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BACKGROUND: The movement of animals 

makes them fascinating but difficult study sub

jects. Animal movements underpin many biol

ogical phenomena, and understanding them is 

critical for applications in conservation, health, 
and food. Traditional approaches t o animal 

tracking used field biologists wielding anten

nas to record a few dozen locations per ani· 
mal, revealing only the most general patterns 

of animal space use. The advent of satellite 
t racking automated this process, but initially 

was limited to larger animals and increased 
the resolution of trajectories to only a few hun

dred locations per animal The last few years 

have shown exponential improvement in track
ing technology, leading to smaller tracking d~ 
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vices that can return millions of movement 

steps for ever-smaller animals. Finally, we have 

a tool that returns high-resolution data that 

reveal the detailed facets of animal movement 
and its many implications for biodiversity, an

imal ecology, behavior, and ecosystem function. 

ADVANCES: Improved t echnology ba<J brought 

animal tracking into the realm of big data, not 
only through high-resolution movement tra

jectories, but also through the addition of oth

er on-animal sensors and the integration of 

remote sensing data about the environment 

through which these animals are moving. These 

new data are opening up a breadth of new 

scientific questions about ecology, evolution, 
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Big-data animal tracking. The red trajectory shows how studies can now track animals with 

unprecedented detail. allowing researchers to predict the causes and consequences of movements. 

and animals to become environmental sensors. Multisensor tracking tags monitor movement, 

behavior. physiology, and environmental context. Geo- and biosciences merge now using a 

multitude of remote-sensing data. Understanding how social and interspecific interactions affect 

movement is the next big frontier. 
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and physiology and enable the use of animals 

as sensors of the environment High temporal 

:resolution movement data also can document 

brief but important contacts between animals, 
creating new opportunities to study social net

worl<s, as wen as interspecific interactions such 

as competition and predation. With solar panels 

keeping bltteries cbarged, 

''lifetime'' t:rad<s can now be 

oolB:ted fur some species, 
while broader approaches 

are aiming fur species-wide 

sampling across multiple 

populations. Miniaturized 

tags also help reduce the impact of the devices 

on the study subjects, improving animal wel

fure and scientific results. As in other disci!iines, 
the explosion of data volume and variety has 

created new challenges and opportunities for 

·information management, integration, and 
analysis. In an exciting interdisciplinary push, 
biologists, statisticians, and oomputer scien

tists have begun to develop new tools that are 

already leading t o new insights and scientific 

breakthroughs. 

OUTLOOK: We suggest that a golden age of 

animal tracking science bas begun and that 

the upcoming years will be a time of unpr~ 

cedented exciting disooveries. Technology oon

tinues to improve our ability to track animals, 
with the promise of smaller tags collecting 

-more data, less invasively, on a greater variety 

of animals. The big-data tracking studies that 
are just now being pioneered will become 

oommonplace. If analytical developments can 

keep pace, the field will be able to develop real

time predictive models that int egrate habitat 

preferences, movement abilities, sensory capac

ities, and animal memories into movement 
forecasts. The unique perspective offered by 

big-data animal tracking enables a new view 

of animals as naturally evolved sensors of en

vironment, which we think has the potential 
to help us monitor the planet in oompletely 

.new ways. A massive multi-individual moni
toring program would allow a quorum sensing 

of our planet, using a variety of species to tap 

into the diversity of senses that have evolved 

across animal groups, providing new insight 

on our world through the sixth sense of the 
global animal collective. We expect that the 

.field will soon reach a transformational point 

where these studies do more than inform us 
about particular species of animals, but allow 

the animals to teach us about the world. • 
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Moving animals connect our world, spreading pollen, seeds, nutrients, and parasites as 
they go about the their daily lives. Recent integration of high-resolution Global Positioning 
System and other sensors into miniaturized tracking tags has dramatically improved our 
ability to describe animal movement. This has created opportunities and challenges that 
parallel big data transformations in other fields and has rapidly advanced animal ecology 
and physiology. New analytical approaches, combined with remotely sensed or modeled 
environmental information, have opened up a host of new questions on the causes of 
movement and its consequences for individuals, populations, and ecosystems. 
Simultaneous tracking of multiple animals is leading to new insights on species 
interactions and, scaled up, may enable distributed monitoring of both animals and our 
changing environment. 

M 
ovement is a defining characteristic of 

animals. Animals move to find critical 
resources such as food and mates and 
to avoid risk factors such as predators, 
and their movements are shaped by both 

evolutionary and erological processes (1). Move 
ment rates and patterns determine abundance 
and diversity at a given point in time and space, 

as animals enter and leave a location with speeds 

that range from as slow as a slug to as fast as a 
peregrine fulcon. Moving animals disperse pol 
len, seeds, and diseases, and determine the spa 
tiotemporal distribution of herbivory, predation, 
and many other vital ecological processes, which 
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are valued at many hundreds ofbillions of dollars 
per year (2). Animal movement thus provides 
essential insights into patterns of biodiversity, 

ecological characteristics of individual species, 
and ecosystem function. 

