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Abstract

Terrestrial gravity fluctuations are a target of scientific studies in a variety of fields
within geophysics and fundamental-physics experiments involving gravity such as the
observation of gravitational waves. In geophysics, these fluctuations are typically con-
sidered as signal that carries information about processes such as fault ruptures and
atmospheric density perturbations. In fundamental-physics experiments, it appears as
environmental noise, which needs to be avoided or mitigated. This article reviews the
current state-of-the-art of modeling high-frequency terrestrial gravity fluctuations and
of gravity-noise mitigation strategies. It hereby focuses on frequencies above about
50 mHz, which allows us to simplify models of atmospheric gravity perturbations
(beyond Brunt–Väisälä regime) and it guarantees as well that gravitational forces on
elastic media can be treated as perturbation. Extensive studies have been carried out
over the past two decades to model contributions from seismic and atmospheric fields
especially by the gravitational-wave community. While terrestrial gravity fluctuations
above 50 mHz have not been observed conclusively yet, sensitivity of instruments for
geophysical observations and of gravitational-wave detectors is improving, and we can
expect first observations in the coming years. The next challenges include the design
of gravity-noise mitigation systems to be implemented in current gravitational-wave
detectors, and further improvement of models for future gravitational-wave detectors
where terrestrial gravity noise will play a more important role. Also, many aspects of
the recent proposition to use a new generation of gravity sensors to improve real-time
earthquake early-warning systems still require detailed analyses.
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Notation

c = 299792458 m/s Speed of light
G = 6.674 × 10−11 N m2/kg2 Gravitational constant
r, er Position vector, and corresponding unit vector
x, y, z Cartesian coordinates
r , θ, φ Spherical coordinates
̺, φ, z Cylindrical coordinates
dΩ ≡ dφ dθ sin(θ) Solid angle
δi j Kronecker delta
δ(·) Dirac δ distribution
ℜ Real part of a complex number
∂n

x n-th partial derivative with respect to x

∇ Nabla operator, e.g., (∂x , ∂y, ∂z)

ξ(r, t) Displacement field
φs(r, t) Potential of seismic compressional waves
ψs(r, t) Potential of seismic shear waves
ρ0 Time-averaged mass density
α, β Compressional-wave and shear-wave speed
μ Shear modulus
⊗ Dyadic product
M, v, s Matrix/tensor, vector, scalar
Pl(x) Legendre polynomial
Pm

l (x) Associated Legendre polynomial
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Y m
l (x) Scalar surface spherical harmonics

Jn(x) Bessel function of the first kind
Kn(x) Modified Bessel function of the second kind
jn(x) Spherical Bessel function of the first kind
Yn(x) Bessel function of the second kind
yn(x) Spherical Bessel function of the second kind
Hn(x) Hankel function or Bessel function of the third kind
h

(2)
n (x) Spherical Hankel function of the second kind

Xm
l Exterior spherical multipole moment

N m
l Interior spherical multipole moment

1 Introduction

In the past few years, researchers achieved milestones in the study of high-frequency,
i.e., above tens of millihertz, gravity fluctuations [Abbott et al. (LIGO Scientific Col-
laboration and Virgo Collaboration) 2016; Montagner et al. 2016]. The Advanced
LIGO and Virgo detectors have opened a new window to our Universe with the obser-
vation of gravitational-waves (GWs) from binary black-hole and neutron-star mergers
[Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016, 2017,
2018]. Commissioning periods aim at further improving the detectors’ sensitivities,
and it is predicted that terrestrial gravity noise will eventually limit their sensitivity.
Terrestrial gravity noise, also known as Newtonian noise or gravity-gradient noise,
becomes increasingly relevant towards lower frequencies. It is predicted to appear
below 30 Hz in the advanced-generation detectors (Driggers et al. 2012b), and will
play a very important role in future-generation detectors. The Einstein Telescope is a
planned European detector, which targets GW observations down to a few Hertz (Pun-
turo et al. 2010). This can only be achieved by constructing the detector underground
to suppress the Newtonian-noise foreground, which is typically stronger at the surface
by some orders of magnitude. This strategy was adopted for the Japanese GW detector
KAGRA built underground at the Mozumi mine (Akutsu et al. (KAGRA Collabora-
tion) 2019). There are also world-wide efforts to realize sub-Hertz GW detectors based
on atom interferometry (Canuel et al. 2018), superconduction (Paik et al. 2016), and
torsion bars (Shoda et al. 2014; McManus et al. 2016). Here, the issue of Newtonian
noise is elevated to a potential show-stopper for ground-based versions of these detec-
tors since Newtonian noise needs to be suppressed by several orders of magnitude, and
going underground does not have a strong effect at these low frequencies. Nonetheless,
low-frequency concepts are continuously improving, and it is conceivable that future
detectors will be sufficiently sensitive to detect GWs well below a Hertz (Harms et al.
2013).

Strategies to mitigate Newtonian noise in GW detectors include coherent noise
cancellation based on Wiener filters (Cella 2000). The idea is to monitor the sources
of gravity perturbations using auxiliary sensors such as microphones and seismome-
ters, and to use their data to generate a coherent prediction of gravity noise. The most
challenging aspect of this technology is to determine the locations of a given number
of sensors that optimize the cancellation performance (Coughlin et al. 2016). This

123



Terrestrial gravity fluctuations Page 5 of 154 6

is largely an unsolved problem and will remain a great practical challenge whenever
sensor placement is not trivial, i.e., seismometers in boreholes or microphones many
tens of meters (or higher) above ground. Detailed understanding of seismic and atmo-
spheric fields is imperative in these cases. Experiments have recently been concluded
to study the underground seismic field at the Sanford Underground Research Facility
(Mandic et al. 2018), and ongoing analyses promise crucial insight into how seismic
fields produce Newtonian noise. Equivalently, studies of sound fields have started at
the Virgo site (Fiorucci et al. 2018), but turbulence and wind lead to additional den-
sity fluctuations, which makes the modeling of atmospheric Newtonian noise very
difficult. It should be noted though that Newtonian-noise cancellation is already being
applied successfully in gravimeters to reduce the foreground of atmospheric gravity
noise below a few mHz using collocated pressure sensors (Neumeyer 2010).

More recently, high-precision gravity strainmeters have been considered as mon-
itors of prompt gravity pertubations from fault ruptures (Harms et al. 2015),
and consequently, it was suggested to implement gravity strainmeters in existing
earthquake-early warning systems to increase warning times (Juhel et al. 2018a).
Towards lower frequencies, gravity plays an increasingly important role in gravitoe-
lastic processes (Dahlen et al. 1998; Tsuda 2014), and new effects such as self gravity
need to be considered (Juhel et al. 2018b). Self gravity can lead to strong suppression
of prompt gravity signals in inertial sensors like gravimeters and seismometers by
causing a free-fall like response of the ground to a change in gravity, which sets the
whole inertial sensor into a free fall at least for some period of time until elastic forces
start to counteract this motion. This might even interfere with seismic Newtonian-
noise cancellation using seismometers, but there has not been any quantitative study
yet. It is therefore not only in the interest of geophysicists to further improve our
understanding of prompt gravity perturbations.

This article is divided into six main sections. Section 2 serves as an introduction
to gravity measurements focussing on the response mechanisms and basic properties
of gravity sensors. Section 3 describes models of gravity perturbations from ambi-
ent seismic fields. The results can be used to estimate noise spectra at the surface
and underground. A subsection is devoted to the problem of noise estimation in low-
frequency GW detectors, which differs from high-frequency estimates mostly in that
gravity perturbations are strongly correlated between different test masses. In the
low-frequency regime, the gravity noise is best described as gravity-gradient noise.
Section 4 is devoted to time domain models of transient gravity perturbations from
seismic point sources. The formalism is applied to point forces and shear dislocations.
The latter allows us to estimate gravity perturbations from earthquakes. Atmospheric
models of gravity perturbations are presented in Sect. 5. This includes gravity per-
turbations from atmospheric temperature fields, infrasound fields, shock waves, and
acoustic noise from turbulence. The solution for shock waves is calculated in time
domain using the methods of Sect. 4. A theoretical framework to calculate gravity
perturbations from objects is given in Sect. 6. Since many different types of objects
can be potential sources of gravity perturbations, the discussion focusses on the devel-
opment of a general method instead of summarizing all of the calculations that have
been done in the past. Finally, Sect. 7 discusses possible passive and active noise
mitigation strategies. Due to the complexity of the problem, most of the section is
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devoted to active noise cancellation providing the required analysis tools and showing
limitations of this technique. Site selection is the main topic under passive mitigation,
and is discussed in the context of reducing environmental noise and criteria relevant
to active noise cancellation. Each of these sections ends with a summary and a dis-
cussion of open problems. While this article is meant to be a review of the current
state of the field, it also presents original analyses especially with respect to the impact
of seismic scattering on gravity perturbations (Sects. 3.3.2 and 3.3.3), active gravity
noise cancellation (Sect. 7.1.3), and time-domain models of gravity perturbations from
atmospheric and seismic point sources (Sects. 4.1, 4.4, and 5.3).

2 Gravity measurements

In this section, we describe the relevant mechanisms by which a gravity sensor can
couple to gravity perturbations, and give an overview of the most widely used mea-
surement schemes: the (relative) gravimeter (Crossley et al. 2013; Zhou et al. 2011),
the gravity gradiometer (Moody et al. 2002; Ando et al. 2010; McManus et al. 2017;
Canuel et al. 2018), and the gravity strainmeter, i.e., the large-scale GW detectors
Virgo (Acernese et al. (Virgo Collaboration) 2015), LIGO (Aasi et al. (LIGO Sci-
entific Collaboration) 2015), GEO600 (Lück et al. 2010), KAGRA (Akutsu et al.
(KAGRA Collaboration) 2019). Strictly speaking, none of the sensors only responds
to a single field quantity (such as changes in gravity acceleration or gravity strain), but
there is always a dominant response mechanism in each case, which justifies to give the
sensor a specific name. A clear distinction between gravity gradiometers and gravity
strainmeters has never been made to our knowledge. Therefore the sections on these
two measurement principles will introduce a definition, and it is by no means the only
possible one. Space-borne gravity experiments such as GRACE (Wahr et al. 2004),
LISA Pathfinder (Armano et al. 2016), and the future GW detector LISA (Amaro-
Seoane et al. 2017) will not be included in this overview. These experiments have very
similar measurement principles, all employing at least two test masses to measure
changes in the tidal field (produced by Earth or associated with GWs).

The different response mechanisms to terrestrial gravity perturbations are summa-
rized in Sect. 2.1. In Sects. 2.2 to 2.4, the different measurement schemes are explained
including a brief summary of the sensitivity limitations.

2.1 Gravity responsemechanisms

2.1.1 Gravity acceleration and tidal forces

We start with the simplest mechanism of all, the acceleration of a test mass in the
gravity field. Instruments that measure the acceleration are called gravimeters. A test
mass inside a gravimeter can be freely falling such as atom clouds (Zhou et al. 2011)
or, as suggested as possible future development, even macroscopic objects (Friedrich
et al. 2014). Typically though, test masses are supported mechanically or magnetically
constraining motion in some of its degrees of freedom. The test mass of a pendulum
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suspension responds to changes in the horizontal gravity acceleration. A test mass
attached to the end of a horizontal cantilever responds to changes in vertical gravity
acceleration, where the cantilever also needs to counteract the static gravitational
force. In all cases, the flexible test-mass support suppresses coupling of the test mass
to ground vibrations above the support’s fundamental resonance. Response to gravity
fluctuations and isolation performance depend on frequency. For simplicity, we model
the system as a harmonic oscillator. Its response in terms of test-mass acceleration
δa(ω) to gravity perturbations δg(ω) assumes the form

δa(ω) = ω2

ω2 − ω2
0 + iγω

δg(ω) ≡ R(ω;ω0, γ )δg(ω), (1)

where we have introduced a viscous damping parameter γ , and ω0 is the resonance
frequency. Well below resonance, the response is proportional to ω2, while it is constant
well above resonance. Above resonance, the supported test mass responds like a freely
falling mass. The test-mass response to vibrations δα(ω) is given by

δa(ω) = ω2
0 − iγω

ω2
0 − ω2 − iγω

δα(ω) ≡ S(ω;ω0, γ )δα(ω), (2)

This applies for example to horizontal vibrations of the suspension points of strings
that hold a test mass, or to vertical vibrations of the clamps of a horizontal cantilever
with attached test mass. Well above resonance, vibrations are suppressed by ω−2,
while no vibration isolation is provided below resonance. The situation is somewhat
more complicated in realistic models of the support especially due to internal modes
of the mechanical system (see, e.g., González and Saulson 1994), or due to coupling of
degrees of freedom (Matichard et al. 2015). Large mechanical support structures can
feature internal resonances at relatively low frequencies, which can interfere to some
extent with the desired performance of the mechanical support (Winterflood 2001).
While Eqs. (1) and (2) summarize the properties of isolation and response relevant for
this paper, details of the readout method can fundamentally impact an instrument’s
response to gravity fluctuations and its susceptibility to seismic noise, as explained in
Sects. 2.2 to 2.4.

