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Team Oshkosh, composed of Oshkosh Corporation, Teledyne Scientific and Imaging Com-
pany, VisLab of the University of Parma, Ibeo Automotive Sensor GmbH, and Auburn
University, participated in the DARPA Urban Challenge and was one of the 11 teams
selected to compete in the final event. Through development, testing, and participation
in the official events, we experimented and demonstrated autonomous truck operations
in (controlled) urban streets of California, Wisconsin, and Michigan under various cli-
mate and traffic conditions. In these experiments TerraMaxTM, a modified medium tactical
vehicle replacement (MTVR) truck by Oshkosh Corporation, negotiated urban roads, in-
tersections, and parking lots and interacted with manned and unmanned traffic while
observing traffic rules. We accumulated valuable experience and lessons on autonomous
truck operations in urban environments, particularly in the aspects of vehicle control,
perception, mission planning, and autonomous behaviors, which will have an impact on
the further development of large-footprint autonomous ground vehicles for the military.
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In this article, we describe the vehicle, the overall system architecture, the sensors and
sensor processing, the mission planning system, and the autonomous behavioral controls
implemented on TerraMax. We discuss the performance of some notable autonomous be-
haviors of TerraMax and our experience in implementing these behaviors and present
results of the Urban Challenge National Qualification Event tests and the Urban Chal-
lenge Final Event. We conclude with a discussion of lessons learned from all of the above
experience in working with a large robotic truck. C© 2008 Wiley Periodicals, Inc.

1. INTRODUCTION

Team Oshkosh entered the DARPA Urban Challenge
with a large-footprint robotic vehicle, TerraMaxTM,
a modified medium tactical vehicle replacement
(MTVR) truck. By leveraging our past experience and
success in previous DARPA Challenges, the com-
bined multifaceted expertise of the team members,
and the support of a DARPA Track A program award,
we demonstrated various autonomous vehicle be-
haviors in urban environments with excellent per-
formance, passed through many official tests at the
National Qualification Event (NQE), and qualified for
the Urban Challenge Final Event (UCFE). TerraMax
completed the first four submissions in mission 1
of the UCFE before being stopped after a failure in
the parking lot due to a software bug. We brought
TerraMax to the UCFE test site in Victorville in
December 2007, where TerraMax completed success-
fully three missions totaling more than 78 miles in 7 h
and 41 min.

Team Oshkosh is composed of Oshkosh Corpora-
tion, Teledyne Scientific and Imaging Company, Vis-
Lab of the University of Parma, Ibeo Automotive
Sensor GmbH, and Auburn University. Oshkosh pro-
vided the vehicle, program management, and over-
all design direction for the hardware, software, and
control systems. Oshkosh integrated all the elec-
trical and mechanical components and developed
the low- and midlevel vehicle control algorithms
and software. Teledyne Scientific and Imaging Com-
pany developed the system architecture, mission and
trajectory planning, and autonomous behavior gener-
ation and supervision. The University of Parma’s Vis-
Lab developed various vision capabilities. Ibeo Auto-
motive Sensor GmbH provided software integration
of the LIDAR system. Auburn University provided
evaluation of the global positioning system/inertial
measurement unit (GPS/IMU) package.

Although substantial hurdles must be overcome
in working with large vehicles such as TerraMax, we

feel that large autonomous vehicles are critical for
enabling autonomy in military logistics operations.
Team Oshkosh utilized a vehicle based on the U.S.
Marine Corps MTVR, which provides the majority
of the logistics support for the Marine Corps. The in-
tention is to optimize the autonomous system design
such that the autonomy capability can be supplied
in kit form. All design and program decisions were
made considering not only the Urban Challenge re-
quirements, but eventual fielding objectives as well.

Our vehicle was modified to optimize the
control-by-wire systems in providing a superior low-
level control performance based on lessons learned
from the 2005 DARPA Grand Challenge (Braid,
Broggi, & Schmiedel, 2006; Sundareswaran, Johnson,
& Braid, 2006). Supported by a suite of carefully se-
lected and military-practical sensors and perception
processing algorithms, our hierarchical state-based
behavior engine provided a simple yet effective ap-
proach in generating the autonomous behaviors for
urban operations. Through the development, testing,
and participation in official events, we have exper-
imented and demonstrated autonomous truck op-
erations in (controlled) urban streets of California,
Wisconsin, and Michigan under various climate con-
ditions. In these experiments, TerraMax negotiated
urban roads, intersections, and parking lots and in-
teracted with manned and unmanned traffic while
observing traffic rules.

In this article, we present our experience and
lessons learned from autonomous truck operations
in urban environments. In Section 2 we summa-
rize the vehicle and hardware implementation. In
Section 3 we present the overall system architecture
and its modules. In Section 4 we describe TerraMax’s
sensor and perception processing. In Section 5 we
present TerraMax’s autonomous behavior generation
and supervision approach. In Section 6 we discuss
TerraMax’s field performance and experience in the
NQE and the UCFE. We comment on lessons learned
in Section 7.
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Figure 1. TerraMax: the vehicle.

2. TERRAMAX: THE VEHICLE AND
HARDWARE SYSTEMS

2.1. Vehicle Overview

The TerraMax vehicle (see Figure 1) is a modified
version of a standard Oshkosh MTVR Navy trac-
tor,1 which comes with a rear steering system as
standard equipment. The MTVR platform was de-
signed for and combat tested by the U.S. Marine
Corps. We converted the vehicle to a 4 × 4 version
by removing the third axle and by shortening the
frame rail and rear cargo bed. The TAK-4TM indepen-
dent suspension allowed rear axle steering angles to
be further enhanced to deliver curb-to-curb turning
diameters of 42 ft, equivalent to the turning diam-
eter of a sport utility vehicle. In addition to the
enhancement of turning performance, Oshkosh de-
veloped and installed low-level controllers and
actuators for “by-wire” braking, steering, and power-
train control. Commercial-off-the-shelf (COTS) com-
puter hardware was selected and installed for the
vision system and autonomous vehicle behavior
functions.

1Oshkosh MTVR. http://www.oshkoshdefense.com/pdf/Oshkosh
MTVR brochure 07.pdf

2.2. Computing Hardware

We opted for ruggedized COTS computing platforms
to address the computing needs of TerraMax. Two
A-Plus Mobile A20-MC computers with Intel Core
Duo processors running Windows XP Pro were used
for autonomous vehicle behavior generation and con-
trol. The four Vision personal computers (PCs) use
SmallPC Core Duo computers running Linux Fedora.
One PC is dedicated to each vision camera system
(i.e., trinocular, close-range stereo, rearview, and
lateral). Low-level vehicle controller and body con-
troller modules are customized Oshkosh Command
Zone® embedded controllers and use the 68332 and
HC12X processors, respectively. To meet our objec-
tives of eventual fielding, all the computing hard-
ware was housed in the storage space beneath the
passenger seat.