Despite its long history, the study of animal 
movement has generally fallen toward the mar 
gins of ecological research because the data gath 

ered from wild individuals were too sparse to 
accurately describe these phenomena. Recent 
generations of tracking devices have removed 
these constraints, and it is now possible to record 
the movements of animals nearly continuously 
through the use of monitors equipped with Global 
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Positioning System (GPS) devices (generally 
·referred to as "tags"). This increased temporal 
resolution has Jed to important insights about 
how and why animals move and offers great 
potential for future discoveries. The addition of 
secondary sensors to tags complements the move 
ment data with accelerometry, physiological, or 
environmental information, providing an inte 
grated view of the animal and its environment. 

New technology has brought the study of an 
imal movement into the realm of big data (3), 

and exponential increases in data volumes are 
expected to continue in the coming decade. For 
example, a recent 1 month study of the individ 

uals in a baboon troop collected 20 million GPS 
locations (atl Hz) and -700 million accelerometzy 
.records (4). In some ways, increased temporal 

resolution of movement patterns is analogous to 
the genetic insight provided by DNA sequencers: 

:Animal steps are our base pairs, movement seg 
ments are our genes, and combined tracks over 
an animal's lifetime are analogous to a full ge 
nome (1). Data describing the entire lifetime of 
movement by individual animals, and species 
wide sampling from multiple populations, are 
now becoming available (Fig. 1). As in the case of 

genetics, this avalandle of new data provides 
the raw material for new insight, but challenges 
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Fig. 1. Lifetime t racks. "Life· tracks" are made possible by solar-powered 
GPS tags with long life spans, or animals that can be located in real t ime 
and recaptured. These maps show detailed tracking data for one individual 
over its life. "Princess" the white stork (A) (Ciconia ciconia) was tagged 
with a GPS tracking device as a 3-year·old, nonreproductive juvenile in 
Germany in 1994 and was tracked until her death in 2006 (B). Four gener· 
ations of Argos satellite tags were used to track her, and she had to be 
recaptured and retagged multiple times. Batteries on today's solar-

powered tags last much longer. More recent tracking efforts now docu
ment the migra tory behavior of 11 different populations of storks across 
their range (C). discovering, e.g .. unexpected stationary populations in 
Uzbekistan and new migratory behaviors in Tunisian storks. which cross 
the Sahara multiple t imes per year. Because the GPS data collected by 

these tags can be accessed anywhere in the world. researchers can also 
document the cause of death for all juvenile storks. as long as they stay in 
the range of cell phone networks. [Data from (114)] 
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of data management and analysis must first be 

overoome. 

The future of animal tracking will see smaller 

tags collecting more data, Jess invasively, on a 

greater variety of animals. In addition to GPS 

tags, these could include a series of intercon 

ne<ted sensors to understand internal physiolog 

ical state and decision making (5), similar to the 

body area sensor networks currently being pio 

neered in human subjects (6). Finally, we expect 

select cases of massive multi animal tracking to 

reveal the details of interactions among and 

within species and also offer distributed moni 

toring of our changing environment. 

Tracking technology: Advances in 

GPS and sensor technology 

Although scientists have been using electronic 

tags to track animal movement since the 1960s 

(7), data from these early studies were sparse 

because of the manual labor needed to find and 

recortl animal locations. The first automated track 
ing tags worked with the Argos satellite network 

but were expensive and relatively inaccurate (8). 

Since the U.S. Department of Defense stopped its 

policy of degrading the accuracy of civilian GPS 

receivers in 2000, however, the field of animal 

tradting has exploded. Large scale consumer 

electronics demand has driven the development 

of smaller batteries and cheaper, more energy 

efficient microprocessors, allowing GPS tracking 

to be an option for most medium or large sized 

vertebrates (Fig. 2). In the last few years, tracking 

technology has passed important thresholds in 

both size and temporal resolution of data collec 

tion (Fig. 3) and is revolutionizing our under 

standing of animal eoology. 

Locating animals remains the primazy objec 

tive of most animal tracking studies, although 

tradting tags now typically incorporate a variety 

of other sensors to help monitor the animal and 

its environment. Three axis accelerometers buih 

into tag; can be used to continuously describe be 
havior and energy use over an animal's entire 

lifetime (9) by measuring fine scale body move 

ments. Implanted electronics can record heart 

rate, electroencephalographic (EEG) activity, inter 

nal temperature, and other physiological param 

eters (10, 11). Animal mounted cameras are also 
now small enough to be useful on terrestrial mam 

mals and birds, adding new perspettive and in 

sight to the motivations of animal movement (12). 

Data in real time 

Real time acquisition of data on the movement 

and behavior of tagged animals is fundamentally 

changing the ways that scientists, managers, and 

conservation groups use animal tracking infor 

mation. Recovering data from animal borne sen 

sors has been one of the enduring challenges of 

bio Jogging: Until recently, study animals had to 

be recaptured to access the data stored in their 

tag's onboard memory. This led to high rates of 

data Joss; for example, 11% of store on board 

GPS tags used in one set of mammal tracking 

studies were never recovered (13), and this sta 

tistic is presumably worse for migratory birds. 
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Fig . 2. Tagging animals with technology. Diverse species require diverse tracking technology and at

tachment methods. including harnesses. collars. and EEG monitors: (A) common cuckoo (QJculus canorus). 

