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In airraft navigation the demands on reliability and safety are very high. The

importane of aurate position and veloity information beomes ruial when

ying an airraft at low altitudes, and espeially during the landing phase. Not

only should the navigation system have a onsistent desription of the position

of the airraft, but also a desription of the surrounding terrain, buildings and

other objets that are lose to the airraft. Terrain navigation is a navigation

sheme that utilizes variations in the terrain height along the airraft ight path.

Integrated with an Inertial Navigation System (INS), it yields high performane

position estimates in an autonomous manner, i.e., without any support informa-
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tion sent to the airraft. In order to obtain these position estimates, a nonlinear

reursive estimation problem must be solved on-line. Traditionally, this �ltering

problem has been solved by loal linearization of the terrain at one or several

assumed airraft positions. Due to hanging terrain harateristis, these lin-

earizations will in some ases result in diverging position estimates. In this

work, we show how the Bayesian approah gives a omprehensive framework

for solving the reursive estimation problem in terrain navigation. Instead of

approximating the model of the estimation problem, the analytial solution is

approximately implemented. The proposed navigation �lter omputes a prob-

ability mass distribution of the airraft position and updates this desription

reursively with eah new measurement. The navigation �lter is evaluated over

a ommerial terrain database, yielding aurate position estimates over several

types of terrain harateristis. Moreover, in a Monte Carlo analysis, it shows

optimal performane as it reahes the Cram�er-Rao lower bound.

1 Airraft Navigation

Navigation is the onept of determination of the kinemati state of a moving

vehile. In airraft navigation this usually onsists of �nding the position and

veloity of the airraft. Aurate knowledge of this state is ritial for ight

safety. Therefore, an airraft navigation system should not only provide a re-

liable and aurate estimate of the urrent kinemati state of the airraft, but

also a onsistent desription of the auray of this estimate.

Airraft navigation is typially performed using a ombination of dead-

rekoning and �x position updates. In dead-rekoning systems, the state vetor

is alulated from a ontinuous series of measurements of the airraft move-

ment relative to an initial position. Due to error aumulation, dead-rekoning

systems must be re-initialized periodially. Fix point, or positioning, systems

measure the state vetor more or less without regard to the previous movement

of the airraft. They are therefore suitable for re-initialization of dead-rekoning

systems.

The most ommon dead-rekoning systems are the Inertial Navigation Sys-

tems (INS) in whih aelerometers are used to sense the magnitude of the
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airraft aeleration. A set of gyrosopes either maintains the aelerometers

in a known orientation with respet to a �xed, non-rotating oordinate system,

ommonly referred to as inertial spae, or measures the angular rate of the a-

elerometers relative to inertial spae. The inertial navigation omputer uses

these sensed aelerations and angular rates to ompute the airraft veloity, po-

sition, attitude, attitude rate, heading, altitude, and possibly range and bearing

to destination. An INS generates near instantaneous ontinuous position and

veloity, it is self-ontained, funtions at all latitudes, and in all weather ondi-

tions. It operates independently of airraft manoeuvres and without the need for

ground station support. Complete and omprehensive presentations of inertial

navigation an be found in [14, 16℄.

Positioning systems that have attrated a lot of attention lately are the global

satellite navigation systems whih promise a very high auray and global ov-

erage. There are two global satellite systems for navigation in use today: GPS,

developed by the U.S., and the Russian system GLONASS. Position estimates

are obtained by omparing distanes from the airraft to four or more satellites.

The systems have been developed for military purposes and several oding teh-

niques are used to keep the auray for ivilian or unauthorized users at a level

far from the atual performane of the systems. However, using ground sta-

tions as referene, the oding errors an be removed eÆiently. Vendors have

o�-the-shelf reeivers for di�erential GPS (DGPS) with a position auray be-

low the one meter level. A omprehensive summary of the onept of satellite

navigation an be found in [14, Chapter 5℄.

The radio navigation systems have the disadvantage of relying on informa-

tion broadasted to the airraft. This information ould be deliberately jammed

in a hostile situation, or the transmitters ould be destroyed, leaving the airraft

without navigation support. Hene, even if the satellite systems give high a-

uray position information they need to be ombined with alternative bakup

systems using other navigation priniples. The onept of terrain navigation

is an alternative positioning tehnique that autonomously generates updates to

the INS, although in general not with the same auray as the satellite systems.

