has the density function
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                           (4.43)

Let now a transformation be y=Ax. It is then easy to show that the new distribu-
tion is also a Gaussian density whos mean and covariance are given by

=
y x

m Am                                                                                   (4.44)

T=y xC AC A                                                                                (4.45)

We note that C
y
 does not depend on x. Since the new density is Gaussian we can

directly write the PDF
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If we now partly re-substitute x we will have

1

/ 2 1/ 2

1

/ 2 1/ 2

1 1
( ) exp( ( ) ( ))

2(2 ) det( )

1 1
        exp( ( ) ( ))

2(2 ) det( )

T

m

y

T T

x xm

y

p
π

π

−

−

= − − −

= − − −

x y x

y

x Ax Am C Ax Am
C

x m A C A x m
C

         (4.47)



914.4 The linear Kalman filter

The inverted covariance expression in (4.47) does not depend on x . We note

that 1T −
yA C A  is similar to

1T

k k k

−H R H                                                                                                             (4.48)

in (4.41) which represents the measurement noise and this is how the  measure-
ment noise maps into the state space for a given transformation H

k
.
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5.1. Introduction
The Cramér-Rao lower bound (CRLB) gives a lower limit of the accuracy that
can be achieved in estimation of parameters and plays an important role in
establishing the accuracy of the navigation method presented in this thesis.
The chapter will therefore start with a general review of the CRLB followed by
an application to the terrain navigation problem.

We are using estimators to estimate the characteristics of a stochastic variable
as the mean, the variance or some other quantity characterizing the variable. We
make the estimation by taking samples of the stochastic variable and from the
samples we calculate a value of the quantity we want to estimate. In most cases
the estimator is just a formula giving us a value, an estimate, of the characteristic
of the variable when we plug in the sample values.

When we take a new sample and calculate a new estimate we usually get a
different value and by that we understand that our estimate also is a stochastic
variable. If the estimator gives a large spread in its values, when we successively
use it, the estimator has a large variance. Of course we want an estimator with a
small variance and a mean close to the true value so we can be sure that the

Chapter 5

The Cramér-Rao lower

bound



94 5 The Cramér-Rao lower bound

estimate is close to the true value for the characteristic we are estimating. Thus
the estimate shall be unbiased and have a small variance.

The CRLB will give us some guidance in evaluating the performance of an
estimator since it is the lowest variance an unbiased estimator can have if we
exclude so called super-efficient estimators which are of no practical importance
in our case [SO16]. If the performance of our estimator is unbiased and is close
to the CRLB our estimator is a good one, if we are far from the CRLB the estimator
is poor and we may perhaps find a better estimator. If the variance of our unbiased
estimates attains the CRLB the estimator is called efficient. An estimator is
asymptotically efficient if it reaches the CRLB and is/or becomes unbiased
when the sample size tends to infinity. This will be the case for our estimation of
the position from terrain matching.

If we estimate a quantity x from the set of independent samples y
1
,y

2
,…y

N
  by the

formula 1 2
ˆ ˆ( , ... )

N
x x y y y= repeatably based on new sample sets each time we

can arrange the estimates in a histogram as in Figure 5.1 and 5.2. We will typically
find that the standard deviation of the histogram will become smaller if the
estimator uses a larger sample set,  i.e., a larger N.

If we increase the number of estimation trials to infinity the normalized histogram
will converge to the probability density function for the estimator and the variance
of the histogram is the variance of our estimator.  If our estimates have no bias
and this variance equals the CRLB we know we can not find an estimator with a

Figure 5.1: Histogram for the
estimator, 100 trials.

Figure 5.2: Histogram for the
estimator, 100 000 trials.
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smaller variance. If our variance is greater than the CRLB we might find, but it is
not for sure, an estimator formula which will give us an estimate with smaller
variance.

There are several ways to derive the CRLB expression, [RA45, CR46, LJ99,
NA69, KA93, VT68, SC91] to mention only a few places in the engineering
literature were the derivation can be found. It is common nowadays in the
derivation to assume that the estimator is unbiased since it leads to a short
derivation. This is inline with the derivation presented in [RA45].  The derivation
of the CRLB which will be reviewed here follows instead the derivation in  [CR46],
which do not assume that the estimator is unbiased (bias will frequently occur
in terrain navigation). Some comments and illustrations have been added to,
hopefully, make the derivation easier to follow. The Cramér derivation also
discusses an interesting invariance property for transformations of the sample
PDF. The review of the Cramér derivation may also be interesting from a historical
point of view.

5.2 The CRLB
5.2.1 The scalar CRLB
The derivation starts by finding an expression of the mean square error based

on an assumed known estimator 1 2
ˆ ˆ( , ,..., )

N
x x y y y=  of x. Our observation set

of x is 1 2, ,...,
N

y y y  which can be thought of as been generated by

( , )
i i

y f x e=                  (5.1)

where 
i

e is an error with some known PDF. This means that the joint PDF

1 2( , ,..., | )
N

p y y y x  is assumed known.

We will assume that our estimator has a bias defined by the expression

ˆ{ | } ( ) ( )E x x x x b xψ = +                                                                   (5.2)

There can be several reasons behind the bias b(x) but in terrain navigation such
a  position bias will often occur if we have a fix depth measurement error. Due to
the bottom slope this will cause a position error that varies with the position.

The mean of the estimator x̂ is by definition

5.2 The CRLB
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ˆ

ˆ ˆ ˆ( ) ( | )
x

x xp x x dxψ = ∫                                                                               (5.3)

where ˆ( | )p x x is the PDF for our estimator (cf. Figure 5.2). Since ˆ( | )p x x  is a

PDF we have

ˆ

ˆ ˆ( | ) 1
x

p x x dx =∫                                                                  (5.4)

The left hand side of this expression is a function of our true value x. Assuming
it is admissible to differentiate under the integral sign we have

ˆ

ˆ( | )
ˆ 0

x

p x x
dx

x

∂
=

∂∫                                                                              (5.5)

We now multiply both sides with the constant x and, since the integration is

with respect to x̂ , we can move x under the integral sign

ˆ

ˆ( | )
ˆ 0

x

p x x
x dx

x

∂
=

∂∫                                                                  (5.6)

Now, differentiating (5.3) with respect to x gives

ˆ

ˆ( ) ( | )
ˆ ˆ

x

x p x x
x dx

x x

ψ∂ ∂
=

∂ ∂∫                                                                 (5.7)

If we now subtract (5.6) from (5.7) we have

ˆ

ˆ( ) ( | )
ˆ ˆ( )

x

x p x x
x x dx

x x

ψ∂ ∂
= −

∂ ∂∫                                                                           (5.8)

We want to use Schwartz inequality for integrals and we therefore rewrite this
expression as
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ˆ

ˆ( ) 1 ( | )
ˆ ˆ ˆ( ) ( | )

ˆ( | )x

x p x x
x x p x x dx

x xp x x

ψ∂ ∂
= −

∂ ∂∫                  (5.9)

If we now take the absolute value of both sides and then apply the Schwartz
inequality we have

 
{ }2

2 2

2

ˆ ˆ

ˆ( )

ˆ( ) ( | ) 1
ˆ ˆ ˆ ˆ( ) ( | )

ˆ( | )
x x

E x x

x p x x
x x p x x dx dx

x x p x x

ψ

−

  ∂ ∂   ≤ −      ∂ ∂       
∫ ∫

                 (5.10)

or

{ }

2

2

2

ˆ

( )

ˆ( )
ˆ( | ) 1

ˆ
ˆ( | )

x

x

x
E x x

p x x
dx

x p x x

ψ∂ 
 ∂ − ≥

∂ 
 ∂ ∫

                                                    (5.11)

By that we have a lower bound on the mean square error for our actual choice of
estimator.

Next we will look at a transformation invariance property of the denominator in

(5.11). Let ( | )p y x   be the PDF of our observation vector 1[ ,..., ]T

N
y y y=  and

let us transform our observation vector by the one to one transformation

( )z z y= , ( )y f z=   and ( | )p z x is the PDF of the vector 1[ ,..., ]T

N
z z z= .

We then have

( | ) ( | ) det( )p z x p y x J=                                                     (5.12)

where det(J) is the Jacobian of the transformation ( )y f z= which does not

depend on x. We also have dz.det(J)=dy. It then follows that

2 2
( | ) 1 ( | ) 1

( | ) ( | )
z y

p z x p y x
dz dy

x p z x x p y x

∂ ∂   =   ∂ ∂   ∫ ∫                             (5.13)

5.2 The CRLB
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i.e., the value of the integral is independent of the transformation. This is quite
natural since a transformation means stretching or compressing the horizontal
axis and since the area below the PDF is always one, the value of the frequency
function has to change accordingly, i.e., the det(J) factor in numerator and
denominator cancels out. Remember now that our discussion so far deals with a
supposed known estimator. The next step in the derivation is therefore to find a
suitable transformation which will allow us to say that our findings also will be
valid for any estimator, especially for the one that gives the lowest variance.

An illustration of how to choose this transformation may be of value. Assume
therefore that we want to estimate the mean of a PDF and our sample size is, say,

two samples, 1 2[ , ]Ty y y= , with equal means and variances for y
i
. We choose

our estimator to be 1 2
ˆ ( ) / 2x y y= + . The contours of the  PDF for the sample

vector are illustrated in Figure 5.3 together with the lines C
i 
for y

1
 and y

2
 which

will give the same estimate of x.

A suitable transformation is [ ]ˆ( ) ( ), ( )
T

z y x y yξ= where the dimension of the

vectorξ is N-1 and the dimension of the vector y is N . The requirement on ξ in

the transformation is that the transformation should be 1:1 and the derivatives

Figure 5.3: The contour lines for the sample PDF with shown hyper surfaces
giving the same estimate of the mean.
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/
i k

z ξ∂ ∂  should exist [CR46]. The transformation means that the slanted lines

C
i
 in Figure 5.3 will then be horizontal in a graph of the transformed variable, see

Figure 5.4, and this makes it easy to split up (5.13) by Bayes theorem. We can

achieve this transformation by for every point along a line 
i

C map the PDF-

value at this point at the vertical coordinate 
i

C  and horizontal coordinate 2y  in

the transformed PDF. The next step now would be to use the conditional identity
p(α,β)=p(α|β)p(β). This will give us

 ˆ ˆ ˆ( | ) ( , | ) ( | ) ( | , )p z x p x x p x x p x xξ ξ= =                                       (5.14)

If we differentiate this expression we will have

ˆ ˆ( | ) ( | ) ( | , )
ˆ ˆ( | , ) ( | )

p z x p x x p x x
p x x p x x

x x x

ξ
ξ

∂ ∂ ∂
= +

∂ ∂ ∂
                          (5.15)

Substituting this into (5.13) gives

Figure 5.4: The contour lines for the transformed sample PDF in Figure 5.3.

5.2 The CRLB
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2 2

2

2

ˆ ˆ, ,

( | ) 1 ( | ) 1

( | ) ( | )

ˆ ˆ( | ) ( | , ) 1
ˆ ˆ( | , ) ( | )

( | )

ˆ ˆ ˆ ˆ( | ) ( | , ) ( | , ) ( | )
ˆ ˆ2

ˆ( | )

(
    

y z

z

x x

p y x p z x
dy dz

x p y x x p z x

p x x p x x
p x x p x x dz

x x p z x

p x x p x x p x x p x x
dxd dxd

x p x x x x

p

ξ ξ

ξ
ξ

ξ ξ
ξ ξ

ξ

∂ ∂   =   ∂ ∂   

∂ ∂ = + ∂ ∂ 

∂ ∂ ∂ = + ∂ ∂ ∂ 

∂
+

∫ ∫

∫

∫ ∫
2

ˆ,

ˆ ˆ| , ) ( | )
ˆ

ˆ( | , )
x

x x p x x
dxd

x p x xξ

ξ
ξ

 
 ∂ ∫

        (5.16)

The middle term can be written as the product of two integrals and since

ˆ( | , )
0

p x x
d

xξ

ξ
ξ

∂
=

∂∫  due to ˆ( | , ) 1p x x d
ξ

ξ ξ =∫ the middle term will be zero. The

last integral will always be greater or equal to zero since the differential is in
square and the involved PDFs are always positive. We also note that the first
integral can be written as the product of two integrals, one with the value 1. We
therefore have

2 2

ˆ

ˆ( | ) 1 ( | ) 1
ˆ

ˆ( | ) ( | )
y x

p y x p x x
dy dx

x p y x x p x x

∂ ∂   ≥   ∂ ∂   ∫ ∫               (5.17)

This relates the PDF for our particular estimator with the PDF for the sample
vector. We can therefore write expression (5.11) as

{ }

2

2

2

( )

ˆ( )
( | ) 1

( | )
y

x

x
E x x

p y x
dy

x p y x

ψ∂ 
 ∂ − ≥

∂ 
 ∂ ∫

              (5.18)

which is the scalar parameter CRLB when our sample PDF is ( | )p y x and we

note that this expression does not depend on our choice of estimator. The mean
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square error is always greater or equal to the right hand side of the expression

independent of our choice of estimator. If we do not have bias, i.e., ( )x xψ = ,

this will also be the variance of the estimator. Expression (5.18) can also be
written

{ }

2

2

2

( )

ˆ( )
( ( | ))

x

x
E x x

log p y x
E

x

ψ∂ 
 ∂ − ≥

 ∂  
  ∂   

                                                   (5.19)

or

{ }

2

2

2

2

( )

ˆ( )
( ( | ))

x

x
E x x

log p y x
E

x

ψ∂ 
 ∂ − ≥ −

 ∂
 

∂ 

              (5.20)

We can also derive a lower bound on the variance. If we in (5.6) multiply with

ˆ{ | ) ( )E x x x b x= + instead of x we will have

ˆ

ˆ( ) ( | )
ˆ ˆ ˆ( { | })

x

x p x x
x E x x dx

x x

ψ∂ ∂
= −

∂ ∂∫                                        (5.21)

instead of (5.8) and

2 2

2

ˆ ˆ

ˆ{ }

ˆ( ) ( | ) 1
ˆ ˆ ˆ ˆ ˆ( { | }) ( | )

ˆ( | )
x x

Var x

x p x x
x E x x p x x dx dx

x x p x x

ψ   ∂ ∂   ≤ −      ∂ ∂       
∫ ∫

      (5.22)

or

2

2

( )

ˆar{ }
( ( | ))

x

x
V x

log p y x
E

x

ψ∂ 
 ∂ ≥

 ∂  
  ∂   

                                                                (5.23)

5.2 The CRLB
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5.2.2 The vector parameter CRLB
A simple approach would be to note that in the derivation of the scalar CRLB
we have not specifically used the information that the parameter was a scalar.
The derivation would formally been the same if the scalar parameter x instead
had been a parameter vector x. Therefore the CRLB for a biased estimator is

{ }
1

2

1
2

( ) ( ( | )) ( )
ˆ ˆ( )( )

( ) ( ( | )) ( )
                             =

T

T

T

T

T

log p
E E

log p
E

−

−

  ∂ ∂ ∂ − − ≥ −    ∂ ∂∂ ∂    

  ∂ ∂ ∂   − + +     ∂ ∂∂ ∂     

ψ x y x ψ x
x x x x

x xx x

b x y x b x
I I

x xx x

                                                                                                    (5.24)

The inequality means that if the matrix to the left is subtracted with the matrix to
the right the resulting matrix is positive semidefinite. The quantity

2 ( ( | ))
T

log p
E

 ∂
= −  

∂ ∂ 

y x
J

x x
                                                                                  (5.25)

is called the Fisher’s information matrix (FIM).

In the case we have bias the relation between the mean square error and the
covariance is

{ }ˆ ˆ ˆ{ } ( )( )

ˆ ˆ ˆ ˆ ˆ ˆ {[( { }) ( { } )][( { }) ( { } )] }

ˆ { } ( ) ( )

T

T

T

Mse E

E E E E E

Cov

= − −

= − + − − + −

= +

x x x x x

x x x x x x x x

x b x b x

              (5.26)

If the estimator is unbiased then the Mse and Cov are identical and we have

{ }
1

2 ( ( | ))
ˆ ˆ ˆ ˆ ˆ{ } ( { })( { })T

T

log p
Cov E E E E

−
  ∂

= − − ≥ −   
∂ ∂  

y x
x x x x x

x x
            (5.27)

Figure 5.5 illustrates the relations between the estimators.
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If we know both the bias and the mean square error, we can calculate the

covariance from ˆ ˆ( | ) { | } ( ) ( )TMse Cov= +x x x x b x b x , in other cases we have to

resort to Monte Carlo methods to determine ˆ{ }E x and ˆ( )Cov x besides ˆ( )Mse x .

Generally we have the inequality

1
2( ) ( ( | )) ( )

ˆ ˆ{ } { }
T

T

log p
Mse Cov E

−
  ∂ ∂ ∂   ≥ ≥ − + +     ∂ ∂∂ ∂     

b x y x b x
x x I I

x xx x
  (5.28)

The mean square error for a biased estimator in the case the CRLB is attained
is

1
2( ) ( ( | )) ( )

ˆ{ } ( ) ( )
T

T

T

log p
Mse E

−
  ∂ ∂ ∂   = − + + +     ∂ ∂∂ ∂     

b x y x b x
x I I b x b x

x xx x

              (5.29)
and the covariance

1
2( ) ( ( | )) ( )

ˆ{ }
T

T

log p
Cov E

−
  ∂ ∂ ∂   = − + +     ∂ ∂∂ ∂     

b x y x b x
x I I

x xx x
                 (5.30)

Figure 5.5: Illustration of the PDF for a biased and an unbiased estimator.