(B) northern tamandua (Tamandua mexicana). (C) fisher (Pekania pennant/). (D) great egret (Ardea alba). 

(E) three· toed sloth (Bradypus variegatus) with a collar and EEG monitor (F), lion (Panthera leo). (G) olive 

baboon (Papio anubis). (H) plains zebra (Equus quagga), and ( I) Lyle's flying fox (Pteropus lyfet). 



Furthermore, data Jogging technology also meant 

that GPS tracking studies have necessarily been 

retrospective. 

By taking advantage of existing satellite or cell 

phone communication networks for remote data 

download, the current generation of tracking tags 

allow users to move beyond post hoc analyses of 

where animals moved and to respond immedi 

ately and interactively to changes in their behav 

ior. This is akin to the value of historic weather 

records versus real time weather radar data to 

mountaineers, pilots, or farmen;. Wildlife man 

agers, for example, are using GPS tags that send 

SMS alerts when tagged elephants cross into pre 

defined areas to reduce human wildlife conflict 

These "virtual fences" warn people via text mes 

sage when specific problem animals are nearby 

and can help managers and landowners reduce 

crop raids (14). Geofencing also allows automated 

changes directly to a tag's GPS data collection 

protocols to adjust sampling frequency at places 

or times of particular int erest, such as initiation 
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of dispersal or migration. Furthermore, live data 

allow field biologists to immediately backtrack 

an animal's path and collect additional data, in 

dueling locating predator kill sites or following 

snow tracks to identify highway underpass use 

(15). Live data from tagged animals can also pro 

vide a powerful tool to engage public interest, 

involve citizen scientists, and obtain additional 

data from the field (e.g., Animal Tracker and Glob 

a! Shark Tracker sn1artphone applications). 

Shrinking tag size 

One of the most important factors affecting the 

increasing utility of tracking tags in ecology has 

been their miniaturization, whim has markedly 

expanded the range of species studied. Smaller 

tags can be used on a greater variety of species 

because biologists usuaJJy aim to have tags <5% 

of the body weight of the animal to minimize 

their effects on anin1al behavior and survival (16). 

GPS tags with remote data readout have dropped 

from 250 to 20 g in about a decade (1 g Jogging 
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Fig. 3. Smaller and better tags . Rapid technological development has led to not only a decrease in the 

size of tags over time (A) but also a dramatic increase in the amount of data returned from each tagged 

animal (B). VHF tags are conventional ''radio-tracking'' technology where each animal location is typically 

collected manually via triangulation. although this process can be automated with base stations (115). 

Argos tags use Doppler shift to locate animals via satellite. which is less accurate than GPS but can 

presently be done with smaller tags. Data on tag size come from published studies. tag manufacturers 

websites, and our own data, whereas locations per animals come from 69 studies of birds and mammals 

(table Sl) conducted or collaborated on by the authors . The continued decrease in tag size is essential for 

tracking the majority of small-mammal (C) and bird (D) species. Histograms show the body-mass 

distributions for all known birds and mammals [based on (7)], illustrating the proportion of species that 

can be tracked with GPS accuracy and g lobal data readout with today's technology (15g) (green bars). 

tags are also now available). At the same time, 

the temporal resolution of these tags has increased 

by approximately one order of magnitude every 

5 years (Fig. 3). However, about 7Cf'lo of bird spe 

cies and 65% of mammal species still cannot be 

:tracked while on the move (as opposed to being 

recaptured to retrieve data Joggers), including 

hundreds of small migratory birds and bats of 

great conservation concern and ecological im 

portance (8). Thus, the continued miniaturiza 

tion of technology remains a priority for the 

field, both t o increase the number of small spe 

cies that can be safely tracked and to reduce the 

impact of tags on all species. 

Most modern telemetry devices use the same 

. electronic compooents as the mass consumer mar 

ketand thus have benefited from industry research 
aimed at decreasing size, increasing computing 

power, and improving battery technology (8). Re 

search focused on consumer electronics is sup 

plemented by groups developing technology 

specifically for animal tracking. For example, 

the ICARUS initiative is working to mount a new 

·animal tracking antenna on the International 

'Space Station that would allow smaller tags to 

send data back through the low orbit satellite 

(17), and the Sensor Gnome Network is currently 

managing -1600 very high frequency (VHF) track 

ing tags on one standard frequency, reporting 

.the detection of tags at hundreds of locations 

across North America (18). 

Ethics and practicalities of 
tagging animals 

Since the first animal was fitted with an electro 

nic tag, the scientific community has been en 

gaged in an important discussion about ethical 

standards for this type of research (19). There is 

,an inherent risk to each study aninlal whenever 

a tracking tag is attached, be it as a collar, har 

ness, or implant. Reducing the negative impacts 

of these tags is a priority not only for ethical rea 

·sons, but also to ensure that the data collected 

.accurately reflect the behavior of the species be 

ing studied. Extensive research has shown that 

the effects of tags on animals are generaJiy unde 

,tectable, or low, although there are also examples 

of severe impacts of particular tag types on par 

ticular species (16). Animal tracking research is 

typically regulated by institutional committees 

(i.e., Institutional Animal Care and Use Commit 

tee in the United States) to maintain high stan 

dards of aninlal care, which help drive constant 

methodological refinements to reduce the risks to 

aninlaJ subjects. The continued miniaturi:zation of 

tracking tags supports this goal, as adding weight 

to aninlals is of primary ooncern. However, con 

tinued refinement of attachment methods is also 
a priority (20). 