Next, we discuss the response to tidal forces. In Newtonian theory, tidal forces
cause a relative acceleration δg12(ω) between two freely falling test masses according
to

δg12(ω) = −∇ψ(r2, ω) + ∇ψ(r1, ω)

≈ −(∇ ⊗ ∇ψ(r1, ω)) · r12,
(3)

where ψ(r, ω) is the Fourier amplitude of the gravity potential. The last equation holds
if the distance r12 between the test masses is sufficiently small, which also depends on
the frequency. The term −∇⊗∇ψ(r, t) is called gravity-gradient tensor. In Newtonian
approximation, the second time integral of this tensor corresponds to gravity strain
h(r, t), which is discussed in more detail in Sect. 2.4. Its trace needs to vanish in empty
space since the gravity potential fulfills the Poisson equation. Tidal forces produce the
dominant signals in gravity gradiometers and gravity strainmeters, which measure the
differential acceleration or associated relative displacement between two test masses
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(see Sects. 2.3 and 2.4). If the test masses used for a tidal measurement are supported,
then typically the supports are designed to be as similar as possible, so that the response
in Eq. (1) holds for both test masses approximately with the same parameter values for
the resonance frequencies (and to a lesser extent also for the damping). For the purpose
of response calibration, it is less important to know the parameter values exactly if the
signal is meant to be observed well above the resonance frequency where the response
is approximately equal to 1 independent of the resonance frequency and damping
(here, “well above” resonance also depends on the damping parameter, and in realistic
models, the signal frequency also needs to be “well below” internal resonances of the
mechanical support).

2.1.2 Shapiro time delay

Another possible gravity response is through the Shapiro time delay (Ballmer et al.
2010). This effect is not universally present in all gravity sensors, and depends on
the readout mechanism. Today, the best sensitivities are achieved by reflecting laser
beams from test masses in interferometric configurations. If the test mass is displaced
by gravity fluctuations, then it imprints a phase shift onto the reflected laser, which
can be observed in laser interferometers, or using phasemeters. We will give further
details on this in Sect. 2.4. In Newtonian gravity, the acceleration of test masses is
the only predicted response to gravity fluctuations. However, from general relativity
we know that gravity also affects the propagation of light. The leading-order term is
the Shapiro time delay, which produces a phase shift of the laser beam with respect to
a laser propagating in flat space. It can be calculated from the weak-field spacetime
metric (see Chap. 18 in Misner et al. 1973):

ds2 = −(1 + 2ψ(r, t)/c2)(c dt)2 + (1 − 2ψ(r, t)/c2)|dr |2 (4)

Here, c is the speed of light, ds is the so-called line element of a path in spacetime,
and ψ(r, t)/c2 ≪ 1. Additionally, for this metric to hold, motion of particles in the
source of the gravity potential responsible for changes of the gravity potential need
to be much slower than the speed of light, and also stresses inside the source must
be much smaller than its mass energy density. All conditions are fulfilled in the case
of Earth gravity field. Light follows null geodesics with ds2 = 0. For the spacetime
metric in Eq. (4), we can immediately write

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

= c

√

1 + 2ψ(r, t)/c2

1 − 2ψ(r, t)/c2

≈ c(1 + 2ψ(r, t)/c2)

(5)

As we will find out, this equation can directly be used to calculate the time delay as an
integral along a straight line in terms of the coordinates r, but this is not immediately
clear since light bends in a gravity field. So one may wonder if integration along the
proper light path instead of a straight line yields additional significant corrections.
The so-called geodesic equation must be used to calculate the path. It is a set of four
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differential equations, one for each coordinate t, r in terms of a parameter λ. The
weak-field geodesic equation is obtained from the metric in Eq. (4):

d2t

dλ2 = − 2

c2

dt

dλ

dr

dλ
· ∇ψ(r, t),

d2r

dλ2 = 2

c2

dr

dλ
×
(

dr

dλ
× ∇ψ(r, t)

)

,

(6)

where we have made use of Eq. (5) and the slow-motion condition |ψ̇(r, t)|/c ≪
|∇ψ(r, t)|. The coordinates t, r are to be understood as functions of λ. Since the
deviation of a straight path is due to a weak gravity potential, we can solve these
equations by perturbation theory introducing expansions r = r (0) + r (1) + · · · and
t = t (0) + t (1) + · · · . The superscript indicates the order in ψ/c2. The unperturbed
path has the simple parametrization

r (0)(λ) = ce0 λ + r0, t (0)(λ) = λ + t0 (7)

We have chosen integration constants such that unperturbed time t (0) and parameter
λ can be used interchangeably (apart from a shift by t0). Inserting these expressions
into the right-hand side of Eq. (6), we obtain

d2t (1)

dλ2 = −2

c
e0 · ∇ψ(r (0), t (0)),

d2r (1)

dλ2 = 2e0 ×
(

e0 × ∇ψ(r (0), t (0))
)

= 2e0 ·
(

e0 · ∇ψ(r (0), t (0))
)

− 2∇ψ(r (0), t (0)),

(8)

As we can see, up to linear order in ψ(r, t), the deviation r (1)(λ) is in orthogonal
direction to the unperturbed path r (0)(λ), which means that the deviation can be
neglected in the calculation of the time delay. After some transformations, it is possible
to derive Eq. (5) from Eq. (8), and this time we find explicitly that the right-hand-side
of the equation only depends on the unperturbed coordinates.1 In other words, we can
integrate the time delay along a straight line as defined in Eq. (7), and so the total
phase integrated over a travel distance L is given by

Δφ(r0, t0) = ω0

L/c
∫

0

dλ
dt

dλ

= ω0 L

c
− 2ω0

c2

L/c
∫

0

dλ ψ(r (0)(λ), t (0)(λ))

(9)

1 It should be emphasized that in general, the null constraint given by Eq. (5) cannot be obtained from the
geodesic equation since the geodesic equation is valid for all freely falling objects (massive and massless).
The reason that the null constraint can be derived from Eq. (8) is that we used the null constraint together
with the geodesic equation to obtain Eq. (8), which is therefore valid only for massless particles.
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In static gravity fields, the phase shift doubles if the light is sent back since not only
the direction of integration changes, but also the sign of the expression substituted for
dt/dλ. It can be shown that this phase shift is typically of order v2/c2 smaller than
the phase shift due to test-mass displacement by the gravity potential ψ , where v is a
characteristic speed of the source, e.g., speeds of seismic waves.

2.1.3 Gravity induced groundmotion

It is interesting to understand the gravity-induced ground motion. This effect has been
neglected in all NN calculations assuming that the signal of a seismometer is, at least
ideally, a direct measurement of ground motion. This assumption is generally false,
and the problem originates in the equivalence principle.

Let us consider the elastodynamic equations under the influence of a gravitational
potential φ(r, t)

ρ∂2
t ξ(r, t) = ∇ · σ (r, t) − ρ∇φ(r, t), (10)

where σ (r, t) is the stress tensor, ξ(r, t) is the seismic displacement field, and ρ the
mass density of the medium (Rundle 1980; Aki and Richards 2009; Wang 2005).
Solving this equation is very difficult in general, also since gravity-induced ground
motion acts back on the gravity field, which is especially important at low frequencies
f � (Gρ)1/2 (Dahlen et al. 1998).

The generic stress-strain relation can be written as

σ (r, t) = C(r ) : ǫ(r, t), σi j = Ci jklǫkl (11)

where the forth-rank tensor C(r ) is determined by the properties of the medium. The
elastic strain can be defined as

ǫi j (r, t) = 1

2

(

∂iξ j (r, t) + ∂ jξi (r, t)
)

(12)

In an isotropic medium (which is not a necessary assumption here), the stress-strain
relation assumes the form

σ (r, t) = λ(r )Tr(ǫ(r, t))1 + 2μ(r )ǫ(r, t), (13)

with λ, μ being the Lamé constants (see Sect. 3.1). The trace of the strain tensor
is equal to the divergence of the displacement field. We can gain further insight by
turning the elastodynamic equation for the seismic displacement field into an equation
directly for the gravimeter signal

∂2
t u(r, t) = ∂2

t ξ(r, t) + ∇φ(r, t) (14)

We can now use this relation to substitute all appearances of ξ(r, t) in the elastody-
namic equations, which then simplifies to

ρ∂2
t u(r, t) = ∇ · (C(r ) : (η(r, t) + h(r, t)), (15)
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where the gravity-strain tensor

∂2
t h(r, t) = −∇ ⊗ ∇φ(r, t) (16)

was introduced, and η(r, t) is the effective strain

ηi j (r, t) = 1

2

(

∂i u j (r, t) + ∂ j ui (r, t)
)

(17)

It is Eq. (15) that was used by Dyson as a starting point to calculate the response of
a homogeneous half-space to incident GWs (Dyson 1969). It extends the application
of the equivalence principle consequently over the entire elastic medium instead of
just noticing its relevance to the measurement principle of a gravimeter. Assuming
an isotropic medium, and that the shear modulus μ of the medium changes signifi-
cantly over distances much shorter than the external gravity field (or alternatively, the
divergence of the strain field vanishes), Eq. (15) can be written

ρ∂2
t u(r, t) = ∇ · (C(r ) : η(r, t)) + 2(∇μ(r )) · h(r, t), (18)

Therefore, a gravimeter signal can be calculated using an effective force produced by
a gravity-strain field coupling to gradients of the shear modulus. This effective force
field was employed by Ben-Menahem (1983) to describe the response of a laterally
homogeneous, spherical Earth to GWs, which was later exploited in a series of papers
to search for GWs by monitoring displacements of Earth’s surface (Coughlin and
Harms 2014a, b, c).

2.1.4 Coupling in non-uniform, static gravity fields

If the gravity field is static, but non-uniform, then displacement ξ(t) of the test mass
in this field due to a non-gravitational fluctuating force is associated with a changing
gravity acceleration according to

δa(r, t) = (∇ ⊗ g(r )) · ξ(t) (19)

We introduce a characteristic length λ, over which gravity acceleration varies signif-
icantly. Hence, we can rewrite the last equation in terms of the associated test-mass
displacement ζ

ζ(ω) ∼ g

ω2

ξ(ω)

λ
, (20)

where we have neglected directional dependence and numerical factors. Accordingly,
the coupling is more significant at low frequencies. Let us consider the specific case
of a suspended test mass. Due to additional coupling mechanisms between vertical
and horizontal motion in real seismic-isolation systems, test masses especially in GW
detectors are also isolated in vertical direction, but without achieving the same noise
suppression as in horizontal direction. For example, the requirements on vertical test-
mass displacement for Advanced LIGO are a factor 1000 less stringent than on the
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Fig. 1 Gravity gradients inside hollow cylinder. The total height of the cylinder is L , and M is its total mass.
The radius of the cylinder is 0.3L . The axes correspond to the distance of the test mass from the symmetry
axis of the cylinder, and its height above one of the cylinders ends. The plot on the right is simply a zoom
of the left plot into the intermediate heights

horizontal displacement (Barton et al. 2013). It is then possible that the vertical (z-
axis) seismic noise ξz(t) coupling into the horizontal (x-axis) motion of the test mass
through the term ∂x gz = ∂zgx dominates over other displacement noise.