2.3. Sensor Hardware

2.3.1. LIDAR Hardware

TerraMax incorporated a LIDAR system from Ibeo
Automobile Sensor, GmbH, that provides a 360-deg
field of view with safety overlaps (see Figure 2).
Two ALASCA XT laser scanners are positioned on

Journal of Field Robotics DOI 10.1002/rob
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Figure 2. LIDAR coverage of TerraMax (truck facing right).

Figure 3. Vision coverage of TerraMax (truck facing right). Systems displayed: Trinocular (orange) looking forward from 7
to 40 m, stereo front and stereo back (purple) monitoring a 10 × 10 m area on the front of the truck and 7 × 5 m in the back,
Rearview (blue) monitoring up to 50 m behind the truck, and lateral (green) looking up to 130 m.
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the front corners of the vehicle, and one ALASCA
XT laser scanner is positioned in the center of the
rear. Each laser scanner scans a 220-deg horizontal
field. Outputs of the front scanners are fused at the
low level; the rear system remained a separate sys-
tem. The LIDAR system native software was modi-
fied to operate with our system architecture messag-
ing schema.

2.3.2. Vision Hardware

Four vision systems are onboard: trinocular, stereo,
rearview, and lateral. Figure 3 depicts the cov-
erage of these vision systems. Table I summa-
rizes the functions and components of these vision
systems.

Each vision system is formed by a computer con-
nected to a number of cameras and laser scanners,
depending on the application. Each computer is con-
nected through an 800-Mbps, FireWire B link to a
subset of the 11 cameras [9 PointGrey Flea 2, sensor:
charge-coupled device (CCD), 1/3”, Bayer pattern,
1,024 × 768 (XGA); and 2 Allied Vision Technologies
Pike 2, sensor: 1”, Bayer pattern, 1,920 × 1,080 pixels
high-definition TV (HDTV)] mounted on the truck,
depending on the system purpose.

2.3.3. GPS/INS

Using a Novatel GPS receiver with Omnistar HP cor-
rections (which provides 10-cm accuracy in 95% of
cases) as a truth measurement in extensive tests un-
der normal and GPS-denied conditions, we selected
Smiths Aerospace Inertial Reference Unit (IRU) as
our GPS/inertial navigation systems (INS) solution
based on its more robust initialization performance
and greater accuracy in GPS-denied conditions.

3. SYSTEM ARCHITECTURE

On the basis of a layered architecture design pat-
tern (Team Oshkosh, 2007), we designed the software
modules as services that provide specific functions to
the overall system. These services interact with each
other through a set of well-defined asynchronous
messages. Figure 4 illustrates these software mod-
ules and the relations among them. As illustrated,
there are two main types of services: autonomous
services, whose modules provide functionalities for
autonomous vehicle behaviors, and system services,
whose modules support the reliable operations of
the vehicle and the mission. We summarize the
main functionalities of these software modules in the
following description.

Table I. Vision system components.

Vision
system Trino Stereo Lateral Rearview

Cameras 3x PtGrey Flea2
(XGA)

4x PtGrey Flea2 (XGA) 2x Allied Vision
Technologies Pike 2
(HDTV)

2x PtGrey Flea2 (XGA)

Camera
position

Upper part of the
windshield, inside
the cab

2 on the front camera bar,
two on the back of the
truck, all looking
downward

On the sides of the
front camera bar

External, on top of the
cab, looking backward,
and downward, rotated
by 90 deg

Linked laser
scanner

Front Front, back Not used Back

Algorithms Lane detection,
stereo obstacle
detection

Lane detection, stop line
detection, curb
detection, short-range
stereo obstacle
detection

Monocular obstacle
detection

Monocular obstacle
detection

Range 7 to 40 m 0 to 10 m 10 to 130 m −4 to −50 m
Notes 3 stereo systems with

baselines: 1.156,
0.572, 1.728 m

2 stereo systems (front
and rear)

Enabled when the
truck stops at
crossings

Overtaking vehicles
detection
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Figure 4. Software deployment architecture.

3.1. Autonomous Services

Autonomous vehicle manager. The autonomous vehicle
manager (AVM) manages the high-level autonomous
operation of the vehicle. It is primarily responsible for
performing route planning, trajectory planning, and
behavior management. The AVM receives percep-
tion updates from the world perception server (WPS)
and uses this information to track the current vehicle
state and determine the current behavior mode. The
AVM continuously monitors perceived obstacle and
lane boundary information and issues revised trajec-
tory plans to the autonomous vehicle driver (AVD)
through drive commands.

Autonomous vehicle driver. The AVD provides
vehicle-level autonomy, such as waypoint following
and lateral, longitudinal, and stability control by ac-

cepting messages from the AVM and commanding
the lower level control-by-wire actuations.

World perception server. The WPS publishes per-
ception updates containing the most recently ob-
served vehicle telemetry, obstacle, and lane/road
boundary information. The WPS subscribes to sen-
sory data from the LIDAR and the vision system (VI-
SION). The WPS combines the sensory data with the
vehicle telemetry data received from the navigation
service (NAV). Obstacles detected by the LIDAR and
VISION are further fused in order to provide a more
accurate depiction of the sensed surroundings. The
AVM consumes the perception updates published by
the WPS and uses this information to determine the
next course of action for the vehicle.

Vision system. VISION publishes processed sen-
sory data and metadata from different groups of

Journal of Field Robotics DOI 10.1002/rob



Chen et al.: TerraMaxTM: Team Oshkosh Urban Robot • 847

cameras. The metadata may contain information such
as detected driving lane/path, lane boundary and
curb marking, and/or obstacles. These sensory data
and metadata are sent to WPS for distribution.

Other autonomous services include the vehicle
state server (VSS), which monitors and manages
low-level control for transitions from manual to au-
tonomous operations, detects any low-level faults,
and attempts to recover the system into fail-safe
mode, if needed; the LIDAR system (LIDAR), which
fuses and publishes obstacle information provided
by the native obstacle detection and tracking func-
tionalities from different laser scanners; and the NAV
service that manages communications to the GPS/
INS.