The ethics of animal tracking is a cost/benefit 

analysis, and scientists need to consider how they 

can offset the inherent costs of capture and tag 

ging by extending the benefits of their study. This 

includes designing studies that maximize the 

long term utility of data and addressing issues 

of important global concern that help confront 

the conservation challenges these same animals 
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currently face. Finally, tracking data should be 

made easily available to policy makers, oonserva 

tion organizations, and other scientists via online 

data repo&tories such as MoviDank, EuroDee!; or 

WRAM (21 23). These archives for animal move 

mentdatacangreatlyincreasethescienti:ficretum 

on investment and promote animal welfare by 

reducing the need for new data collection. 

Detailed data, diverse questions 

Early ecology papers using VHF tracking cypi 

cally addressed questions of animal home range 

size and habitat preference (24). High resolution 

location data and sensor streams allow scientists 

to oonsider the ultimate behavioral and ecolog 

ical mechanisms that underlie these movements, 

as well as the pro.ldma.te internal and external 

factors that direct them (Fig. 4). There has also 

been a new push to identify the consequences of 

movement decisions, not only for individual ani 
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ma1s, but also for the populations they connect 

and the ecogystems they move through. 

Describing movement and its causes 

As the spatial accuracy and temporal resolution 

of tracking data increase, we can obtain a more 

process relevant picture of animal movement. 

These fine grain data have opened up new re 

search questions and also forced the develop 

ment of new metrics and models to describe 

phenomena and test hypotheses. The advance of 

"big tracking data" has Jed to the ultimate vision 

of highly predictive models of animal movement 

Such models are dearly needed by conservation 

managers working on habitat restoration pro 

grams, global change biologists, and intergovem 

mental agencies trying to predict the movements 

of problem animals such as desert locusts or 

queleas (25) or diseased animals such as ducks 

carrying avian influema (26). 

B I Life history 
Migrating bird mortality 

Mortalit ies 

El Conservation behavior 

The large, continuous data streams from mod 

ern GPS tracking tags have revolutionized the 

study of animal space use, not only through the 

sheer size of data sets (3) but also by revealing an 

entirely new source of biological information 

.about animal behavior that comes from connect 

ing sequential movement steps. Repeat locations 

along a movement trajectory are inherently non 

independent; traditional analytical approaches 

attempted to factor out this interdependence be 

fore describing an animal's space use (27). Modern 

approaches leverage new biological understand 

ing from this autocorrelation by integrating space 

and time to test hypotheses about animal move 

ment (2Ef). Other approaches use high resolution 

movement and aocelerometer information to char 

aderize behaviom, providing deeper inSght and pre 

dictions into why animals visit different areas (15). 

Deducing habitat preferences remains a prior 

ity for many tracking studies. Step selection 

C I Ecosystem services 
Hornbill seed dispe rsal 

Fl Ecophysiology ~ 
Cougar hunting J'r"n\.._ 

IlL 
Prey mass 

Pounce on deer 
Energy cost = 65 

Fig. 4. Disc011eries from tracking data. High-resolution animal tracking is 

leading to important discoveries in a variety of fields. (A) Studies of leadership 

in flocking pigeons documented a consistent hierarchy in following behavior, as 

representing by the gray lines (100). (B) Determining where migratory birds 

died showed that mortality rate was six t imes higher during migration than 

during the breeding or wintering grounds and that most of the 15 deaths (green 

lines) occurred in the Sahara desert (46). (C) Tracks of large hombills in South 

Africa (red lines) showed that they move between scattered fragments of 

natural vegetation (green patches). moving seeds with them. and highlight 

the importance of networks of smaller forests acting as stepping stones to 

connect far-flung larger forests (116). (D) Simultaneous tracks of competing 

monkey groups a llowed researchers to document the winners and losers of 

territorial contests and discover a substantial home-field advantage that 

allows smaller groups to fend off more numerous competing groups closer to 

the center of their range (93). (E) Fishers (red lines) moving through sub

urban Albany. New York. were found to repeatedly use movement corridors to 

connect smaller forest fragments (green area) into home ranges that were 

large enough to sustain their hunting needs (15). (F) Accelerometers com

bined with GPS tags allowed ecophysiologists to quantify the energy expended 

(arrows show direction of travel. and colored lines the animal's energy ex

penditure) by cougars attacking prey and show the cost of targeting large 

prey (inset graph) (80). 
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functions offer an improvement over traditional

compositional analyses by contrasting used against

available habitat at each movement step, rather

than across an animal’s range (29). Further de

velopment of these methods to integrate over

multiple time scales would allow the evaluation

of the importance of animal memory in move

ment decisions (30, 31) and set the stage for ma

jor breakthroughs in our understanding of the

connections between animal cognition and ecol

ogy. Furthermore, the integration of step selection

functions with process based, mechanistic move

ment models promises to link the social and en

vironmental context of animalmovement decisions

to resulting patterns of space use and provide a

framework for predicting changes in animal space

use following perturbations (32).