We calculate an estimate of gravity gradients in the vicinity of test masses in large-
scale GW detectors, and see if the gravity-gradient coupling matters compared to
mechanical vertical-to-horizontal coupling.

One contribution to gravity gradients will come from the vacuum chamber sur-
rounding the test mass. We approximate the shape of the chamber as a hollow cylinder
with open ends (open ends just to simplify the calculation). In our calculation, the test
mass can be offset from the cylinder axis and be located at any distance to the cylinder
ends (we refer to this coordinate as height). The gravity field can be expressed in terms
of elliptic integrals, but the explicit solution is not of concern here. Instead, let us take
a look at the results in Fig. 1. Gravity gradients ∂zgx vanish if the test mass is located
on the symmetry axis or at height L/2. There are also two additional ∂zgx = 0 contour
lines starting at the symmetry axis at heights ∼ 0.24 and ∼ 0.76. Let us assume that
the test mass is at height 0.3L , a distance 0.05L from the cylinder axis, the total mass
of the cylinder is M = 5000 kg, and the cylinder height is L = 4 m. In this case, the
gravity-gradient induced vertical-to-horizontal coupling factor at 20 Hz is

ζ/ξ ∼ 0.1
G M

L3ω2 ∼ 3 × 10−14 (21)

This means that gravity-gradient induced coupling is extremely weak, and lies well
below estimates of mechanical coupling (of order 0.001 in Advanced LIGO2). Even
though the vacuum chamber was modeled with a very simple shape, and additional
asymmetries in the mass distribution around the test mass may increase gravity gradi-
ents, it still seems very unlikely that the coupling would be significant. As mentioned
before, one certainly needs to pay more attention when calculating the coupling at

2 According to pages 2 and 25 of second attachment to https://alog.ligo-wa.caltech.edu/aLOG/index.php?
callRep=6760.
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Fig. 2 Sketch of a levitated
sphere serving as test mass in a
superconducting gravimeter.
Dashed lines indicate magnetic
field lines. Coils are used for
levitation and precise
positioning of the sphere. Image
reproduced with permission
from Hinderer et al. (2007);
copyright by Elsevier

Upper coil

Feedback coil

Lower coil Lower plate

Center plate

Upper plate

lower frequencies. The best procedure is to base the calculation on a 3D model of the
near test-mass infrastructure. Accurate modeling of quasi-static gravity gradients is
important in the space-borne GW detector LISA (Schumaker 2003).

2.2 Gravimeters

Gravimeters are instruments that measure the displacement of a test mass with respect
to a non-inertial reference rigidly connected to the ground. They belong to the class of
inertial sensors, i.e., sensors with an inertial reference like a suspended test mass, which
also includes most seismometers. The test mass is typically supported mechanically or
magnetically (atom-interferometric gravimeters are an exception), which means that
the test-mass response to gravity is altered with respect to a freely falling test mass.
We will use Eq. (1) as a simplified response model. There are various possibilities to
measure the displacement of a test mass. The most widespread displacement sensors
are based on capacitive readout, as for example used in superconducting gravimeters
(see Fig. 2 and Hinderer et al. 2007). Sensitive displacement measurements are in
principle also possible with optical readout systems; a method that is implemented
in atom-interferometric gravimeters (Peters et al. 2001), and prototype seismome-
ters (Berger et al. 2014) (we will explain the distinction between seismometers and
gravimeters below). As will become clear in Sect. 2.4, optical readout is better suited
for displacement measurements over long baselines, as required for the most sensitive
gravity strain measurements, while the capacitive readout should be designed with the
smallest possible distance between the test mass and the non-inertial reference (Jones
and Richards 1973).

Let us take a closer look at the basic measurement scheme of a superconducting
gravimeter shown in Fig. 2. The central part is formed by a spherical superconducting
shell that is levitated by superconducting coils. Superconductivity provides stability
of the measurement, and also avoids some forms of noise (see Hinderer et al. 2007
for details). In this gravimeter design, the lower coil is responsible mostly to balance
the mean gravitational force acting on the sphere, while the upper coil modifies the
magnetic gradient such that a certain “spring constant” of the magnetic levitation
is realized. In other words, the current in the upper coil determines the resonance
frequency in Eq. (1).
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Capacitor plates are distributed around the sphere. Whenever a force acts on the
sphere, the small signal produced in the capacitive readout is used to immediately
cancel this force by a feedback coil. In this way, the sphere is kept at a constant
location with respect to the external frame.

The displacement sensors can only respond to relative displacement between a test
mass and a surrounding structure. If small gravity fluctuations are to be measured,
then it is not sufficient to realize low-noise readout systems, but also vibrations of
the surrounding structure forming the reference frame must be as small as possible.
In general, as we will further explore in the coming sections, gravity fluctuations are
increasingly dominant with decreasing frequency. At about 1 mHz, gravity acceleration
associated with fluctuating seismic fields become comparable to seismic acceleration,
and also atmospheric gravity noise starts to be significant (Crossley et al. 2013). At
higher frequencies, seismic acceleration is much stronger than typical gravity fluc-
tuations, which means that the gravimeter effectively operates as a seismometer. In
summary, at sufficiently low frequencies, the gravimeter senses gravity accelerations
of the test mass with respect to a relatively quiet reference, while at higher frequen-
cies, the gravimeter senses seismic accelerations of the reference with respect to a test
mass subject to relatively small gravity fluctuations. In superconducting gravimeters,
the third important contribution to the response is caused by vertical motion ξ(t) of a
levitated sphere against a static gravity gradient (see Sect. 2.1.4). As explained above,
feedback control suppresses relative motion between sphere and gravimeter frame,
which causes the sphere to move as if attached to the frame or ground. In the presence
of a static gravity gradient ∂zgz , the motion of the sphere against this gradient leads
to a change in gravity, which alters the feedback force (and therefore the recorded
signal). The full contribution from gravitational, δa(t), and seismic, ξ̈ (t) = δα(t),
accelerations can therefore be written

s(t) = δa(t) − δα(t) + (∂zgz)ξ(t) (22)

It is easy to verify, using Eqs. (1) and (2), that the relative amplitude of gravity and
seismic fluctuations from the first two terms is independent of the test-mass support.
Therefore, vertical seismic displacement of the reference frame must be considered
fundamental noise of gravimeters and can only be avoided by choosing a quiet mea-
surement site. Obviously, Eq. (22) is based on a simplified support model. One of the
important design goals of the mechanical support is to minimize additional noise due
to non-linearities and cross-coupling. As is explained further in Sect. 2.3, it is also not
possible to suppress seismic noise in gravimeters by subtracting the disturbance using
data from a collocated seismometer. Doing so inevitably turns the gravimeter into a
gravity gradiometer.

Gravimeters target signals that typically lie well below 1 mHz. Mechanical or mag-
netic supports of test masses have resonance frequencies at best slightly below 10 mHz
along horizontal directions, and typically above 0.1 Hz in the vertical direction (Becca-
ria et al. 1997; Winterflood et al. 1999).3 Well below resonance frequency, the response

3 Winterflood explains in his thesis why vertical resonance frequencies are higher than horizontal, and why
this does not necessarily have to be so (Winterflood 2001).
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Fig. 3 Median spectra of
superconducting gravimeters of
the GGP. Image reproduced with
permission from Coughlin and
Harms (2014b); copyright by
APS
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function can be approximated as ω2/ω2
0. At first, it may look as if the gravimeter

should not be sensitive to very low-frequency fluctuations since the response becomes
very weak. However, the strength of gravity fluctuations also strongly increases with
decreasing frequency, which compensates the small response. It is clear though that
if the resonance frequency were sufficiently high, then the response would become
so weak that the gravity signal would not stand out above other instrumental noise
anymore. The test-mass support would be too stiff. The sensitivity of the gravime-
ter depends on the resonance frequency of the support and the intrinsic instrumental
noise. With respect to seismic noise, the stiffness of the support has no influence as
explained before (the test mass can also fall freely as in atom interferometers).

For superconducting gravimeters of the Global Geodynamics Project (GGP) (Cross-
ley and Hinderer 2010), the median spectra are shown in Fig. 3. Between 0.1 and 1 mHz,
atmospheric gravity perturbations typically dominate, while instrumental noise is the
largest contribution between 1 mHz and 5 mHz (Hinderer et al. 2007). The small-
est signal amplitudes that have been measured by integrating long-duration signals is
about 10−12 m/s2. A detailed study of noise in superconducting gravimeters over a
larger frequency range can be found in Rosat et al. (2003). Note that in some cases, it is
not fit to categorize seismic and gravity fluctuations as noise and signal. For example,
Earth’s spherical normal modes coherently excite seismic and gravity fluctuations, and
the individual contributions in Eq. (22) have to be understood to accurately translate
data into normal-mode amplitudes (Dahlen et al. 1998).

2.3 Gravity gradiometers

It is not the purpose of this section to give a complete overview of the different
gradiometer designs. Gradiometers find many practical applications, for example in
navigation and resource exploration, often with the goal to measure static or slowly
changing gravity gradients, which do not concern us here. For example, we will not
discuss rotating gradiometers, and instead focus on gradiometers consisting of sta-
tionary test masses. While the former are ideally suited to measure static or slowly
changing gravity gradients with high precision especially under noisy conditions, the
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test mass

reference

frame -

Fig. 4 Basic scheme of a gravity gradiometer for measurements along the vertical direction. Two test
masses are supported by horizontal cantilevers (superconducting magnets, …). Acceleration of both test
masses is measured against the same non-inertial reference frame, which is connected to the ground. Each
measurement constitutes one gravimeter. Subtraction of the two channels yields a gravity gradiometer

latter design has advantages when measuring weak tidal fluctuations. In the following,
we only refer to the stationary design. A gravity gradiometer measures the relative
acceleration between two test masses each responding to fluctuations of the gravity
field (Jekeli 2014; Moody et al. 2002). The test masses have to be located close to
each other so that the approximation in Eq. (3) holds. The proximity of the test masses
is used here as the defining property of gradiometers. They are therefore a special
type of gravity strainmeter (see Sect. 2.4), which denotes any type of instrument that
measures relative gravitational acceleration (including the even more general concept
of measuring space-time strain).

Gravity gradiometers can be realized in two versions. First, one can read out the
position of two test masses with respect to the same rigid, non-inertial reference.
The two channels, each of which can be considered a gravimeter, are subsequently
subtracted. This scheme is for example realized in dual-sphere designs of supercon-
ducting gravity gradiometers (Harnisch et al. 2000) or in atom-interferometric gravity
gradiometers (Sorrentino et al. 2014; Canuel et al. 2018).

It is schematically shown in Fig. 4. Let us first consider the dual-sphere design of
a superconducting gradiometer. If the reference is perfectly stiff, and if we assume as
before that there are no cross-couplings between degrees of freedom and the response
is linear, then the subtraction of the two gravity channels cancels all of the seismic
noise, leaving only the instrumental noise and the differential gravity signal given
by the second line of Eq. (3). Even in real setups, the reduction of seismic noise
can be many orders of magnitude since the two spheres are close to each other, and
the two readouts pick up (almost) the same seismic noise (Moody et al. 2002). This
does not mean though that gradiometers are necessarily more sensitive instruments to
monitor gravity fields. A large part of the gravity signal (the common-mode part) is
suppressed as well, and the challenge is now passed from finding a seismically quiet
site to developing an instrument with lowest possible intrinsic noise.