3.2. System Services

Course visualizer. The course visualizer is the prime
interface to allow human operators/developers
to observe the internal operations and status of
the autonomous systems during a run. During
an autonomous run, it provides real-time, two-
dimensional visualization of the course data (i.e.,
road network Definition File; RNDF), vehicle teleme-
try data, metadata from sensors (e.g., lane updates
and obstacles), and status/results of autonomous be-
havior generation (e.g., internal logics of a particular
autonomous mode, results of a particular behavior al-
gorithm). It can also serve as the main playback plat-
form to enable postoperation analysis of the data log.
Incorporated with a simplistic vehicle model, it also
serves as a rough simulation platform to allow early
testing and verification for developing or adjusting
behavioral algorithms.

Other system services include the mission man-
ager, which provides the user interface for configur-
ing autonomous services, loading mission files, and
starting the autonomous services/modes; the health
monitor, which monitors service beacons from other
services and alerts the service manager if an anomaly
occurs; and the service manager, which manages the
initialization, startup, restart, and shutdown of all au-
tonomous services.

4. SENSOR PROCESSING AND PERCEPTION

In previous Grand Challenge efforts we used a trinoc-
ular vision system developed by VisLab at the Uni-
versity of Parma for both obstacle and path detection,
coupled with laser scanning systems for obstacle de-

tection. We used several SICK laser scanners and one
Ibeo laser scanner for obstacle detection. The Grand
Challenge generally involved only static obstacles,
so sensing capabilities focused on the front of the
vehicle. Urban driving introduces a new dynamic—
obstacles move (i.e., other moving vehicles), and the
vehicle must respond to these moving obstacles, re-
sulting in a much greater need for sensing behind and
to the sides of the vehicle. The AVM needs more in-
formation about the obstacles, requiring their veloc-
ity as well as their location, and it also needs great
precision in detecting stop lines and lane boundaries.
To meet these goals, we enhanced capabilities in both
laser scanning and vision.

Ibeo provided three of their advanced ALASCA
XT laser scanners and fusion algorithms for an inte-
grated 360-deg view. The new TerraMax vehicle uti-
lizes multiple vision systems, with perception capa-
bilities in all the critical regions.

4.1. LIDAR

The Ibeo laser scanners have two roles on
TerraMax. First, they provide processed object
data (Kaempchen, Bühler, & Dietmayer, 2005;
Wender, Weiss, Dietmayer, & Fuerstenberg, 2006)
to the WPS. Second, they provide scan-level data
used by the vision system to improve its results. The
onboard external control units (ECUs) fuse the data
from the two front LIDARs2 acting as a single virtual
sensor in the front.

4.2. Vision System

4.2.1. Software Approach

All the vision computers run the same software
framework (Bertozzi et. al., 2008), and the various
applications are implemented as separate plug-ins.
This architecture allows hardware abstraction, while
making a common processing library available to the
applications, thus making algorithm development in-
dependent of the underlying system. Each vision
system controls its cameras using a selective autoex-
posure feature. Analysis of each image is focused on
a specific region of interest.

All the vision systems are fault tolerant with re-
spect to one or more, temporary or permanent, sensor

2Ibeo laser scanner fusion system. http://www.ibeo-as.com/
english/technology d fusion.asp
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failure events. The software is able to cope with
FireWire bus resets or laser scanner communication
problems and to reconfigure itself to manage the re-
maining sensors.

4.2.2. The Trinocular System

Driving in urban traffic requires detailed percep-
tion of the environment surrounding the vehicle: for

this, we installed in the truck cabin a trinocular vi-
sion system capable of performing both obstacle and
lane detection up to distances of 40 m, derived from
Caraffi, Cattani, and Grisleri (2007). The stereo ap-
proach has been chosen because it allows an accu-
rate three-dimensional (3D) reconstruction without
requiring strong a priori knowledge of the scene in
front of the vehicle, but just correct calibration values,
which are being estimated at run time.

Figure 5. A frame captured from the right camera; (b) corresponding V-disparity map, where the current pitch is shown
in yellow text and the detected ground slope is represented by the slanted part of the red line; and (c) disparity map (green
points are closer; orange ones are farther away).

Figure 6. Results of lane detection algorithm projected on the original image. From right to left, the red line represents a
right boundary, green a left boundary, and yellow a far left boundary. In this image, the right line is detected although it is
not a complete line.

Journal of Field Robotics DOI 10.1002/rob
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The three cameras form three possible baselines
(the baseline is the distance between two stereo
cameras), and the system automatically switches
between them depending on the current vehicle
speed; at lower speeds it is thus more convenient to
use the shorter (and more accurate) baseline, whereas
at higher speeds the large baseline permits the detec-
tion of obstacles when they are far from the vehicle.

Images are rectified, so that the corresponding
epipolar lines become horizontal, thus correcting any
hardware misalignment of the cameras and allowing
for more precise measurements. The V-disparity map
(Labayrade, Aubert, & Tarel, 2002) is exploited to ex-
tract the ground slope and current vehicle pitch, in
order to compensate for the oscillations that occur
while driving [Figures 5(a) and 5(b)].

The next step is to build a disparity map from
the pair of stereo images: this operation is ac-
complished using a highly optimized incremental
algorithm, which takes into account the previously
computed ground slope in order to produce more
accurate results and to reduce the processing time
[Figure 5(c)].

The disparity map, along with the corresponding
3D world coordinates, is used to perform obstacle de-
tection. After a multistep filtering phase aimed at iso-
lating the obstacles present in front of the truck, the
remaining points are merged with the ones from the
front LIDAR and are initial values for a flood-fill ex-
pansion step, governed by each pixel disparity value,
in order to extract the complete shape of each obsta-
cle. This data fusion step ensures good performance
in poorly textured areas, while ensuring robustness of
the vision-based obstacle detection algorithm against
LIDAR sensor failures. Previously identified obsta-
cles are removed from the full-resolution image used
by the lane detection algorithm, lowering the possi-
bility of false positives, such as those introduced by
poles or vehicle parts. Figure 6 shows a typical scene
and the lanes detected by the algorithm.

4.2.3. Stereo System

Navigation in an urban environment requires pre-
cise maneuvers. The trinocular system described in
the preceding section can be used for driving only
at medium to high speeds, because it covers the far
range (7–40 m). TerraMax includes two stereo sys-
tems [one in the front and one in the back, derived
from Broggi, Medici, and Porta (2007)], which pro-
vide precise sensing at closer range. Using wide-

angle (fish-eye, about 160 deg) lenses, these sensors
gather information over an extended area of about
10 × 10 m; the stereo systems are designed to detect
obstacles and lane markings with high confidence on
the detection and position accuracy.