Another notable advantage of GPS tags with

global communication functionality is their abil

ity to track dispersal or exploratory movements

of study animals beyond their typical home ranges,

information that traditional VHF tracking is usually

unable to provide. Continuous, automated track

ing can detect extraterritorial prospecting move

ments in which individuals gather information

before making decisions about mating, resource

use, or long distance movements (33). Continu

ous tracking also enables the precise description

and study of juvenile dispersal, addressing ques

tions of how young animals make decisions as

they move through an environment that is com

pletely foreign, and often hostile. Examples of

amazing journeys of young animals that would

have otherwise remained undocumented include

awolf that navigated through human dominated

landscapes from Italy to France (32) and a leop

ard that traversed three countries in southern

Africa (34), demonstrating metapopulation link

ages over large scales. If such megadispersals are

regular features of a population or species, they

can lead to evolutionary diversification, such as

in Buteo hawks (35). Dispersing animals appear

to have different habitat preferences than adults,

although few studies have tracked enough dis

persers to quantify this. Young elk disperse through

higher quality habitat than found in typical adult

home ranges (36), while dispersing African lions

used completely different, andmuch riskier, hab

itats than adults (37). These differences are crit

ical formodels attempting to identify and protect

dispersal corridors between populations and

should be a priority area for discovery in future

GPS tracking studies. Additionally, this line of re

search could empirically derive the movement

metrics needed to evaluate if species will be able

to discover and disperse into newly suitable hab

itats that are rapidly changing with climate (38).

Large scale migration studies are nearly im

possible with VHF tags. Early pioneers collected

data through a series of cross country car chases

behind tagged birds (39) or by flying slowly be

hind them in light aircraft (40). Early satellite

tracking provided global coverage for the migra

tion of larger species, but with low accuracy

(T500mup to T1000 km) fixes recorded only once

every few days. Modern GPS tags with solar pan

els on migrating birds send location estimates

recorded every second streaming live through

the phone network (8). Maps of migratory fly

ways can now plot exact routes across continents

and identify critical stopover points (41) (Fig. 1).

Scientists are learning how birds make these

amazing flights by integrating data from other

sensors, including accelerometers, magnetometers,

gyroscopes, pressure and temperature sensors,

and even pitot tubes to measure air speed. We

can now document birds’ flight behavior as if

they were airplanes carrying advanced aerospace

technology. The results allow for mathematical

descriptions of heretofore elusive behaviors such

as the dynamic soaring of albatrosses (42).

One ultimate goal of the effort to describe an

imalmovement and its causes is to createmodels

that can predict movements from the internal

and external conditions an animal faces. Build

ing from the movement ecology framework (1),

this approach would integrate not only the hab

itat preferences that have been the focus of most

past research, but also parameters reflecting a

species’movement abilities, sensory capacities,

and memory. Finally, the importance of inter

actions among animals will need to be addressed,

including the intra and interspecific relation

ships that tracking studies are just starting to

explore. These integrative models will facilitate

the testing of mechanistic hypotheses for animal

movement and predict how they will respond to

our rapidly changing environment.

Consequences of movement for

individuals, populations, and ecosystems

Although most traditional movement research

has focused on describing patterns and deducing

their causes, a new generation of questions are

emerging to evaluate the consequences of move

ment across spatial scales.

Each animal’smovements have immediate con

sequences for its own life and death, making

movement a behavioral adaptation subject to

evolutionary selection. Few tracking studies

simultaneously monitor reproductive fitness and

space use; instead, they typically presume that

animals’ habitat preferences reflect fitness values

(43). This assumptionmay be problematic, as one

study that did monitor both reproductive output

and movement patterns found that the most in

tensely used habitats were not the best from the

perspective of individual fitness, but lower quality

areas that provided a refuge for nonreproductive

animals (44). Tracking studies have a long his

tory of identifying factors related to animal sur

vival and are the primaryway to identify the time,

location, and cause of death. A reviewofmortality

in large andmedium sizedNorthAmericanmam

mals, including over 2000 animals tracked until

their death, highlighted the importance of humans

(i.e., hunters and cars), which accounted for 52%

of mortalities, compared to 35% that fell prey to

natural predators (45). Satellite technology al

lows us to monitor mortality of long distance

migrants, which has recently been shown to be

much higher during migration (46). The cumu

lative effects of selective survival was noted by

Sergio et al. (47), who showed a slow but steady

improvement inmigration performance with age,

through a combination of differential survival

and individual improvements.

When amplified across entire populations, ani

malmovements determine the effect species have

on ecosystems, because they determine the spa

tial distribution of ecological forces like herbiv

ory and predation or because movement itself

provides biotic connectivity and associated eco

system services. Studies of large carnivores offer

the best examples of using GPS tracking to map

the ecological effects of a species and test their

importance. Studies of both temperate and trop

ical systems have shown that prey avoid areas of

high predator activity, especially ambush preda

tors, but that selection of specific habitat features

was more important (48). Moving animals can

also provide ecosystem services by transporting

other organisms, acting as vectors for diseases or

dispersers for plant seeds and pollen. Because

most seeds and pollen are too small to track di

rectly, mechanisticmodels have been used to quan

tify seed dispersal, showing howanimalmovement

drives gene flow for plants (49).