The atom-interferometric gradiometer differs in some important details from the
superconducting gradiometer. The test masses are realized by ultracold atom clouds,
which are (nearly) freely falling provided that magnetic shielding of the atoms is suf-
ficient, and interaction between atoms can be neglected. Interactions of a pair of atom
clouds with a laser beam constitute the basic gravity gradiometer scheme. Even though
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the test masses are freely falling, the readout is not generally immune to seismic noise
(Harms 2011; Baker and Thorpe 2012). The laser beam interacting with the atom
clouds originates from a source subject to seismic disturbances, and interacts with
optics that require seismic isolation. Schemes have been proposed that could lead to
a large reduction of seismic noise (Yu and Tinto 2011; Graham et al. 2013), but their
effectiveness has not been tested in experiments yet. Since the differential position (or
tidal) measurement is performed using a laser beam, the natural application of atom-
interferometer technology is as gravity strainmeter (as explained before, laser beams
are favorable for differential position measurements over long baselines). Nonetheless,
the technology is currently insufficiently developed to realize large-baseline experi-
ments, and we can therefore focus on its application in gradiometry. Let us take a
closer look at the response of atom-interferometric gradiometers to seismic noise. In
atom-interferometric detectors (excluding the new schemes proposed in Yu and Tinto
2011; Graham et al. 2013), one can show that seismic acceleration δα(ω) of the optics
or laser source limits the sensitivity of a tidal measurement according to

δa12(ω) ∼ ωL

c
δα(ω), (23)

where L is the separation of the two atom clouds, and c is the speed of light. It should
be emphasized that the seismic noise remains, even if all optics and the laser source
are all linked to the same infinitely stiff frame. In addition to this noise term, other cou-
pling mechanisms may play a role, which can however be suppressed by engineering
efforts. The noise-reduction factor ωL/c needs to be compared with the common-
mode suppression of seismic noise in superconducting gravity gradiometers, which
depends on the stiffness of the instrument frame, and on contamination from cross
coupling of degrees-of-freedom. While the seismic noise in Eq. (23) is a fundamen-
tal noise contribution in (conventional) atom-interferometric gradiometers, the noise
suppression in superconducting gradiometers depends more strongly on the engineer-
ing effort (at least, we venture to claim that common-mode suppression achieved in
current instrument designs is well below what is fundamentally possible).

To conclude this section, we discuss in more detail the connection between grav-
ity gradiometers and seismically (actively or passively) isolated gravimeters. As we
have explained in Sect. 2.2, the sensitivity limitation of gravimeters by seismic noise
is independent of the mechanical support of the test mass (assuming an ideal, linear
support). The main purpose of the mechanical support is to maximize the response of
the test mass to gravity fluctuations, and thereby increase the signal with respect to
instrumental noise other than seismic noise. Here we will explain that even a seismic
isolation of the gravimeter cannot overcome this noise limitation, at least not without
fundamentally changing its response to gravity fluctuations. Let us first consider the
case of a passively seismically isolated gravimeter. For example, we can imagine that
the gravimeter is suspended from the tip of a strong horizontal cantilever. The system
can be modelled as two oscillators in a chain, with a light test mass m supported by a
heavy mass M representing the gravimeter (reference) frame, which is itself supported
from a point rigidly connected to Earth. The two supports are modelled as harmonic
oscillators. As before, we neglect cross coupling between degrees of freedom. Lin-
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earizing the response of the gravimeter frame and test mass for small accelerations,
and further neglecting terms proportional to m/M , one finds the gravimeter response
to gravity fluctuations:

δa(ω) = R(ω;ω2, γ2) (δg2(ω) − R(ω;ω1, γ1)δg1(ω))

= R(ω;ω2, γ2) (δg2(ω) − δg1(ω) + S(ω;ω1, γ1)δg1(ω))
(24)

Here, ω1, γ1 are the resonance frequency and damping of the gravimeter support,
while ω2, γ2 are the resonance frequency and damping of the test-mass support. The
response and isolation functions R(·), S(·) are defined in Eqs. (1) and (2). Remember
that Eq. (24) is obtained as a differential measurement of test-mass acceleration versus
acceleration of the reference frame. Therefore, δg1(ω) denotes the gravity fluctuation
at the center-of-mass of the gravimeter frame, and δg2(ω) at the test mass. An infinitely
stiff gravimeter suspension, ω1 → ∞, yields R(ω;ω1, γ1) = 0, and the response turns
into the form of the non-isolated gravimeter. The seismic isolation is determined by

δa(ω) = −R(ω;ω2, γ2)S(ω;ω1, γ1)δα(ω) (25)

We can summarize the last two equations as follows. At frequencies well above ω1,
the seismically isolated gravimeter responds like a gravity gradiometer, and seismic
noise is strongly suppressed. The deviation from the pure gradiometer response ∼
δg2(ω) − δg1(ω) is determined by the same function S(ω;ω1, γ1) that describes the
seismic isolation. In other words, if the gravity gradient was negligible, then we ended
up with the conventional gravimeter response, with signals suppressed by the seismic
isolation function. Well below ω1, the seismically isolated gravimeter responds like a
conventional gravimeter without seismic-noise reduction. If the centers of the masses
m (test mass) and M (reference frame) coincide, and therefore δg1(ω) = δg2(ω), then
the response is again like a conventional gravimeter, but this time suppressed by the
isolation function S(ω;ω1, γ1).

Let us compare the passively isolated gravimeter with an actively isolated gravime-
ter. In active isolation, the idea is to place the gravimeter on a stiff platform whose
orientation can be controlled by actuators. Without actuation, the platform simply fol-
lows local surface motion. There are two ways to realize an active isolation. One way
is to place a seismometer next to the platform onto the ground, and use its data to sub-
tract ground motion from the platform. The actuators cancel the seismic forces. This
scheme is called feed-forward noise cancellation. Feed-forward cancellation of gravity
noise is discussed at length in Sect. 7.1, which provides details on its implementation
and limitations. The second possibility is to place the seismometer together with the
gravimeter onto the platform, and to suppress seismic noise in a feedback configura-
tion (Abramovici and Chapsky 2000; Abbott et al. 2004). In the following, we discuss
the feed-forward technique as an example since it is easier to analyze [for example,
feedback control can be unstable (Abramovici and Chapsky 2000)]. As before, we
focus on gravity and seismic fluctuations. The seismometer’s intrinsic noise plays an
important role in active isolation limiting its performance, but we are only interested in
the modification of the gravimeter’s response. Since there is no fundamental difference
in how a seismometer and a gravimeter respond to seismic and gravity fluctuations, we

123



Terrestrial gravity fluctuations Page 19 of 154 6

know from Sect. 2.2 that the seismometer output is proportional to δg1(ω) − δα(ω),
i.e., using a single test mass for acceleration measurements, seismic and gravity per-
turbations contribute in the same way. A transfer function needs to be multiplied to
the acceleration signals, which accounts for the mechanical support and possibly also
electronic circuits involved in the seismometer readout. To cancel the seismic noise
of the platform that carries the gravimeter, the effect of all transfer functions needs to
be reversed by a matched feed-forward filter. The output of the filter is then equal to
δg1(ω) − δα(ω) and is added to the motion of the platform using actuators cancelling
the seismic noise and adding the seismometer’s gravity signal. In this case, the seis-
mometer’s gravity signal takes the place of the seismic noise in Eq. (2). The complete
gravity response of the actively isolated gravimeter then reads

δa(ω) = R(ω;ω2, γ2)(δg2(ω) − δg1(ω)) (26)

The response is identical to a gravity gradiometer, where ω2, γ2 are the resonance
frequency and damping of the gravimeter’s test-mass support. In reality, instrumental
noise of the seismometer will limit the isolation performance and introduce additional
noise into Eq. (26). Nonetheless, Eqs. (24) and (26) show that any form of seismic
isolation turns a gravimeter into a gravity gradiometer at frequencies where seismic
isolation is effective. For the passive seismic isolation, this means that the gravimeter
responds like a gradiometer at frequencies well above the resonance frequency ω1 of
the gravimeter support, while it behaves like a conventional gravimeter below ω1. From
these results it is clear that the design of seismic isolations and the gravity response
can in general not be treated independently. As we will see in Sect. 2.4 though, tidal
measurements can profit strongly from seismic isolation especially when common-
mode suppression of seismic noise like in gradiometers is insufficient or completely
absent.

2.4 Gravity strainmeters

Gravity strain is an unusual concept in gravimetry that stems from our modern under-
standing of gravity in the framework of general relativity. From an observational point
of view, it is not much different from elastic strain. Fluctuating gravity strain causes
a change in distance between two freely falling test masses, while seismic or elas-
tic strain causes a change in distance between two test masses bolted to an elastic
medium. It should be emphasized though that we cannot always use this analogy to
understand observations of gravity strain (Kawamura and Chen 2004). Fundamentally,
gravity strain corresponds to a perturbation of the metric that determines the geomet-
rical properties of spacetime (Misner et al. 1973). We will briefly discuss GWs, before
returning to a Newtonian description of gravity strain.

Gravitational waves are weak perturbations of spacetime propagating at the speed
of light. Freely falling test masses change their distance in the field of a GW. When
the length of the GW is much larger than the separation between the test masses, it
is possible to interpret this change as if caused by a Newtonian force. We call this
the long-wavelength regime. Since we are interested in the low-frequency response
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Fig. 5 Polarizations of a
gravitational wave

Fig. 6 Sketches of the relative
rotational and displacement
measurement schemes

of gravity strainmeters throughout this article (i.e., frequencies well below 100 Hz),
this condition is always fulfilled for Earth-bound experiments. The effect of a gravity-
strain field h(r, t) on a pair of test masses can then be represented as an equivalent
Newtonian tidal field

δa12(r, t) = Le⊤
12 · ḧ(r, t) · e12 (27)

Here, δa12(r, t) is the relative acceleration between two freely falling test masses, L is
the distance between them, and e12 is the unit vector pointing from one to the other test
mass, and e⊤

12 its transpose. As can be seen, the gravity-strain field is represented by a
3 × 3 tensor. It contains the space-components of a 4-dimensional metric perturbation
of spacetime, and determines all properties of GWs.4 Note that the strain amplitude
h in Eq. (27) needs to be multiplied by 2 to obtain the corresponding amplitude of
the metric perturbation (e.g., the GW amplitude). Throughout this article, we define

gravity strain as h = ΔL/L , while the effect of a GW with amplitude aGW on the

separation of two test masses is determined by aGW = 2ΔL/L .
The strain field of a GW takes the form of a quadrupole oscillation with two possible

polarizations commonly denoted ×(cross)-polarization and +(plus)-polarization. The
arrows in Fig. 5 indicate the lines of the equivalent tidal field of Eq. (27).

Consequently, to (directly) observe GWs, one can follow two possible schemes:
(1) the conventional method, which is a measurement of the relative displacement of
suspended test masses typically carried out along two perpendicular baselines (arms);
and (2) measurement of the relative rotation between two suspended bars. Figure 6
illustrates the two cases. In either case, the response of a gravity strainmeter is obtained
by projecting the gravity strain tensor onto a combination of two unit vectors, e1 and
e2, that characterize the orientation of the detector, such as the directions of two bars in
a rotational gravity strain meter, or of two arms of a conventional gravity strain meter.

4 In order to identify components of the metric perturbation with tidal forces acting on test masses, one
needs to choose specific spacetime coordinates, the so-called transverse-traceless gauge (Misner et al. 1973).
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This requires us to define two different gravity strain projections. The projection for
the rotational strain measurement is given by

h×(r , t) = (e⊤
1 · h(r , t) · e r

1 − e⊤
2 · h(r , t) · e r

2)/2, (28)

where the subscript × indicates that the detector responds to the ×-polarization assum-
ing that the x, y-axes (see Fig. 5) are oriented along two perpendicular bars. The vectors
e r

1 and e r
2 are rotated counter-clockwise by 90◦ with respect to e1 and e2. In the case

of perpendicular bars e r
1 = e2 and e r

2 = −e1. The corresponding projection for the
conventional gravity strain meter reads

h+(r , t) = (e⊤
1 · h(r , t) · e1 − e⊤

2 · h(r , t) · e2)/2 (29)

The subscript + indicates that the detector responds to the +-polarization provided
that the x, y-axes are oriented along two perpendicular baselines (arms) of the detec-
tor. The two schemes are shown in Fig. 6. The most sensitive GW detectors are based
on the conventional method, and distance between test masses is measured by means
of laser interferometry. The LIGO and Virgo detectors have achieved strain sensitiv-
ities of better than 10−22 Hz−1/2 between about 50 Hz and 1000 Hz in past science
runs and are currently being commissioned in their advanced configurations (Harry
et al. (LIGO Scientific Collaboration) 2010; Acernese et al. (Virgo Collaboration)
2015). The rotational scheme is realized in torsion-bar antennas, which are consid-
ered as possible technology for sub-Hz GW detection (Shoda et al. 2014; Eda et al.
2014). However, with achieved strain sensitivity of about 10−8 Hz−1/2 near 0.1 Hz,
the torsion-bar detectors are far from the sensitivity we expect to be necessary for GW
detection (Harms et al. 2013).