Obstacle detection is performed in two steps: first
the two images, acquired simultaneously, are pre-
processed in order to remove the high lens distor-
tion and perspective effect, a thresholded difference
image is generated and labeled (Bertozzi, Broggi,
Medici, Porta, & Sjögren, 2006), and then a polar
histogram-based approach is used to isolate the la-
bels corresponding to obstacles (Bertozzi & Broggi,
1998; Lee & Lee, 2004). Data from the LIDARs are
clusterized so that laser reflections in a particular area
can boost the score associated with the correspond-
ing image regions, thus enhancing the detection of
obstacles.

The chosen stereo approach avoids explicit com-
putation of camera intrinsic and extrinsic parame-
ters, which would have been impractical, given the
choice of using fish-eye lenses to cover a wide area in
front of the truck. The use of a lookup table (gener-
ated using a calibration tarp) to remap the distorted
input images to a bird’s-eye view of the scene thus
results in improved performance and reduced
calibration time

Short-range line detection is performed using a
single camera, to detect lane markings (even along a
sharp curve), stop lines, and curbs. As the camera ap-
proaches the detected obstacles and lane markings,
the position accuracy increases, yet the markings re-
main in the camera field of view due to the fish-eye
lens. A precise localization of lane markings enables
the following: lane keeping despite large width of the
vehicle, stopping of the vehicle at close proximity to
the stop line at intersections, accurate turning maneu-
vers at intersections, and precise planning of obstacle
avoidance maneuvers. Figure 7 shows a frame with
typical obstacle and lane detection.

4.2.4. Lateral System

We employ lateral perception to detect oncoming
traffic at intersections (Figure 8). During a traffic
merge maneuver, the vehicle is allowed to pull into
traffic only when a gap of at least 10 s is available.
For this, the vehicle needs to perceive the presence
of oncoming traffic and estimate vehicle speeds at
range. The intersecting road might be viewed at an
angle other than 90 deg; therefore the lateral system

Journal of Field Robotics DOI 10.1002/rob
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Figure 7. A sample frame showing typical obstacle and
lane detection.

must be designed to detect traffic coming from dif-
ferent angles. We installed two high-resolution AVT
Pike cameras (1,920 × 1,080 pixels) on TerraMax—
one on each side—for lateral view, together with
8-mm Kowa lenses. With this configuration each cam-
era can cover a 90-deg angle and is able to see objects
at high resolution up to distances greater than 130 m.

Figure 8. Lateral system algorithm results (detected vehicles are marked red).

The lateral camera image is processed using a
robust, ad hoc background subtraction–based algo-
rithm within a selected region of interest, with the
system being triggered by the AVM when the ve-
hicle stops at an intersection, yielding to oncoming
traffic. This approach allows us to handle the high-
resolution imagery with a simple, computationally
effective approach by leveraging the semantic context
of vehicular motion.

4.2.5. Rearview System

When driving along a road, in both urban and rural
environments, lane changes and passing may occur.
The rearview system is aimed at detecting passing ve-
hicles (Figure 9). This solution has proven to be very
robust, while keeping processing requirements low;
the onboard camera setup (with cameras placed on
top of the cab, looking backward) ensures good visi-
bility, because oncoming traffic is seen from a favor-
able viewing angle. The rearview system processing
is based on color clustering and optical flow. The first
stage of processing performs data reduction in the
image: a category is assigned to each pixel depending
on its color, resulting in blobs that represent objects
or portions of objects of uniform color. In the second

Journal of Field Robotics DOI 10.1002/rob
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Figure 9. Rearview system algorithm results (detected ve-
hicles are marked in red).

(optic flow) stage, blobs of uniform color are analyzed
and tracked, to estimate their shape and movement.

Obstacles found using optical flow are then com-
pared with those detected by the LIDAR: because the
latter has higher precision, the position of obstacles
estimated by vision is refined using the LIDAR data,
if available. The fusion algorithm thus performs only
position refinement and does not create/delete obsta-
cles, in order to isolate the detection performance of
the vision system from that of the LIDAR.

4.3. Obstacle Fusion and Tracking

We adopted a high-level approach for fusing (both
dynamic and static) obstacle information. The high-
level fusion approach was favored for its modularity
and rapid implementation. It was also well-suited for
our geographically dispersed development team.

In this approach, obstacles are detected locally
by the LIDAR and vision systems. Detected obsta-

cles are expressed as objects that contain relevant in-
formation such as outline points, ID, velocity, height
(vision only), and color (vision only). The obstacles
from LIDAR and vision are fused in the WPS based
on their overlap and proximity.

Similarly, we relied on the native functions of
the LIDAR (Wender et. al., 2006) and vision systems
for obstacle tracking (through object IDs generated
by these systems). This low-level-only tracking ap-
proach proved to be effective for most of the situa-
tions. However, it was inadequate in more complex
situations in which a vehicle is temporarily occluded
by another (see discussions in Sections 6.2 and 7).

To predict the future position of a moving vehi-
cle, the WPS applies a nonholonomic vehicle kine-
matic model (Pin & Vasseur, 1990) and the context of
the vehicle. For example, if the vehicle is in a driv-
ing lane, the WPS assumes that it will stay in lane. If
the vehicle is not in a lane, the WPS assumes it will
maintain its current heading.

5. PLANNING AND VEHICLE BEHAVIORS

In this section, we describe our approach for vehicle
behavior generation and route/trajectory planning.

5.1. Overview of Vehicle Behaviors

We adopted a goal-driven/intentional approach to
mission planning and generation of vehicle behav-
iors. The main goal for the mission and behavior
generation is to navigate sequentially through a set
of checkpoints as prescribed in the DARPA-supplied
mission definition files (MDF). Functionality related
to autonomous vehicle behaviors is implemented in
the AVM.

Main components in the AVM (as depicted in
Figure 10) include the mission/behavior supervisor
(MBS), which manages the pursuit of mission
goal (and subgoals) and selects and supervises
the appropriate behavior mode for execution:
the mission/route planner, which generates (and
regenerates as needed) high-level route plans based
on the road segments and zones defined in the RNDF;
the behavior modes & logic, which contains a set of
behavior modes, the transitional relationship among
them, and the execution logic within each behavior
mode; the event generators, which monitor the
vehicle and environment state estimation from the
WPS and generate appropriate events for the behav-
ioral modes when a prescribed circumstance arises

Journal of Field Robotics DOI 10.1002/rob
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Figure 10. Major function blocks in the AVM.

(e.g., an obstacle in the driving lane ahead); and the
behavior functions/utilities, which provide common
services (e.g., trajectory generation) for different
behavior modes.