Given that most new global diseases are zoo

notic (i.e., spread through the interaction of wild

life, livestock, and humans), there is extensive

interest in understanding the movement of po

tential disease vectors (50). A detailed, mechanistic

understanding of the spatiotemporal interactions

of wild animals with domestic animals, as well as

among each other, is of high global priority (51).

Similarly, it is essential to recognize that diseased

animals could have altered behavior and move

ment dynamics compared to healthy animals (52).

Finally, the movement of immigrant animals

provides the genetic linkages necessary to main

tain healthy populations, as well as colonizers

necessary for establishing new ones. Howdispers

ing animals move through completely foreign

landscapes is a key question that has generally

been addressed by using tracking to characterize

the overall movement and habitat preferences of

species, which are then used to extrapolate likely

dispersal routes. Although genetic relatedness

amongpopulations generally supports these habitat

based predictions (53), they would bemore robust

if they considered actual trajectories of juvenile

dispersers, which can differ dramatically from

those of adults (36, 37). Integrative studies that

quantify habitat use and track the journeys and

fates of dispersers are the most compelling. One

of the first examples of the metapopulation con

cept, for example, emerged from a tracking study

showing that subpopulations of cougar were sep

arated by expanses of non cougar habitat, but

linked by dispersers (54). GPS tracking has also

documented the expansion of a species’ range

through dispersing animals [cougars (55)], the

impacts of human policies on disperser survival

[wolves (56)], and the importance of immigrants

as genetic rescuers for inbred populations iso

lated by habitat fragmentation (57). We anticipate

a surge of research in the next few years high

lighting the critical role of dispersing animals

for understanding a wide range of ecological

phenomena.
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New opportunities from integration 

with remote sensing 

The increase in detail of animal movement 

brought about by improving GPS technology in 

the last decade has been matched, or even sur 

passed, by the rapid growth in remotely sensed 

or modeled products descnbingthe world through 

which these animals move (Fig. 5). Animal be 

havior and eoology are intricately linked to en 

vironmental conditions that are dynamic in space 

and time. The ability to more directly and rigor 

ously link up predictors and response offers a 

powerful avenue for evaluating environmental 

connections in a hypothesis testing or predictive 

framework (1, 32). However, many tedmical, ana 

lytical, and oonceptual challenges remain for the 

successful merging and simultaneous analysis of 

tradting and environmental data types (58). 

Plotting animals' positions over a map to see 

what factors in the environment may affect their 

locations or movements has always been the first 

step of any animal tracking study. The individual 

specific and continuous nature of high resolution 

GPS animal trajectories, when combined with 

layers describing the environment, provides a 

unique lens for disoovering how specific habitat 

elements or resources are used daily, seasonally, 

sequentially, at different life history stages, and 

for specific behaviors and purposes (59). Using 

largely categorical habitat characterizations, re 

search to date has helped identify critical habitat 

patches (60); study the impacts of fragmentation 

or barriers on movement patterns (61); model 

resource use (62), connectivity or wildlife corri 

dors (15), and critical migratory stop over or over 

wintering sites ( 63); or develop predictive models 

of suitable habitat for animal preservation or 

reintroduction (64). These applications have an 
been made possible by modeled information on 

climatic conditions [e.g., (65)] and through remote 

sensing based data layeiS on topography (SKIM: 

Shuttle Radar Topography Mission) and land 

cover (GlobCover, MODIS: Moderate Resolution 

Imaging Spectroradiometer, Landsat), whim pro 
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725 - 874 

1,881 -2.122 

• 5,800 - >7,000 -

vide behaviorally and ecologically relevant in for 

mation at scales from several kilometers down 

to 30m. 

Compared with spatial habitat information, 

weather has been integrated into fewer studies 

of animal movement. Some examples link local 

movements with information from nearbyweath 

er stations, notably so for single events such as 

migratory onset (66). More recently, new tools 

have allowed the intersections oflonger move 

ment paths with meteorological information, 

providing a continuous characterization of the 

conditions experienced by animals in three 

dimensional space, even as they cross the globe. 

This has allowed us to estimate the energetic 

oosts or physiological constraints on flight, given 

temperature or altitude specific wind conditions 

(67), and identify behavioral strategies such as 

use of thermal or orographic uplift in flight (68). 

As the availability of temporally well resolved 

meteorological layers increases, providing 12 to 

3 hourly information at global extent [although 

still with spatially coarse resolution (69)], we ex 

pect integration of weather data into movement 

models to become standard methodology for de 

termining proximate behavioral cues (69). 