Let us now return to the discussion of the previous sections on the role of seismic
isolation and its impact on gravity response. Gravity strainmeters profit from seismic
isolation more than gravimeters or gravity gradiometers. We have shown in Sect. 2.2
that seismically isolated gravimeters are effectively gravity gradiometers. So in this
case, seismic isolation changes the response of the instrument in a fundamental way,
and it does not make sense to talk of seismically isolated gravimeters. Seismic iso-
lation could in principle be beneficial for gravity gradiometers (i.e., the acceleration
of two test masses is measured with respect to a common rigid, seismically isolated
reference frame), but the common-mode rejection of seismic noise (and gravity sig-
nals) due to the differential readout is typically so high that other instrumental noise
becomes dominant. So it is possible that some gradiometers would profit from seis-
mic isolation, but it is not generally true. Let us now consider the case of a gravity
strainmeter. As explained in Sect. 2.3, we distinguish gradiometers and strainmeters
by the distance of their test masses. For example, the distance of the LIGO or Virgo test
masses is 4 km and 3 km respectively. Seismic noise and terrestrial gravity fluctuations
are insignificantly correlated between the two test masses within the detectors’ most
sensitive frequency band (above 10 Hz). Therefore, the approximation in Eq. (3) does
not apply. Certainly, the distinction between gravity gradiometers and strainmeters
remains somewhat arbitrary since at any frequency the approximation in Eq. (3) can
hold for one type of gravity fluctuation, while it does not hold for another. Let us adopt
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a more practical definition at this point. Whenever the design of the instrument places

the test masses as distant as possible from each other given current technology, then we

call such an instrument strainmeter. In the following, we will discuss seismic isolation
and gravity response for three strainmeter designs, the laser-interferometric, atom-
interferometric, and superconducting strainmeters. It should be emphasized that the
atom-interferometric and superconducting concepts are still in the beginning of their
development and have not been realized yet with scientifically interesting sensitivities.

Laser-interferometric strainmeters The most sensitive gravity strainmeters, namely
the large-scale GW detectors, use laser interferometry to read out the relative dis-
placement between mirror pairs forming the test masses. Each test mass in these
detectors is suspended from a seismically isolated platform, with the suspension itself
providing additional seismic isolation. Sect. 2.1.1 introduced a simplified response
and isolation model based on a harmonic oscillator characterized by a resonance fre-
quency ω0 and viscous damping γ .5 In a multi-stage isolation and suspension system
as realized in GW detectors (see, e.g., Braccini et al. 2005; Matichard et al. 2015),
coupling between multiple oscillators cannot be neglected, and is fundamental to the
seismic isolation performance, but the basic features can still be explained with the
simplified isolation and response model of Eqs. (1) and (2). The signal output of the
interferometer is proportional to the relative displacement between test masses. Since
seismic noise is approximately uncorrelated between two distant test masses, the dif-
ferential measurement itself cannot reject seismic noise as in gravity gradiometers.
Without seismic isolation, the dominant signal would be seismic strain, i.e., the dis-
tance change between test masses due to elastic deformation of the ground, with a
value of about 10−15 Hz−1/2 at 50 Hz (assuming kilometer-scale arm lengths). At
the same time, without seismically isolated test masses, the gravity signal can only
come from the ground response to gravity fluctuations as described in Sect. 2.1.3,
and from the Shapiro time delay as described in Sect. 2.1.2. These signals would
lie well below the seismic noise. Consequently, to achieve the sensitivities of past
science runs, the seismic isolation of the large-scale GW detectors had to suppress
seismic noise by at least 7 orders of magnitude, and test masses had to be supported so
that they can (quasi-)freely respond to gravity-strain fluctuations in the targeted fre-
quency band (which, according to Eqs. (1) and (2), is achieved automatically with the
seismic isolation). Stacking multiple stages of seismic isolation enhances the gravity
response negligibly, while it is essential to achieve the required seismic-noise suppres-
sion. Using laser beams, long-baseline strainmeters can be realized, which increases
the gravity response according to Eq. (3). The price to be paid is that seismic noise
needs to be suppressed by a sophisticated isolation and suspension system since it is
uncorrelated between test masses and therefore not rejected in the differential mea-
surement. As a final note, the most sensitive torsion-bar antennas also implement a
laser-interferometric readout of the relative rotation of the suspended bars (Shoda
et al. 2014), and concerning the gravity response and seismic isolation, they can be
modelled very similarly to conventional strainmeters. However, the suppression of

5 In reality, the dominant damping mechanism in suspension systems is not viscous damping, but structural
damping characterized by the so-called loss angle φ, which quantifies the imaginary part of the elastic
modulus (Saulson 1990).
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seismic noise is impeded by mechanical cross-coupling, since a torsion bar has many
soft degrees of freedom that can interact resonantly within the detection band. This
problem spoils to some extent the big advantage of torsion bars to realize a very low-
frequency torsion resonance, which determines the fundamental response and seismic
isolation performance. Nonetheless, cross-coupling can in principle be reduced by
precise engineering, and additional seismic pre-isolation of the suspension point of
the torsion bar can lead to significant noise reduction.

Atom-interferometric strainmeters In this design, the test masses consist of freely-
falling ultracold atom clouds. A laser beam interacting with the atoms serves as a
common phase reference, which the test-mass displacement can be measured against.
The laser phase is measured locally via atom interferometry by the same freely-falling
atom clouds Cheinet et al. (2008). Subtraction of two of these measurements forms the
strainmeter output. The gravity response is fundamentally the same as for the laser-
interferometric design since it is based on the relative displacement of atom clouds.
Seismic noise couples into the strain measurement through the laser. If displacement
noise of the laser or laser optics has amplitude ξ(ω), then the corresponding strain
noise in atom-interferometric strainmeters is of order ωξ(ω)/c, where c is the speed
of light, and ω the signal frequency Baker and Thorpe (2012). While this noise is
lower than the corresponding term ξ(ω)/L in laser-interferometric detectors (L being
the distance between test masses), seismic isolation is still required. As we know
from previous discussions, seismic isolation causes the optics to respond to gravity
fluctuations. However, the signal contribution from the optics is weaker by a fac-
tor ωL/c compared to the contribution from distance changes between atom clouds.
Here, L is the distance between two freely-falling atom clouds, which also corre-
sponds approximately to the extent of the optical system. This signal suppression
is very strong for any Earth-bound atom-interferometric detector (targeting sub-Hz
gravity fluctuations), and we can neglect signal contributions from the optics. Here
we also assumed that there are no control forces acting on the optics, which could
further suppress their signal response, if for example the distance between optics is
one of the controlled parameters. Nonetheless, seismic isolation is required, not only
to suppress seismic noise from distance changes between laser optics, which amounts
to ωξ(ω)/c ∼ 10−17 Hz−1/2 at 0.1 Hz without seismic isolation (too high at least for
GW detection Harms et al. (2013)), but also to suppress seismic-noise contributions
through additional channels (e.g., tilting optics in combination with laser-wavefront
aberrations Hogan et al. (2011)). The additional channels dominate in current exper-
iments, which are already seismic-noise limited with strain noise many orders of
magnitude higher than 10−17 Hz−1/2 Dickerson et al. (2013). It is to be expected
though that improvements of the atom-interferometer technology will suppress the
additional channels relaxing the requirement on seismic isolation.

Superconducting strainmeters The response of superconducting strainmeters to
gravity-strain fluctuations is based on the differential displacement of magnetically
levitated spheres. The displacement of individual spheres is monitored locally via a
capacitive readout (see Sect. 2.2). Subtracting local readouts of test-mass displacement
from each other constitutes the basic strainmeter scheme Paik (1976). The common

123



6 Page 24 of 154 J. Harms

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

Frequency [Hz]

G
W

 S
e

n
s
it
iv

it
y
 [
1

/√
 H

z
]

Superconducting

Torsion bar

Atom interferometric

10
-2

10
0

10
2

Frequency [Hz]

10
-24

10
-22

10
-20

10
-18

G
W

 S
e
n
s
it
iv

it
y
 [
1
/

 H
z
]

aLIGO

Adv Virgo

ET

MANGO

Fig. 7 Sensitivity curves of various gravity strainmeters. Left: The curves approximate best measured
sensitivities for the three types of low-frequency strainmeters Moody et al. (2002), Ishidoshiro et al. (2011),
and Sorrentino et al. (2014). It should be noted though that these sensitivities were beaten by orders of
magnitude using seismometer and gravimeter networks monitoring Earth and Moon Coughlin and Harms
(2014a, b, c). Right: Sensitivity goal for low-frequency GW detectors, MANGO Harms et al. (2013), in
comparison with sensitivity targets for Advanced LIGO Aasi et al. (LIGO Scientific Collaboration) (2015),
Advanced Virgo Acernese et al. (Virgo Collaboration) (2015), and the Einstein Telescope Hild et al. (2011)

reference for the local readouts is a rigid, material frame. The stiffness of the frame is
a crucial parameter facilitating the common-mode rejection of seismic noise. Even in
the absence of seismic noise, the quality of the reference frame is ultimately limited
by thermally excited vibrations of the frame6 (similar to the situation with torsion-
bar antennas Harms et al. (2013)). However, since strainmeters are very large (by
definition), vibrational eigenmodes of the frame can have low resonance frequencies
impeding the common-mode rejection of seismic noise. In fact, it is unclear if a sig-
nificant seismic-noise reduction can be achieved by means of mechanical rigidity.
Therefore, seismic isolation of the strainmeter frame is necessary. In this case, each
local readout is effectively a gravity-strain measurement, since the gravity response
of the test mass is measured against a reference frame that also responds to gravity
fluctuations (see discussion of seismically isolated gravimeters in Sect. 2.3). Another
solution could be to substitute the mechanical structure by an optically rigid body as
suggested in Harms et al. (2013) for a low-frequency laser-interferometric detector.
The idea is to connect different parts of a structure via laser links in all degrees of free-
dom. The stiffness of the link is defined by the control system that forces the different
parts to keep their relative positions and orientations. Optical rigidity in all degrees of
freedom has not been realized experimentally yet, but first experiments known as sus-
pension point or platform interferometers have been conducted to control some degrees
of freedom in the relative orientation of two mechanical structures Aso et al. (2004);
Dahl et al. (2012). This approach would certainly add complexity to the experiment,
especially in full-tensor configurations of superconducting gravity strainmeters, where
six different mechanical structures have to be optically linked Moody et al. (2002).

The best sensitivities achieved in the past with low-frequency GW detectors are
shown in the left plot in Fig. 7. To our best knowledge, a full sensitivity spectrum has

6 It should not be forgotten that thermal noise also plays a role in the other two detector designs, but it
is a more severe problem for superconducting gravimeters since the mechanical structure supporting the
thermal vibrations is much larger. Any method to lower thermal noise, such as cooling of the structure, or
lowering its mechanical loss is a greater effort.
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Table 1 Summary of gravity sensors

Sensor Measurement Sensitivity

Gravimeter Differential displacement between
ground and test mass

Superconducting gravimeters:
∼ 1 nm/s2/

√
Hz at 1 mHz

Gradiometer Differential displacement/rotation
between two test masses. Typically
compact design for measurement of
static gradients or slowly varying
gradients

Superconducting gradiometers:
∼ 10−9/ s2/

√
Hz between 0 and 1 Hz

Strainmeter Differential displacement/rotation
between two test masses with the aim
to achieve best possible sensitivity in a
certain frequency band

Laser-interferometric strainmeters (GW
detectors): ∼ 10−23/

√
Hz at 100 Hz

Superconducting strainmeters:
∼ 10−10/

√
Hz at 0.1 Hz

not been published yet for atom-interferometric strainmeters. Therefore the sensitivity
is represented by a single dot at 1 Hz. The current record of a high-precision experiment
was set more than 10 years ago with a superconducting gradiometer. Nevertheless, the
sensitivity required for GW detection at low frequencies, represented by the MANGO
curve in the right plot, still lies 7–9 orders of magnitude below this record sensitivity.
Such sensitivity improvement not only relies on substantial technological progress
concerning the strainmeter concepts, but also on a novel scheme of Newtonian-noise
cancellation capable of mitigating seismic and atmospheric Newtonian noise by about
3 and 5 orders of magnitude, respectively.