5.2. Behavioral Modes and Supervision

We adopted a finite state machine (FSM)–based
discrete-event supervisory control scheme as our pri-

Figure 11. Components for behavior generation and execution.

mary approach to generate and execute autonomous
vehicle behaviors. The FSM–based scheme pro-
vides us with a simple, yet structured, approach to
effectively model the race rules/constraints and
behaviors/tactics, as opposed to the conventional
rule-based approaches or behavior-based approaches
(Arkin, 1998). This scheme allows us to leverage ex-
isting supervisory control theories and techniques
(Cassandras & Lafortune, 1999; Chen & Lin, 2001b;
Chung, Lafortune, & Lin, 1992; Ramadge & Wonham,
1987) to generate safe and optimized behaviors for
the vehicle.

We model autonomous behaviors as different be-
havior modes. These behavior modes categorize po-
tential race situations and enable optimized logic and
tactics to be developed for the situations. We im-
plemented 17 behavior modes, shown in Figure 11,
to cover all the basic and advanced behaviors pre-
scribed in the Urban Challenge. Examples of the
behavior modes include lane driving, in which the
vehicle follows a designated lane based on the sensed
lane or road boundaries; and inspecting intersection,
in which the vehicle observes the intersection proto-
col and precedence rules in crossing intersections and
merging with existing traffic.

Journal of Field Robotics DOI 10.1002/rob
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For each behavior mode, a set of customized logic
is modeled as an extended FSM [e.g., a FSM with
parameters (FSMwP) (Chen & Lin, 2000)], which de-
scribes the potential behavior steps, conditions, and
actions to be taken. The behavior logic may employ
different utility functions (e.g., trajectory planners/
driving algorithms and stop-line procedure) during
execution.

Transitions among behavior modes are modeled
explicitly as an FSMwP (Chen & Lin, 2000), named
mode transition machine (MTM), in which guard
conditions and potential actions/consequences for
the transitions are expressed. The MTM is used by
the behavior supervisor in MBS in determining the
appropriate behavior mode to transition to during
execution.

The generation and control of the vehicle behav-
ior may be formulated as a supervisory control prob-
lem. We adopted the concepts of safety control (Chen
& Lin, 2001a) and optimal effective control (Chen &
Lin, 2001b) for FSMwP in which the traffic rules and
protocols are formulated as safety constraints and
current mission subgoal (e.g., checkpoint) as the ef-
fective measure to achieve. However, to improve the
real-time performance during execution, we manu-
ally implemented a simplified supervisor that does
not require explicit expansion of supervisor states
(Chung et. al., 1992) by exploiting the structure of the
MTM.

Our FSM-based behavior generation scheme is
intuitive and efficient. However, it may suffer from
several potential drawbacks. Among them are the
reduced robustness in handling unexpected situa-
tions and the lack of “creative” solutions/behaviors.
To mitigate the potential concern in handling unex-
pected situations, we included an unexpected behav-
ior mode (RoadBlockRecovery mode) and instituted
exception-handling logic to try to bring the vehicle
to a known state (e.g., on a known road segment,
or zone). Through our field testing and participation
at official events, we found this unexpected behavior
mode to be generally effective in ensuring the robust
autonomous operation of the vehicle. A more robust
unexpected behavior mode based on “non-scripted”
techniques, such as behavior-based approaches
(Arkin, 1998), may be introduced in the future to
handle the unexpected situations. This hybrid ap-
proach would strike the balance between simplicity/
consistency and flexibility/robustness of behaviors.

5.3. Route Planning

The objective of the route planning component is to
generate an ordered list of road segments among the
ones defined in the RNDF that enables the vehicle
to visit the given set of checkpoints, in sequence, at
the least perceived cost of the current sensed environ-
ment. We implemented the route planner as a deriva-
tive of the well-known Dijkstra’s algorithm (Cor-
men, Leiserson, & Rivest, 1990), which is a greedy
search approach to solve the single-source, shortest-
path problem.

We used the estimated travel time as the base cost
for each road segment, instead of the length of the
road segment. This modification allowed us to effec-
tively take into account the speed limit of the road
segments (both MDF-specified and self-imposed due
to the large vehicle’s constraints) and the traffic con-
ditions the vehicle may experience through the same
road segment previously traveled (during the same
mission run). Meanwhile, any perceived road infor-
mation, such as road blockage, and (static) obstacles
are also factored into the cost of the road.

5.4. Trajectory Planning

The trajectory planner generates a sequence of dense
and drivable waypoints, with their corresponding
target speeds, for the AVD to execute, given a pair
of start/end waypoints and, possibly, a set of inter-
mediate waypoints. Alternatively, the trajectory plan-
ner may also prescribe a series of driving commands
(which include steering direction and travel dis-
tance). Instead of using a general-purpose trajectory/
motion planner for all behavior modes, we imple-
mented the trajectory planning capabilities as a col-
lection of trajectory planner utility functions that may
be called upon by different behavior modes depend-
ing on the current vehicle and mission situation.
Our approach exploited specific driving conditions in
different behavior modes for efficient and consistent
trajectory planning.

We implemented four different types of trajectory
planners:

• Lane-following trajectory planner utilizes
detected/estimated lane and road boundaries
to generate waypoints that follow the pro-
gression of the lane/road. Targeted speed for
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each waypoint is determined by considering
the (projected) gap between TerraMax and the
vehicle in front, if any, dynamics of TerraMax
(e.g., current speed, limits of acceleration/
deceleration), and the speed limit of the road
segment. Curvatures among waypoints are
further checked, adjusted, and smoothed us-
ing a spline algorithm (Schoenberg, 1969) to
ensure that the waypoints are drivable within
TerraMax’s dynamic constraints.

• Template-based trajectory planners are a set
of trajectory planners that can quickly gen-
erate trajectory waypoints based on instan-
tiation of templates (Horst & Barbera, 2006)
with current vehicle and environment state
estimates for common maneuvers such as
lane changing, passing, swerving, and turn-
ing at intersections. A template-based tra-
jectory planner determines first the targeted
speed for (each segment of) the maneuver, us-
ing the method similar to that for the lane-
following trajectory planner, and applies the
targeted speed to the parameterized trajec-
tory template in generating the waypoints.

• Rule-based trajectory planners utilize a set
of simple driving and steering heuristic rules
(Hwang, Meirans, & Drotning, 1993) that
mimic the decision process of human drivers
in guiding the vehicle into a certain pre-
scribed position and/or orientation, such as
U-turns or parking. Because the rule-based
trajectory planners are usually invoked for
precision maneuvers, we configured the tar-
geted speed to a low value (e.g., 3 mph) for
maximum maneuverability.