5.2 The CRLB
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5.3 Additive Gaussian noise
5.3.1 The scalar case
In the derivation of the scalar parameter CRLB we did not make any assumptions
about the noise or the structure of the observations y

i 
. Often the noise can be

characterized as additive and our observations are ( )
i i i

y h x e= + , i=1,2,3... N or

in vector form

( )x= +y h e                                                                                                     (5.31)

Assuming that the noise is Gaussian with zero mean with a covariance matrix C,
the joint PDF of the observations is

( )
1

/ 2

1 1
( | ) exp( ( ( )) ( ( )))

22 det( )

T

N
p x x x

π
−= − − −y y h C y h

C
                 (5.32)

Differentiating with respect to x and taking the expectation yields

2

1log ( | ) ( ) ( )
T

p x x x
E

x x x

−
 ∂ ∂ ∂      =      ∂ ∂ ∂       

y h h
C                                             (5.33)

and, hence, according to (5.23)

2

1

( )

ˆar{ }
( ) ( )

T

x

x
V x

x x

x x

−

∂ 
 ∂ ≥

∂ ∂   
   ∂ ∂   

ψ

h h
C

                          (5.34)

5.3.2 The vector case
Assume that the observation vector is Gaussian y~N(µµµµµ(θθθθθ),C(θθθθθ)) where the
mean vector is Nx1 and the covariance matrix is NxN. Both depend on the
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unknown parameter vector θ which we want to estimate. The PDF for the

observation vector is thus

1

/ 2

1 1
( | ) exp ( ( )) ( )( ( ))

2(2 ) det( ( ))

T

N
p

π
− = − − −  

y θ y µ θ C θ y µ θ
C θ        (5.35)

Taking the first derivative yields

1log ( | ) 1 log det[ ( )] 1
( ( )) ( )( ( ))

2 2
T

k k k

p

θ θ θ
−∂ ∂ ∂

 = − − − − ∂ ∂ ∂
y θ C θ

y µ θ C θ y µ θ

               (5.36)

Now it can be shown, see for example [KA93, SC91], that the two terms in (5.36)
can be written

 
1log det[ ( )] ( )

Tr ( )
k k

θ θ
− ∂ ∂

=  ∂ ∂ 

C θ C θ
C θ                             (5.37)

and

1

1
1

( ( )) ( )( ( ))

( ) ( )
      2 ( )( ( )) ( ( )) ( ( ))

T

k

T
T

k k

θ

θ θ

−

−
−

 
 

∂
− −

∂

∂ ∂
= − − + − −

∂ ∂

y µ θ C θ y µ θ

µ θ C θ
C θ y µ θ y µ θ y µ θ                (5.38)

where the derivatives 
( )

i
θ

∂
∂
µ θ

and
( )

i
θ

∂
∂
C θ

mean the first derivative of all elements

in the vector and matrix respectively with respect to the parameter θ
i
. The next

step is to evaluate the elements in the Fisher matrix (5.25). After some
manipulations, see [VT02, KA93, SC91], the result is

[ ] 1 1 1

,

( ) ( ) 1 ( ) ( )
( ) ( ) Tr ( ) ( )

2

T

i j
i j i jθ θ θ θ

− − −
 ∂ ∂ ∂ ∂

= +  
∂ ∂ ∂ ∂  

µ θ µ θ C θ C θ
J θ C θ C θ C θ         (5.39)

The scalar parameter case follows also directly from (5.39)

5.3 Additive Gaussian noise
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2

1 1( ) ( ) 1 ( )
( ) ( ) Tr ( )

2

T

J
θ θ θ

θ θ θ
θ θ θ

− −
 ∂ ∂ ∂ = +   ∂ ∂ ∂   

µ µ C
C C                             (5.40)

and in the case the covariance matrix does not depend on the parameter

1( ) ( )
( )

T

J
θ θ

θ
θ θ

−∂ ∂
=

∂ ∂
µ µ

C                                                     (5.41)

5.4 The bias expression
We have previously assumed that the bias may be expressed as

ˆ{ | } ( )E = +x x x b x , that is the expected value of the estimate of x depends in a

nonlinear fashion of the true value of x. In most cases the bias is introduced in
the sampling process and we will here analyze two cases more in detail. We will
restrict ourself to the case of estimating the mean.

5.4.1 The linear case
Let the stochastic variable ξ have the PDF fξ(x) with the mean x. We can construct
the following unbiased estimator of the mean based on N samples of the
stochastic variable ξ

1

1
ˆ

N

Unb i

i

x
N

ξ
=

= ∑                (5.42)

Now, assume that our samples, due to an imperfect sampling device, instead  are
η

i
=α+β ξ

i
 and that we estimate the mean from those samples. This will give us

a biased estimator

1 1 1

1 1
ˆ ˆ( )

N N N

Bias i i i Unb

i i i

x x
N N N

β
η α βξ α ξ α β

= = =

= = + = + = +∑ ∑ ∑                     (5.43)

Thus the biased estimate of the mean is an  affine transformation of the unbiased
estimate. We can determine the mean of the biased estimate
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ˆ ˆ ˆ{ } { } { }Bias Unb UnbE x E x E x xα β α β α β= + = + = +                                     (5.44)

This can also be written

ˆ{ } ( 1)BiasE x x xα β= + + −                                                                               (5.45)

This means that the bias expression in (5.2) in the case of an affine transformation
of the samples is

( ) ( 1)b x xα β= + −                                                                                            (5.46)

The variance of the biased estimator is (5.23) if the bound is obtained

2 2 2( )
ˆ ˆ ˆ ˆ{ } (1 ) { } (1 1) { } { }Bias Unb Unb Unb

b x
Var x Var x Var x Var x

x
β β

∂
= + = + − =

∂
  (5.47)

This can also be shown directly by

2ˆ ˆ ˆ{ } { } { } { }Bias Unb UnbVar x Var Var x Var xα β β= + =                           (5.48)

We can also study the PDF for the stochastic variable with bias. We have

1 1 1
( ) { } { } ( )f x P x P x f x

x x
η ξ

α α
η ξ

β β β β β
∂ ∂

= ≤ = ≤ − + = − +
∂ ∂                (5.49)

That means that the PDF for the stochastic variable with bias is offset by  -α/β
and that the horizontal scale is changed to 1/β but the vertical scale is also
changed the same amount so the area below the PDF remains one.

5.4.2 The nonlinear case
Let us now study a nonlinear transformation, y=g(x),  of the stochastic variable
ξ , see Figure 5.6

( )gη ξ=  (5.50)

5.4 Some transformations
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Looking at Figure 5.6 it is obviuos that it is possible to numerically calculate
the bias as a function of the true value x if g(.) is known. From the figure we also
see that depending on the curvature of  g(.) the variance will increase or
decrease. Let us examine the situation more closely.

Assume that the true value of the parameter estimated by ξ is x=0 and that
E{ξ}=x and do a Taylor expansion of the function g(.) around  that point. We
assume that the Taylor expansion is convergent, which is reasonable if both
the biased and the unbiased estimate of x exist. The estimator will be

0 1

1 1 0 1 1 2

0 1

1 2

1 1 1 1
ˆ

! !

1
ˆ       

!

N N N Nk kk
i i

Bias i i kk
i i k i i k

N k
i

Unb k

i k

g
x g g g

N N k N N kx

g g x g
N k

ξ ξ
η ξ

ξ

∞ ∞

= = = = = =

∞

= =

∂
= = = + +

∂

= + +

∑ ∑∑ ∑ ∑∑

∑∑
(5..51)

where g
k
 are the derivatives of g  in the Taylor expension of y=g(x) at x=0 .

We note here that different sequences of ξ 
1
,..., ξ 

N
 may result in the

Figure 5.6: Illustration of the nonlinear transformation of the stochastic
variable ξ. The PDFs in the figure refer to the estimates of the mean. True value
of the parameter estimated by ξ is x=0.
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same ˆUnbx  but different third term. After taking the expectation of both sides

we have

0 1 0

1 2 1 2

{ } { }1 1
ˆ{ }

! !

N Nk k
i i

Bias k k

i k i k

E E
E x g g x g g g

N k N k

ξ ξ∞ ∞

= = = =

= + + = +∑∑ ∑∑       (5.52)

since x=0. The last double sum is a function of the point x of the Taylor expansion,
in this case x=0. An analytic expression of the expectation E{ξ

i

k}is easily found
for a Gaussian distributed ξ. with zero mean

{ } 1 3 5 ( 1) { } ( 1)!! { }kE k Var k Varξ ξ ξ= ⋅ ⋅ ⋅ ⋅ ⋅ − = −                                          (5.53)

Often only a few terms in the Taylor expansion, i.e., the inner sum is needed
since the tails of the PDF of ξ are cut due to physical reasons. This means that
the bias expression in (5.52) can be calculated for different points x of the Taylor
expansion and the bias as a function of x

B(x)=x+b(x)                                                                                                           (5.54)

can be calculated. A linear approximation of the bias function B(x) in a point x is

ˆ{ }BiasE x xα β= +                                                                                              (5.55)

We have also from (5.51)

{ }
1 1 1

2
2

2
1

1 1
ˆ

! !

( ) (2 1)!!
                     

( !)

N k k
i

Bias k k

i k k

kk

k

Var x Var g Var g
N k N k

max g k

N k
ξ

ξ ξ

σ

∞ ∞

= = =

∞

=

      = =   
      

−
≤

∑∑ ∑

∑
                         (5.56)

where 2
ξσ is the variance of ξ.

5.4 Some transformations
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5.5 Some examples of the CRLB in terrain

navigation
The CRLB for a position estimate is not only of interest in our Kalman filter but
also when deciding upon way-points. In the so called posterior CRLB defined in
[VT68] a CRLB based on the mean of the FIM matrix which takes the information
from the prior position PDF into account is calculated. Since this bound gives
what we at best can expect in accuracy at a way-point we will discuss it first
before developing some general expressions for the CRLB when we have a
Gaussian measurement noise. We will also develop an expression for the position
error covariance when we have bending of the measurement beams due to
temperature gradients in the water

In the following we are assuming that our prior position  PDF has its mean in the
way-point and that our estimates are the position x

1
 and x

2
 in East and North

directions, respectively, and in some cases the measurement bias d. The numbers
of parameters to estimate are thus two or three. The number of measurement
beams is N and the measurement accuracy is assumed to be known. The
measurement noise is assumed to be additive and Gaussian.

5.5.1 The posterior FIM
In calculation of the posterior CRLB defined in [VT68] the improvement in
accuracy by the prior is taken into account in the following way. The posterior
CRLB is the inverse of the expected posterior Fisher matrix. The posterior FIM is

2 2

2 2

,

[log ( , )] [log( ( | ) ( ))]
{ } { }

[log ( | )] [log( ( )]
  { } { }

T T

L J PT T

p p p
E E

p p
E E

∂ ∂
= − = −

∂ ∂ ∂ ∂
∂ ∂

= − − = +
∂ ∂ ∂ ∂

x y y x x
J

x x x x

y x x
J J

x x x x

                               (5.57)

The equation (5.57) gives a “global bound” [VT02] which is independent of the
actual position since the expectation in (5.57) is with respect to both x and y.

The first term can be written as
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2 2

,
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∫
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                    (5.58)

Similarly, the second term in (5.57) can be expressed as

2 2

2
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x
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                               (5.59)

which is the expectation of the FIM for the prior and represents the improvement
due to the prior knowledge.

Sometimes we will be interested in the FIM for a certain position x. Therefore,
omitting the expectation over x, we have

2

2 2

[log ( ; ) ( )]
{ }

log ( ; ) log ( )
   = { }=

y T

y L PT T

L p
E

L p
E

∂
= −

∂ ∂
∂ ∂

− + +
∂ ∂ ∂ ∂

x y x
J

x x

x y x
J J

x x x x

                                             (5.60)

The notation L(x;y) for the likelihood function has been used in (5.60). This
bound is thus a function of the true position x.

5.5 Some terrain navigation examples
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5.5.2 Two measures of the posterior accuracy
Planning of vehicle routes means that way-points have to be selected and it is
of great interest to know what accuracy that can be expected when positioning
in the way-point areas.

In many interesting cases, discussed in Chapter 6, our estimate and our true
position will be close to each other and our accuracy will almost reach the
CRLB. By calculating the expected value of the posterior CRLB, based on
(5.60), we will therefore have a measure of what accuracy we can expect to be
used in our Kalman filter for an actual choice of a way-point

{ } ( ) ( )
P P

E p= ∫
x

R R x x dx                                                                                   (5.61)

where R
p
(x) is the local posterior CRLB given by the inverse of (5.60) and the

integration is over the area where R
p
(x) is defined. The CRLB based on (5.57)

will give a lower bound for (5.61), cf. the relation between the harmonic and the
arithmetic means.

The accuracy of the position based on the prior PDF is often much less than the
accuracy based on the terrain profile measurement which means that the
improvement by the prior can be neglected. In this case the measure will be

{ } ( ) ( )E p= ∫
x

R R x x dx                                                                                        (5.62)

where R(x) is the usual position error covariance matrix, i.e., the CRLB based on
(5.60) where the improvement by the prior has been neglected. The integration
is over the area where R(x) is defined.

The reason for introducing the measures (5.61, 5.62) instead of using the
posterior CRLB based on (5.57) is the following. Firstly it mimics our actual use
of the CRLB in the Kalman filter. Secondly the bottom area covered by the prior
PDF may contain flat parts where the local FIM (5.60) is almost zero. However,
calculating the expected value as in (5.57), the global FIM, may give an expected
value that indicates good navigation properties which obviously may not be
the case. In fact, most of the area can be useless for terrain navigation purposes
but the global FIM indicates otherwise.

In general we can measure our position by several means in addition to the
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terrain positioning which is indicated in Chapter 3. Assuming that the
measurements are independent our likelihood function can be written as

1

( ; ) ( ; )
M

k k

k

L L
=

= ∏x y x y                                                                                         (5.63)

and the Fisher’s information matrix is

,
1

M

k L p

k =

= +∑J J J                                                                                                    (5.64)

5.5.3 Constant measurement covariance matrix, no

measurement bias
In Chapter 5.3.2 the Fisher matrix was determined for the general case of a
process with a Gaussian observation vector with the probability density
y~N(µµµµµ(θθθθθ),C(θθθθθ)) . Using these findings for the observation vector y=h(x)+e, i.e.,
where e is Gaussian and we have no measurement bias equation (5.39) gives
directly

[ ] 1

,

( ) ( )
( )

T

i j

i j
x x

−∂ ∂
=

∂ ∂
h x h x

J θ C     where i,j=1,2                                                (5.65)

If we assume the measurement beams to be independent the  covariance matrix
will be diagonal. In the case the measurement accuracy is the same in all beams
equation (5.65) simplifies to

[ ] 2 2,
1

( ) ( )1 ( ) ( ) 1
( )

T N
k k

i j
ki j i je e

h h

x x x xσ σ =

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂∑
x xh x h x

J θ                          (5.66)

where σ
e

2 is the measurement error variance.

5.5.4 Profile matching, constant measurement

covariance matrix
One way to reduce the measurement bias caused by the variation of the sea
surface level, variation in sound speed and instrument biases is to match the
measured bottom profile and the profile according to the map, i.e., the sonar
measurement of the bottom is reduced by the mean of the measurement and the
corresponding map depths are reduced by their mean. These vectors are also
given by pre-multiplying the vectors with the absolute depth values by a
projection matrix

5.5 Some terrain navigation examples
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, /
N N N

N= −Π I 1               (5.67)

where I
N
 is the identity matrix and 1

N,N
 is a matrix with ones as elements, both of

dimension NxN. We now want to use (5.39) directly and we therefore observe
that our observation vector now is ΠΠΠΠΠy. Our data model is therefore ΠΠΠΠΠy = ΠΠΠΠΠh(x)

+ εεεεε. Note  that reducing the measurement by the mean introduces a correlation
between the individual stochastic beam errors. The covariance matrix Cε=σ

e
2(I

N

-1
N,N

/N)= σ
e
2ΠΠΠΠΠ for zero mean Gaussian measurements with variance σ

e
2. Since

the covariance matrix is singular (5.39) gives after a simple limiting calculation

[ ] [ ] [ ]
2 2,

( ) ( )1 1 ( ) ( )
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i j i je e
x x x xσ σ

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂

Πh x Πh x h x h x
J x Π               (5.68)

5.5.5 Regular matching, measurement bias and

constant measurement covariance matrix
We can apply (5.39) to the case when the measurement bias is explicitly modeled,
i.e., y=h(x)+du+e. The stochastic measurement error is assumed to be zero mean
Gaussian with the covariance C and d is the bias and the vector u is a N
dimensional vector of ones. As before if x=[x

1
, x

2
, d]T

[ ] 1

,

( ) ( )
( )

T

i j

i j
x x

−∂ ∂
=

∂ ∂
µ x µ x

J x C  where i,j=1,2,.3                                                (5.69)

The mean of the observation vector is

( ) ( )x d= +µ x h u                           (5.70)

where d is the measurement bias, equal in all beams. Collect the derivatives into
the matrix
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 ∂ ∂ 

G u

                                                                                (5.71)
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then

[ ]
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− −
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Using the inversion formulae [LÜ96]

1 1 1 1 1 1

1 1 1 1 1

( ) ( )

( ) ( )
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we have the block matrix
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In the case the covariance matrix is C=σ
e

2 I
N 

this expression transforms to
(5.68). When estimating  d the inverse Fisher matrix element will be

11 1 1 1 1 1
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In the case the covariance matrix is diagonal with equal elements we have
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  (5.76)
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which gives the CRLB for the variance in the estimation of d when simultaneously
estimating the position. In the case the off diagonal elements in the matrix within
the square brackets are zero we have

2 2

2 2
1 11 21

2 22,2

1 11 2

( ) ( )

1 1
= 1

( ) ( )

N N

k ke e

N N

k k

h h

x x

N N N Nh h

x x

σ σ= =−

= =

    ∂ ∂
    ∂ ∂      − − →  

   ∂ ∂ 
    ∂ ∂    

∑ ∑

∑ ∑

x x

J
x x                       (5.77)

for large N.

5.5.6 CRLB in the case of uncompensated sound speed

gradients
The measurement of depth by a sonar is in fact a measurement of the time for a
sound reflection of the sonar beam against the bottom. Therefore the depth
values will depend on the actual sound speed in the water. Sound speed gradients,
which are common, will bend the sonar beam and by that the sound has to travel
a shorter or longer path than else. The sonar software will always take the actual
sound speed and speed gradients into account and try to compensate for the
speed influence but the compensation will in most cases not be fully complete
and thus an additional measurement error will occur.

The influence of speed gradients on the measured depth is illustrated in Figure
5.7. Assume the sonar beam has an out going angle of β relative the vertical line
and is bent along a circular line as if the speed gradient is constant. It will then
hit the bottom in point A. If the sonar does not have any compensation of the
speed gradient it will wrongly assume that the beam hits the bottom at point B
which corresponds to the travelling time of the sound pulse and by that we will
have an error in both the vertical and horizontal direction.

If we know the speed gradient we are able to determine the exact path for the
beam by simple means, i.e., by ray tracing programs. The radius of curvature for
a sound beam is in every point determined by the speed gradient at that point
and in the case the gradient is constant the radius of curvature is constant, i.e.,
the beam will follow a circular path [BU91, UR83].
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With reference to Figure 5.7 we have

sin sin
h

R
α β= −                           (5.78)

and

arcsin(sin )
h

R
θ β β= − −                                                                                  (5.79)

and the length of the arc

l Rθ=  (5.80)

The depth error is thus

1 cos ( arcsin(sin ))err

R h
d h

h R
β β β = − − −  

                                         (5.81)

and the horizontal error

5.5 Some terrain navigation examples

Figure 5.7: The sound beam is bent in the water due to temperature gradients.
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( ) tan (cos cos )
err err

h h d Rβ α β= − − −                                           (5.82)

We also have [BU91, UR83]

cos( / 2 )

c
R

g π β
= −

−                        (5.83)

where c is the speed of sound and g is the vertical sound speed gradient.

A reasonable assumption about the temperature gradient in summer in the
Baltic Sea is a linear varying water temperature from 14oC at the surface to 4oC
at the bottom at 100 meter which gives a sound speed according to Figure 5.8.
This will give a vertical sound speed gradient as in Figure 5.9. Assuming a
vertical speed gradient which is the mean between the gradient at the surface
and the gradient at the bottom we can calculate the depth and horizontal error
according to (5.78 - 5.83) and the result is shown in Figure 5.10.

From the figure  we see  that the vertical error for sonar opening angles below
~ 40 o is limited to ~ 1 meter for an uncompensated sonar. Today, sonars often
have opening angles of 130o, corresponding to 65 o in the figure. The conclusion
is that if the vertical temperature gradient is known then the bending of the
sound beam can be accurately compensated. This is also always done in

Figure 5.8: Sound speed as a
function of the depth at a linear
varying temperature from 14oC at the
surface to  4oC at the bottom.

Figure 5.9: Sound speed gradient as
a function of the depth at a linear
varying temperature from 14oC at the
surface to  4oC at the bottom.
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bathymetric measurements. The method used for this is a more sophisticated
version of the theory in (5.78) - (5.83), see [BU91, UR83].  Still a certain small
remaining stochastic error remains after the compensation and this section will
deal with its effect on the lower bound off the position accuracy, i.e., the CRLB.