The main idea in terrain navigation is to measure the variations in the terrain

height underneath the airraft ight path and ompare these measurements
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with a referene map. The priniple of terrain navigation is depited in Fig-

Altitude Ground learane

Mean sea-level

Terrain elevation

Figure 1: The priniple of terrain navigation.

ure 1. The airraft altitude over mean sea-level is measured with a barometri

altimeter and the ground learane is measured with a radar altimeter, point-

ing downward. The terrain elevation beneath the airraft is found by taking

the di�erene between the altitude and ground learane measurements. The

navigation omputer holds a digital referene map with values of the terrain

elevation as a funtion of longitude and latitude. The measured terrain eleva-

tion is ompared with this referene map and mathing positions in the map are

determined. Terrain repetitiveness and atness make this mathing nontrivial

and the quality of the outome dependent on the amount of terrain variation.

Many areas inside the referene map will in general have a terrain elevation

omparable to the measured one. In order to distinguish the true position from

false ones, several measurements along the airraft ight path need to be on-

sidered. Hene, the measurements must be mathed with the map on-line and

in a reursive manner. For omprehensive disussions about the appliations of

terrain navigation tehniques, see [10, 11℄.

The performane of the mathing of terrain elevation measurements with the

map depends highly on the type of terrain in the area. Flat terrain gives little or

no information about the airraft position. Rough, but repetitive, terrain an
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give several well mathed positions in an area, making it hard to distinguish

between several, well mathing traks. The information ontent inside a generi

area of the map an be shown to be proportional to the average size of the

terrain gradient, vuut 1

N

NX
i=1

krh(xi)k2 (1)

where xi are positions uniformly distributed in the area of interest. This salar

measure of the terrain information an be onneted to an assoiated Cram�er-

Rao bound for the underlying estimation problem [3℄. The right part of Figure 2

shows (1) evaluated in square bloks of 400 meter side where bright olor indi-

ates a large value. The terrain map used in this work is a real ommerial map

Figure 2: The left part shows the terrain height and the right part the informa-

tion ontent in the map over a entral part of Sweden.

of a 100 by 100 km area of entral Sweden. The pure terrain elevation samples

are given in a uniform mesh of 50 by 50 meter resolution and shown to the left

in the �gure. Using interpolation from surrounding map values, the terrain map

an be regarded as a known look-up table of terrain elevations as a funtion of

position. Everything that in the real world annot be found by interpolation

from the database values must be regarded as noise. The right part of Figure 2

very learly shows the lakes, and the oastline of the Balti sea to the right in
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the map. The north-west part of the map is at agriultural land with very little

navigation information, while the southern part onsists of very rough terrain

with varying hills of some hundred meters height and narrow valleys that give

a high information ontent. Maps suh as the right part of Figure 2 ould be

used for mission planning purposes, e.g., �nding the most informative path to

the �nal destination.

There are several ommerial algorithms that solve the terrain navigation

problem. Sine the development has been driven by military interests, most

of these are not very well doumented in the literature. The most frequently

referred algorithms for terrain navigation are TERCOM (terrain ontour math-

ing) and SITAN (Sandia inertial terrain-aided navigation). TERCOM is bath

oriented and orrelates gathered terrain elevation pro�les with the map period-

ially [2, 9, 16℄. The airraft is not allowed to maneuver during data aquisition

in TERCOM and therefore it has mainly been used for autonomous rafts, like

ruise missiles. SITAN is reursive and uses a modi�ed version of an extended

Kalman �lter (EKF) in its original formulation [13℄. When ying over fairly at

or over very rough terrain, or when the airraft is highly maneuverable, this al-

gorithm does not in general perform well. In order to overome these divergene

problems parallel EKFs have been used in [6, 12℄. Another widespread system is

the TERPROM system, developed by British Aerospae, an be found in several

NATO airraft. It is a hybrid solution, in whih an aquisition-mode orrelates

measurements in bath to �nd an initial position and in trak-mode proesses

measurements reursively using Kalman �lter tehniques. However, due to om-

merial interests and beause of its use as a lassi�ed military system, it is not

as well doumented in the literature as the previous two. One more reent and

di�erent approah that tries to deal with the nonlinear problems is VATAN [8℄.

In VATAN the Viterbi algorithm is applied to the terrain navigation problem,

yielding a maximum a posteriori position estimate.