Although challenges for the spatial accuracy of 

GPS based animal locations (typically <10 m) re 

main, especially in closed habitat; these data cap 

ture the distnbution and environmental niche for 

a species with accuracy unrivaled by other data 

types, and are Jess subject to sampling biases 

(70).Ata regional scale, remote sensing products 

such as ASTER (Advanced Spacebome Thermal 

Emission and Reflection Radiometer) and SPar 

(Satellite Pour !'Observation de Ia Terre) have the 

potential to match this resolution with informa 

tion on habitat condition and resources (71), and 

where available, UDAR (Light Detection and 

Ranging) and byperspectral remote sensing data 

(7..!) allow us to extend our information to in 

clude vegetation structure. Other satellite or aerial 

survey data, such as those integrated into Google 

Earth (Q.uickbird, SPOT, WorldView, IKONOS, 

8 

• -10.84 - -8.87 

e -6.17 - -5.58 

-3.08 - -2.38 

• 6.31 - 9.77 

c 

RapidEye), offer additional snapshots of meter 

level habitat details but usually lack the spectral 

resolution needed for detailed habitat character 

izations and tend to be restricted to small spatio 

temporal footprints. A partirularly exciting prospect. 

is the increasingly detailed and complete envi 

·rrnmental annotation of movement paths. MODIS 

sensors have the potential to provide global in 

formation on greenness and other land surface 

attributes down to 8 day or even daily frequency, 

and researchers have begun to successfully use 

•these to relate movement to resource availability 

(73). Remote sensing supported predictions of 

clin1ate conditions in daily and 1 km resolution 

(74) bold the promise to extend such annotations 

to ecologically even more meaningful variables. 

Given the growth in amount and detail of 

tracking and remote sensing data, oombined with 

advances in analysis methods and tools support 

ing species distribution modeling (75) and ad 

dressing data nonindependence in habitat analysis 

(76, 77), we expect to see a future with more in 

tegrative modeling of animal location and bebav 

ior in multidimensional climate and environment 

'space. The data management challenges for in 

tersecting such fine grained levels of animal and 

environmental information are substantial For 

tunately, Web based infrastructures such as Move 

bank (23, 78) or Map of Life (79) have automated 

many of the steps needed to aa:ess and integrate 

these data types. Tracking data combined with 

.environmental sensors are thus poised to offer 

an increasingly thorough, quantitative, and in 

·tegrative understanding of the environmental 

underpinning of animal movement and behavior 

and their reliable prediction in space and time. 

New opportllnities from multi-individual 

and multispecies tracking 

Multi sensor tracking tags are not only changing 

what we know about where animals go, they are 

also transforming what we know about bow an 

imals interact. Rare, and often cryptic, contacts 

with con and beterospecifics trigger some of the 
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Fig. 5. Tracking an mals in environment s pace. Spatial movements of nine Galapagos Albatross (Phoebastria irrorata) from June to September 2008 

annotated with net primary productivity (NPP) (from 8-day MODIS ocean productivity) (A) and tail-wind data (B) (from the National Centers for Environmental 

Prediction Reanalysis 2 data). (C) The same locations in two-dimensional environment space. Birds seek out high-NPP. Iow-windforagingareas near the coast. but 

cross high-wind regions in transit. For details, see (78) and movie Sl. 
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most important events in animals’ lives, but are

often impossible to study with observational tech

niques. High resolution, multi individual GPS

tracking provides new opportunities to “see” such

interactions and connect the behavior of individ

uals to emergent patterns of group, community,

and population movement.

Predator prey interactions are one area where

high resolution animal tracking is alreadymaking

substantial contributions. A suite of recent studies

using GPS in conjunction with accelerometers to

track large felids has provided extremely detailed

information about the dynamics of predation,

documenting the energetics of sit and wait (80)

and active pursuit hunting strategies (81), detail

ing the locomotor performance of hunting cheetah

(82), anddescribinghowcheetahpursuit behavior

changes depending on prey species (83). Simulta

neous tracking of caribou, moose, and wolves in

anthropogenically disturbed habitats has revealed

that the network connectivity of resource patches

affects both the spatial dynamics of large herbi

vores and the hunting strategies of their predators

(84). Simultaneous tracking has also been used

to assess the feeding costs of antipredator be

havior (85). However, caution is needed when

drawing conclusions from such studies, as mis

matches between sampling protocols and biolog

ical phenomena of interest can complicate inference.

For example, while a recent study of wolf elk

interactions concluded that encounters were rare

and thus that wolves had little direct influence

on elk behavior (86), a reanalysis suggested that

the interactions were seriously underestimated

because the interval between GPS fixes was long

relative to the duration of interactions and be

cause uncollared wolves in the population were

not properly accounted for (87). This example

highlights the importance of matching the scale

of data collection with the behavior being studied

and the value of very high temporal resolution

tracking data for interaction studies.

Multi individual tracking is also shedding light

on how competitive dynamics organizes space

use and resource access in animal communities.

Attraction and avoidance can be inferred from

concurrent movements of neighboring animals

(88, 89), providing important insight into the be

havioral processes underlying the territorial dy

namics of individuals (90, 91) and groups (88, 92).