The vertical and horizontal errors for the different beams can be calculated
according to (5.78 - 5.83), see Figures 5.11 and 5.12. More interesting is however

5.5 Some terrain navigation examples

Figure 5.10: Depth and horizontal error due to uncompensated temperature
gradient.

Figure 5.11: Depth error for different
beams.

Figure 5.12: Horizontal error for
different beams.
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Figure 5.14: The derivative of the
horizontal error with respect to the
speed gradient for different beams.

the variation with the error in the sound speed gradient because that will give
us the depth error for a certain gradient error. The derivatives of the sound
speed gradient, g, can be seen in Figure 5.13 and 5.14.

As can be seen from the figures we have a strong correlation between the
errors in the beams due to uncompensated speed gradients. After adding the
depth error due to uncompensated speed gradient to previous measurement
error we have for beam no. i

, ,err i err ii

i i

h dh
e g

x g g
ε

∂ ∂ ∂
= + + ∆ ∂ ∂ ∂ 

                                                   (5.84)

where ∆g is the gradient error. The derivative 
i

h

x

∂
∂

refers to the gradient of

the bottom where beam i hits the bottom.

The elements in the measurement error covariance matrix for calculating the
Cramér-Rao lower bound are therefore

Figure 5.13: The derivative of the
depth error with respect to the speed
gradient for different beams.
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, ,, ,2 2 2
, , , ,

j err j err jerr i err ii

e i j i j g

h h dh dh

x g x g g g
εσ σ σ

∂ ∂ ∂∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ ∂ ∂ 

                             (5.85)

where 2
, ,i jεσ is the usual white random measurement error used in previous

chapters. With reasonable assumptions about the size of the uncompensated
sound speed gradient it seems that the error due to error in measuring the
sound speed gradient will cause a position error almost a magnitude greater
than the usual sonar measurement error.

5.5 Some terrain navigation examples
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6.1 Introduction
From Chapter 4 we know that the normalized likelihood function becomes close

to a Gaussian PDF when the number of measuring beams grows and it was also

shown that false correlation peaks disappear. If we look at the position estimate

given by the position of the maximum of the  likelihood function we find it to be

the maximum likelihood (ML) estimate and that the normalized likelihood function

is also the PDF for the estimated position. In the case the prior position PDF, the

INS position PDF,  has a large error covariance, which is the case if long time has

past since the last INS update, the prior will only to a negligible amount improve

the ML estimated position. Since ML estimation is one of the most investigated

estimation methods, there are many results that we can benefit from in establishing

the accuracy of our position estimate.

Chapter 6

The characteristics of the

position estimate
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6.2.   Characteristics of the position estimate

We know from the theory of ML estimation that, under weak assumptions, the

ML-estimate [AOA02, KA93, VT68]

� is asymptotically unbiased

� asymptotically reaches the Cramér-Rao lower

  bound (CRLB)

� is asymptotically Gaussian distributed

The asymptotic covariance of the ML-estimate ˆ ( )x y can therefore be

expressed as

1ˆ ˆ{( ( ) )( ( ) ) }TE −= − − =R x y x x y x J                              (6.1)

Where J is Fisher’s information matrix (FIM).

 Let  the gradient of the terrain topography in the sampling points be given by

1

1 1

1

2 2

h
G

x

N

N

hh

x x

hh

x x

∂∂ 
 ∂ ∂∂  = =
 ∂∂∂
 ∂ ∂  

                                                                   (6.2)

where x
1
, x

2
 refer to the east and north directions, respectively, then the Cramér-

Rao matrix can be shown to be (see Chapter 5)

1
1

R GC G
T

ETL

−− =                                                         (6.3)

where C is the symmetric covariance matrix for the measurement beam errors and

the sub index ETL indicates exact terrain reference level, i.e. no measurement

bias. In the case the covariance matrix is diagonal with the same error variance in

all beams i.e.,

2C I
e N

σ=                                                        (6.4)

then
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where index i refers to the derivative at beam i.

Our aim is now to use the asymptotic position error covariance matrix, i.e., R
ETL

,
in the linear Kalman filter as the true covariance matrix but this is of course only
acceptable if we are close to the asymptotic covariance matrix which often will
be the case. Another requirement is that our estimation error is small since the
covariance matrix should be calculated in the true position. The latter will be
shown to be true in Chapter 8. Figure 6.1 shows the matrix element (1,1) in R

ETL

against the number of measuring beams in a positioning in a sea-trial (see Chapter
8). As can be seen the convergence to the asymptotic value is fast, even at 15 -
20 beams we are already close to the asymptotic value. Figure 6.2 shows the
convergence towards the Gaussian curve for different numbers of beams and
beam planes. Even here 15 beams would be acceptable. Of course it may be
cases when the Gaussian approximation may seem not so acceptable as a whole
but the important thing is that the likelihood function at its maximum point can

Figure 6.2: Comparison between the N

normalized correlation functions  for dif-

ferent numbers of the measuring beams.

Data from way-point 3 in the October

2002 sea-trial.

Figure 6.1: The convergence of the

Cramér-Rao bound as a function of

the number of measurement beams.

Data from way-point 3 in the October

2002 sea-trial.

6.2 Characteristics of the position estimate
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be well approximated with a second order curve. The shape of the likelihood
curve far from the maximum  point is less important, see also the discussion in
Section 3.3.3. Figure 6.3 shows the largest and smallest eigenvalue along a track
in an underwater map and Figure 6.4 shows the shape of the position uncertainty
ellipse at way-point WP 3 in the October 2002 sea-trial.

The expression (6.5) requires that we know the exact reference level of the sea

surface (ETL) which may not be the case since the level varies with time due to

many reasons as wind, wind directions, high and low pressure and the moon

cycle etc.. It is easy to show that a bias in the depth measurements in general will

cause a displacement of the maximum of the likelihood function (see Figure 6.5)

for small N. It will be shown that large N (large correlation area) will make the

estimate unbiased so the more measurement beams we have the more robust

against position bias will our position estimate be.

Let us in order to more specifically understand the consequence of the

measurement bias factorize the likelihood function for the one dimensional

case. Assume the measured data have a bias that we are unaware of, i.e., the

data are generated as ( ) ( )
i i i

y x h x d e= + + where e
i 

 
is white noise, d is the

measurement bias and that our measurement of N samples is at position x
0 
, the

true position.  We can rewrite the likelihood function in the following way in the

one dimensional case (ignoring the normalizing constant)

Figure 6.4: The covariance matrix

at WP 3 in the sea trial. To every

point in the map an uncertainty

ellipse can be assigned.

Figure 6.3: The largest and the smallest
eigenvalues of the covariance matrix R

along a track in the map, 2 1
e

σ = , N=100

beams.
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We see that the factor L
UB

(x;y(x
0
),N) does not depend on d but is the likelihood

function if we had  no measurement bias. The first factor can be further factorized

0
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Figure 6.5: The log likelihood function at different measurement bias in meter for

a relatively flat area.The number of beams N = 100, variance in measurement

noise 0.25 m2. The figure is based on a real map.

6.2 Characteristics of the position estimate
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where 0
( )y x is the mean of the measurements at position x

0
 and ( )h x the mean

of depths at position x thus indicating that the bias depends on the slope of the

bottom.  It is easy to determine the displacement in position caused by the

measurement bias d in an actual case given the values of d and N. We have
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which is easily computed. An approximate solution can also be found, when the

unbiased likelihood function can be approximated by a Gaussian curve in the

following way. Replace in (6.6) L
UB

 by its Gaussian curve equivalent assuming

the maximum point is at x =x
0
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and use that
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at the maximum point. The result is
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or to show the dependence of the mean bottom slope
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This can be seen as an amplification factor of the measurement bias. Now, (6.7)



129

can also be written
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for large N and x close to x
0
. The width of the peak of the likelihood function

with no measurement bias will decrease inversely with N so if we look at the

neighbourhood of the peak, the first term of the exponent will dominate which

means that the unbiased likelihood function is multiplied by a constant, that

is, the likelihood function with measurement bias will for large N give a posi-

tion estimate with no offset from the true position and a covariance as (6.5).

The bias problem can also be analyzed somewhat differently (cf. Section 5.4). A

result from large sample theory [BS02] is that if a stochastic variable is

asymptotically normal distributed 0
( , )

a
x x R∼N , as in our case, and undergoes

a one to one transformation z=B(x) then the transformed variable is also

asymptotically normal distributed

0 0

0 0

( ) ( )
( ( ), )

T

a ∂ ∂ 
=  ∂ ∂ 

B x B x
z z B x R

x x
∼N                                                        (6.14)

A requirement is that the largest eigenvalue of  R 0→  when the number of

samples (beams) N → ∞ .

In the bias discussion in Section 5.4  the mean was assumed to be the position

estimate. However we can deduct a similar expression when we are assuming

the position of the maximum of the likelihood function to be the measured

position. Let us again look at the one dimensional case and let us assume that

the measured height in each beam can be described by

( ) ( )
i i i

y x h x d e= + +                                                                          (6.15)

 The ML position estimate is given by the solution of the equation

6.2 Characteristics of the position estimate
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The function f(x) is almost linear around x=x
0
 for moderate N. By Taylor expanding

f(x) around x=x
0
 the following expression for the position error b can be found
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Thus the position error can be expressed as the ratio of two stochastic variables.

The variance of the denominator
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 is typically much smaller than the variance of the numerator
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This can be seen by looking at their expected values. For a stochastic variable

h(x) the expected value of the square of a derivative of the variable is [NE75]
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The spectrum of a terrain profile can often be assumed to have an exponential

form 
0 0

( ) exp( / )
h

S Sω ω ω= − where 
0

ω is a characteristic of the actual terrain.

In such a case we have 3

0 0
(1) 2Sµ ω=  and 5

0 0
(2) 24Sµ ω= . The value of ω

0
 is in

most cases much less than 0.02 which shows that the variance of the denominator

is much less than the variance of the numerator and thereby the approximations

below are justified (cf. Figure 6.6).

The variance of the denominator is much smaller than the mean, thus the posi-



131

tion error will be close to Gaussian distributed. Disregarding the stochastic part

of the denominator the variance will be
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See Figure 6.7 which compares (6.17) with a Monte Carlo simulation of the posi-

tion bias.

 An accurate approximation of the bias  for larger N is
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and approximately we have

Figure 6.6: The ratio between µ(1) and µ(2) as a function of the fall off constant

ω
0
.

6.2 Characteristics of the position estimate
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That is, according to (6.21)
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 See also Figure 6.8.

The above results can easily be generalized to the two dimensional case. For

moderate N and small and equal measurement bias d in all beams equation (6.22)

can thus be approximated by

Figure 6.7: Position bias in a real map calculated according to (6.17) and (6.22).

The circles represent the result from Monte Carlo simulations. The solid line

refer to (6.17) and the dashed line to (6.22). Number of beams is N=400,

measurement bias d=-2 m and σ
e
=0.5 m.
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That is, the horizontal position bias is proportional to the mean gradient 
0

( )G x of

the terrain which would be expected. For large N the mean gradient will tend to

zero and making the estimate unbiased.

Thus, in the case we have a measurement bias the variance will be given as

shown by (6.24) which in the two dimensional case can be written as

6.2 Characteristics of the position estimate

Figure 6.8: The uncertainty ellipses for an unbiased and a biased position

estimator. The Cramér-Rao variance expressions refer to the one dimensional

case. The origin of the coordinate system is in position x
0
.
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where ( ) ( )= +B x x b x .

In the estimation of the position the existence of measurement bias can of  course

be taken into account from the very beginning. This has been shown in Chapter

5. Often, however, we can approximate the measurement bias to be the difference

between the means of the measured depths and corresponding map depths as

pointed out earlier. The main difference between this approximation and the

more correct method (3.20) in Chapter 3 is that the first assumes that the likelihood

maximum occur at a step point, which also should be the true position, in the

matching which may not be the case. With the number of measurement beams

we are using the difference is negligible.

The reduction of the measurement and map vector with the means can be

described as pre-multiplying the profile vectors  y(x
0
) and h(x) by the projection

matrix which will subtract respective mean from the vectors. The projection

matrix is

ΠΠΠΠΠ=I
N
-1

N,N
/N                                                                               (6.28)

where I
N
 is the identity matrix and 1

N,N
 is a matrix with ones as elements.

Straightforward calculations of the second derivative, see Chapter 5, of the log

likelihood function for this case give the CRLB matrix  (cf. (6.5)).

1
2 T

PM eσ
−

 =  R GΠG                                                                                   (6.29)

When profile matching gives a unique position and we have a large number of

beams expressions (6.5) and (6.29) will be close to each other.

In the general case when we have a measurement bias and a full measurement

error covariance matrix the CRLB for the position error is as shown in Chapter 5

1
1/ 2 1/ 2 1 1 1/ 2 1/ 2

( )
T T T

−
− − − − − −  = −  R GC I C u u C u u C C G                              (6.30)

where u is a column vector of N ones and C the position error covariance matrix
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and G defined by (6.2). Since the elements in the covariance matrix of the

position error correspond to the sum of the terrain gradients in the measuring

footprint points, this also means that the method with several measuring beams

can be used in much flatter terrain areas than the measuring with only one

beam since adding of beams will compensate for the smaller terrain gradients.

The position error covariance matrix for the estimate can thus be calculated in

real time or in advance from the terrain map. We see from (6.5) that the error

covariance is approximately inversely proportional to the number of beams. In

the case we know the autocorrelation function for the bottom profile the

estimated value of the position error covariance matrix is just a function of N.
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7.1 Introduction
The first part of this chapter will discuss what is called optimal footprint beam

pattern before turning to the problem of choosing way-points. We will restrict

our discussion to rectangular beam patterns since these naturally arise from

bathymetric sonars with a linear or square sensor array which is the common

array shape. It turns out that the position accuracy could in some cases be

considerably increased by adjusting the footprint of the beam pattern to the

structure of the bottom terrain which is a simple thing to do if a true 3D bathymet-

ric sonar is used. The second part of the chapter will discuss how to choose way-

points. Since it is possible to determine the position accuracy directly from the

underwater map, this information can be used in planning vehicle missions to

secure that good position fixes will be achieved.

7.2 Optimal footprint beam pattern
The achievable position accuracy is given by the Cramér-Rao lower bound ex-

pression (6.1). It is not obvious from (6.1) that the actual accuracy strongly

Chapter 7

Optimal beampattern and

way-point selection
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depends on the beam footprint array pattern in many cases. A simple example

will show this.

Assume that we have a non-circular Gaussian hill as in Figure 7.1 and our true

position at the sampling event is at the top of the hill.  Correlation is then done

by an array of 20 x 20 beams and by an array of 10x40 beams. The same number

of beams is thus used in both cases. The contour plots for the likelihood func-

tions in the two cases are shown in Figure 7.2 and 7.3. The contour of the

likelihood function will be elliptical for a square beam pattern. The semiaxis of

the uncertainty ellipse in the center of the Gaussian hill are given by the eigen-

vectors and eigenvalues of the Cramér-Rao matrix in that point. By comparing

Figure 7.2 with Figure 7.3 we see a great improvement in accuracy in the worst

direction at the expense of the accuracy in the best direction.

Figure 7.4 and 7.5 show a real example from a sea-trial when the way-point is

situated on the slope of an underwater ridge. In Figure 7.4 the beam array pattern

is 10 x 10 in a rectangular grid of 10 meter. The angle between the grid and the

ridge is approximately 30 degrees. In Figure 7.5 the beam pattern is 50 x 2 beams

and the pattern is rotated 30 degrees to align the long side with the ridge.

Figure 7.6 shows the magnitude of the largest semiaxis for different footprint

Figure 7.1: Flat terrain with a Gaussian hill. The true position is in the centre of

the hill.
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patterns, from 1x256 to 16x16, when the beampattern is rotated 360 degrees. For

a quadratic beam pattern there is only small variation in the magnitude of the

largest semiaxis but for the 2 x 128 beam pattern we have a radically smaller

largest semiaxis for a rotation angle of 150 degrees.

Figure 7.3:  Uncertainty ellipse for an

array pattern of 10 x 40 beams at 80%

height of the maximum of likelihood

function.

Figure 7.2: Uncertainty ellipse for

an array pattern of 20 x 20 beams at

80% height of the maximum of

likelihood function.

N
o

rt
h

N
o

rt
h

Figure 7.4: The likelihood function

for a way-point situated at the slope

of a ridge.

Figure 7.5: The likelihood function

when the beam pattern has been

adjusted and rotated. Note the

difference in horizontal scale

compared to Figure 7.4.

EastEast

7.2 Optimal footprint beam pattern
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The discussion above indicates that a higher accuracy in the worst direction

can be achieved in many cases by adjusting the beam footprint pattern shape

after the expected bottom appearance at the way-point. This can be done in the

following way for a measuring system which only uses beamforming in the

receiver stage. The data from the physical array are first beamformed into a

square beam pattern and the eigenvalues of the Cramér-Rao matrix in that point

are calculated at the maximum point. A new beam pattern based on these eigen-

values is then laid down and a new likelihood function is calculated using the

Figure 7.7: A real underwater map of size 3 km x 3 km. The vertical scale is
approximately 25 times enlarged.

Figure 7.6:  The figure shows an example of how the magnitude of the largest

semiaxis varies with the beampattern for a position in an underwater map.
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Figure 7.8: The map shows the magnitude of the largest semiaxis for a fixed

beam footprint pattern of 16 x 16 beams for a real map.

same data. There will of course be many places where an approximation with a

Gaussian hill is not so good but an optimal beam footprint pattern can always be

found by adjusting the side relation and the rotation of the beam footprint pattern

(see Figure 7.6).

Now we will look at a real map, see Figure 7.7, to see what this will mean in reality.

Figure 7.8 shows a map of the largest semiaxis for a fixed beam footprint pattern of

16 x 16 beams for this map. Figure 7.9 shows the same map but now with the

optimal beampattern, i.e., the beam pattern varies from 2 x 128 to 16 x 16 and is

rotated to achieve the smallest largest semiaxis of the uncertainty ellipse. As can

be seen the topography is now more chiselled and the magnitude is much lower

in many areas. Note the difference in vertical scale compared to Figure 7.8. The

figures are based on the same number of beams. Figure 7.10 shows the percent-

age of the total map area which has the largest semiaxis below a certain value. For

example, if a magnitude of the largest semiaxis of 0.1 is acceptable then the opti-

mal technique would more than double the map area where that accuracy, or

better, could be achieved. As can be seen from the figures there is great improve-

ment in certain areas and less in other areas.

7.2 Optimal footprint beam pattern
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Figure 7.10: The graph shows the percentage of the map area which has the
largest semiaxis below a certain value. For example if the largest semiaxis should
be below 0.1 the optimal beam footprint technique would more than double the
map area where this is the case.

Figure 7.9: The map shows the magnitude of the largest semiaxis for the same
map as used in Figure 7.8 but now with the optimal beam pattern technique
used.
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The information in the maps in Figure 7.8 and 7.9 can also be used in the plan-

ning of the mission for the underwater vehicle to secure good position fixes.

7. 3 How to choose way-points
Way-points and tracks shall of course be placed where the terrain has large

relative height variations but since often maps are non-homogeneous in terrain

characteristics a more sophisticated method of selecting way-point areas is

needed and the findings in the previous section will be of great help for that.

The Figures 7.8 and 7.9  show the magnitude of the largest semiaxis of the

uncertainty ellipse for a fixed beam pattern and for an optimal beam pattern.