In this work, we take a ompletely statistial view on the problem and solve

the mathing with the map as a reursive nonlinear estimation problem. The

oneptual solution is desribed in the following setion and an approximate

implementation in Setion 3. Simulation results with this implementation are

presented Setion 4.
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2 The Bayesian Approah to Terrain Navigation

As shown in Figure 1 the di�erene between the altitude estimate and the mea-

sured ground learane yields a measurement of the terrain elevation. Assuming

additive measurement noise the terrain elevation yt relates to the urrent airraft

position xt aording to

yt = h(xt) + et (2)

where the funtion h(�) : R2 7! R is the terrain elevation map. The measurement

noise et is a white proess with some known distribution pet(�). This measure-

ment error models both the errors in the radar altimeter measurements, the

urrent altitude estimate and errors originating from the interpolation in the

terrain map not perfetly resembling the real world. Let ut denote the estimate

of the relative movement of the airraft between two measurements obtained

from the INS. Modeling the dead-rekoning drift of the INS with a white ad-

ditive proess vt, the absolute movement of the airraft obeys a simple linear

relation

xt+1 = xt + ut + vt (3)

where vt is distributed aording to some assumed known probability density

funtion pvt(�). Summarizing equations (2) and (3) yields the nonlinear model

xt+1 = xt + ut + vt

yt = h(xt) + et

t = 0; 1 : : : (4)

where vt and et are mutually independent white proesses, both of them unor-

related with the initial state x0 whih is distributed aording to p(x0). One

may argue that the INS estimate ut should be regarded as a sensor measurement

instead of as a known parameter in the state transition equation,

ut = xt+1 � xt + eINS
t

:

This would require the introdution of a new state vetor inorporating both xt

and xt+1 in order to retain the Markovian property of the state spae model.

Instead, we hoose to inlude the error eINSt in the proess noise vt in (4).
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This limits the state dimension and drastially redues the omputational power

required to reursively ompute an approximation of the onditional density of

the states.

The objetive of the terrain navigation algorithm is to estimate the urrent

airraft position xt using the observations olleted until present time

Yt = fyigti=0:

With a Bayesian approah to reursive �ltering, everything worth knowing about

the state at time t is ondensed in the onditional density p(xt j Yt). With some

abuse of notation, the distribution of a generi random variable z onditioned

on another related random variable w is

p(z j w) = p(z ; w)

p(w)
=

p(w j z) p(z)
p(w)

(5)

Assume that p(xt j Yt�1) is known and apply (5) to the last member in the set

Yt,

p(xt j Yt) =
p(yt j xt ; Yt�1) p(xt j Yt�1)

p(yt j Yt�1)
:

Inserting the model (4) and noting that the denominator is a salar normaliza-

tion onstant yield,

p(xt j Yt) = ��1t pet(yt � h(xt)) p(xt j Yt�1)

�t =

Z
pet(yt � h(xt))p(xt j Yt�1) dxt

whih desribes the inuene of the measurement. Using (5) the joint density

of the states at two measurement instants is

p(xt+1 ; xt) = p(xt+1 j xt) p(xt):

The density update between two measurements is found by marginalizing this

expression on the state xt and inserting (4),

p(xt+1 j Yt) =

Z
pvt(xt+1 � xt � ut)p(xt j Yt) dxt:

This ompletes one iteration of the reursive solution. Summarizing the deriva-

tion, the Bayesian formula for updating the onditional density is initiated by
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p(x0 j Y�1) = p(x0) and alulated as

p(xt j Yt) = ��1t pet(yt � h(xt)) p(xt j Yt�1)

p(xt+1 j Yt) =

Z
pvt(xt+1 � xt � ut)p(xt j Yt) dxt

(6)

where

�t =

Z
pet(yt � h(xt))p(xt j Yt�1) dxt:

The Bayesian solution is a density funtion desribing the distribution of the

states given the olleted measurements. From the onditional density, a point

estimate suh as the minimum mean square error estimate an be formed

x̂t =

Z
xt p(xt j Yt) dxt: (7)

Assuming that this estimate is unbiased, the ovariane

Ct =

Z
(xt � x̂t)(xt � x̂t)

T p(xt j Yt) dxt (8)

quantizes the auray of the estimate. Equation (8) is onvenient when om-

paring (7) with estimates from other navigation systems.