2.5 Summary

See Table 1.

3 Gravity perturbations from seismic fields

Already in the first design draft of a laser-interferometric GW detector laid out by
Rainer Weiss, gravity perturbations from seismic fields were recognized as a potential
noise contribution (Weiss 1972). He expressed the transfer function between ground
motion and gravitational displacement noise of a test mass as effective isolation fac-
tor, highlighting the fact that gravitational coupling can be understood as additional
link that circumvents seismic isolation. The equations that he used already had the
correct dependence on ground displacement, density and seismic wavelength, but it
took another decade, before Peter Saulson presented a more detailed calculation of
numerical factors (Saulson 1984). He divided the half space below a test mass into
volumes of correlated density fluctuations, and assigned a mean displacement to each
of these volumes. Fluctuations were assumed to be uncorrelated between different
volumes. The total gravity perturbation was then obtained as an incoherent sum over
these volumes. The same scheme was carried out for gravity perturbations associ-
ated with vertical surface displacement. The sizes of volumes and surface areas of
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correlated density perturbations were determined by the length of seismic waves, but
Saulson did not make explicit use of the wave nature of the seismic field that produces
the density perturbations. As a result, also Saulson had to concede that certain steps in
his calculation “cannot be regarded as exact”. The next step forward was marked by
two papers that were published almost simultaneously by groups from the LIGO and
Virgo communities (Hughes and Thorne 1998; Beccaria et al. 1998). In these papers,
the wave nature of the seismic field was taken into account, producing for the first time
accurate predictions of Newtonian noise. They understood that the dominant contri-
bution to Newtonian noise would come from seismic surface waves, more specifically
Rayleigh waves. The Rayleigh field produces density perturbations beneath the sur-
face, and correlated surface displacement at the same time. The coherent summation
of these effects was directly obtained, and since then, models of Newtonian noise from
Rayleigh waves have not improved apart from a simplification of the formalism.

Nonetheless, Newtonian-noise models are not only important to estimate a noise
spectrum with sufficient accuracy. More detailed models are required to analyze
Newtonian-noise mitigation, which is discussed in Sect. 7. Especially the effect of
seismic scattering on gravity perturbations needs to be quantified. A first analytical
calculation of gravity perturbations from seismic waves scattered from a spherical
cavity is presented in Sects. 3.3.2 and 3.3.3. In general, much of the recent research
on Newtonian-noise modelling was carried out to identify possible limitations in
Newtonian-noise mitigation. Among others, this has led to two major new devel-
opments in the field. First, finite-element simulations were added to the set of tools
(Harms et al. 2009b; Beker et al. 2010). We will give a brief summary in Sect. 3.5.
The advantage is that several steps of a complex analysis can be combined such as
simulations of a seismic field, simulations of seismic measurements, and simulations
of noise mitigation. Second, since seismic sources can be close to the test masses,
it is clear that the seismic field cannot always be described as a superposition of
propagating plane seismic waves. For this reason, analytical work has begun to base
calculations of gravity perturbations on simple models of seismic sources, which can
give rise to complex seismic fields (Harms et al. 2015). Since this work also inspired
potential applications in geophysics and seismology, we devote Sect. 4 entirely to this
new theory. Last but not least, ideas for new detector concepts have evolved over the
last decade, which will make it possible to monitor gravity strain perturbations at fre-
quencies below 1 Hz. This means that our models of seismic Newtonian noise (as for
all other types of Newtonian noise) need to be extended to lower frequencies, which
is not always a trivial task. We will discuss aspects of this problem in Sect. 3.6.4.

3.1 Seismic waves

In this section, we describe the properties of seismic waves relevant for calculations
of gravity perturbations. The reader interested in further details is advised to study
one of the classic books on seismology, e.g., Aki and Richards (2009). The formalism
that will be introduced is most suited to describe physics in infinite or half-spaces
with simple modifications such as spherical cavities, or small perturbations of a flat
surface topography. At frequencies well below 10 mHz where the finite size of Earth
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starts to affect significantly the properties of the seismic field, seismic motion is best
described by Earth’s normal modes (Dahlen et al. 1998). It should also be noted that
in the approximation used in the following, the gravity field does not act back on the
seismic field. This is in contrast to the theory of Earth’s normal modes, which includes
the gravity potential and its derivative in the elastodynamic equations.

Seismic waves can generally be divided into shear waves, compressional waves,
and surface waves. Compressional waves produce displacement along the direction of
propagation. They are sometimes given the alternative name “P-waves”, which arises
from the field of seismology. The P stands for primary and means that these waves are
the first to arrive after an earthquake (i.e., they are the fastest waves). These waves are
characterized by a frequency ω and a wave vector k P. While one typically assumes
ω = kPα with compressional wave speed α, this does not have to hold in general,
and many results presented in the following sections do not require a fixed relation
between frequency and wavenumber. The displacement field of a plane compressional
wave can be written

ξ P(r, t) = ekξ
P
0 (k P, ω) exp(i(k P · r − ωt)) (30)

The index ’P’ is introduced to distinguish between displacements of shear and com-
pressional waves, and ek ≡ k P/kP. In media with vanishing shear modulus such as
liquids and gases, compressional waves are also called sound waves. There are many
ways to express the P-wave speed in terms of other material constants, but a widely
used definition is in terms of the Lamé constants λ, μ:

α =
√

λ + 2μ

ρ
(31)

The Lamé constant μ is also known as shear modulus, and ρ is the density of the
medium. Shear waves produce transversal displacement and do not exist in media
with vanishing shear modulus. They are also known as “S-waves”, where S stands for
secondary since it is the seismic phase to follow the P-wave arrival after earthquakes.
The shear-wave displacement ξ S(r, t) of a single plane wave can be expressed in
terms of a polarization vector ep:

ξ S(r, t) = epξ
S
0 (k S, ω) exp(i(k S · r − ωt)) (32)

with ep · k S = 0. The S-wave speed in terms of the Lamé constants reads

β =
√

μ

ρ
(33)

Both wave types, compressional and shear, will be referred to as body waves since they
can propagate through media in all directions. Clearly, inside inhomogeneous media,
all material constants are functions of the position vector r. Another useful relation
between the two seismic speeds is given by
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β = α ·
√

1 − 2ν

2 − 2ν
, (34)

where ν is the Poisson’s ratio of the medium. It should be mentioned that there are
situations when a wave field cannot be described as a superposition of compressional
and shear waves. This is for example the case in the near field of a seismic source.
In the remainder of this section, we will calculate gravity perturbations for cases
where the distinction between compressional and shear waves is meaningful. The
more complicated case of gravity perturbations from seismic fields near their sources
is considered in Sect. 4.

An elegant way to represent a seismic displacement field ξ(r, t) is in terms of its
seismic or Lamé potentials φs(r, t), ψs(r, t) (Aki and Richards 2009):

ξ(r, t) = ∇φs(r, t) + ∇ × ψs(r, t) (35)

with ∇ ·ψs(r, t) = 0. The rotation of the first term vanishes, which is characteristic for
compressional waves. The divergence of the second term vanishes, which is charac-
teristic for shear waves. Therefore, the scalar potential φs(r, t) will be called P-wave
potential, and ψs(r, t) S-wave potential. As will become clear in the following, many
integrals involving the seismic field ξ(r, t) simplify greatly when using the seismic
potentials to represent the field. It is possible to rewrite the shear-wave potential in
terms of two scalar quantities in Cartesian coordinates (Sasatani 1985):

ψs(r, t) = ∇ × (0, 0, ψs(r, t)) + (0, 0, χs(x, y, t)) (36)

This form can lead to useful simplifications. For example, if seismic displacement
is relevant only in z-direction, then it suffices to calculate the contribution from the
scalar potential ψs(r, t).

Next we will introduce the Rayleigh waves. These are surface waves and in fact
the only seismic waves that can propagate on surfaces of homogeneous media. In the
presence of an interface between two types of media, the set of possible solutions of
interface waves is much richer as described in detail in Pilant (1972). In this paper, we
will not deal specifically with the general solutions of interface waves, but it should
be noted that gravity perturbations from at least one of the types, the Stoneley waves,
can be calculated using the same equations derived later for the Rayleigh waves. The
definition of Rayleigh waves does not require a plane surface, but let us consider the
case of a homogeneous half space for simplicity. The direction normal to the surface
corresponds to the z-axis of the coordinate system, and will also be called vertical
direction. The normal vector is denoted as ez . Rayleigh waves propagate along a
horizontal direction ek . A wave vector k can be split into its vertical kz and horizontal
components k̺. The vertical wavenumbers are defined as

kP
z (k̺) =

√

(kP)2 − k2
̺, kS

z (k̺) =
√

(kS)2 − k2
̺ (37)

Even though Rayleigh waves are surface waves, their displacement field extends
evanescently (i.e., with exponential amplitude fall-off from the surface) throughout
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the entire medium. They can be considered as analytical extension of a situation where
body waves are reflected from the surface in the sense that we can allow the horizontal
wavenumber k̺ to be larger than kP and kS. In this case, the vertical wavenumbers
have imaginary values. Hence, in the case of Rayleigh waves, it is convenient to define
new wave parameters as:

qS
z =

√

k2
̺ − (kS)2, qP

z =
√

k2
̺ − (kP)2 (38)

Here, k̺ is the horizontal wavenumber of the Rayleigh wave. Note that the order
of terms in the square-roots are reversed with respect to the case of body waves
as in Eq. (37). Rewriting the equations in Hassan and Nagy (1998) in terms of the
horizontal and vertical wavenumbers, the horizontal and vertical amplitudes of the
three-dimensional displacement field of a Rayleigh wave reads

ξk(r, t) = A ·
(

k̺eqP
z z − ζqS

z eqS
z z
)

· sin(k̺ · ̺ − ωt)

ξz(r, t) = A ·
(

qP
z eqP

z z − ζk̺eqS
z z
)

· cos(k̺ · ̺ − ωt)
(39)

with ζ(k̺) ≡
√

qP
z /qS

z . The speed cR = k̺/ω of the fundamental Rayleigh wave
obeys the equation

R
(

(cR/β)2
)

= 0,

R(x) = x3 − 8x2 + 8x
2 − ν

1 − ν
− 8

1 − ν

(40)

The real-valued solution to this equation is known as Rayleigh pole since the same
function appears in the denominator of surface reflection coefficients. Note that the
horizontal and vertical displacements are phase shifted by 90◦, which gives rise to
elliptical particle motions. Therefore, arbitrary time series of vertical displacement
are related to horizontal displacement via the Hilbert transform. The displacement
vector is constructed according to

ξ(r, t) = ξk(r, t)ek + ξz(r, t)ez (41)

In the case of a stratified medium, this wave type is also known as fundamental
Rayleigh wave to distinguish them from higher-order Rayleigh waves that can exist
in these media (Hughes and Thorne 1998). For this reason, we will occasionally refer
to Rayleigh waves as Rf-waves. According to Eqs. (34) and (40), given a shear-wave
speed β, the compressional-wave speed α and Rayleigh-wave speed cR are functions
of the Poisson’s ratio only. Figure 8 shows the values of the wave speeds in units of
β. As can be seen, for a given shear-wave speed the Rayleigh-wave speed (shown as
solid line), depends only weakly on the Poisson’s ratio. The P-wave speed however
varies more strongly, and in fact grows indefinitely with Poisson’s ratio approaching
the value ν = 0.5.
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Fig. 8 Rayleigh speed (solid
line) and P-wave speed (dashed
line) in units of S-wave speed β

as a function of Poisson’s ratio
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3.2 Basics of seismic gravity perturbations

In this section, we derive the basic equations that describe the connection between
seismic fields and associated gravity perturbations. Expressions will first be derived
in terms of the seismic displacement field ξ(r, t), then in terms of seismic potentials
φs(r, t), ψs(r, t), and this section concludes with a discussion of gravity perturbations
in transform domain.