Small magnitudes indicate small position error due to random measurement er-

rors and hence good terrain for terrain navigation. Large magnitudes mean poor

conditions for terrain navigation. Consequently way-points shall be placed in

low areas of these maps and tracks should be laid down to follow valleys or low

areas in the maps in case of continuous terrain navigation.

The graph in Figure 7.11 shows the optimal beam pattern overlaid the contour

plot for the map in Figure 7.7. The rectangles symbolize the beam footprint

pattern.  If we look closer at a part of that map, Figure 7.12, we have Figure 7.13

showing a map of the smallest largest semiaxis in the uncertainty ellipse while

Figure 7.14 shows the optimal beam pattern overlaid a contour plot of Figure

7.12. From Figure 7.13 and Figure 7.14 we can see that we will have the highest

accuracy if we do our positioning in the valley shown in Figure 7.13. This is also

the valley in Figure 7.12 but this should not be taken as a rule.  A smaller

beampattern would change the situation.

A reasonable first criteria for positioning failure is that the largest semiaxis, for

the selected beam pattern falls above some critical value, cra . In Figure 7.15 the

shaded area shows such a situation for the map in Figure 7.7.  We define a

likelihood function wpL by assigning to it the value 0 when the largest eigen-

value exceeds the criterion (the shaded area in the figure) and the value 1 other-

wise (the white area). The percentage of localizations that will succeed given the

criterion cra is then given by

2
( | ) ( ) ( | )wp cr wp wp cr

R
F a p L a d

−= ∫x x x x                                                                (7.1)

7.2 Optimal footprint beam pattern
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Figure 7.12: Part of the map shown in Figure 7.7. The vertical scale is enlarged
approximately 50 times.

Figure 7.11: Optimal beam pattern overlaid the contour plot of a map. Darker
beam patterns are good areas for terrain positioning. Light (red) areas are
bad for terrain positioning. The scale of the vertical and horizontal axis and
size of semiaxis is in 10th of meters.
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Figure 7.14: The optimal beam pattern
overlaid the contour map for Figure
7.12 for  determination of suitable
way-points. The scale of the vertical
and horizontal axis is in 10th of me-
ters.

Figure 7.13: The map over the  largest
semiaxis in the uncertainty ellipse
when the optimal beampattern has
been used, cf. Figure 7.12. The scale
of the vertical and horizontal axis is in
10th of meters.

Figure 7.15: White areas are areas
where the largest semiaxis of the
uncertainty ellipse is smaller than a
certain threshold value, i.e., 0.15.

Figure 7.16: The value of the largest
semi axis for the landscape in Figure
7.7. Contour lines are for 0.1, 0.15,
0.20, 0.25.

7.3 How to choose way-points
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Here ( )wpp
−

x  is the INS-system’s PDF with centre in the way-point wpx , the prior

PDF.

This is illustrated in Figure 7.15 by a possible way-point in the centre of the

circle, where the size of the circle symbolizes the 1-σ INS error. Figure 7.16 shows

the largest semiaxis for the landscape in Figure 7.7. If the actual arrival at the

way-point is in the shaded area then positioning is impossible, the error is too

large. On the other hand, if it is in the white area a position fix is possible.  In such

a way, for every point in the map, the percentage of success can be calculated

according to (7.1) , see Figures 7.17 and 7.18. The choice of 
cra will depend on

the accuracy needed when other sources of errors have been taken into consid-

eration (see Chapter 8).

Figure 7.17: The diagram shows the probability for success for way-points in
the map in Figure 7.7.
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Figure 7.18: Contour map of the diagram in Figure 7.17. In the dark shaded
areas the probability of success in positioning is less than 25% and in the light
shaded areas the probability is almost 100 %. The step in shading is 25%. The
prior PDF from the INS is assumed to be 100 meter RMS. The scale of the vertical
and horizontal axes is in 10th of meters.

7.3.1 An example of how to choose a way-point
Our goal is to decide upon a way-point in a given area for which we have an

underwater map. Our sonar equipment is a bathymetric sonar with known charac-

teristics as number of beams, beam angles, measurement accuracy and so forth.

We will also assume that the number of measurement beams is so large that the

Gaussian approximation is reasonable. The positioning result will be used for

updating an INS-system. The steps for establishing the way point will be as

follows.

The first step will be to calculate the position error covariance matrix for every

point in the map. According to (6.1) in Chapter 6 the error covariance matrix with

no beam weighting  is

7.3 How to choose way-points
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If we have a bathymetric sonar with only one beamplane we may have to as-

semble a number of beamplanes to measure the bottom 3D topography. A good

choice of the number of beam planes by experience may be 5 with a distance

between the planes of  20 - 25 meter.

When calculating the uncertainty ellipse account shall preferably be given to the

actual sonar and the real footprint of the sonar against the bottom, see Figures

7.19 and 7.20. By that, the enlargement of the total footprint with increased depth

will automatically be taken into account. This is important since a larger footprint

coverage will mean a smaller positioning error. A way of determining the intersec-

tion of the individual beams with the bottom is to first approximate the bottom

with triangles with their vertices in the grid points of the map. The intersection of

the beams and the planes determined by the triangles is then calculated and by

that the positions of the beam footprints and the depth for the beams are known,

Figure 7.21.

Figure 7.19: A typical beam plane. Figure 7.20: An assembled beam
package of five beam planes.
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The chosen number of beam planes shall then be assembled with a fix distance

and angle between the beam planes. The beam plane assembly is then moved in

steps over the map and the depth measurements are calculated from a sonar

model which can be more or less complex, i.e., taking temperature gradients and

other things into account. A more approximate solution using a beam pattern

with a fixed distance between the individual beam footprints, see Figure 7.22, is

often of interest since it is much less computationally demanding and still gives

a good view of the good areas for terrain navigation. When those are found then

a more accurate computational method can be used. In both ways interpolation

of the map depth has to be used. In relatively flat areas a linear interpolation

method can be used but in more rough hilly terrains a more accurate method

must be used (see  Appendix B).

As an alternative to interpolation a sonar map method can be used, that is a local

map of the sonar measurement with the same grid size as the underwater map is

produced and this map is correlated with the underwater map in the gridpoints.

The main complication with this method appears when the correlations shall be

done with different rotation angles of the beam pattern.

The next step in the process is to calculate, in every point of the map, the

Figure 7.21: The individual beam footprint is calculated by first finding the
intersection between the bottom and the beam package of five beam  planes.

7.3 How to choose way-points
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eigenvalues of the position error covariances. This will give the major and minor

semiaxes of the uncertainty ellipse and the eigenvector gives the direction of the

semiaxis and by that the orientation of the likelihood function is known. In the

direction of the eigenvector corresponding to the largest eigenvalue we have

the poorest accuracy and in the direction of the eigenvector corresponding to

the smallest eigenvalue we have the best accuracy. By now a graph like Figure

7.13 can be drawn for the largest eigenvalue (semiaxis for the uncertainty ellipse)

and it is in the low areas the best places for way-points are.

The  covariance error matrix (7.2), corresponds to the likelihood function

2

,22
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1 1
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If the more complex likelihood function with beam weighting is used

11 1
( ; ) exp( ( ( )) ( ( )))

2(2 ) det( )

T

t t t t e t t
N

e

L
π
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              (7.4)

the corresponding error covariance matrix should be used in the calculations,

see Chapter 5.

Figure 7.22: Footprint of the beam plane assembly for a flat bottom.



151

Now, for updating our IN-system with an accurate position for eliminating the

drift error we can only accept terrain positions with a largest semiaxis smaller

than a certain value so we produce a new map, the success map, of the area

where the pixels are 1 if we meet the criteria or 0 if we fail, cf. Figure 7.15. This

new map will now be the basis for the calculation if we will fail or succeed in

establishing a terrain position with required accuracy. When the vehicle is

approaching the way-point it will only occasionally hit the way-point so the

actual vehicle positions, when the vehicle thinks she is at the way-point, will

be spread according to the accuracy of the navigation system. Sometimes the

vehicle will end up in the white areas and sometimes in the black areas.

The success rate is then calculated for every assumed way-point in the map

according to (7.1) which gives the probability of success when approaching a

way-point at position wpx . A graph of the function is shown in Figure 7.18. The

final step is then to select an actual point in the light shaded areas in that

figure.

7.3 How to choose way-points
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Chapter 8

Sonars and the sea-trial

October 2002

8.1 Introduction
This chapter starts with a discussion of sonars suitable for terrain navigation as

an introduction to the presentation of some results from one of the sea-trials

that have been conducted to verify the theory presented earlier in this thesis.

8.2 Sonars and position error causes
8.2.1 Introduction
The same type of sonars that are used for charting of ship routes can be used for

terrain navigation. These sonars are called bathymetric sonars and have a fan-

shaped beamplane with ~60 - 250 beams with beamwidths ~0.5 - 1.5 degrees.

Often such sonars work in the frequency range 100 - 200 kHz to have a reasonable

range in depth. The lower the frequency is the lower will the attenuation of the

sonar pulse be and by that an increased range for the sonar.
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Large depths mean that the beam footprint will be large so a small beam angle

is essential for mapping smaller objects at large depths.

There are many types of errors encountered in terrain navigation besides the

random measurement error previously discussed. To name a few of them we

have errors caused by:

- Ship movement

Pitch, roll and yaw and with surface ships also heave.

- The mounting of the sonarhead

Reflection

Incorrect assumptions about the center of vehicle movement

- Characteristics of the sonar

Beamwidth

Number of beams and spacing

Accuracy in depth measurement

Power

Algorithm for bottom detection

- Measurement errors caused by water characteristics

Insufficient compensation of temperature gradients

Reflections of the outer beams due to stratifying layers.

- Measurement errors caused by askew reflections of  sonarbeams

Due to bottom slant

Due to rocks

Due to objects in the water column, i.e., fish schools

8.2.2 Bathymetric sonars
Figures 8.1 and 8.2 show two types of bathymetric sonars that have been used

for terrain navigation. Figure 8.1 shows the Reson SeaBat 9001. The cylinder

on the main body is the transmitting unit consisting of a cylindrical pile of

discs of a piezoelectric ceramic material. To each disc a phased sonar pulse is

sent and by that a fan shaped beam is formed as sketched in Figure 8.3. The

physical sound wave is transmitted from the cylindrical surfaces of the ceramic

discs.
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Figure 8.1: The Reson SeaBat 9001

sonar used in the sea-trial 1998.

Figure 8.2: The Reson SeaBat 8101

sonar used in the sea-trial 2002.

Figure 8.3: The principle to obtain a measurement beam in the Reson SeaBat

9001 and 8101 sonars as cross sections between the transmitting and receiving

fan shaped beams.

The half cylindrical element at the front end of the main body is the receiver.

Also the reciever consists of piezoelectric ceramic elements now in the form

of wedge-shaped plates. When the return pulse hits the ends of the  plates an

electric signal is created. The signals from the elements are after amplification

beamformed into 60 beams in a fan shaped plane, perpendicular to the

transmitting beam and by that the elements only catches the return pulse from

the cross-over by the fan shaped transmitting and receiving beams. The

frequency is 455 kHz and the beamwidth is 1.5 x 1.5 degrees with spacing 1.5

degrees. The physical size of the main body is 473 x 190 x 126 mm.

8.2 Sonar and position error causes
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It is also possible to steer the transmitting fan shaped beam in an angle to a

vertical line as in Figure 8.4. By firing 5 succesive pings with the beam plane at

an angle of, say,  -45, -27, 0, 27 and 45 degrees a 3D bottom picture

corresponding to Figure 7.22 can be achieved. The time between the individual

pings is as short as possible and the result is compensated for the distance

travelled between the pings. There will be an increased sensitivity for

uncompensated temperature gradients in the outer beamsplanes since they are

not vertical any longer. On the other hand the error in distance and angle between

the beam planes will be smaller than the arrangement according to Figure 7.20.

The Reson SeaBat 8101 sonar in Figure 8.2  was used in the sea-trial described

later in this chapter. A glimpse of the cylindrical transmitting element can be

found at the left end of the body. The receiving element is the dark cylindrical

strip on the main body between the mounting details. The transmitting and

receiving beams are formed in the same manner as for the SeaBat 9001 sonar.

Figure 8.4: A sonar firing five transmit beams at different angles to the vertical

line, cf. Figure 7.22.
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The frequency is 240 kHz and there are 101 beams of width 1.5 x 1.5 degrees

and with a spacing of 1.5 degrees.

Another sonar that has been used in the tests is the OmniTech EchoScope,

Figure 8.5, which is a true 3D-sonar with a 40 x 40 receiver array forming

4096 receiver beams of 1.5 x 1.5 degrees with a beam spacing of 1.5 degrees.

The receiver array, the shaded square, is made of a piezoelectric polymer and

the three transmitters are made up of ceramics. The cylindrical element above

and the two elements below the receiver array are the transmitters. The sonar

can transmit three different CW frequencies and the curvature of the transmitting

element determines the beam width of the transmitting pulse. Figure 8.6 shows

a bottom picture taken by this sonar. Figure 8.7 shows the footprint of the

beams. The ideal terrain navigation sonar is a true 3D sonar, due to the fixed

distance between the beams, with a few hundred beams and a short single

transmitting pulse if covertness is required.

Figure 8.5: The OmniTech, EchoScope sonar is a true 3D sonar with a 40 x 40

receiving array of a piezielectric polymer, PVDF. The different transmitters have

different frequencies, 150, 300 and 600 kHz. The curvature of the transmitters

forms the transmitting beam shape. The sonar was used in the sea-trial 2000.

8.2 Sonar and position error causes
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Figure 8.6: A bottom picture from

the EchoScope sonar.

Figure 8.7: The footprints from

the measurement beams for the

EchoScope sonar.

8.2.3  Measurement errors
When measuring the terrain profile consideration has to be taken to several

types of measurement errors with varying degree of seriousness.

Errors due to the ship movement

The usual mounting of the sonarhead is flush to the ship body. To be able to

compensate for the ship movement an inertial measurement unit (IMU) is

mounted as close as possible to the sonar head. However it will not be possible

to completely compensate for the ship movement and thus some errors will

remain.

An earlier study by a sonar manufacturer gave the following measurement

error for a case with a 50 meter depth and a total sonar opening beam angle of

90 degrees, 60 beams with beamwidth 1.5 degrees.

Accurate sensorsuite

Uncompensated pitch and roll 0.05 degrees.

Uncompensated heave 0.05 meter.

Depth error in individual beams at 95% confidence interval 0.25 meter.
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Typical sensorsuite

Uncompensated pitch and roll 0.1 degrees.

Uncompensated heave 0.05 meter .

Depth error in individual beams at 95% confidence interval 0.33 meter.

The sonar mounting

The transmitter of the sonar sound pulse is often of the omni directional type

which means that reflections from the vehicle body my appear.

The characteristics of the sonar

The depth resolution of the sonar depends on its bandwidth and pulse shape

and is in most cases of secondary importance (<0.05 m) for the depth error.

The beamwidth can, however, in certain cases be of importance. Bathymetry

sonars often have a beamwidth of 1.5 x 1.5 degrees which means that the

footprint of the beam is approximately 1.3 x 1.3 meter at 50 meter depth. Since

the sonar in most cases will take the smallest depth within the footprint as the

depth, an error may result at high slant angles, especially at larger depths.

However, the greatest error will in most cases be caused by different detections

of the bottom line. Depending on the sonar frequency the sonar beam will

penetrate differently into the bottom sediment. The depth of the soft sediment

layer can be several meters.  A low frequency sonar will penetrate deep into the

bottom sediment while a high frequency sonar will penetrate only a little.

Sometimes, when using profile matching, this will not change the bottom profile

in other cases, i.e., large stone blocks in the sediment, the profile will change.

The upper part of the bottom sediments will have a very high content of water

which is successively decreased with increasing depth. This will cause the return

echo to be diffuse and depending on the bottom detection algorithm different

sonars will give different depth measures. This can be a problem for the beams

at high angle of incidence since they travel long into the sediments. The harder

the bottom is the less is the problem.

Sound bending due to temperature gradients and stratifying layers

The depth shown by the sonar is calculated from the travelling time of the

sound pulse. This means that if the path of the beam is longer due to the beam

bending a larger depth than the real depth is shown. If the temperature gradient

is known the sonar software will compensate for this. However, in shallow

8.2 Sonar and position error causes
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water the temperature gradient will also depend on the horizontal position.

One reason for that is underwater currents.

In order to minimize the problem with beam bending the sonar beams shall be

as perpendicular to the bottom as possible and the weighting of the outer beams

shall be less than the central beams in the matching process.

Measurement error due to slant reflections, fishes and similar things

Frequently depth errors will occur due to non-reflecting beams. That means

that the side lobes of the beam will catch a return pulse from some other direction

than expected and show a wrong depth. Especially the outer beams are exposed

to this at high bottom slant angles.

Fish and objects in the water column may give large depth errors but those

errors are often easy to correct by removing the depth values without changing

the others by filtering. The traditional way when charting is to remove these

types of errors manually by an operator.

The accuracy of the map

The underwater maps produced by the Maritime authority is produced for

merchant shipping and this may influence the use of them for terrain navigation.

Sea bottom areas are most often charted by low frequency sonars. Depths given

are conservative i.e., the actual depth may be larger.

The official depth accuracy given is not better than 1.5 meter. In reality it might

be better. The horizontal position error of the depth given is in the range of 1

meter.

8.3 Sea-trial October 2002, Simulation
8.3.1 Introduction
To verify the characteristics of the proposed navigation method three large

sea-trials have been conducted with similar results. Some of the results from

the last sea-trial in October 2002 will be presented here. The sea-trial was

conducted in the way that a track of 65 km around an island was divided by a

number of way-points as shown in Figure 8.8. At every way-point it was tested

if it was possible to get a position with the suggested navigation method. The

way-points were selected from the underwater map by the eye to have good
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Figure 8.9:  Lowering the sonar through the moon-pool. In the middle of the

picture is the IMU for measuring the sonar attitude.

Figure 8.8: The 65 km long test track with the way-points marked.

8.3 Sea-trial October 2002, Simulation
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characteristics for terrain navigation. At that time the theory of how to select

way-points, Chapter 7, was not developed. Intensive Monte Carlo studies to

confirm the suitability of the way-points were conducted. One of the way-

points was deliberately placed in a very flat area to examine the performance of

the method in such an area.

Practically the test was conducted by mounting the sonar, RESON 8101, at

one end of a long sturdy tube which was lowered into the water through the

moon-pool in the rear of the ship, see Figure 8.2 and 8.9. The used sonar has

101 beams 1.5o apart in a fan-shape with a beam width of 1.5 o x 1.5o.

8.3.2 Simulation of the positioning
To investigate the suitability of the way-points for terrain navigation Monte

Carlo simulations were conducted. A 3D sonar was simulated by assembling 5

beam planes of 60 beams 1.5o apart in a fan-shape with a beam width of 1.5 o x

1.5o. This corresponds to the SeaBat 9001 sonar. The number of beams was

thus lower than used in the sea-trial. The distance between the beam planes

was 15 meter. The beam width has been considered negligible. A measurement

error of 0.5 meter RMS was assumed based on earlier sea-trials.

When the vehicle moves from one way-point to another way-point with the

help of the IN-system it will not hit the way-point exactly due to the INS error.

The INS error consists of different random errors which can not be calculated

in advance. Some of the more important errors will increase with at least the

third power of time which means that the position error at the way-point largely

depends on the travelling time since the last reset of the IN-system.