The reursive update of the onditional density (6) desribes how the mea-

surement yt and the relative movement ut a�et the knowledge about the airraft

position. With eah new terrain elevation measurement, the prior distribution

p(xt j Yt�1) is multipliatively ampli�ed by the likelihood of the measurement

yt. This means that the onditional probability will derease in unlikely areas

and inrease in areas where it is likely that the measurement was obtained. Be-

tween two measurements, the density funtion p(xt j Yt) is translated aording

to the relative movement of the airraft obtained from the INS and onvolved

with the density funtion of the error of this estimate. Thus the support and

shape of the onditional density will adapt to areas whih �t the measurements

well and follow the movement obtained from the INS. It is worth noting that (6)

is the Bayesian solution to (4) for all possible nonlinear funtions h(�) and for

any noise distributions pvt(�) and pet(�). In the speial ase of linear measure-

ment equation and Gaussian distributed noises the equations above oinide

with the Kalman �lter [1℄.
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Computationally, eah iteration of the Bayesian solution (6) onsists of solv-

ing several integrals. Due to the unstrutured nonlinearity h(�), these inte-

grations are in general impossible to solve in losed form and therefore there

exists no solution that updates the onditional density analytially. The imple-

mentation must therefore inevitably be approximate. A straightforward way to

implement the solution is to simply evaluate the reursion in several positions

inside the area where the airraft is assumed to be and update these values

further through the reursion. With suh a quantization of the state spae, the

integrals in (6) turn into sums over the hosen point values. The earliest ref-

erene of suh a numerial approah to solving the nonlinear �ltering problem

is [7℄. More reent referenes involve the p-vetor approah in [17℄ and a slightly

di�erent approah, presented in [15℄, using a pieewise onstant approximation

to the density funtion. In the terrain navigation problem the state dimension

is two and the quantization an in general be viewed as a bed-of-nails where the

length of eah nail orresponds to a ertain elementary mass in that position.

The implementation desribed in this paper is therefore labeled the point-mass

�lter (PMF).

3 The Point-Mass Filter

Assume that N grid points in R2 have been hosen for the approximation of

p(xt j Yt). Introdue the notation

xt(k) k = 1; 2; : : : ; N

for these N vetors in R2 . Eah of these N grid points has a orresponding

probability mass

p(xt(k) j Yt) k = 1; 2; : : : ; N:

In order to obtain a simple and eÆient algorithm, the grid points are hosen

from a uniform retangular mesh with resolution of Æ meters between eah grid

point. Eah integral operation in (6) is approximated by a �nite sum over the
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grid points with nonzero weight

Z
R2

f(xt) dxt �
NX
k=1

f(xt(k)) Æ
2:

Applying this approximation to (6) yields the Bayesian point-mass reursion:

p(xt(k) j Yt) = ��1t pet(yt � h(xt(k))) p(xt(k) j Yt�1)

xt+1(k) = xt(k) + ut k = 1; 2; : : : ; N

p(xt+1(k) j Yt) =

NX
n=1

pvt(xt+1(k)� xt(n)) p(xt(n) j Yt) Æ
2

(9)

where

�t =

NX
k=1

pet(yt � h(xt(k))) p(xt(k) j Yt�1) Æ
2: (10)

The time update has been split into two parts. First the grid points are trans-

lated with the INS relative movement estimate ut and then the probability mass

density is onvolved with the density pvt(�). The point estimate (7) is omputed

at eah iteration as the enter of mass of the point-mass density,

x̂t =

NX
k=1

xt(k)p(xt(k) j Yt) Æ
2:

Hene, the estimate does not neessarily fall on a grid point.

In order to follow the airraft movements the grid must be adapted to the

support of the onditional density. After eah measurement update, every grid

point with a weight less than " > 0 times the average mass value

1

N

NX
k=1

p(xt(k) j Yt) =
1

NÆ2
:

is removed from the grid. The new set of grid points is de�ned by

�
xt(k) : p(xt(k) j Yt) > "=NÆ2

	
:

The weights need to be re-normalized after this trunation operation. The trun-

ation will make the algorithm fous on areas with high probability and remove

grid points in areas where the onditional density is small. The basi grid res-

olution Æ will however not be a�eted by the trunation. When the algorithm
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is initialized, the unertainty about the airraft position is usually rather high.