• Open-space trajectory planner provides gen-
eral trajectory generation and obstacle avoid-
ance in a prescribed open space where obsta-
cles may be present. We adopted a two-level
hierarchical trajectory planning approach in
which a lattice/A*-based, high-level plan-
ner (Cormen et al., 1990) provides a coarse
set of guiding waypoints to guide the tra-
jectory generation of the low-level real-time
path planner (RTPP), which is based on a
greedy, breadth-first search algorithm aug-
mented with a set of heuristic rules. Similar to
that for the rule-based trajectory planner, we
configure the target speed of the open-space
trajectory planner to a low value (e.g., 5 mph)
for maximum maneuverability.

6. FIELD PERFORMANCE AND ANALYSIS

In this section, we discuss TerraMax’s performance
during testing and participation in the Urban Chal-
lenge and related events.

6.1. Basic and Advanced Behaviors

TerraMax successfully demonstrated all the basic
and advanced behavior requirements set forth by
DARPA. In the following, we comment on our ex-
perience in implementing some key autonomous
behaviors.

Passing: Initially, the trajectory generation of the
passing behavior was handled by a template-based
passing trajectory planner, which guided the vehicle
to an adjacent lane for passing the detected obsta-
cle in its current lane and returned the vehicle back
to its original lane after passing. We added a swerve
planner to negotiate small obstacles (instead of pass-
ing them). This modification resulted in smooth and
robust passing performance.

U-turn and parking: Through testing, we found
that a rule-based approach outperformed a template-
based approach for U-turns and parking. Therefore
we employed a rule-based parking maneuver, which
performed flawlessly in the NQE and UCFE.

Merge and left turn: We adopted a simple ap-
proach to inspect traffic in the lanes of interest and
determine whether there is a safe gap for executing
merge or left-turn behaviors. We employ a simple ve-
hicle kinematic model (Pin & Vasseur, 1990) to pre-
dict the possible spatial extent that a moving vehicle
in the lane may occupy in the near future (e.g., in the
next 10 s) and apply an efficient geometry-based al-
gorithm to check whether the spatial extent intersects
with TerraMax’s intended path. To reduce false (both
positive and negative) detections of traffic in a lane,
we further fine-tuned LIDAR sensitivity, employed
a multisample voting scheme to determine whether
a vehicle is present based on multiple updates of
the obstacles reported by the LIDAR, and verified
our modifications through an extended series of con-
trolled live-traffic tests. The enhancements resulted in
near-perfect merging and left-turn behaviors.

6.2. Performance at the NQE

TerraMax participated in multiple runs in Test Ar-
eas A, B, and C during the NQEs. During these
runs, TerraMax successfully completed all the key
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autonomous maneuvers as prescribed in each Test
Area. Specifically, in Test Area A, TerraMax demon-
strated merging into live traffic and left-turn maneu-
vers; in Test Area B, TerraMax completed leaving the
start chute, traffic circle, zone navigation and driving,
parking, passing, and congested road segment ma-
neuvers; in Test Area C, TerraMax demonstrated in-
tersection precedence, queuing, roadblock detection,
U-turn, and replanning behaviors.

In Table II, we summarize the performance issues
we experienced during the early runs in the NQE and
our actions in resolving/mitigating these issues for
the subsequent runs in the NQE and the UCFE. We
next discuss each of the performance items in detail.

Obstacles protruding from the edge of a narrow road
could interfere with safety spacing constraints and cause
path deviation: During our first run of Test Area A,
TerraMax did not stay in the travel lane but drove on
the centerline of the road segment. The K-rails on the

Table II. Performance issues and resolutions in NQE.

Impact on
Performance issue Cause performance Mitigating action(s) Lessons learned

Minor obstacles
(K-rails) causing
planned path
deviation

Safety parameter
setting

Vehicle rode
centerline

Reduce clearance to
obstacle

Widen path by moving
K-rails

Narrow roads are harder
to navigate for a large
truck

Path updates
incorrectly
processed

False positives for
road edges

Vehicle got stuck
in driveway

Corrected path updates
and readjusted path
determination method

Road edge detection and
processing can be
complex and unreliable

Parking twice in
the same spot

Dust clouds behind
vehicle perceived
as obstacles

Total time taken
increased

None required Temporary dust clouds
need to be treated
differently from other
obstacles; high-level
obstacle fusion desirable

Traveling too close
to parked cars

Real-time path
planner not
activated in time

Brushing a parked
car

Modified trajectory
planning transition logic

Navigating congested
narrow road segments
needs sophisticated
supervisory logic

Entering
intersection
prematurely

Timer bug Incorrect
precedence at
intersection

Fixed timer bug Simple bugs could cause
large-scale performance
impact

Incorrect tracking
at intersections

Vehicle hidden
by another

Incorrect
precedence at
intersection

Implemented obstacle
caching; better sensor
fusion and tracking

Simple sensor processing
is inadequate in complex
settings

Queuing too
close/erratic
behaviors

LIDAR
malfunction

Nearly ran into the
vehicle in front

Fixed bug in sensor health
monitoring

Critical system services
have to be constantly
monitored

road closely hugged the lane boundary, appearing to
be inside the lane. This prompted obstacle avoidance,
and due to our earlier safety-driven decision to never
approach an obstacle closer than 0.5 m, the AVM
decided to cross the centerline to pass.

Unreliable path/lane updates could cause incorrect
travel lane determination: During the first run of Test
Area B, TerraMax pulled into a driveway of a house
and, after a series of maneuvers, successfully pulled
out of that driveway but led itself right into the drive-
way next door, where it stalled and had to be man-
ually repositioned. This time-consuming excursion
was primarily triggered by an incorrect path update
and subsequent incorrect travel lane selection. We
resolved the faulty path update and readjusted
the relative importance of the different information
sources used to determine the travel lane.

Dust clouds and other false-positive “transient” ob-
stacles could result in unexpected behaviors: Unexpected
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behaviors observed in dirt lots of Test Area B can
be attributed to dust clouds having been sensed as
obstacles. These behaviors included parking twice
in both runs, a momentary stop, and “wandering
around” in the dirt lot. On all of these occasions, the
system recovered well and did not result in failures
other than the superfluous excursions.

More sophisticated free-space trajectory planners
(other than simple template-based ones) are needed to
negotiate highly congested areas: While navigating
a segment where many obstacles were set up on
a curvy road during the first run of Test Area B,
TerraMax slowly knocked down several traffic cones
and brushed a parked vehicle with the left corner of
its front bumper. Our postrun study revealed that the
RTPP was triggered much less often than desired. To
prevent TerraMax from hitting obstacles, especially
in the congested road segments as we experienced,
we revised AVM’s transition logic and processes
between normal driving modes and RTPP. With
the revisions, the supervisor invoked RTPP in more
situations.