In the simulations the position error at the arrival to a way-point is assumed to

have an error of 150 meter RMS. This means that 68% of all arrivals will be

within a circle with a radius of 150 meter. At way-point BP7, which is close to

BP6B a standard deviation of 30 meter has been used. The reason for placing

BP6B so close to BP7, see Figure 8.8, is that the terrain at  BP7 is not so good

for terrain positioning (the depth is very small) so a small INS position error is

needed for an unambiguous position at BP7. The short distance between BP6B

and BP7 means that false correlation peaks can be excluded. The search area

for a terrain position has been the whole underwater map, i.e., 5000 x 5000

meter for all way-points. In the simulation a bearing error of 1.5ο RMS of the

beam pattern and the journey between the way-points has also been used, see

Figure 8.10. The number of trials at each way-point is 1000.
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An example of simulation result at way-point BP3

The depth at way-point BP3 is 38 meter. The Figure 8.10 shows the spread in

position at arrival at the way-point and Figure 8.11 shows the inverse of the

correlation sum T(x) , see Chapter 3. From Figure 8.11 it can be seen that

there are no false peaks of importance.

Figur 8.12:  Position error in the

x-direction at BP3.

Figur 8.13:  Position error in the

y-direction at BP3.

Figure 8.11:  The correlation result at

way-point BP3.
Figure 8.10: The spread in po-

sition at arrival at way-point
BP3.

8.3 Sea-trial October 2002, Simulation
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The result from the simulation is that at this way-point of all 1000 trials only 33

trials gave a position with larger error than 3σ = 450 meter. This may be

considered as a large number but is probably explained by the simulated random

bearing error and if so does not depend on the terrain positioning. If we are

considering these to be outliers the distribution of the position error is as in

Figure 8.12 and 8.13.

From the histograms we see that they remind of Gaussian distributions. In

Chapter 4 it was shown that for large number of measurement beams the position

error distribution will approximately be Gaussian.

The step in the matching procedure was 1 meter. The mean of the position error

was 0.7 meter and the standard deviation was RMS 0.45 meter. Note that the

real world position error also include errors due to other reasons than the

correlation and that these will add to the correlation error given here.

Other simulation results

Way-point BP1

The depth at way-point BP1 is 58 meter. The mean of the position error was

0.61 meter and the standard deviation was RMS 0.36 meter.

Way-point BP2

The depth at way-point BP2 is 39 meter. The mean of the position error was

0.56 meter and the standard deviation was RMS 0.33 meter In this case 20

positions outside the 3σ−limit were obtained.

Way-point BP4

The depth at way-point BP4 is 31 meter. The mean of the position error was

0.51 meter and the standard deviation was RMS 0.29 meter. In this case 20

positions outside the 3σ−limit were obtained, see Figure 8.14 and 8.15.

Way-point BP5

The depth at way-point BP5 is 101 meter. The mean of the position error was

0.60 meter and the standard deviation was RMS 0.38 meter, no positions outside

the 3σ−limit were obtained, see Figure 8.16 and 8.17.
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Figure 8.16: The correlation

peak for way-point BP5, 5 beam

planes. Map area 2 x 2 km.

Figure 8.17: Radial position

error at way-point BP5.

Figure 8.14: The correlation peak

for way-point  BP4, 5 beam planes.

Map area 2 x 2 km.

Figure 8.15: Radial position

error at way-point BP4.

8.3 Sea-trial October 2002, Results

Way-point BP5B

The depth at way-point BP5B is 59 meter. The mean of the position error

was 0.49 meter and the standard deviation was RMS 0.28 meter, 5 positions

outside the 3σ−limit were obtained.



166 8 Sonars and the Sea-trial October 2002

Way-point BP6B

The depth at way-point BP6B is 39 meter. The mean of the position error was

0.54 meter and the standard deviation was RMS 0.31 meter, 8 positions outside

the 3σ−limit were obtained.

Way-point BP7

The depth at way-point BP7 is 10 meter. The mean of the position error was

1.0 meter and the standard deviation was RMS 0.7 meter, 145 positions outside

the 3σ−limit were obtained.

8.4 Sea-trial October 2002, results
Due to bad weather conditions the way-points 4, 5, 5B and 6B could not be

approached. A reasonable assumption based on the simulations is that the

positioning result at these way-points would have been as good as at the other

way-points. The depth at these way-points would have given a large bottom

coverage for the sonar and the terrain has also large variations at the way-

points. Below are some brief correlation results from the other way-points. In

the tables the notation 5/75 means 5 beamplanes 75 pings apart. Length and

width refer to the correlation area and outliers are removed.The position

reference is a  DGPS measure with a believed accuracy of 3 meter RMS.

8.4.1 Way-point 1

Figure 8.18. Likelihood function.

Map area 5 km by 5 km, 5 beam

planes. Map area 5 x 5 km. BP1

Figure 8.19: The N-normalized

likelihood function. Horizontal

scale in meter. BP1.
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Figure 8.20: Positions at the way-point BP1. The cross marks the way-point.

8.4 Sea-trial October 2002, Results

Table 8.1. Position error at way-point BP1

Ping       No./Dist.   depth         x error     y error    length   width

  No.   beam planes    m               m             m           m           m

1730 5/75 -16.0 0.1 3.8 106 82

1150 5/75 -19.0 -2.0 6.2 160 93

550 5/75  -16.0 -0.3 3.3 153 84

1100 5/75 -19.0 -2.4 4.0 141 92

1700 5/75 -16.0 -0.1 4.7 110 75

1080 5/75 -19.0 -1.4 7.3 170 89

600 5/75 -15.9 -0.3 3.4 106 59

1350 5/75 -18.8 -3.1 -0.7 119 92

1280 5/75 -15.9 -0.2 5.3 163 84

820 5/75 -18.8 4.6 31.7 164 91

Radial position error  4.7 m with respect to origo.Radial position error

2.0 m with respect to the mean error.
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8.4.2 Way-point 2
Way-point 2 is situated in a flat area. The Figures 8.21 and 8.22 show the likelihood

function for 5 beam planes. The Figures 8.23 and  8.24 show the likelihood function

for 11 beam planes, almost doubling the correlation area.

Figure  8.22: The N-normalized

likelihood function. Horizontal

scale in meter, 5 beam planes.

Figure 8.21: Likelihood function, 5

beam planes. Map area 5 x 5 km . BP2.

Figure 8.23: Likelihood function, 11

beam planes. Map area 5 x 5 km .

BP2. Note the decrease in false peaks.

Figure  8.24: The N-normalized

likelihood function. Horizontal

scale in meter, 11 beam planes.
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Table 8.2. Position error at way-point BP2

Ping     No./Dist.   depth        x error     y error      length   width

  No.   beam planes    m               m           m             m           m

 1300 5/75 -38.4 7.0 6.5 101 109

 1500 5/75 -38.4 -8.6 -32.0 106 109

 1500 11/75 -38.4 0.5 -6.5 264 109

 1700 5/75 -38.4 -2.8 -9.9 109 109

 1300 5/75 -37.7 -0.5 -8.3 101 107

 1500 5/ 75 -37.5 28.1 53.3 102 107

 1500 11/75 -37.5 2.1 -0.1 253 107

 1700 5/75 -37.4 12.7 19.3 100 106

 1300 5/ 75 -37.1 6.9 5.2 95 105

 1500 5/75 -37.4 -0.1 -9.4 98 106

 1500 11/75 -37.4 9.2 9.2 243 106

 1700 5/75 -37.5 5.2 0.2 98 106

 1300 5/75 -37.4 0.8 -4.1 97 106

Figure 8.25:  Positions at the way-point 2. The cross  marks the way-point. The

way-point is situated at the slant of a ridge. There is good accuracy across the

ridge but worse along the ridge.

8.4 Sea-trial October 2002, Results
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Figure 8.27:  The N-normalized

likelihood function. Horizontal scale

in meter, 5 beam planes. BP2B.

Figure 8.26: Likelihood function, 5

beam planes. Map area 5 x 5 km.

BP2B.

8.4.3 Way-point 2B

Table 8.2. Cont.  Position error at way-point BP2

Ping      No./Dist.     depth         x error     y error   length   width

   No.   beam planes    m               m            m           m          m

 1500 5/75 -37.4 0.3 -6.2 105 106

 1500 11/75 -37.4 6.5 8.4 260 106

 1700 5/75 -37.4 7.5 9.7 111 106

 1300 5/75 -37.2 11.7 16.4 109 106

 1500 11/75 -37.6 12.9 17.5 270 107

 1700 5/75 -37.7 4.8 -1.3 109 107

Radial position error  10.0 m with respect to origo. Radial position error

9.2 m with respect to the mean error.
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Figure 8.28:  Positions at the way-point 2B. The cross marks the way-point.

8.4 Sea-trial October 2002, Results

Table 8.3. Position error at way-point BP2B

Ping       No./Dist.    depth           x error   y error   length    width

  No.   beam planes       m                m            m         m           m

 1300 5/ 75 -30.3 3.7 2.2 0 0

 1300 5/75 -26.5 3.7 -2.0 0 0

 1500 11/75 -26.5 0.3 1.4 0 0

 1700 5/ 75 -27.6 -2.6 1.7 0 0

 1300 5/ 75 -26.1 201.0 442.5 0 0

 1500 5/75 -28.9 2.9 6.3 0 0

 1500 11/75 -28.9 2.1 1.5 0 0

 1700 5/ 75 -30.8 2.6 3.2 0 0

 1300 5/ 75 -29.9 4.6 5.0 0 0

 1500 5/ 75 -25.9 3.4 4.9 0 0

 1500 11/75 -25.9 1.7 2.7 0 0

 1700 5/ 75 -27.7 -5.4 4.9 0 0

 1300 5/75 -30.4 1.6 3.3 0 0

 1500 5/75 -32.4 0.5 2.4 0 0

 1500 11/75 -32.4 -1.4 2.3 0 0

 1700 5/75 -33.6 -2.6 5.0 0 0
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Table 8.3. Cont.  Position error at way-point BP2B

Ping     No./Dist.      depth          x error    y error  length    width

  No.   beam planes      m                 m           m       m            m

 1300 5/75 -28.5 4.5 2.3 131 85

 1500 5/75 -26.0 330.9 -69.0 120 78

 1500 11/75 -26.0 -1.7 -0.4 313 78

 1700 5/75 -27.6 -9.0 -0.6 121 83

Note: Missing length and width data are marked with 0.

8.4.4 Way-point 3

Figure 8.29: BP3, likelihood

function, 5 beam planes. Map area

5 x 5 km.

Figure 8.30: BP3, the N-normalized

likelihood function. Horizontal scale

in meter, 5 beam planes.
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Table 8.4. Position error at BP3

Ping    No./Dist.    depth              x error  y errror   length  width

 No.   beam planes   m                     m        m           m           m

 1300 5/75 -26.7 2.1 -6.4 121 100

 1500 5/75 -32.6 5.1 -5.8 117 100

 1500 11/75 -32.6 4.0 -3.8 296 100

 1700 5/75 -34.1 3.7 -4.9 116 104

 1300 5/75 -24.4 2.3 -2.1 125 80

 1500 5/75 -28.0 2.6 0.7 121 99

 1500 11/75 -28.0 1.9 -0.7 306 99

 1700 5/75 -36.5 3.3 0.7 120 105

 1300 5/75 -24.1 4.4 -3.7 121 82

 1500 5/75 -32.3 3.3 -4.0 119 104

 1500 11/75 -32.3 3.1 -3.9 303 104

 1700 5/75 -31.6 5.7 -6.0 123 98

 1300 5/75 -26.0 1.8 -1.6 116 85

 1500 5/75 -28.6 2.5 -2.8 117 94

 1500 11/75 -28.6 2.6 -3.8 295 94

 1700 5/75 -34.5 3.3 -1.7 121 102

 1300 5/75 -25.7 2.5 -3.2 126 87

Figure 8.31: Positions at the way-point 3. The cross marks the way-point.
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Figure 8.33: BP7, the  N-

normalized likelihood function.

Horizontal scale in meter, 5 beam

planes.

Figure 8.32: BP7, likelihood function,

5 beam planes. Map area 5 x 5 km.

8.4.5 Way-point 7

Table 8.4. Cont. Position error at BP3

Ping    No./Dist.       depth           x error   y error  length    width

 No.  beam planes     m                   m          m         m             m

 1500 5/75 -32.3 3.6 -5.3 125 103

 1500 11/75 -32.3 3.7 -4.2 315 103

 1700 5/75 -33.6 6.0 -5.0 126 100

Radial position error 5.0 m with respect to origo. Radial position error

2.0 m with respect to the mean.
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Table 8.5. Position error at way-point BP7

Ping    No./Dist.    depth             x error   y error  length    width

 No.  beam planes    m                    m         m           m           m

304 5/75 -41.4 0.4 -1.6 195 166

500 5/75 -20.6 1.9 -2.0 215 105

500 11/75 -20.6 3.1 -0.8 512 105

600 5/75 -30.9 1.0 -1.1 216 144

200 5/75 -33.8 3.9 0.5 247 172

300 5/75 -36.1 0.7 -0.9 238 172

400 5/75 -21.6 3.4 -1.7 245 75

200 5/75 -36.1 1.1 0.7 318 229

300 5/75 -22.1 1.2 -3.7 314 88

500 5/75 -32.3 1.4 -0.8 299 201

200 5/75 -47.2 1.8 0.2 253 243

300 5/75 -33.8 0.1 0.5 255 217

600 5/75 -22.6 1.7 -1.7 255 100

300 5/75 -21.1 2.2 -0.4 261 129

400 5/75 -36.6 -0.3 -0.2 267 176

500 5/75 -32.6 2.3 -0.6 275 216

Radial position error 2.2 m with respect to origo. Radial position error

1.3 m with respect to the mean.

Figure 8.34: Positions at the way-point 7. The cross marks the way-point.

8.4 Sea-trial October 2002, Results
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8.5 Conclusions

The horizontal position error in the simulation was less than 1 meter RMS while

the corresponding error in the sea-trial was a few meters. This might be seen as

a large deviation but since the DGPS device only had an accuracy of about 3

meter RMS we could not expect an error smaller than that.

Compared to other terrain navigation methods a radial position error of 3 meter

is extremely good (note that this figure includes the DGPS error) since the position

error for the methods mentioned in Chapter 2 is in the range of 30 meter.

We see from the figures showing the estimated positions at the way-points that

there is a position bias. Possible reasons for this bias have been carefully studied

and it is believed that it is caused by bias in the map and/or bias in the DGPS

position due to multipath in the satellite signal [PE04].

The method also shows very good performance in very flat areas as shown in

way-point 2 which is considered by the eye to be completely flat. The importance

of a large correlation area is also shown for that way-point.

It is also shown that for manned underwater vehicles the quality of the positioning,

which is extremely important, could easily be determined by looking at the

likelihood function. However the “variance” of the likelihood function may not

always be a good measurement of the quality of the positioning due to terrain

repeatability.  It may be better to always use the Hessian of the log likelihood

function at its maximum point.

A likelihood function as in Figure 8.21 shows that the positioning needs

improvement either by increasing the correlation area or adding some external

measurements as mentioned in Chapter 3. Is the likelihood function as in Figure

8.18, 8.26, 8.29, 8.32 it is almost sure that the achieved position is the correct

position, this can be confirmed by the hypothesis testing method described in

Section 4.2.3.

The Gaussian shape of the likelihood function when a large number of

measurement beams are used is demonstrated for several way-points.
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9.1  Introduction
With the uprising of the computer game industry a great number of synthetic

terrain models have become available, some are very advanced and some are

very simple. Also within the military sector, simulation of war theatres has

become common which has lead to the development of advanced terrain models.

For terrain navigation, simple synthetic terrain models have been used for a long

time to evaluate performance of navigation methods [BAAB84] with varying

degree of success.

If in the same way the bottom topography could be described in statistical

terms, e.g., as a stationary stochastic process, qualitative and quantitative

judgements could be drawn about the positioning accuracy and adherent

matters directly from the model. This would be of great advantage, but up to

now the relevance of the models, covering large areas, for that purpose might

be questioned. However, it seems at least possible that local models can be of

value.

Chapter 9

Terrain navigation for

autoregressive bottom

models



178 9 The autoregressive bottom model

One of the simplest models one can think of is to generate a random matrix (in

image theory called random field), symbolizing the terrain, and make 2D-filtering

to give the landscape the requested correlation between locations [JA89].

However, a simple 1D terrain model obtained by filtering white noise through a

first order filter may often be sufficient, that is an autoregressive process of

first order, AR(1), [BRDA91,TS02].

This chapter will therefore study the terrain navigation problem when the bottom

profile can be approximated by a low order autoregressive process. A higher

order process model will adjust better to the real world but that also means

more parameters to be identified. The chapter is to a high degree freestanding

from the previous chapters.

9.2 AR-bottom profiles
In this section the AR-assumption will be studied in some more details for the

one dimensional bottom model.

9.2.1 AR(1) bottom profile
Figure 9.1 shows a bottom profile along a 5 km straight line in an underwater

map from the Stockholm archipelago and Figure 9.2 shows the autocorrelation

Figure 9.1: A typical zero mean

bottom profile.

Figure 9.2: An adjusted AR(1) pro-

cess to the autocorrelation curve for

the bottom in Figure 9.1
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of the bottom profile along with the autocorrelation curve for an AR(1) process

with the pole in a=0.97797. A realization of an AR(1)-bottom profile with a=
0.97699 can be seen in Figure 9.3.

As can be seen from Figure 9.3 there is a high similarity between the real

bottom profile and the AR(1)-profile for the lower frequencies. The large side-

lobes in Figure 9.2 and 9.4 are because no windowing has been used for

depressing the side-lobes. Figure 9.5 shows some typical AR(1) profiles for the

pole in the range  0.4 < a <0.9999.

Figure 9.3: Synthetic AR(1) bot-

tom profile.

Figure 9.4: Autocorrelation curve for

the AR(1) process in Figure  9.3 and

the autocorrelation curve for Figure

9.1.

Figure 9.5: Some typical AR(1) profiles for the pole in the range  0.4 < a

<0.9999. The generating noise is the same for all profiles.

9.2 AR-bottom profiles
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9.2.2 AR(2) bottom profile
Figure 9.6 shows an AR(1) bottom and the same bottom profile filtered through

a first order filter for removing high frequencies and by that receiving a more real

bottom like profile. Filtering an AR(1) process with an AR(1) filter gives an AR(2)

process. It is natural that an AR(2)- process will better describe the real bottom

since it has more parameters. Another advantage relative the first order process

is that the autocorrelation function for a continuos stochastic process can be

differentiated in all points.

9.2.3 Determining the expected correlation function
In order to determine an estimate of the position we will later in this chapter

calculate the correlation function

[ ] [ ]( ) ( ) ( )
T

T x x x= − −y h y h                                                                              (9.1)

where y is the measured bottom profile and h(x) is the profile according to the

underwater map in position x. Let x be the true position which we measure and

compare it with the bottom profile at the distance k from x.  The measured profile

is  y=h(x)+e  where e is the measurement error.

Figure 9.6: A filtered AR(1) process for removing high frequencies.
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We would like to investigate if the correlation function (9.1) may be expressed in

statistical terms of the bottom profile. Therefore we will determine the expected

value of T(x+k) where k is the sampel index corresponding to some sampling

distance. To simplify the analysis we will assume that x is a scalar and the

stochastic process h(x) is stationary and uncorrelated with e. The length of the

vectors y and e is N. We also assume that the elements in e are white Gaussian

noise. We have
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where we have  introduced 
1
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We can thus through the autocorrelation function, r
h
(k), get an understanding

of the shape of the correlation function T(x).