The prior will then have a large support, and naturally it is not interesting

to have a high grid resolution. Instead we start with a sparse grid and run

the algorithm and remove weights using the trunation operation above until

the number of remaining grid points falls below some threshold N0. Then the

mesh resolution an be inreased and the algorithm ontinued to proess new

measurements, updating the onditional density in the new dense grid. The

up-sampling is performed by plaing one grid point between every neighboring

grid point in the mesh using linear interpolation to determine its weight. This

will yield a doubling of the mesh resolution. The onvolution in (9) will intro-

due some extra grid points along the border of the point-mass approximation,

inreasing the support of the mesh. If the measurements have low information

ontent there will be a net-inrease of grid points even though some are removed

by the trunation operation. Therefore, if the number of grid points inreases

above some threshold N1, the mesh is deimated by removing every seond grid

point from the mesh, halving the mesh resolution.

Hene, the number of grid points N , the point-mass support and the mesh

resolution Æ is automatially adjusted through eah iteration of the algorithm

using the design parameters ", N0 and N1. An illustration is given in Figure 6.

In summary the PMF algorithm onsists of (9) and the appropriate resampling

of the grid desribed above. Details about the implementation and the grid

re�nement proedure an be found in [3℄.

The re�nement of the grid support and resolution in the PMF desribed

above is of ourse ad ho, and one may wonder if this atually works. The

Cram�er-Rao lower bound is a fundamental limit on the ahievable algorithm

performane whih an be used to evaluate the average performane of the

PMF and verify that the �lter solves the nonlinear �ltering problem with near

optimal performane. The results are presented here without proofs or deriva-

tions, see [3{5℄ for details. Let N(m;P ) denote the n-dimensional Gaussian

distribution with mean vetor � and ovariane matrix P

N(�; P ) = 1p
(2�)njP j

exp
�� 1

2
(x� �)TP�1(x � �)

�
:
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Inserting Gaussian distributions in (4),

pet(�) = N(0; Rt) pvt(�) = N(0; Qt) p(x0) = N(x̂0; P0);

the Cram�er-Rao lower bound for the one step ahead predition of the states

satis�es the matrix (Riati) reursion,

Pt+1 = Pt � PtHt(H
T

t PtHt +Rt)
�1HT

t Pt +Qt

initiated with P0. Above Ht is the gradient of h(�) evaluated at the true state

value at time t,

Ht = rh(xt):

Thus, the Cram�er-Rao bound is a funtion of the noise levels and the gradient

of the terrain along the true state sequene.

The Cram�er-Rao bound sets a lower limit on the estimation error ovariane

whih depends on the statistial properties of the model (4) and on the algorithm

used. A Monte Carlo simulation study is performed to determine the average

performane of the algorithm for omparison with the Cram�er-Rao bound. The

Root Mean Square (RMS) Monte Carlo error for eah �xed time instant is lower

bounded by the Cram�er-Rao bound,

vuut 1

M

MX
i=1

kxt � x̂i
t
k2 &

p
trPt

where x̂i
t
is the one step ahead predition of the states at time t in Monte Carlo

run i.

Figure 3 shows a 300 samples long trak over a part of the terrain map from

Figure 2. The airraft travels from right to left. The Cram�er-Rao bound and

the obtained RMS error from 1000 Monte Carlo simulations with the PMF is

shown in Figure 4. The PMF is initiated with a prior with large support using

a low resolution of the grid, this yields far from optimal performane during the

�rst half of the simulations. However, as the grid resolution inreases the RMS

error dereases and when the PMF resolution reahes a steady state level, the

�lter performane reahes the optimal bound. Note also that both the bound

and the performane depend on the terrain variations along the true trak. The

13



0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

0

50

100

150

Figure 3: The simulation area and the true trak, axes are labeled in meters.
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Figure 4: Monte Carlo root mean square error ompared with the Cram�er-Rao

bound.

Monte Carlo evaluation above shows that the grid re�nement method used in

the PMF works very well and that the �lter ahieves the optimal performane
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when the grid is hosen dense enough.

4 Simulation Evaluation

The terrain map used in these simulations is the same terrain database over a

part of Sweden as is shown in Figure 2. A ontour plot over this terrain map and

the true simulated airraft ight path is shown in Figure 5. The airraft starts
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Figure 5: The simulation trak over the terrain database.

heading south, after a few turns over the rough part of the map it ies over a

part of the Balti sea and then turns bak and ompletes the ounter-lokwise

lap. The simulated airraft trak, the INS measurements and the radar altimeter

measurements have all been generated in an advaned realisti simulator used

by the navigation systems development department at Saab Dynamis. The

trak has a duration of 25 minutes and is sampled at a rate of 10 Hz. The

airraft has an average speed of Mah 0:55, and the manoeuvres are simulated

as oordinated turns.