Persistent vehicle tracking needed for complex situa-
tions at intersections: During the second run of Test
Area C, TerraMax entered the intersection prema-
turely on one occasion. This was due to the lack of
proper tracking of the obstacles/vehicles in our over-
all system. When the first vehicle entered the intersec-
tion, it momentarily occluded the second vehicle. The
AVM could not recognize that the newly observed
obstacle was in fact the vehicle that was there before.
We mitigated this problem by refining the obstacle
caching and comparison mechanism.

Proper response should be designed to prepare for sub-
system malfunction: In the second run of Test Area C,
TerraMax started to behave erratically after one-third
of the mission was completed. It drove very close to
the obstacles (and K-rails) at the right side of the lane,
and it almost hit a vehicle that queued in front of
it at the intersection. In analysis, we discovered that
the front-right LIDAR had malfunctioned and did
not provide any obstacle information. This, combined
with the fact that the stereo obstacle detection had not
been enabled meant that TerraMax could not detect
obstacles in the front right at close range. Fortunately,
there was some overlap coverage from the front-left
LIDAR, which was functioning correctly. This over-
lap coverage from the front-left LIDAR picked up the
vehicle queued in front of TerraMax at the intersec-
tion so that the supervisor stopped TerraMax just in
time to avoid hitting this vehicle. Stereo obstacle de-

tection was not turned on because the team did not
have time to tune the thresholds before the start of
this run.

6.3. Performance at the UCFE

TerraMax completed the first four submissions in
Mission 1 of the UCFE with impressive performance.
However, TerraMax was stopped after a failure in
the parking lot (zone 61). Table III summarizes Terra-
Max’s performance statistics prior to the parking lot
event.

The arrival into the parking lot was normal. No
detected obstacles in the path of TerraMax were de-
tected, and therefore an s-shaped (farmer) turn was
issued that brought TerraMax into alignment with
the target parking space [Figure 12(a)]. TerraMax
continued the parking maneuver successfully and
pulled out of the parking space without error [Figure
12(c)]. TerraMax backed out of the parking space to
the right so that it would face the exit of the zone
when finished exiting the parking spot.

There were two separate problems in the parking
lot. The first problem was that TerraMax stalled in the
parking lot for a very long time (approx. 17 min). The
second problem was that when TerraMax eventually
continued, it no longer responded to commands from
the AVM and eventually had to be stopped.

Table III. Performance statistics for UCFE prior to parking
lot.

Mission 1 (first 4
submissions)

Total time 0:40
Top speed 21 mph
Oncoming vehicles encountered 47
Oncoming autonomous vehicles 7

encountered
Pass Fail

Int. precedence 9 0
Vehicle following 0 0
Stop queue 1 0
Passes 1 0
Road blocks/replan 0 0
Zone 1 0
Park 1 0
Mergea 1 1

aFailed cases indicate that traffic flow was impeded by TerraMax
during merge.
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Figure 12. UCFE parking lot: Successful parking maneuvers.

Stall condition. The RTPP produced paths that
contained duplicate waypoints while driving in a
zone, resulting in a stall. A bug was introduced in
the RTPP during prerace modifications. This bug was
quickly corrected after the UCFE and tested when we
retested at Victorville in December 2007.

Unresponsive vehicle. TerraMax recovered after
stalling for more than 17 min. GPS drift ”moved”
the position of TerraMax to where the RTPP returned
four points (two pairs of duplicate waypoints).
The open-space trajectory planner then commanded
TerraMax to drive at 5 mph in a straight path toward
the parking lot boundary. However, the order of the
commanded duplicate waypoints in the drive com-
mand caused the AVD service to fault at the point
where the vehicle had already accelerated to approx-
imately 1 mph. At this point, TerraMax became un-
responsive to subsequent commands and continued
to drive in a straight line toward a building until an
E-stop pause was issued by DARPA officials.

6.4. Return to Victorville

We were unable to acquire full performance met-
rics during the UCFE due to the premature finish.
Therefore we brought TerraMax back to Victorville on
December 13, 2007, for a full test. Although we were
not able to use the entire UCFE course, we used the
UCFE RNDF and limited the missions to the housing
area and added a parking spot in Zone 65. The MDF
created for these missions used the speed limits from
the MDF for the first mission at the UCFE. TerraMax
ran with the software version used in the UCFE. No
revisions were made. The team ran three missions to-

taling more than 78 miles in 7 h and 41 min, for an
average speed of 10.17 mph. Six test vehicles driven
by team members acted as other traffic. One safety ve-
hicle followed TerraMax with a remote e-stop trans-
mitter at all times during autonomous operation. We
list performance statistics for the three missions in
Table IV.

Table IV. Performance statistics for Victorville test
missions.

Mission 1 Mission 2 Mission 3

Total distance 24.9 miles 19.5 miles 33.8 miles
Total time 2:28 1:55 3:18
Average speed 10.09 mph 10.17 mph 10.24 mph
Oncoming vehicles 42 92 142

encountered in
opposite lane

Intersections 84 108 193
Pass Fail Pass Fail Pass Fail

Int. precedencea 17 3 8 0 20 2
Vehicle following 3 0 1 0 2 0
Stop queue 2 0 1 0 1 0
Passes 5 0 3 0 1 0
Road blocks/replan 0 0 1 0 2 0
Zone 5 0 4 0 7 0
Park 3 0 2 0 2 0
Mergeb 7 1 5 0 10 1
aIn all cases, failed intersection precedence was due to the test ve-

hicle(s) being more than 0.5 m behind the stop line.
bMerge results include left turns across opposing lane and left and
right turns into traffic from a stop with other vehicles present.
Failed cases indicate that traffic flow was impeded by TerraMax
during merge.
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7. CONCLUDING REMARKS

Team Oshkosh entered the DARPA Urban Challenge
with the intention of finishing the event as a top
contender. Despite not completing the final event,
the team believes that TerraMax performed well
and safely up to the point the vehicle was stopped.
TerraMax proved to be a very capable contender and
is arguably the only vehicle platform in the competi-
tion that is relevant for military logistics missions.