9.3 The covariance matrix
In the previous section we found an expression for the expected value of the

correlation function. We are equally interested in finding an expression for the

covariance of the difference between the bottom profile at two different locations.

Assume therefore that the bottom profile, h, is generated by a stochastic AR(1)-

process achieved by filtering a white Gaussian noise sequence ν(k), which is

2

0
(0, )σN , through the first order filter 

1

1
( )

1
H z

az−
=
−

where we will assume

that the pole is in the range 0 < a < 1.

In Figure 9.7 two positions along the bottom profile  have been marked , Area 1

with bottom profile h
1
 and Area 2 with bottom profile h

2
. The vectors h

1
 and  h

2

are sections of the bottom profile, h. The dimension of  h
1
 and h

2
 is N.

9.2 AR-bottom profiles
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Let the position h
1 
correspond to the profile measured by the sonar while position

h
2 
is a position situated k units from position h

1
, which we match the sonar

measurement with. The elements of the vector h
1 
are the depth values from the

underwater map. The elements in the vectors h
1 
and h

2  
are 2

1
(0, )

ar
σN where

2 2 2

1 0
(1 )

ar
aσ σ= − . The autocorrelation function for the process that generates

h is 
2

1
{ ( ) ( )}

k

i i k ar
E h x h x aσ −

+ =   if  k is the distance between the elements of h.

We will to begin with assume that the bottom profile is measured without errors.

The correlation means that we compare the bottom profiles at Area 1 and Area 2

by forming the difference between the profiles. Thus, we have the difference

∆h
i
=h

2,i
-h

1,i
=h

k0+k+i
-h

k0+i 
where index i refers to to the ith element in h

1
 and h

2 
and

index k0 refers to the starting point of the vector h
1
.

 For an element in the vector ∆h=h
2
-h

1
 we have

( ) 0
i

E h∆ =                                                                                                     (9.3)

[ ]22

2 2 2 2

1, 2, 1, 2, 1, 2, 1

( ) ( ) ( )

             (( ) ) ( ) ( ) 2 ( ) 2 (1 )

i i i

k

i i i i i i ar

Var h E h E h

E h h E h E h E h h aσ

∆ = ∆ − ∆

= − = + − = −

                         (9.4)

The elements in the vector ∆h are thus 2(0, )σN where

2

2 2 0

1 2

2
2 (1 ) (1 )

1

k k

ar
a a

a

σ
σ σ= − = −

−
, they are also correlated with each other. If

Figure 9.7: Synthetic bottom profile which is assumed to be generated by an

AR(1) process.
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the distance between the positions i and j is m then we have the following

expression for the covariance

{ }1, 2, 1, 2,

1, 1, 2, 2, 1, 2, 2, 1,

( ) ( ) ( )( )

        ( ) ( ) ( ) ( )

i j i i j j

i j i j i j i j

m E h h E h h h h

E h h E h h E h h E h h

ρ = ∆ ∆ = − −

= + − −
                      (9.5)

We arrive at the following expression for the elements in the covariance for an

AR(1)-process with the pole in a and where m is the distance between elements

in the ∆h vector and k is the displacement between h
1
 and h

2

( ) 2

1
( ) 2 ,  1,  

m k m k m

ar
m a a a m N kρ σ+ −= − − ≤ − ∀                             (9.6)

By that the covariance matrix for the bottom profile difference in the case of no

measurement error is determined. The Figures 9.8 och 9.9 show ρ(m) as a function

of k at two different values of the pole a.

We note also that the covariance matrix is given directly by the expression

2 1 2 1

2 1 1 2

{ } {( )( ) }

      2 {( } { }

T T

T T

E E

E E

∆ = ∆ ∆ = − −

= − −
h

h

C h h h h h h

C h h h h
                                                  (9.7)

where C
h
=E{h

1
h

1

T}=E{h
2
h

2

T}which for large displacements k simplifies to

Figure 9.8: The elements in the

covariance matrix for a=0.90.

Figure 9.9: The elements in the

covariance matrix for a=0.96.

9.3 The covariance matrix
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2∆ =
h h

C C                                                                                       (9.8)

since for large k h
1
 and h

2
 will be uncorrelated.

9.4 Decomposition of the covariance matrix
The measured bottom profile at the true position, x, can be written as y=h

1
+e

where e  is the white measurement noise and the correlation sum is

2

1

1

( ) ( ) ( )
N

T T

i

i

T x e
=

= − − = =∑1
y h y h e e                                                             (9.9)

which will be
2

Nχ -distributed if e
i
 is Gaussian (0,1)N .

At the position h
2 
we have a similar but not equal bottom profile h

2
=h

1
+∆h,

where ∆h is Gaussian and correlated as described before. The correlation sum

will be

2 2
( ) ( ) ( ) 2T T T T T TT x k+ = − − = − ∆ + ∆ ∆ → +∆ ∆y h y h e e e h h h e e h h      (9.10)

for large N and

2 2
{ } {( ) ( )} { } { }T T TE T E E E= − − = + ∆ ∆y h y h e e h h                                    (9.11)

The last term in (9.10) can be seen to have a kind of a 
2

Nχ  looking distribution

by first decorrelating the stochastic variables ∆h
i
 in the ∆h vector by a Cholesky

decomposition , C∆h
=LDLT, or a modal decomposition of the covariance matrix,

C∆h
=UΛUT. The difference being that the modal decomposition conserves the

scale of the axes during the rotation of the axes which the Cholesky decomposition

does not. The modal decomposition of the correlation matrix has been discussed

in Chapter 4 and we will here discuss only the Cholesky decomposition.

The vectors h
1 
and h

2
 are zero mean Gaussian stochastic variables and  ∆h=h

2
-

h
1
 is the difference between the two profiles. The probability density function

for ∆h is
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( ) 1

/ 2

1 1
exp( )

2(2 ) det( )

T

N
p

π ∆

−

∆

∆
h

h

h = - ∆h C ∆h
C                           (9.12)

where C∆h
 is the covariance matrix for ∆h. The Figures 9.10 and 9.11 illustrate

the probability density function for the case N=2.

In the Figure 9.11 the area where ≤∆h ε is marked. The volume below the

probability density function in the shaded area corresponds to the probability

that ≤∆h ε , i.e., the absolute value of the depth difference in each sonar

beam does not exceed ε=[ε
1
,...ε

N
]T.

9.4.1 Cholesky decomposition of the covariance

matrix
Cholesky decomposition and inversion of the covariance matrix , C∆h

=LDLT ,

give

1 1 1 1 1( )T T T T− − − − −
∆∆ ∆ = ∆ ∆ =

h
h C h h L D L h y D y                                                (9.13)

where 1−= ∆y L h .

Figure 9.10: The probability

density function when N=2.

Figure 9.11: Contour lines for the

PDF in Figure 9.10.

9.4 Decomposition of the covariance matrix
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We also have that
,

1

det( )
N

i i

i

d∆
=

=∏hC , i.e., the product of the diagonal elements

in D since the L matrix is a lower triangular matrix with 1 as diagonal elements.

If we call the diagonal elements of D for 
2

,i i id σ= and the elements in the vector

y for  y
i
 then we can write
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or as a product of probability density functions

( )
2

2

22

1
; exp( )

22
i

ii

y
p y σ

σπσ
−=

                                                                  (9.15)

By that we also have conducted a rotation and scale change of the coordinate

system.  Therefore we also have to change the integration area when solving

the integral for the probability for a position in error, Pr( )ε∆ ≤h . The

variance i
σ depends on k but for large k values, see Figure 9.12, all diagonal

values, except the first, are approximately the same. We can therefore

approximately write

( ) 2 2
1 2

2

( ; ) ( ; )

N

i

p p y p yσ σ
=

∆ ∏h                                                                      (9.16)

with equality for large k and where

( )
2

2
1 22

11

1
; exp( )

22

y
p y σ

σπσ
−=

                                                                 (9.17)

and
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( )
2

2
2 22

22

1
; exp( )

22

y
p y σ

σπσ
−=

                                                                    (9.18)

The probability that the difference between two bottom profiles is less than ε is
then approximately

1

1

2 2

1 1 2

2

Pr( ) ( ; ) ( ; )
i

i

N

i

p y dy p y dy

εε

ε ε

ε σ σ
=− −

∆ ≤ = ⋅∏∫ ∫h                             (9.19)

A similar expression was derived in Chapter 4. The original integration limits will

change with the transformation. For large N the integrand in the second product

factor will tend to zero since the value of the integral is <1. The size of the

elements in the diagonal matrix can be seen in Figure 9.12. For large k values

21
ii

d a= − when i>1 which follows from (9.8). We can see that the curves for k

= 50 and k = 100 have a similar shape as the curve for k=500.  For  k = 500 and

a=0.99 we have 60,60
0.020032d = compared to 2(1 ) 0.0199a− = .

Figure 9.12: The diagonal elements, 2
iσ , for the Cholesky decomposition of

the covariance matrix.

9.4 Decomposition of the covariance matrix
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9.5  The mean and variance of the correlation

sum
Let the mode decomposition of the correlation matrix C=E{(y-h(x))

(y-h(x))T}=VΛΛΛΛΛVT then the correlation sum can be written as [CT92, KA93]

2

1

( ) ( ( )) ( ( )) ( ( )) ( ( ))

       ( ( ( ))) ( ( ( ))) ( )

T T T

N
T T T

i i

i

T x x x x x

x x z xα
=

= − − = − −

= − − =∑
y h y h y h VV y h

V y h V y h                            (9.20)

where z
i
 (x) is (0,1)N  and

2 2
,  i h i eα σ σ∆= +                                                                            (9.21)

where 2

e
σ is the measurement noise variance and

2

, ,h i h iσ λ∆ ∆= is an eigenvalue of

C∆h
, see Section 9.3. The stochastic variable T(x) thus has a

2

N
χ looking

distribution. The Figures 9.13 - 9.16 show some of the largest eigenvalues for

N=20, 120 and a=0.96, 0.99 for different displacements k.

The distribution also has the following characteristics [NY01a]

2 2

e

T
E

N
σ σ∆

  = + 
 

h                                                                        (9.22)

where  2 2
,

1

1
N

i

i
N

σ σ∆ ∆
=

= ∑h h
and

2

2

2
FT

Var
N N

  = 
 

C
                                                                                        (9.23)

where 
F

C  is the Frobenius norm of the covariance matrix. In the case the

bottom profile is an AR(1) process and the displacement k is large
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4 2 2 4 2 2
20 0

2 2 2 2

2 4 4 1 ( 1)
2

( 1) ( 1)

N

e eT a a
Var a N

N N N N a a

σ σ σ σ  − +  = + + −   − −   
                (9.24)

Figure 9.16: Eigenvalues for N=120

and a=0.99 for different displacements

k.

Figure 9.13: Eigenvalues for N=20

and a=0.96 for different displacements

k.

Figure 9.14: Eigenvalues for N=20

and a=0.99 for different displacements

k.

Figure 9.15: Eigenvalues for N=120

and a=0.96 for different displacements

k.

9.5 The mean and variance of the correlation sum
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Figure 9.17: The variance of the correlation sum as a function of the number of

measurement beams, N,  at two different pole placements.

Figure 9.18: The expected value

of T(x)/N at a=0.96 for different

displacements k.

Figure 9.19: The expected value

of T(x)/N  at a=0.99 for different

displacements k.
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where a is the pole in the  AR(1) expression for the bottom profile, see Section

9.3. Figure 9.17 shows the variance for two different pole placements as a

function of the number of beams. Figures 9.18 – 9.21 show how the expected

value of the correlation sum and variance differ with the distance k between

h
1
and h

2
 .

9.6 The probability density function of the

correlation sum
A simple way to determine the probability density function is to use generating

functions. The characteristic equation for a 
2

1
χ  distributed stochastic variable

is 2
1

1

1 2 jχφ ω
=

−
and therefore the characteristic equation for T(x) will be

[NKB94, KA93]

1

1
( )

1 2

N

T

ii
j

φ ω
α ω=

=
−∏  (9.25)

Figure 9.20: The variance of T(x)/N

at a=0.96 for different displacements

k.

Figure 9.21: The variance of T(x)/N

at a=0.99 for different displacements

k.

9.5 The mean and variance of the correlation sum
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The inverse Fourier transform is

1

1
 0

( ) 21 2

0                                                             0

N
j t

T ii

d
e t

p t j

t

ω ω
πα ω

∞
−

=−∞

  
 ⋅ ⋅ ≥   = −  


<

∏∫
                                      (9.26)

For every displacement k between the bottom profile and the measured profile

we will have different covariance matrices where the elements ρ(m) are calculated

according to (9.6). The eigenvalues of the covariance matrix will differ, as can be

Figure 9.22: The probability density

function for T(x)/N while N=20, a=0.96

for different displacements k.

Figure 9.23: The probability density

function for T(x)/N while N =20, a=0.99

for different displacements k.

Figure 9.24: The probability density

function for T(x)/N  while N =120,

a=0.96 for different displacements k.

Figure 9.25: The probability density

function for T(x)/N  while N =120,

a=0.99 for different displacements k.
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seen in Figures 9.13 – 9.16, depending on the displacement k and therefore we

will have different probability density functions for the correlation sum T(x+k).

The position estimate is determined from the position with smallest value of

the correlation sum. The Figures 9.22 - 9.25 show, from a Monte Carlo trial, the

probability density function for different k values but also the density function

for the smallest correlation sum among all k values (the density functions are

overlapping). As can be seen from the figures the density function for the

smallest correlation sum is almost identical with the density function for k=0.

This can especially be seen in Figures 9.24 and 9.25 where the overlap of the

density functions between k=0 and k=1 is very small.

From the figures we see that a smaller value of  a, i.e., a more hillier terrain, gives

a better distinction between the density functions for the correlation sum and

by that the risk of larger errors in the position decreases. We also see that a

larger number of measurement beams has the same effect. We also note the

well known fact that the 2

N
χ distribution asymptotically becomes normal when

N increases. Since the variance also decreases as 1/N, the likelihood function

becomes close to normal which already has been proved in Chapter 4.

9.7 The probability density function for the

position
If the joint probability density functions are known for M different

displacements between h
1
 and h

2
 the density function for the smallest correlation

sum within this truncated  PDF can be determined.

First, in order to have an analytic expression, we calculate the probability that

a displacement of k will give the smallest correlation sum. We  will have

| | 1.. 1, 1..

1 1 1 1

0

Pr( )

        ( ,..., )

i i

k i k i i M

M i i M i

T T

T T

p T T dT dT dT dT dT

= = − +

∞ ∞ ∞

− +

≤

= ∫ ∫ ∫… … …                                 (9.27)

where
1

( )
M

p T T… is the joint probability density.

9.6 The probability density function of the correlation sum
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To be able to determine the joint distribution we must know the correlation

between the stochastic variables described by the particular density functions

for different k, cf. Figures 9.22 – 9.25 and Figures 9.26 – 9.29 .

From the Figures 9.22 – 9.25 we can draw the conclusion that the smallest value

of the correlation sum almost solely depends on the density function for k=0

and k=1. The correlation for the corresponding stochastic variables is shown in

the Figures 9.26 – 9.29. From these figures we see that the major axes of the

PDFs for k>1 are approximately oriented in the same direction. That means that

a simultaneous diagonalization procedure may be applied [CT92] and thus making

the correlation sums independent of each other. However, the most important

distributions for determining the minimum of the correlation sum are those for

k=0 and k=1 and we may only take those into consideration. The joint

distribution of   k=0 and k=1 are originally not truly  independent because they

have the same measurement noise but can, without approximation, be

decorrelated by a simultaneous mode decomposition. A hillier terrain will make

the stochastic variables T(x) and T(x+1) less dependent of each other. In the

case we can consider the correlation sums independent after a simultaneous

diagonalization procedure, exact or approximate, the integral (9.27) can be

decomposed as
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                                                (9.28)

The probability density functions for the distribution p(T(x), T(x+1)) and the

number of trials which will give no position error, T(x)<T(x+1), corresponds to

the volume below the joint distribution above the 45 line, see Figures 9.30 and

9.31. The volume below the 45 line gives a position error corresponding to one

grid distance.

If the stochastic variables T(x) and T(x+1) were independent and the cumulative

frequency distribution is denoted by F(.) then the cumulative frequency
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distribution for the maximum T(x) is [PP02]

( ) ( | 0) ( | 1)
1 [1 ][1 ]

T x T x k T x k
F F F= == − − −                                                   (9.29)

The assumption of independence gives the expression (9.29) which seems to

be quite accurate in this special case. The Figures 9.32 and 9.33 show a

comparison between the approximation and the result from a Monte Carlo

simulation. The figures show the distribution for the minimum correlation sum

Figure 9.26: Correlation between

T(x+k) and T(x+k+1) for N=20, a=0.96

and k=0,1,..,4.

Figure 9.27: Correlation between

T(x+k) and T(x+k+1) for N=20,

a=0.99 and k=0,1,..,4.

Figure 9.28: Correlation between

T(x+k) and T(x+k+1) for N=120,

a=0.96 and k=0,1,..,4.

Figure 9.29: Correlation between

T(x+k) and T(x+k+1) for N=120,

a=0.99 and k=0,1,..,4.

9.7 The probability density function of position
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if  the stochastic variables T(x) and T(x+1) is dependent or assumed

independent As can be seen the difference is very small.

Figure 9.30: Correlation between

T(x), T(x+1) for N=120, a=0.96.

Figure 9.31: Correlation between

T(x), T(x+5) for N=120, a=0.96.

Figure 9.32: The probability density

function for T(x)/N for dependent and

independent variables. N=20, a=0.99.

Figure 9.32: The probability density

function for T(x)/N for dependent and

independent variables. N=120, a=0.96.
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9.8 Approximate determination of the

probability density function for the

correlation sum
To determine the probability density function for T(x) according to (9.26), i.e.,

 1

1
 0

( ) 21 2

0                                                             0
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j t

T ii

d
e t

p t j

t

ω ω
πα ω

∞
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=−∞
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<
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                                         (9.30)

demands a large computational work since it has to be determined numerically

and an approximation is therefore of interest. From the Figures 9.22 – 9.25 we

see the typical 
2χ shape. Let us therefore assume, as an approximation, that

this is the case and let us determine the 
2χ  distribution which has the same

mean and variance as p
T
(.),  which we already know from (9.22) and (9.23).

( )T Tr
E

N N

  = 
 

C
                                                                         (9.31)

2

2
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FT

Var
N N

  = 
 

C
                           (9.32)

For a 
2

v
χ distributed stochastic variable,ξ  , we have

( )

( ) 2

E

Var

ξ υ
ξ υ
=
=                                                                                                    (9.33)

where ν is the degree of freedom in the distribution. This will give the density

function for T(x) approximately the same density as the stochastic variable

 
2( )
M

T x βχ∼ where [BSFO88]

9.8 Approximate determination of the probability density function
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Figures 9.33 and 9.34 show the approximated probability density functions

compared to those determined by Monte Carlo techniques and as can be seen

there is a good agreement between the above approximation and the true PDFs.

The density function for k=0 is a true 
2χ density function and does not have to

be approximated.

Figure 9.33: Approximative PDF

compared to Monte Carlo simulated

PDF for T(x)/N, N=20, a=0.99. The

approximative PDF is slightly below

the Monte Carlo  PDF.

Figure 9.34: Approximative PDF

compared to Monte Carlo simulated

PDF for T(x)/N, N=120, a=0.99. The

approximative PDF is slightly below

the Monte Carlo  PDF.
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9.9 Cramér-Rao Lower Bound

The Cramér-Rao lower bound has already been discussed in Chapter 5. The

presentation here will therefore be focused on the AR-assumption of the bottom

topography.