For example, simultaneous tracking has revealed

that the outcome of competitive interactions be

tween neighboring primate social groups depends

more strongly on the location of the encounter

than the relative size of the groups and has docu

mented the costs of losing territorial interactions

(93, 94, 95). Although mechanistic home range

models provide a framework for investigating

how indirect interactions among animals shape

patterns of space use [i.e., scent marks (96); vo

calizations (97)], it is less clear how to integrate

direct, dynamic interactions such as fights and

territorial displays (98), and this remains an area

of active, and much needed, research (99).

The ability tomonitor themovements ofmany

free ranging animals with submeter accuracy and

continuous resolution is also influencing the

study of collective animal behavior, allowing data

collection to move from the lab into the field.

High resolution tracking of entire pigeon flocks

reveals that some individuals havemore influence

over collective movement decisions than others,

leading to strong, consistent leadership hierarchies

(100). “Rules of interaction” extracted from the

correlation structure of the trajectories of pairs

of homing individuals suggest that speed, rather

than dominance, is the key factor underlying

leadership (101, 102). Whole group GPS tracking

is also providing insight into the self organization

of animal groups. Using a herding dog to provoke

changes in the geometry of sheep groups, King

and colleagues (103) show that the selfish herd

effect emerges because individual sheep respond

to global, rather than local, cues of group struc

turewhen their perceived predation risk increases.

Species’ behavioral and ecological character

istics, and how they may respond to environ

mental change, are affected by plasticity and

adaptation set at the individual and population

scale (104). Foraging behaviors and associated

ecological niches have been shown to sometimes

exhibit substantial individual differences, with far

reaching ecological and evolutionary consequences

(105). Multi individual tracking opens up new op

portunities to quantify this individual variation in

space use and associated niches for animals in the

field and over larger scales than close observation

designs allow. However, collaboration is perhaps

as important as improving technology to our

understanding of plasticity in animal movement.

By using metadata standards and sharing across

studies, new questions can be addressed with

better statistical power about changes in animal

movement over larger temporal and spatial scales

(21, 106).

Animal tracking to monitor a

changing planet

With global change causing ongoing and accel

erating loss of biodiversity, a more mechanistic

and detailed understanding of the space require

ments and environmental associations of ani

mals is pressing. Tracking data, especially when

combined with remote sensing and detailed cli

mate layers, has the potential to play a vital role,

complementing biodiversity information gath

ered frommuseum or citizen science efforts (70).

The high resolution locations from tracking can

contribute to essential biodiversity variables ad

dressing species distributions (107) and support

biodiversity monitoring and assessment as man

datedunder theConventiononBiologicalDiversity

and the Intergovernmental Platform on Biodiver

sity andEcosystemServices. The spatiotemporally

detailed and real time nature of GPS tracking

data supports the use of tagged animals as pas

sive sensors of the environment to document how

ongoing changes are affecting species’ distribu

tion and ecological function. In particular, species

with large movements may offer an opportunity

to monitor specific biological impacts of ongoing

environmental change for example, if they are

found to avoid previously used locations, habitat,

or migratory stopover sites.

The roles of tracked animals as sensors of en

vironmental change can extend tomore active uses

bywhich animals directly sense the environment.

Recent examples include the monitoring of arctic

temperatures and vegetation changes during cli

mate change (108) and documenting ocean cur

rents (109), and in the future may allow for the

estimation of altitudinal wind profiles based on

bird flight parameters. Tagged animals as sen

sors could be especially useful as environmental

sensing agents in areas plagued by security or

logistical difficulties, or for phenomena not di

rectly detectable by remote sensing; for example,

the accumulation of migratory European storks

migrating in theAfrican Sahel could indicatewhere

desert locust swarms develop each year (Fig. 1).

Similarly, animals may even be able to anticipate

upcoming natural disasters and change theirmove

ments on the basis of this knowledge (110, 111).

Achievements and future vision

Over the last 5 years, the field of animal tracking

has climbed a steep trajectory of data and knowl

edge; we think that it is approaching a transfor

mational point from us learning about animals,

to having animals teach us about our world. The

concept of animals as in situ sensors of our en

vironment has only begun to be explored in the

terrestrial realm, although it has a strong history

in marine tracking (112). We suggest that a new

approach that views animals as naturally evolved

sensors of the environment has the potential to

help us monitor the planet in completely new

ways, especially if coordinated through amassive

multi individual monitoring program. Many of

the components for this program are already in

use for individual projects, including live data

streams, community data standards and sharing

frameworks, and tools for environmental data in

tegration (14, 23, 78). Additional improvement

in animal mounted sensors, especially continuing

miniaturization, is still needed to increase the

variety of animals that can be tagged and the sen

sors they can carry, and to further minimize the

impact of tags on animals’ daily lives (8).

Amassivemulti individualmonitoringprogram

would allow a quorum sensing of our planet (113),

using a variety of species to tap into the diversity

of senses that have evolved in different animal

groups. Connecting these individual level telem

etry data with population level monitoring could

identifymechanisms driving population increases

or declines, and identify the consequences to

the environments in terms of ecosystem services.

Ecological forecasting based on predictable ani

mal movements could help us anticipate and

mitigate environmental problems.However, doc

umenting unpredictable movements might be

just as important showing how animals adapt

to changing conditions in unpredictable ways

offers a lens to the future of animal ecology in the

Anthropocene.
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