Through the development, testing, and official
events, we experimented and demonstrated au-
tonomous truck operations in (controlled) urban
streets of California, Wisconsin, and Michigan under
various climate conditions. In these experiments,
TerraMax exhibited all the autonomous behaviors
prescribed by DARPA Urban Challenge rules, in-
cluding negotiating urban roads, intersections, and
parking lots, interacting with manned and un-
manned traffic while observing traffic rules, with im-
pressive performance. Throughout this endeavor, we
learned valuable experience and lessons, which we
summarize in the following.

Course visualizer/simulator efforts truly paid off.
Learning from our experience in DARPA Grand
Challenge 2005, we invested time and effort up front
to develop a graphic tool with a two-dimensional ca-
pability for visualizing the RNDF and MDF. We later
expanded the functionality of the tool to include mis-
sion data log playback, sensor information display,
built-in debugging capability that displays results of
various autonomous mode status, logic and calcula-
tions in the AVM, and simple simulation of TerraMax
operations.

This tool served as a true “force-multiplier” by
allowing team members in widely dispersed geo-
graphic locations to verify different functionality and
designs, experiment with different ideas and behav-
ioral modes, pretest the software implementation
prior to testing onboard TerraMax, and perform post-
run analysis to resolve issues. The tool not only sped
up our development and testing efforts, but also en-
abled us to quickly identify the causes for issues en-
countered during NQE runs and to promptly develop
solutions to address them.

Simplicity worked well in U-turn and parking. In-
stead of using a full-fledged trajectory planner/
generator for maneuvers such as U-Turn and park-
ing, we opted to search for simple solutions for such
situations. Our experiments with U-turn prior to the
site visit clearly indicated the performance, simplic-
ity, elegance, and agility superiority of a rule-based

approach over a template-based one. The rule-based
approach, which mimics a human driver’s actions
and decision process in performing those maneuvers,
was our main approach for both U-turn and parking
maneuvers and performed flawlessly in all our site
visit, NQE, and UCFE runs.

Better persistent object tracking capability is needed.
In the original design, object tracking was to be
performed at a high level. However, due to time
constraints, the object tracking responsibility was
delegated to the processing modules of the individ-
ual sensor elements. As demonstrated in our first
two runs of Test Area C, a persistent object tracking
capability is required to handle situations in which
objects may be temporarily obstructed from observa-
tions. However, this persistent object tracking mech-
anism should focus only on the objects of both rele-
vance and importance for efficiency and practicality.
Though we implemented a less-capable alternative to
maintain persistent tracking of vehicles at the inter-
section that yielded satisfactory results, a systematic
approach to address this shortfall is needed.

Our sensor technology proved capable, but additional
work is required to meet all the challenges. The use of
passive sensors is one of the primary goals of our
vehicle design. LIDAR sensors produce highly ac-
curate range measurements; however, vision allows
cost-effective sensing of the environment without the
use of active signals (Bertozzi, Broggi, & Fascioli,
2006; Bertozzi et. al., 2002; Broggi, Bertozzi, Fascioli,
& Conte, 1999) and contains no moving parts, which
are less desirable in operational environments. The
calibration of vision systems needed special care be-
cause many of them were based on stereo technol-
ogy whose large baseline precluded attachment of the
two cameras to the same rig. Nevertheless, the cali-
bration of many of them turned out to be absolutely
robust, and there was no need to repeat the calibra-
tion procedure in Victorville after it was performed a
few months before. The calibration of the trinocular
system, which is installed into the cabin, survived a
few months of test and many miles of autonomous
driving. The front stereo system was uninstalled for
maintenance purposes a few times and a recalibra-
tion was necessary, including in Victorville. The back
stereo system did not need any recalibration, whereas
the lateral and the rearview system, being monocu-
lar, relied on only a weak calibration, which was just
checked before the race. This is a clear step forward
in usability and durability of vision systems for real-
world unmanned systems applications.
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Performing low-level fusion between vision and
LIDAR data has brought considerable improvements
in distance measurement for the vision systems, es-
pecially at greater distances. Robustness and persis-
tence of results are additional improvements realized
by means of this technique. Despite these improve-
ments, LIDAR was used as the primary sensor for
obstacle detection and vision the primary sensor for
road boundary detection during the Final Event.

Lane detection provided consistent data and was
able to localize most of the lane markings. Some prob-
lems were encountered when lane markings were too
worn out and in situations in which the red curb
was misinterpreted as a yellow line. The specific al-
gorithm used to identify yellow markings was not
tested in correspondence to red curbs, which showed
the same invariant features that were selected for yel-
low lines.

Improved road boundary interpretation is needed. Al-
though the sensor system detected lanes and curbs in
most situations, problems were encountered in situa-
tions in which sensed data differed significantly from
the expected road model obtained by interpreting the
RNDF data. As a result TerraMax would cross the
centerline, cut corners, or drive off the road in order
to reach the next RNDF waypoint.

Test for perfection. The team had tested TerraMax
extensively in a variety of environments and sce-
narios; the NQE and UCFE differed from our test-
ing situations sufficiently, however, so that we were
required to make last-minute revisions to the sys-
tem that were not extensively tested. Unfortunately,
these last-minute revisions for the NQE adversely im-
pacted performance in the UCFE.

The DARPA Urban Challenge, as all DARPA
Grand Challenges, has proven to be an excellent
framework for the development of unmanned vehi-
cles for Team Oshkosh. We have experimented and
developed many elegant solutions for practical mili-
tary large-footprint autonomous ground vehicle op-
erations in urban environments. The system devel-
oped by Team Oshkosh for the Urban Challenge has
been shown to be robust and extensible, an excellent
base to which additional capabilities can be added
due to the modular architecture.

REFERENCES

Arkin, R. C., (1998). Behavior-based robotics. Cambridge,
MA: MIT Press.

Bertozzi, M., Bombini, L., Broggi, A., Cerri, P., Grisleri, P.,
& Zani, P. (2008). GOLD: A complete framework for

developing artificial vision applications for intelligent
vehicles. IEEE Intelligent Systems, 23(1), 69–71.

Bertozzi, M., & Broggi, A. (1998). GOLD: A parallel real-
time stereo vision system for generic obstacle and lane
detection. IEEE Transactions on Image Processing, 1(7),
62–81.

Bertozzi, M., Broggi, A., Cellario, M., Fascioli, A.,
Lombardi, P., & Porta, M. (2002). Artificial vision in
road vehicles. Proceedings of the IEEE—Special issue
on Technology and Tools for Visual Perception, 90(7),
1258–1271.

Bertozzi, M., Broggi, A., & Fascioli, A. (2006). VisLab and
the evolution of vision-based UGVs. IEEE Computer,
39(12), 31–38.

Bertozzi, M., Broggi, A., Medici, P., Porta, P. P., & Sjögren,
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