Let the scalar parameter x denote our unknown position and y(x) our

measurement of the bottom profile and let the depth profile according to the

map be denoted by h(x). Then the estimate of the position has the bound on the

variance

11 2
2 2

2

log ( | ) log ( | )
ˆ ˆ( ) {[ ( ) ] } { } { }

p x p x
Var x E x x E E

x x

−−  ∂ ∂ = − ≥ = −  ∂ ∂   

y y
y

              (9.35)

if the position estimate is unbiased. The probability density function p(y|x) is

the density function for the observation vector in the true position  x.

For the one dimensional case, in the case we have a Gaussian measurement

error, this will give us

2

2 2
1

log ( | ) 1 1 ( )
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2 2

N

k k

ke e

p x T x
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                 (9.36)

which gives after the expectation has been taken
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∑                                                                               (9.37)

since for a Gaussian measurement error the position error variance will attain

the CRLB when N tends to infinity, see also Chapter 5. Figure 9.35 shows how

the CRLB for an  AR(1) - process varies with the number of measurement points.

The graph is determined by Monte-Carlo simulations. In general the CRLB is

given by the inverse of the Fisher matrix J calculated in the true position x

which in this case is a scalar

9.9 Cramér-Rao lower bound
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2
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 (9.38)

We can estimate the derivatives in (9.37) and (9.38) under the assumption of an

AR(1)-process. Let h denote the map depth and rewrite the state equation in

the following way

1 1 1 1i i i i i i i
h ah h h ahν ν− − − −= + = − + + +                                             (9.39)

or 
1 1

( 1)
i i i i

h h a h ν− −− = − +  which will give

2 2 2 2 2

1 1 1
{[ ] } [( 1) ] ( 1) { }

i i i i i
E h h E a h a E h νν σ− − −− = − + = − +                           (9.40)

For a stationary process we have 2 2 2

1
{ } { }

i i h
E h E h σ−= =                             (9.41)

Further the state equation gives

2 2 2 2

h h
a νσ σ σ= +                                                                                                   (9.42)

Figure 9.35: CRLB as a function of the number of measurement points N.
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or

2 2 2(1 )
h

aνσ σ= −                                                                                           (9.43)

Thus,
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or alternatively
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where we have substituted the terrain height derivative with the discrete

derivative (9.45). The sampling interval is thus one grid distance.

For an AR(1) generated bottom profile with the pole a near 1 the variance for

the position estimate will be

2 2

2 2
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ˆ( )

2

e e
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N Nν ν

σ σ
σ σ
+

= ≈                                                                             (9.47)

An alternative expression is given if we substitute the terrain height derivative

with the discrete derivative (9.44)
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where 
2 2

1

1
( )

N

h i

i

h h
N

σ
=

≈ −∑ can be estimated directly from the map. For a specific

value of the variance  the 2

e
σ must be known or estimated by some other

9.9 Cramér-Rao lower bound



202 9 The autoregressive bottom model

means. This means that not only the roughness, 2 2

h e
σ σ but also the pole

placement a affects the position accuracy.

The estimation of the bottom height variance can also be made from simplified

spectral assumptions of the bottom profile since the autocorrelation or spectral

density function can be seen as a measure how fast the terrain profile changes.

We have as before (Chapter 6.2)

2{ } ( )
h

E h S dω ω
∞

−∞
= ∫                                                                   (9.49)

see also Chapter 4.3.3 and Chapter 9.2.
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10.1 Summary
10.1.1 The problem
In the thesis a method for determining the position of underwater vehicles has

been presented which to a large extent solves the difficult problem of aiding the

inertial navigation system without breaking the surface for obtaining position

fixes from GPS or radio navigation systems.

Terrain navigation systems with single beam methods for aiding the inertial

navigation systems in flying vehicles have been around since the fifties. Also

within the underwater community the single beam methods have been tested

since long ago but the result has been discouraging independently of what

estimation method has been used. The method has consequently not had any

practical use in the past. The main reasons may be lack of underwater maps of

sufficient accuracy and lack of robustness. The methods have also required the

underwater terrain to have large height variations. By nature the underwater

Chapter 10

Summary
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terrain has smaller height variations than land terrain since the height variations

in the sea have been smoothed during the milleniums due to sediment deposits.

Other possible reasons may be that the methods require accurate starting

positions to work. For submarines it is also important that the positions must

be determined even if the submarine does not move in the water volume. Frequent

pinging with the sonar is also not acceptable since it will reveal the presence of

the submarine.

The aiding problem is also more difficult for underwater vehicles for the following

reason. The estimated position is a fused position from the inertial navigation

system and the terrain positioning system. The accuracy is thus dependent on

the accuracy of the inertial navigation system. Now, the position error of the

inertial navigation increases with the third power of the time [LA92] due to bias

error in accelerometers and gyros. That means that the error from the inertial

navigation system, for a given distance, will be much greater for the slow speed

underwater vehicles compared to the fast moving flying vehicles. The prior

position PDF for an underwater vehicle will thus have considerable greater

variance than for a flying vehicle even if they use the same inertial system.

10.1.2 Solutions and conclusions
The presented positioning method has been tested in three larger sea-trials and

has shown to be very accurate and robust with regards to different types of

measurement errors and map errors. The robustness is a very important

characteristics because even if a method sometimes works excellent it is useless

if you do not know when this is the case. Occasional measurement errors due to

objects in the water volume or due to interpolation errors of the depth or due to

unmapped boulders should not cause the navigation system to loose its

position.

The presented method does not need to know the starting position with any

greater accuracy. It also works in very flat areas which means that the method

can be used in much larger areas than the single beam methods. The method

works equally well for moving or not moving vehicles and it uses only a very

short sonar ping for determining the position which means that the risk of

revealing is low. The method also lowers the requirement on the inertial

navigation system compared to single beam methods for a specified required

accuracy.
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The drawback of the method is that it requires a true 3D sonar if all good

characteristics should be fully achieved. However, this is a disadvantage which

is quickly disappearing with all the new 3D-sonars that are introduced into the

market with steady decreasing prices.

10.2 Further research
The main drawbacks of terrain navigation for underwater vehicles are lack of

underwater maps and flat bottom areas. The lack of bottom terrain maps can be

taken care of by further charting but doing something about the flat bottom

areas seems in most cases impossible. The terrain navigation method examined

in this thesis extends the use of terrain navigation in flat bottom areas

considerably but still there is a lower limit of the needed bottom roughness to

obtain a unique position.  However, the needed roughness is always in relation

to the measurement error so by decreasing the measurement error the area

useful for positioning may be increased. A prerequisite is, of course, that the

underwater map has sufficient accuracy so the map is not setting the bound for

the positioning accuracy.

It has been the experience during the sea-trials that the largest measurement

error in many cases is due to incomplete compensation of the sound speed

gradient in the water although the sonar manufacturers procedures for

compensation have been used. A future research area could therefore be to look

into the possibilities to adaptively adjust the compensation of the speed

gradients after each terrain profile measurement. Such a method would also

make the cumbersome sonar calibration procedure easier.

Other sonar measurement methods, i.e., interferometric measurement methods

instead of beam forming methods are another area for future research.

The sonars that have been used in the sea-trials mentioned in the thesis all have

been “off the shelf type” sonars from the manufacturers and they have all

worked well. However, it seems likely that implementing the measurement concept

shown in Chapter 8, Figure 8.4, in a standard bathymetric sonar could give a

highly cost effective navigation sonar with high performance. The research

field would here be to find suitable signal forms for such a sonar.

10.1 Solutions and conclusions
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The terrain navigation method in the thesis has not been tested for flying

vehicles but it seems likely that it would solve two difficult problems that are

encountered in current methods. The first problem is the establishing of the

terrain profile in forest areas where the radar measures the distance to the tree

tops instead of measuring the distance to the true ground. Using narrow radar

beams for the terrain measurement would mean that some beams always will

reach the true ground and by that the true terrain profile can be established. The

second problem, in single beam methods, is the estimation of the measurement

bias. This is today mostly estimated as if it was a constant measurement error

but in reality it can rapidly change from one measurement to another. The first of

these problems may be an area for further research while the second is solved in

the thesis.
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A.1 Inertial navigation

When the vehicle is moving from navigation cell A to cell B, see Figure 3.5,  it is

vital that the vehicle ends up beeing in cell B so it can do the correlation with the

underwater map and determine its position otherwise it will lose its position.

The question is thus, how large does the navigation cell B have to be? To

answer this question a brief review of the principles for inertial navigation will

be given.

A.1.1 The principle of an inertial navigation system
A gyroscope, or gyro for short, is a device that keeps its orientation relative the

far stars if it is whithout losses. They can thus be used as pointers of the axis of

a coordinate system. A triad of gyros and accelerometers as in Figure A.1, can

therefore, if attached to a vehicle, measure the displacement of a vehicle by

integrating the accelerations twice in the directions pointed out by the gyros.

There are basically two types of inertial navigation systems. In the first and the

original system, the platform system, the sensor triad is mounted on a platform

Appendix A

Inertial navigation systems

and the hardware navigator
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which is hold free of rotation relative the far stars by the output from the gyros.

This type of system is still the most accurate system but it is costly and requires

relative large mounting space in the vehicle.

In the strapdown IN system, which is becoming more and more used, the gyros

and the accelerometers, the sensor triad, are rigidly mounted directly on the

vehicle and by that the triad measures the accelaration and rotation of the

vehicle in vehicle coordinates which then have to be transformed to a more

suitable coordinate system. By the increasing computational capacity of

computers the strapdown system has becoming more and more accurate and

has gained acceptance. Compared to a platform system the gyros have to measure

the vehicle rotation and not just keep the platform non-rotating so a higher

requirements is placed on the gyros. An advantage of the strapdown system,

besides its lower requirement of space, is that it is more mechanically robust

than a platform system.

Now, gyros have losses which means that they will slowly drift away from the

initial directions. They also have bias, i.e., an output signal in spite of no rotation.

They also have scale errors. Accelerometers have bias errors and scale errors.

Besides these types of errors, there are the random ”white” type errors in the

output signals. The result of all this is that the position given by an IN system

will have an error which is increasing exponentially with time so the system has

to be frequently reset by known position fixes.

The most cumbersome type of errors are the bias errors because they vary

slowly with time. This type of errors is also called ”day-to-day” errors. The

analysis in the next paragraph does only consider this type of error because

Figure A.1: The basic principle of an inertial navigation system. The accelerations

in the directions pointed out by the gyros are integrated twice.
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they determine the time for resetting of the IN-system. When analyzing the

system performance the bias errors are considered being random zero mean

stochastic variables with a given variance.

There are many different principles for designing gyros. The first ones were

based on a mechanically rotating mass. Today resonant laser ring gyros (RLG)

and fiber optic gyros (FOG) are frequently used in high performance systems.

Both types rely on the Sagnac effect. A 1 Nautical Mile/hour system is typically

based on laser ring gyros.  Accelerometers are based on measuring the force on

a small mass, directly or indirectly as measuring the frequency change of

vibrations due to that force. A review of different components in IN-systems

can be found in [LA92].

A.1.2 The position error for the INS
The accuracy of IN-systems has to a great extent been treated in the literature.

The study below is in large part taken from [TIWE97] but could also be found in

[BRW97], see also [MIMI93, BI99, JE01]. One assumption for the simplified

treatment is that the vehicle is moving in a small area, say 50 x 50 km with low

speed which will be the case for underwater vehicles.

The errors in an IN-system can roughly be categorized in bias error, random

walk errors and other errors. The bias errors, are stochastic errors that are left

after the best nulling of the errors. The random walk errors are random errors

that vary more often and are easier to remove using the vehicle dynamics

(Kalman filtering).

The bias errors and the errors from initializing and setting of the IN-system will

determine the size of the positioning area over which the likelihood function

should be calculated.

We will in order to simplify the analysis assume that the vehicle has a northern

heading and a speed of 5 knots. The position errors in the northern and eastern

directions can be assumed to be independent of each other. A model for studying

the influence of gyro and accelerometer bias can be formulated, see Figure A.2.

The model will be the same for both platform and strapped down systems. The

model is valid for movements within a limited area, for example, between

navigation cells.

A.1 Inertial navigation
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Figure A.2: Simulink model for the Northern channel for studying the influence

of gyro and accelerometer bias. The Eastern channel has a similar model.

The navigation principle is that the accelerometers in the IN-system are integrated

twice in the directions pointed out by the gyros. It is customary to look att the

errors instead of the positions and the Simulink schematic refers to the errors.

In Figure A.2 dBaN means the accelerometer bias in the northern direction and

dBgE and dBgD means the gyrobias in the eastern and in the down direction

and L is the latitude. The performance of the IN-system is highly dependent on

the size of the bias in the accelerometers and in the gyros. The differential

equation for the model in Figure A.2 can be solved and we will have the following

analytical expression for the 1 σ-limit of the position error [JE01]

2 2

sin( ) 1 cos( )
( ) (1 )  G S S

A

SS S

gB t t t
e t B

t

ω ω

ωω ω

−
= − +                                        (A1)

where  B
G  

and B
A
 are the RMS-values for the gyro and accelerometer bias, g is

the earth acceleration and ω
S
 is the Schuler frequency with a period time of

84.4 minutes.

If B
G  
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A
 refere to independent stochastic variables with variances

2

GBσ and
2

ABσ , respectively, the standard deviation will be
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Figure A.3: Total position error for a submarine IN-system  due to accelerometer-

och gyrobias according to the model in Figure A.2.

A.1 Inertial navigation

Figure A.4: Total position error for a good IN-system  due to accelerometer-

och gyrobias according to the model in Figure A.2.
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For a vehicle with submarine performance we will have a considerably smaller

error than for a good ordinary IN-system in the first place due to a lower gyro

bias. Figures A.3 och A.4 show typical position errors for a good ordinary

system, a so called 1 Nautical mile /h system and a good submarine system.

A.2 The hardware navigator
The advantages with the correlation method is won at the expense of the

computing time due to the larger number of measurement beams. Figure A.5

shows how the computing time for the likelihood function depends on the

number of measurement beams for one grid point. The number given in the

diagram should be multiplied with the total number of gridpoints. Here, the

correlation is assumed to be done with a local map with the same grid so no

interpolation between grid points is assumed.

The time for computing the likelihood function for 9 x 9 = 81 beams will be about

40 times longer than that using only one beam. That means computing times in

the range of 4 s for a map with 501 x 501grid points which also means that the

vehicle travelling with 4 knots will have a position answer not until the vehicle

has travelled ~100 meter from the actual position. If, in addition,  the bearing is

Figure A.5: The time for computing a likelihood value in state space for

different numbers of measurement beams.
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to be determined by doing several positionings with a rotated map it will be

further delayed. If interpolation is needed the computing time will be

considerably longer.

However, it turns out that the calculation of the quadratic sum is easily

mechanized so the complete correlation of a whole map can be done in a few

hundreds of a second or less with modern computer technology.

A.2.1 The basic principle
A way of reducing the computing time is to implement the correlation algorithm

in a FPGA (Field Programmable Gate Array) and two ways of doing that is

described here.

Figure A.6 shows a part of a 5 x 5 km underwater map with a local sonar map

inserted. The sonar map contains gridded depth data from the sonar. In the

figure the sonar map has only 3 x 3 nodes usally it is much larger. The sonar

map is moved in steps of one node distance horizontally and vertically until a

comparison has been made with all nodes in the map. A sonar map is thus

created at each sonar ping and correlated against the larger underwater map

to determine the coordinates for the best fit.

A.2 The hardware navigator

Figure A.6: Map grid with a local sonar map inserted. The arrows indicate the

movement of the sonarmap.
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For each node in the larger map, which can be reached by the sonarmap’s

reference point, we calculate

, ,

( , ) sonar map

( , ) tm sm

i r j s i r j s

r s

V i j d d+ + + +
∈

= −∑                                                       (A.3)

where d is the mean compensated depth value in the node. Thus, V(i,j) is the

sum of the absolute differences of the mean compensated depth values in the

terrain map (tm) and the sonar map (sm) and (i,j) are the coordinates of the

reference point.

The reason for looking at the absolute values (MAD - Mean Absolute Distance)

is that this algorithm is easier to implement in the FPGA chip than the square of

the depth errors. The reason for looking at the differences from the mean depth

is due to the problem of establishing a common reference altitude for the terrain

map and the sonarmap, see Chapter 3.

Figure A.7: One principle for a correlator.
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In normal cases the terrain map will have 501 x 501 nodes and the sonarmap 10

x 10 nodes. The distance between the nodes is 10 meters.

A.2.2  The principle of implementation
One principle  for a correlator is shown in Figure A.7. The correlator consists of

two lines of shift registers, one is for the terrain map data and the other is for the

sonarmap data. The number of shift registers in the lines is 100 if the size of the

sonar map is 10 x 10 nodes. The length of the shift registers is 16 bits.

Mean value compensated gridded depth data from the sonar are shifted in from

the left in the lower line and will be fixed there during the whole correlation

process. The modified map memory has mean value compensated depth data

organized so that the correct data will always be shifted out at each clock pulse.

It turns out that in different proposals the memory access time will always be

the bottleneck. A recursive solution where some of the shift registers are replaced

by a recursive adding loop, Figure A.8, can therefore be used without hampering

the performance of the correlator. Such a solution will greatly reduce the number

of gates needed in the implementation.

Figure A.8:  Recursive addition instead of shift registers.

A.2 The hardware navigator
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Figure A.9:  Block schematic of the implemented terrain correlator. From

[ANTR02].

Figure A.10: Photo of the completed prototype correlator. Natural size.
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A2.3  The practical impementation in an FPGA
A hardware correlator has been implemented as a master thesis work according

to the principle with recursive addition  [ANTR02], see also [TALL03]. A block

schematic of the solution can be seen in Figure A.9 and the completed correlator

in Figure A.10.

The terrain navigator in Figure A.11 is built around the hardware correlator in

Figure A.10. The input to the navigator is, besides maps, the current position and

its error and the measured terrain topography.  Compared to the INS system bias

error  the position error from the terrain correlation is small. The main reason for

the input of the current position error is therefore to restrict the search area in the

correlation process in order to  minimize the probability of false positions. The

search area is typically a rectangle circumscribing the 3-σ uncertainty ellipse.

Output from the navigator is besides the position the calculated position error

variance. Output from the navigator can also be bearing, bearing error, speed and

speed error. However, since these quantities often easily can be obtained from

other sources this is assumed in the following discussion.

Figure A.12 shows a simplified schematic of the north channel for an INS-system

showing the position error due to biases in the accelerometers and down and

east gyros [TIWE97, MIMI93, BI99, JE01]. The figure shows symbolically three

possible circle marked points of integration. Integrating at point A, feed-forward

Figure A.11: Schematic of the terrain navigator.

A.2 The hardware navigator
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integration, means that only the positions are fused together as described in

Chapter 4. Integrating at point B, feed-back integration, means that we are resetting

the INS-system error states for position and speed. Integrating at point C means

that we are nulling out the biases in accelerometers and the gyros. This is called

tight integration and may give the best result since it will remove the cause to

Figure A.12: Simplified schematic of the North Channel of an INS-system with

marked places for possible integration of the hardware correlator.

Figure A.13: The 1σ position error for a high performance INS-system with

and without resetting by the correlator (speed and position).
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the INS-drift. What we actually do is estimating the bias components in the

Kalman filter and then subtract them from the inputs of the accelerometers and

gyros.