3.2.1 Gravity perturbations from seismic displacement

The starting point is the continuity equation, which gives an expression for the density
perturbation caused by seismic displacement:

δρ(r, t) = −∇ · (ρ(r )ξ(r, t)) (42)

Here it is assumed that the seismic density perturbations are much smaller than
the unperturbed density δρ(r, t) ≪ ρ(r ) so that self-induced seismic scattering is
insignificant. The perturbation of the gravity potential can now be written

δφ(r0, t) = −G

∫

dV
δρ(r, t)

|r − r0|

= G

∫

dV
∇ · (ρ(r )ξ(r, t))

|r − r0|

= −G

∫

dV ρ(r )ξ(r, t) · ∇ 1

|r − r0|
(43)

Note that in the last step integration by parts did not lead to surface terms since any
type of geology can be described as having infinite size. For example, a half space
would correspond to an infinite space with vanishing density above surface. Carrying
out the gradient operation, we obtain the gravity perturbation in dipole form

δφ(r0, t) = G

∫

dV ρ(r )ξ(r, t) · r − r0

|r − r0|3
(44)
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and the corresponding perturbation of gravity acceleration reads

δa(r0, t) = −G

∫

dV ρ(r )(ξ(r, t) · ∇0) · r − r0

|r − r0|3

= G

∫

dV ρ(r )
1

|r − r0|3
(

ξ(r, t) − 3(err0 · ξ(r, t))err0

)

(45)

with err0 ≡ (r − r0)/|r − r0|, and ∇0 denotes the gradient operation with respect
to r0. In this form, it is straight-forward to implement gravity perturbations in finite-
element simulations (see Sect. 3.5), where each finite element is given a mass ρ(r )δV .
This equation is valid whenever the continuity Eq. (42) holds, and describes gravity
perturbations inside infinite media as well as media with surfaces.

Especially in the case of a homogeneous medium with surface, treating bulk and
surface contributions to gravity perturbations separately can often simplify complex
calculations. The continuity equation with constant (unperturbed) density ρ0 = ρ(r )

describes density perturbations inside the medium contained in the volume V , which
directly yields the bulk term:

δφbulk(r0, t) = Gρ0

∫

V

dV
∇ · ξ(r, t)

|r − r0|
(46)

The surface term can be constructed by noting that it is the displacement normal to
the surface that generates gravity perturbations:

δφsurf(r0, t) = −Gρ0

∫

dS
n(r) · ξ(r, t)

|r − r0|
(47)

Note that also this equation is true only for small displacements since the surface
normal is assumed to change negligibly due to seismic waves. The sum of bulk and
surface terms is equal to the expression in Eq. (44) with uniform mass density.

The same results can also be obtained using an explicit expression of the density
ρ(r ) that includes the density change at the surface in the form of a Heaviside function
Θ(·). The surface is solution to an equation σ(r ) = 0, with σ(r ) being normalized
such that ∇σ(r ) is the unit normal vector n(r ) of the surface pointing from the
medium outwards into the empty space. For a homogeneous medium with density ρ0,
the density of the entire space can be written as

ρ(r ) = ρ0Θ(−σ(r )) (48)

Inserting this expression into Eq. (43), one obtains

δφ(r0, t) = Gρ0

∫

dV
∇ · (Θ(−σ(r ))ξ(r, t))

|r − r0|

= Gρ0

∫

dV
Θ(−σ(r ))∇ · ξ(r, t) − δ(−σ(r ))n(r ) · ξ(r, t)

|r − r0|

(49)
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The first part of the infinite-space integral can be rewritten as the integral in Eq. (46)
over the volume V of the medium, while the second part translates into the surface
integral in Eq. (47).

3.2.2 Gravity perturbations in terms of seismic potentials

In the last part of this section, results will be expressed in terms of the seismic potentials.
This is helpful to connect this work to geophysical publications where solutions to
seismic fields are often derived for these potentials. In many cases, it also greatly
simplifies the calculation of gravity perturbations. In order to simplify the notation,
the equations are derived for a homogeneous medium. Expressing the displacement
field in terms of its potentials according to Eq. (35), the bulk contribution reads

δφbulk(r0, t) = Gρ0

∫

V

dV
Δφs(r, t)

|r − r0|
, (50)

This expression can be transformed via integration by parts into

δφbulk(r0, t) = Gρ0

∫

dS n(r )·
[∇φs(r, t)

|r − r0|
− φs(r, t)∇ 1

|r − r0|

]

−4πGρ0φs(r0, t).

(51)
One integral was solved explicitly by using

Δ
1

|r − r0|
= −4πδ(r − r0) (52)

The contribution δφsurf(r0, t) from the surface can also be rewritten in terms of seismic
potentials

δφsurf(r0, t) = −Gρ0

∫

dS n(r ) · ∇φs(r, t) + ∇ × ψs(r, t)

|r − r0|
. (53)

As can be seen, terms in the bulk and surface contributions cancel, and so we get for
the gravity potential

δφ(r0, t) = δφbulk(r0, t) + δφsurf(r0, t)

= −Gρ0

∫

dS n(r ) ·
[∇ × ψs(r, t)

|r − r0|
+ φs(r, t)∇ 1

|r − r0|

]

− 4πGρ0φs(r0, t)

= −Gρ0

∫

dS n(r ) ·
[

ψs(r, t) × ∇ 1

|r − r0|
+ φs(r, t)∇ 1

|r − r0|

]

− 4πGρ0φs(r0, t) (54)
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The last equation follows from the fact that the boundary of a boundary is zero after
application of Stokes’ theorem (the surface S being the boundary of a body with volume
V ). The seismic potentials vanish above surface, and therefore the gravity perturbation
in empty space is the result of a surface integral. This is a very important conclusion and
useful to theoretical investigations, but of limited practical relevance since the integral
depends on the seismic potential φs(r, t), which cannot be measured or inferred in
general from measurements. The shear-wave potential enters as ∇ × ψs(r, t), which
is equal to the (observable) shear-wave displacement. In the absence of a surface, the
solution simplifies to

δφ(r0, t) = −4πGρ0φs(r0, t). (55)

The latter result is remarkable as it states the proportionality of gravity and seismic
potentials in infinite media. If a solution of a seismic field is given for its seismic
potentials, then one can immediately write down the gravity perturbation without
further calculations. We will make use of it in Sect. 4 to calculate gravity perturbations
from seismic point sources.

3.2.3 Gravity perturbations in transform domain

In certain situations, it is favorable to consider gravity perturbations in transform
domain. For example, in calculations of gravity perturbations in a half space, it can be
convenient to express solutions in terms of the displacement amplitudes ξ(k̺, z, t),
and in infinite space in terms of ξ(k, t). As shown in Sect. 4.4, it is also possible to
obtain concise solutions for the half-space problem using cylindrical harmonics, but
in the following, we only consider plane-wave harmonics.

The transform-domain equations for gravity perturbations from seismic fields in a
half space, with the surface at z = 0, are obtained by calculating the Fourier transforms
of Eqs. (46) and (47) with respect to x0, y0. This yields the bulk term

δφbulk(k̺, z0, t) = 2πGρ0
1

k̺

0
∫

−∞

dz e−k̺|z−z0| [∂zξz(k̺, z, t) + ik̺ · ξ̺(k̺, z, t)
]

= 2πGρ0
1

k̺

[

ξz(k̺, 0, t)e−k̺ |z0| −
0
∫

−∞

dz e−k̺|z−z0|

×
(

−k̺sgn(z − z0)ξz(k̺, z, t) − ik̺ · ξ̺(k̺, z, t)
)

]

, (56)

where sgn denotes the signum function. The surface term reads

δφsurf(k̺, z0, t) = −2πGρ0
1

k̺

ξz(k̺, 0, t)e−k̺ |z0| (57)
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Hence, the total perturbation of the gravity potential is given by

δφ(k̺, z0, t) = 2πGρ0

0
∫

−∞

dz e−k̺|z−z0|

(

sgn(z − z0)ξz(k̺, z, t) + i

k̺

k̺ · ξ̺(k̺, z, t)

)

. (58)

This equation is valid above surface as well as underground. Expanding the seismic
field into plane waves, the integral over the coordinate z is straight-forward to calculate.

Using seismic potentials as defined in Eqs. (35) and (36) instead of the displacement
field, one obtains

δφ(k̺, z0, t) = 2πGρ0

0
∫

−∞

dz e−k̺|z−z0|(sgn(z − z0)(∂zφs(z) + k2
̺ψs(z))

− k̺(φs(z) + ∂zψs(z)))

= −2πGρ0

[

e−k̺|z0| (sgn(z0)φs(0) + k̺ψs(0)
)

+ 2φs(z0)

]

, (59)

with φs(z > 0) = 0, and dependence of the potentials on k̺ and t is omitted. This
equation is particularly useful since seismologists often define their fields in terms of
seismic potentials, and it is then possible to directly write down the perturbation of
the gravity potential in transform domain without solving any integrals.

The corresponding expressions in infinite space are obtained by calculating the
Fourier transforms of Eqs. (46) and (47) with respect to x0, y0 and z0. Since there are
no surface terms, the result is simply

δφ(k, t) = −4π iGρ0
1

k2 k · ξ(k, t) (60)

Substituting the displacement field by its seismic potentials, we find immediately the
transform-domain version of Eq. (55).

3.3 Seismic gravity perturbations inside infinite, homogeneousmedia with

spherical cavity

Test masses of underground detectors, as for example KAGRA (Aso et al. (KAGRA
Collaboration) 2013), will be located inside large chambers hosting corner and end
stations of the interferometer. Calculation of gravity perturbations based on a spherical
chamber model can be carried out explicitly and provides at least some understanding
of the problem. This case was first investigated by Harms et al. (2009a). In their work,
contributions from normal displacement of cavity walls were taken into account, but
scattering of incoming seismic waves from the cavity was neglected. In this section, we
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will outline the main results of their paper in Sect. 3.3.1, and present for the first time
a calculation of gravity perturbations from seismic waves scattered from a spherical
cavity in Sects. 3.3.2 and 3.3.3.

3.3.1 Gravity perturbations without scattering

The first step is to calculate an explicit solution of the integral in Eq. (45) for plane
seismic waves. The plane-wave solution will be incomplete, since scattering of the
incident wave from the cavity is neglected. However, as will be shown later, scattering
can be neglected assuming realistic dimensions of a cavity. We will start with the grav-
ity perturbation from a plane compressional wave as defined in Eq. (30). Inserting this
expression into Eq. (45), which includes bulk as well as surface gravity perturbations,
the integral over the infinite medium excluding a cavity of radius a can be solved. The
gravity acceleration at the center r = 0 of the cavity is given by

δa P(0, t) = 8πGρ0ξ
P(0, t)

j1(k
Pa)

(kPa)
, (61)

where jn(·) is the spherical Bessel function. In the case that the length of the seismic
wave is much larger than the cavity radius, the ratio can be approximated according
to

j1(ka)

(ka)
≈ 1

3

[

1 − 1

10
(ka)2

]

, (62)

which neglects terms of order O((ka)4), and the result in the limit of vanishing cavity
radius simplifies to

δa P(0, t) = 8π

3
Gρ0ξ

P(0, t) (63)

Since the gravity perturbation and therefore the seismic displacement is evaluated at
the center of the cavity, the seismic displacement cannot be observed strictly speak-
ing. Placing a seismometer at the cavity walls, an error of order (ka)2 is made in the
modelling of the gravity perturbation. The numerical factor in this equation is smaller
by −4π/3 compared to the factor in Eq. (55). This means that the bulk gravity pertur-
bation is partially cancelled by cavity-surface contributions, which can be verified by
directly evaluating the surface term:

δa P
surf(0, t) = −4πGρ0ξ

P(0, t) ·
(

j0(k
Pa) − 2

j1(k
Pa)

(kPa)

)

(64)

The long-wavelength limit ka → 0 of the expression in brackets is 1/3, which is
consistent with Eqs. (63) and (55). If the seismic field consisted only of pressure waves
propagating in a homogeneous medium, then Eq. (63) would mean that a seismometer
placed at the test mass monitors all information required to estimate the corresponding
gravity perturbations.