The INS position estimate x̂0 is initiated with an error of 1000 m in both
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the north and the east diretion. The prior density is hosen as a Gaussian

distribution entered at the erroneous INS estimate

p(x0) = N(x̂0; 1000
2I2): (11)

The initial grid resolution used in the PMF to sample this funtion is Æ = 200 m.

The dead-rekoning drift in the INS is simulated as a onstant bias of 1 m/s

in eah hannel. The distribution used in the algorithm to model this drift is

Gaussian pvt(�) = N(0; 4I2). The hoie of Gaussian distributions has proven

suessful in the simulations but any other suitable distribution that better

models the position drift and the initial unertainty may be used. There is no

restrition in the PMF to Gaussian noises: the only assumption is that the noise

an be regarded as white.

Di�erent sensor models are used when generating the simulated measure-

ments. Depending on the terrain ategory beneath the airraft at the measuring

instant, both the bias and the variane of the radar altimeter are adjusted. For

example, ying over dense forest the radar altimeter has a bias of 19 m with a

large variane. Additional noise is added to the measurement to simulate that

the radar altimeter measurement performane degrades with inreasing ground

learane distane. The density used to apture these e�ets in the PMF algo-

rithm is a mixture of two Gaussian distributions,

pet(�) = 0:8N(0; 2) + 0:2N(15; 9):

This hoie an be interpreted as on the average every �fth measurement being

biased due to reetion in trees or buildings. The trunation and resampling

parameters used in the PMF are,

" = 10�3; N0 = 1000; N1 = 5000:

The simulation result from the �rst three reursions is depited in Figure 6.

Starting with the Gaussian prior (11), the �rst measurement ampli�es the prob-

ability in several regions and removes samples of low probability. After the se-

ond reursion, the grid resolution is inreased to 100 m and the third reursion

removes even more samples and a single peak of the density shows the most

probable airraft position while the unertainty still is rather large. The bound-

ing box indiating the support of the prior is shown as a omparison with the
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Figure 6: The �rst three reursions of the algorithm

support of eah of the �lter densities. The irregular shapes of these densities

shows how the unstrutured nonlinear terrain gives a �lter density whih is hard

to approximate with smooth funtions or loal linearizations. Figure 7 shows

the estimation error along the simulation trak. Here it is obvious that the

performane depends on the overed terrain. The error onverges rapidly from

the initial error of more than 1 km down to an error less than 30 m. When

the airraft reahes the Balti sea the measurements have little information and

the error inreases with the drift of the INS. One bak over land, the estimate

auray inreases and a trend towards worse performane is visible when the

airraft overs the low informative areas of the map during the �nal part of the

lap. The resolution of the grid is automatially adjusted and varies between

200 m and 0.78 m along the simulation trak. A ommon navigation perfor-

mane parameter is the irular error probable (CEP) whih is the median of

the position error. The simulation yields a median error of 12.2 m CEP. As a
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Figure 7: Estimation error along the simulation trak, in logarithmi sale.

omparison, in [12℄ an error of 50 m CEP is reported and in [6℄ a value of 75 m

is obtained. It should be remarked that both these values are found during �eld

tests and not simulations.

5 Conlusion

The performane of terrain navigation depends on the size of the terrain gradient

in the area. The point-mass �lter desribed in this work yields an approximate

Bayesian solution that is well suited for the unstrutured nonlinear estimation

problem in terrain navigation. It reursively propagates a density funtion of

the airraft position. The shape of the point-mass density reets the estimate

quality, this information is ruial in navigation appliations where estimates

from di�erent soures often are fused in a entral �lter. The Monte Carlo

simulations show that the approximation an reah the optimal performane

and the realisti simulations in Setion 4 show that the navigation performane

is very high ompared with other algorithms and that the point-mass �lter solves

the reursive estimation problem for all the types of terrain overed in the test.

The main advantages of the PMF is that it works for many kinds of nonlin-

earities and many kinds of noise and prior distributions. The mesh support and

18



resolution are automatially adjusted and ontrolled using a few intuitive design

parameters. The main disadvantage is that it annot solve estimation problems

of very high dimension sine the omputational omplexity of the algorithm

inreases drastially with the dimension of the state spae. The implementa-

tion used in this work shows real-time performane for two dimensional and in

some ases three dimensional models, but higher state dimensions are usually

intratable.
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