Figure A.13 shows the result  from a simulation of  the INS-position error according

to the schematic in Figure A.12. As expected the resetting gives an upper bound

on the INS position error. The INS-error after nulling the bias-errors is extremely

sensitive to the quality in the estimate of the bias term so it should not be

performed before the Kalman filter has been settled. The integration of the

navigator output resembles to a high degree the integration of a GPS-system to

an INS-system and has been exhaustively studied in the literature.

The conclusion of this section is that it in most cases will be sufficient with a

simple feedback of position/speed, i.e., the alternatives A and B.

A.2 The hardware navigator



220 Appendix A



221

B.1 Introduction
Figure B.1 shows a typical footprint from the measurement beams against the
bottom in the case a 3D topograhpic bottom picture is assembled from five beam
planes. A picture of the footprint of a true 3D-sonar can be seen in Figure 8.7. In
order to calculate the likelihood function the depths at the individual footprint

Appendix B

Interpolation in the map

Figure B.1: The footprint from 5 beam planes.



222 Appendix B

points have to be determined. This can be done by signal reconstruction, if the
bottom profile has been properly sampled, or by interpolation.

B.2 Reconstruction of signals from samples
We will restrict the discussion here to one dimensional signals. A discussion of
sampling and reconstruction of multidimensional signals can be found in [BP71].
It is well known that when sampling a signal the sampling frequency has to be
more than twice the highest frequency in the signal if the signal is to be uniquely
recovered from the samples [HN28]. This is easy to understand if it is observed
that a finite time signal can be uniquely represented by a Fourier series. To be
able to uniquely reconstruct the highest frequency in the Fourier series the
distance between the samples must be less than half the period time of this
signal component, Figure B.2.

If the signal contains frequencies higher than half the sampling frequency the
sampled signal spectra will wrongly have increased amplitudes for frequencies
less than half the sampling frequency. This because the high frequency
components will mistakenly be assumed to belong to the lower frequency
components. This phenomenon is called signal aliasing. To avoid signal aliasing
due to high frequency noise the signal is often low pass filtered to remove all
frequencies above half the sampling frequency. This makes it possible to uniquely
reconstruct the filtered signal but of course not the original signal.

Figure B.2: If the spatial sampling distance T
s
 is less than half the period of the

sinusoid it can be uniquely reconstructed.
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It is easy to formally analyze the aliasing phenomena if the sampled signal can
be assumed to be the product of the continuous signal and an periodic impulse-
train, the sampling function [OW97, SH90, PK92]. Let the continuous signal be
h(x) and the sampled signal h

s
(x) then

( ) ( ) ( )
s

h x h x f x=                                          (B.1)

if f(x) is the impulse train

( ) ( )
s

n

f x x nTδ
∞

=−∞

= −∑                                                                               (B.2)

where δ(.) is the Dirac function and T
s
 the sampling interval and it has been

observed that the integral of the Dirac functions represents the actual signal
values at the sampling event.

Since multiplication in the time domain is equivalent to convolution in the
frequency domain the spectrum of the sampled signal will be [OW97, SH90]

1
( ) ( )hs h s

ns

S S n
T

ω ω ω
∞

=−∞

= −∑                 (B.3)

where S
h
 is the spectrum for the continuous signal, the continuous bottom

profile, and ω
s
 =2π/T

s
 is the sampling frequency. The spectrum for the sampled

B.2 Maximum a posterior interpolation

Figure B.3: The power spectrum for the sampled signal h
s
(x) of a band limited

continous signal h(x).
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bottom profile can thus be seen as a superposition of the shifted and scaled
band limited base spectrum S

h
 , see Figure B.3.

The power spectral density for the sampled AR(1) bottom profile is

2 1 exp( 2 )
( )

2 1 exp( 2 ) 2exp( ) cos( )
s s

hs

s s s

aT aT
S j

aT aT T
ω

ω
− −

=
+ − − −   (B.4)

where T
s
 is the sampling period. The spectrum repeats itself for |ω|>π/T

s
.  Figure

B.4 shows the aliasing effect for different aT
s
 for the AR(1) process. All curves

show aliasing since the AR(1) process is not band limited but the highest
sampling rate aT

s
=0.5 gives only a small amount of aliasing.

Underwater maps are mainly produced for the safety of shipping and that means
that in shallow waters if it is a risk of going ashore the sampling is dense but in
other areas there are long distances between samples. Naturally the distance
between samples is determined by the speed of the ship doing the charting, the
depth to the bottom and the pulse repeating frequency of the sonar. The speed
of the sound pulse is ~1450 m/s which means a turn around time of the sonar
pulse of ~0.2 s in shallow waters and ~2 s in deep waters.  With a ship speed of
5 m/s (10 knots) this means a spatial distance of 1 – 10 meter between samples.

Figure B.4: Aliasing effect for different sampling rates for an AR(1) process.
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In the case of a multibeam sonar  this will be the distance between beam planes.
Usually a multibeam sonar has a spacing of 1.5o between beams which means
that the distance between the samples along the beamplane will be 4 – 40 meter
in the center.

From the discussion above it is clear that the spectrum of an underwater map
always will have some aliasing. It is also clear that the degree of aliasing will
vary between bottom areas depending on how dense the sampling once was
done. The consequence of this is that the bottom profile can not be reconstructed
from the samples using the reconstruction formula

sin( ( ))
2( ) ( )

( )
2

s
s

s

sn
s

x nT

h x h nT

x nT

ω

ω

∞

=−∞

−
=

−
∑                                                                (B.5)

That is, we will never know the exact shape of the bottom profile between the
sample points. To reconstruct a signal from its samples, where it is theoretically
possible, we have to sum the slowly converging infinite series (B.5) which
means in practice that we have to truncate it after a fairly high number of terms.
It is, however,  interesting to note that (B.5) can be thought of as an expansion
of the bottom profile as

( ) ( )n n

n

h x c xφ
∞

=−∞

= ∑                                                                                                (B.6)

where c
n
 in this special case is the sampled bottom depth and φ

n
 is the sinc

function. A deeper analysis [OJ72] shows that there are many other choices of
function classes and coefficients possible for a true reconstruction. This,
together with the discussion above, has lead to the use of interpolation instead
of reconstruction to determine the depth values between the depth samples.
The following chapters will discuss some interpolation methods that preserve
the spectrum of the bottom.

The underwater map often has a grid size of 10 meter but it can also be 5 or 1
meter so it will be necessary to interpolate in the map to determine the actual
depth values at the footprint points. Deterministic methods as Lagrange, Hermi-
tes or spline interpolation [BJ74, MU99], well known since long ago, can be used
but depending on the bottom topography the result may differ and perhaps not
be satisfactory. In certain areas one method will work well but in other areas not
so well. However, the difference is often not so large that it will be crucial for the

B.2 Maximum a posterior interpolation
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Figure B.5: An AR(20) signal and the signal interpolated by the linear and the
cubic spline methods at certain points.

Figure B.6: The power spectrum for the signals shown in Figure B.5. Note the
clear difference in spectra in spite of the similarity between the AR curve and
the spline curve in Figure B.5.
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result when using many measurement beams.

A consequence of the deterministic methods is that they change the statistical
properties of the bottom topography, especially they change the power spectrum
at higher frequencies which will impact the position accuracy. Figure B.5 shows
an AR(20) signal, a linearly interpolated signal and cubic spline interpolated
signal. The corresponding power spectra can be seen in Figure B.6 and as can
be seen there is a difference at higher frequencies.

Now, the expected value of the square of the gradients, which determines the
expected value of the accuracy that can be calculated from (see Chapter 6)

2

2

0

( ) ( )
n

n

hn

h
n E S d

x
µ ω ω ω

∞  ∂ = =  ∂   
∫                              (B.7)

when n=1. This will thus give us the Fischer matrix (FIM), i.e., what we can
expect it to be in the terrain considered. We use the Fischer matrix to calculate
the position error covariance matrix. Therefore it would be desirable to have an
interpolation method that does not change the statistical properties of the bot-
tom topography, i.e., the power spectra. In the following three sections  different
probabilistic approaches will be introductorily discussed.

B.3 Maximum a posteriori interpolation
Let us look at a case with a band of missing samples since it clearly demonstrates
the power of the method. The interpolation case for a finer grid follows
immediately. Assume the length of the signal is N and that a band of M samples
is missing, Figure B.7. We arrange the signal vector in known and unknown
values as follows

  

1 1

2 2

0

0

0

  

Kn Kn

Un Un

Kn Kn

Kn Un

     
     = = +     
         

= +

x x

x x x

x x

Kx Ux

                                                    (B.8)

where the matrices K and U only rearrange the signal values.

B.2 Maximum a posterior interpolation



228 Appendix B

The probability density function for the signal can be written as

( , ) ( | ) ( )
Kn Un Un Kn Kn

p p p=
x x

x x x x x                                                                   (B.9)

or

( | ) ( ) / ( )
Un Kn Kn Un Kn

p p p= = +
x x x

x x x Kx Ux x                                             (B.10)

where ( )p ⋅
x is assumed to be known and ( )

Kn
p

x
x is a constant. We now search

for the x
Un

that maximizes the PDF

ˆ arg max ( )
Un

MAP

Un Kn Unp= = +x
x

x x Kx Ux                                                              (B.11)

In the case we have a Gaussian signal with known covariance matrix ΣΣΣΣΣ
xx

1

/ 2 1/ 2

1 1
( ) exp( )

2(2 ) det( )
T

N
p

π
−= − Σ

Σx xx

xx

x x x                                                 (B.12)

Our estimate of the missing samples is

Figure B.7: A signal with a band of missing samples, the shaded
area.
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Figure B.8: MAP interpolation
compared to linear and spline inter-
polation

Figure B.9: MAP interpolation
compared to linear and spline inter-
polation

1 1 1ˆ ( )MAP T

Un Kn

− − −= − Σ Σ
xx xx

x U U Kx                                                                          (B.13)

Figures B.8 and B.9 show two examples of MAP-interpolation of a Gaussian
signal with a missing block of samples.

B.4 The least square error autoregressive in-

terpolation
The basic principle here is to model the signal as an autoregressive process and
identify the signal parameters and then calculate the missing samples by using
the identified AR-process. In practice the problem is solved in two steps:

1. Assume some values for the missing samples and then determine the signal
parameters.

2. Calculate the values for the missing samples by using the AR-expression.

Possibly go back to the first step for a refinement.
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Figure B.10: The system of equations for the AR-function.
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We assume that the signal can be modeled as an autoregressive process, i.e.,

1

( ) ( ) ( )
P

k

k

x m a x m k e m
=

= − +∑             (B.15)

We rewrite the system of equations as (see Figure B.10)

( , )
Un

= −e x a x Xa                                      (B.16)

Now we form the least squares criterion

2T T T T T T= + −e e x x a X Xa a X x

which we minimize by the mentioned two stage algorithm above.  As an example
of how to proceed in the second step consider the system.

4 1 3 2 2 3 1 4

5 1 4 2 3 2 2 5

6 1 5 2 2 3 3 6

7 1 6 2 3 3 4 7

8 1 7 2 4 3 5 8

9 1 8 2 7 3 6 9

10 1 9 2 8 3 7 10

11 1 10 2 9 3 8 11

x a x a x a x e

x a x a x a x e

x a x a x a x e

x a x a x a x e

x a x a x a x e

x a x a x a x e

x a x a x a x e

x a x a x a x e

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

                           (B.17)

where x
5
 to x

8
 are our unknowns. We can rewrite the system as
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This can be written as

Un Kn
= +e Αx Bx               (B.19)

and

Figure B.11: An AR(4) signal and the interpolated signal with the least squares
error autoregressive interpolation.



233

( )
T T

( )

      =x 2 x

TT

Un Kn Un Kn

T T T T

Un Un Kn Un Kn Kn

= + + =

+ +

e e Αx Bx Αx Bx

A Ax x B Ax B Bx
                                      (B.20)

Taking the derivative gives

2 2
T

T T

Un Kn

Un

∂
= +

∂
e e

A Ax A Bx
x

                                                               (B.21)

and setting it to zero gives
1

ˆ T T

Un Kn

−
 = −  x A A A Bx                                                                                 (B.22)

 That is ,we have minimized the prediction error [KSH00, KA93].

As an example an AR(4) process was generated and a block of samples was
considered unknown, Figure B.11. In the first step the signal parameters were
estimated disregarding the unknown samples [LJ91, LJ99, SÖST89], see Figure

Figure B.12: The true and the estimated parameters of the AR(4) signal.

B.4 The least square error autoregressive interpolation
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Figure B.13: A bottom profile signal with a missing block of samples. The
window function is faintly outlined.

Figure B.14: The output of the Specgram function in Matlab Signal
Processing Toolbox.



235

Figure B.15: Some of the frequency lines constituting the specgram in Figure
B.14.

B.12. In the second step the estimated parameters were used to calculate the

unknown samples.

B.5 Interpolation in the frequency domain
A third method for interpolation is to interpolate in the frequency domain. As
before, the method will be illustrated in the case of a missing block of samples,
Figure B.13.

The short time Fourier transform decomposes the signal in time and frequency.
It is

21

1

( , ) ( ) ( ( ) )
ikN j

N

i

X k m w i x m N D i e
π− −

=

= − +∑                        (B.23)

where N is block length, D = block overlap, k=frequency, m= block number,
w(i)=window. The transform can be calculated by Matlab’s Specgram function

B.4 The least square error autoregressive interpolation
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[KSL93], see Figure B.14. The different frequency signals shown in Figure B.15
can be the interpolated by any of the previously mentioned methods and the
missing samples in the time domain are recovered by the inverse transform.

B.6 Summary
This introductory study of the probabilistic interpolation methods shows, in
some cases, excellent performance of the methods compared to the deterministic
methods, see Figure B.8. The probabilistic methods would be the given choice
if the signal characteristics of the bottom profile would be known at the
interpolation point. This is, however, seldom the case. Instead the
characteristics have to be estimated from a few bottom depth samples which
will degrade the performance considerably. Therefore, in many cases, we will
have to resort to the deterministic methods which we by experience know will
have sufficient performance.
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Symbols
Throughout the thesis uppercase boldface letters denote matrices, lowercase

bold letters denote column vectors and italics denote scalars.

Notational distinctions between the symbol for a stochastic variable and its

outcome is only done if  the meaning is not clear from the context. If a notational

distinction is necessary Greek letters and uppercase letters are used to denote

the stochastic variable.

f∼ Notation for distributed as f.

a f∼ Notation for asymptotically distributed as f.

x̂ The ˆ notation means estimated value or estimator

depending on context.

2( , )µ σN The Gaussian probability density function  with the mean µ

and  variance σ2. The standard deviation σ>0.

N(µµµµµ,C) The vector Gaussian probability density function with the

mean µµµµµ and covariance C>0, i.e., positive definite.

Notational Conventions
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arg max ( )f
θ

θ Denotes the value of θθθθθ that maximizes f(θθθθθ).

,t tx A Short for ( )tx  or ( )tA ,  ie.,  the vector x or matrix A is a

function of time.

t
Y Alternative notation for matrices.

1
N,N

Short for a matrix of dimension NxN whos elements are

ones.

I
N,N

The identity matrix of dimension NxN which has ones in

the diagonal and zeros elsewhere.

Π The projection matrix /N N N= −Π I 1 . The projection

matrix is idempotent, ie., ⋅ =Π Π Π .

,
T T

x A Superindex T denotes transpose.

1−A The inverse of the square matrix A.

det(A) The determinant of the square matrix A.

Tr(A) The trace of the square matrix A.

h(x) A scalar valued function of the vector x.

h(x) A vector valued function of the vector x.

p(x) The probability density function.

f(x) Alternative notation for the probability density function.

p-(x) The prior probability density function before
measurement update.

( | )p x y The conditional density function given the event y.

( ; )L x y The likelihood function as a function of x given the

event y.

Pr{}⋅ Probability

{}E ⋅ Expectation.
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f∂
∂x

A column vector whos elements are the partial derivatives

of the scalar function f(x) with respect to the elements in

the vector x. The vector is also called the gradient vector

of f(x).

T

f∂

∂x
A row vector whos elements are the derivatives of the

scalar function f with respect to the elements in the vector

 x, i.e. 

T

T

f f∂ ∂ =  ∂∂  xx
.

x

f
f

∂
∇ =

∂x
A notation of the gradient often used in physics and

considered to be a row vector.

f∆x The Laplacian, a scalar function which is the sum of

the second partial derivatives of the elements in the

vector x of dimension m, 

2

2
1

m

ii

f

x=

∂

∂∑ .

2f f f∆ = ∇ ∇ = ∇x x x x
.

2

T

f∂

∂ ∂x x
The Hessian matrix which has the elements

2

i j

f

x x

∂
∂ ∂ where

i is the row index and j the column index.

T

∂

∂

y

x
The Jacobian matrix which has the elements 

i

j

y

x

∂

∂

where i is the row index and j the column index. The
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matrix

TT

T

∂ ∂ =  ∂ ∂ 

y y

x x
 is called the vector gradient

matrix and has the elements
j

i

y

x

∂

∂ .

∂
∂
y

x
The gradient matrix. The gradient matrix is the transpose

of the Jacobian matrix. Also denoted 

T∂
∂
y

x
in the

litterature.

T

∂

∂

y

x
The Jacobian or Jacobian determinant. 

T

T

∂ ∂
=

∂∂

y y

xx
.

The Jacobian is the determinant of the Jacobian

matrix, i.e., det( T

∂

∂

y

x
).

kx

∂
∂

A
A matrix with the elements 

ij

k

a

x

∂

∂  where a
ij
 is an

element of the matrix A and i is the row index and j is

the column index.

( )

i
x

∂
∂
y x

A column vector  whos elements are the derivatives

of the components of the vector y with respect to

x
i
, i.e., the j:th component is 

( )
j

i

y

x

∂

∂

x
.
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( )

i
x

∂
∂
C x

A matrix whos elements are the derivatives of the

elements in the matrix C, i.e.,

[ ]
,

,

( )( ) r s

i ir s
x x

∂ ∂
= ∂ ∂ 

C xC x
.
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Below is a list of acronyms that appear in the thesis.

2D Two dimensional

3D Three dimensional

AR Autoregressive

BITAN Beijing University of Aeronatics and Astronautics inertial

terrain-aided navigation

COV Covariance

CRLB Cramér-Rao lower bound

CW Continuous waveform

EKF Extended Kalman filter

FE Finite element

FEM Finite element method

FP Fokker-Planck

FPE Fokker-Planck partial differential equation

FIFO First in, first out

FIM Fisher information matrix

FOG Fiber optic gyro

FPGA Field programmable gate array

Gaussian Normally distributed

GPS Global positioning system

IMU Inertial measurement unit

List of acronyms
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IN Inertial navigation

INS Inertial navigation system

LATAN Low altitude terrain avoidance and navigation

MAD Mean absolute difference

MAP Maximum a posteriori

MC Monte Carlo

ML Maximum likelihood

MLE Maximum likelihood estimation

MMSE Minimum mean square error

MPF Mass point filter

MSE Mean square error

PDA Probabilistic data association

PDAF Probabilistic data association filter

PDE Partial differential equation

PDF Probability density function

PF Particle filter

PVDF Polyvinyldifluorid

RLG Ring laser gyro

RMS Root  mean square

SITAN Sandia inertial terrain aided navigation

SMC Sequential Monte Carlo filter

TERNAV Terrain navigation

TERCOM Terrain contour matching

TERPROM Terrain profile matching

UKF Unscented Kalman filter

UT Unscented transform

VAR Variance
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