A concise form of Eq. (61) can still be maintained if shear waves, which produce
NN exclusively through surface displacement, are added to the total displacement
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Fig. 9 The plot shows the
gravity perturbation at the center
of a cavity as a function of
cavity radius in units of seismic
wavelength
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ξ(r, t) = ξ P(r, t) + ξ S(r, t). Inserting the plane-wave expression of Eq. (32) into
Eq. (45), and adding the solution to the compressional-wave contribution, one obtains

δa(0, t) = 4πGρ0

(

2ξ P(0, t)
j1(k

Pa)

(kPa)
− ξ S(0, t)

j1(k
Sa)

(kSa)

)

(65)

The shear-wave contribution has the same dependence on cavity radius as the
compressional-wave contribution, even though the shear term is purely due to cavity-
surface displacement.

We can take a look at the gravity perturbation as a function of cavity radius. Figure 9
shows the perturbation from P-waves and S-waves using Eq. (65). It is assumed that
P-waves have a factor 1.8 higher speed than S-waves.

If the cavity has a radius of about 0.4λ, then gravity perturbation is reduced by about
a factor 2. Keeping in mind that the highest interesting frequency of Newtonian noise is
about 30 Hz, and that compressional waves have a speed of about 4 km/s, the minimal
cavity radius should be about 50 m to show a significant effect on gravity noise.
Building such cavities would be a major and very expensive effort, and therefore,
increasing cavity size does not seem to be a good option to mitigate underground
Newtonian noise.

3.3.2 Incident compressional wave

The fact that the shear term in Eq. (65) has the opposite sign of the compressional
term does not mean that gravity perturbations are reduced since noise in both com-
ponents is typically uncorrelated. However, as explained in more detail in Sect. 3.4.1,
compressional and shear waves are partially converted into each other at reflection
from interfaces, which leads to correlated shear and compressional displacement. So
one may wonder if a detailed calculation of the problem including scattering effects
yields different numerical factors due to partial cancellation or coherent enhancement
of gravity perturbations. This problem will be solved now and outlined in greater detail
since it is algebraically more complex. The calculation is based on an explicit solution
of the seismic field for a compressional wave incident on a spherical obstacle (Ying
and Truell 1956). The part of the seismic field that is produced by the spherical cavity
has spherical symmetry. Therefore, it can be written in the form:
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ξcav(r, t) = [∇φs(r ) + ∇ × (∇ × (ψs(r ) r ))]e−iωt (66)

Since the seismic field can be expressed in terms of scalar potentials, it is possible
to expand the incident plane wave according to Eq. (240). The outgoing scattered
field is then obtained by fulfilling the boundary conditions at the cavity walls. For
hollow cavities, the boundary condition states that the stress tensor produced by the
seismic field projected onto the cavity normal, which yields a vector known as traction,
must vanish (Aki and Richards 2009). In spherical coordinates, the potentials of the
scattered waves can be expanded according to

φs(r , cos(θ)) = ξ0

∞
∑

l=0

Al(a)h
(2)
l (kPr)Pl(cos(θ))

ψs(r , cos(θ)) = ξ0

∞
∑

l=0

Bl(a)h
(2)
l (kSr)Pl(cos(θ))

(67)

where kP, kS are the wave numbers of compressional and shear waves respectively, θ

is the angle between the direction of propagation of the scattered wave with respect
to the direction of the incident compressional wave, ξ0 is the displacement amplitude
of the incoming compressional wave, and the origin of the coordinate system lies at
the center of the cavity. The spherical Hankel functions of the second kind h

(2)
n (·) are

defined in terms of the spherical Bessel functions of the first and second kind as:

h(2)
n (x) ≡ jn(x) − iyn(x) (68)

The expansion or scattering coefficients Al , Bl need to be determined from boundary
conditions at the cavity surface, which was presented in detail in Ying and Truell
(1956). Here we just mention that for small cavities, i.e., in the Rayleigh-scattering
regime with {kP, kS} · a ≪ 1, the dependence of the scattering coefficients on the
cavity radius a is (kPa)3 or higher order.

In order to understand the gravity perturbations from shear and compressional com-
ponents, we consider bulk and surface contributions separately. The bulk contribution
of Eq. (46) assumes the form

δabulk(r0, t) = −Gρ0e−iωt

∫

V

dV
−k2

Pφs(r , cos(θ))

|r − r0|2
err0 , (69)

where we have used the fact that the P-wave potential obeys the Helmholtz equation:

(Δ + k2
P)φs(r ) = 0 (70)

According to Eq. (47), the surface contribution reads

δasurf(r0, t) = Gρ0

∫

dS
ξcav(r, t) · er

|r − r0|2
err0 (71)
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The last expression can be further simplified by making use of the identity

ξcav(r, t) · er =
(

∂rφs(r ) − 1

r
∂u

[

(1 − u2)∂uψs(r )
]

)

e−iωt (72)

with u ≡ cos(θ). If the gravity perturbations are to be calculated at the center r0 = 0

of the spherical cavity, then the integrals are easily evaluated by substituting powers of
cos(θ) according to the right-hand-side of Table 3, and making use of the orthogonality
relation in Eq. (236). We first outline the calculation for the bulk term. Identifying the
z-axis with the direction of propagation of the incoming wave, one obtains:

δaz
bulk(0, t) = 2πGρ0k2

Pe−iωt

∞
∫

a

dr

1
∫

−1

du u φs(r , u)

= 2πGρ0k2
Pe−iωtξ0

∞
∑

l=0

Al(a)

∞
∫

a

dr h
(2)
l (kPr)

1
∫

−1

du P1(u)Pl(u)

= 4π

3
Gρ0k2

Pξ0 A1(a)e−iωt

∞
∫

a

dr h
(2)
1 (kPr)

= 4π

3a
Gρ0ξ0 A1(a)e−iωt (kPa)h

(2)
0 (kPa) (73)

The perturbations along x, y vanish. Also the surface contribution is readily obtained
with integration by parts:

δaz
surf (0, t)

= −2πGρ0ξ0e−iωt

1
∫

−1

du u

(

∂rφs − 1

a
∂u

[

(1 − u2)∂uψs

]

)

r=a

= −2πGρ0ξ0e−iωt

1
∫

−1

du

(

P1(u)(∂rφs) + 2

a
P1(u)ψs

)

r=a

= −2πGρ0ξ0e−iωt

∞
∑

l=0

1
∫

−1

du

(

Al(a)(∂r h
(2)
l (kPr))r=a +

2Bl(a)h
(2)
l (kSa)

a

)

P1(u)Pl(u)

= 4π

3a
Gρ0ξ0e−iωt

(

A1(a)(2h
(2)
1 (kPa) − (kPa)h

(2)
0 (kPa)) − 2B1(a)h

(2)
1 (kSa)

)

(74)

Again, perturbations along x, y vanish. Adding the bulk and surface contributions,
we finally obtain
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δaz(0, t) = 8π

3a
Gρ0ξ0e−iωt

(

A1(a)h
(2)
1 (kPa) − B1(a)h

(2)
1 (kSa)

)

(75)

This expression can be evaluated in the Rayleigh regime {kP, kS} · a ≪ 1 using the
following approximations of the scattering coefficients A1(a), B1(a) given in Ying
and Truell (1956):

A1(a) = i

3kP
(kPa)3

[

1 − 1

45

(

11(kPa)2 + 15(kSa)2
)

]

B1(a) = i

3kS
(kSa)3

[

1 − 1

18

(

5(kPa)2 + 6(kSa)2
)

]

(76)

δaz(0, t) = 4π

9
Gρ0ξ0e−iωt

(

(kSa)2 − 16(kPa)2

15

)

(77)

This solution needs to be added to the contribution in Eq. (61) from the unperturbed
incident wave. The gravity perturbation associated with the scattered waves is in
phase with the perturbation from the incoming compressional wave. The perturbation
in Eq. (77) vanishes in the limit a → 0, which may seem intuitive, but notice that
the surface contribution of the incoming wave does not vanish in the same limit.
Instead, it is a consequence of perfect cancellation of leading order terms from scattered
shear and compressional waves. Therefore, this result shows explicitly that neglecting
contributions from scattered waves has no influence on leading order terms of the full
gravity perturbation, at least if the incident wave is of compressional type.

3.3.3 Incident shear wave

The calculation of the seismic field scattered from a spherical cavity with incident
shear-wave can be found in Korneev and Johnson (1996). Although it is in principle
possible to solve this problem in terms of scalar seismic potentials, we choose to rep-
resent the fields directly in vector form using vector spherical harmonics. We assume
that the polarization vector of the incident shear wave is ex , while the propagation
direction is along ez . The explicit expression of the incident field is given in Eq. (257).
The scattered field can be expanded according to

ξs(r, t) = ξ0e−iωt
∑

l,m

(

ylm(r)Ym
l (θ, φ) + slm(r)Ψ m

l (θ, φ) + plm(r)Φm
l (θ, φ)

)

(78)
We will not further specify the radial functions. The expressions can be found in
Korneev and Johnson (1996) (after converting their vector spherical harmonics into
the ones used here). As for the incident P-wave, we will carry out the calculation of the
gravity perturbations at the center of the cavity. Let us first calculate the bulk integral
of Eq. (46), using the divergence relations in Eq. (255) and the integral Eq. (253):
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δabulk(0, t)

= −Gρ0

∫

V

dV
∇ · ξ(r, t)

r2
er

= −Gρ0ξ0e−iωt

∞
∫

a

dr

∫

dΩ
∑

l,m

(

∇ · (ylm(r)Ym
l (θ, φ)) + ∇ · (slm(r)Ψ m

l (θ, φ))
)

er

= −Gρ0ξ0e−iωt

∞
∫

a

dr

∫

dΩ
∑

l,m

(

∂r ylm(r) + 2

r
ylm(r) −

√
l(l + 1)

r
slm(r)

)

Ym
l (θ, φ)

= −Gρ0ξ0e−iωt

∞
∫

a

dr

√

2π

3

(

(Y −1
1 (r) − Y

1
1 (r))ex − i(Y −1

1 (r)

+Y
1

1 (r))ey +
√

2Y
0

1 (r)ez

)

= −Gρ0ξ0e−iωt

√

2π

3
ex

∞
∫

a

dr(Y −1
1 (r) − Y

1
1 (r))

(79)
where the term in brackets in the third line was defined as Y

m
l (r). The last equation

follows from the definition of the coefficients ylm, slm in Eq. (C.2) of Korneev and
Johnson (1996), but it should also be clear from symmetry considerations that gravity
perturbation can be non-zero only along the displacement direction of the incident
wave. The term under the last integral takes the form

Y
−1

1 (r) − Y
1

1 (r) = −1

r

√
6π(kPr)aSP

1 h
(2)
1 (kPr) (80)

The scattering coefficient aSP
1 corresponds to the relative amplitude of the l = 1

scattered P-wave to the l = 1 amplitude of the incident S-wave. It can be calculated
using equations from Korneev and Johnson (1996) (note that the explicit solutions
given in the appendix are wrong). Inserting this expression into the last equation, we
finally obtain

δabulk(0, t) = 2πGρ0ξ0e−iωt aSP
1 h

(2)
0 (kPa)ex (81)

This result is very similar to Eq. (73), just that the scattering coefficients are defined
slightly differently. We can now repeat the exercise for the surface term:

δasurf(0, t) = Gρ0

∫

dS
n(r) · ξ(r, t)

r2 er

= −Gρ0

∫

dΩ(er · ξ(r = a, θ, φ, t))er

= −Gρ0ξ0e−iωt

√

2π

3
((y1,−1(a) − y1,1(a))ex − i(y1,−1(a)

+ y1,1(a))ey +
√

2y1,0(a)ez)
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= −Gρ0ξ0e−iωt

√

2π

3
(y1,−1(a) − y1,1(a))ex

= −Gρ0ξ0e−iωt 2π

(

aSP
1

kPa
(−2h

(2)
1 (kPa) + (kPa)h

(2)
0 (kPa))

−2bSS
1

kSa
h

(2)
1 (kSa)

)

ex (82)

As in Sect. 3.3.1, the surface term contains P-wave contributions quantified by the
scattering coefficient aSP

1 , and S-wave contributions quantified by bSS
1 . Again, the

result is formally very similar to Eq. (74) with incident P-wave. Adding the surface
and bulk term, we finally obtain

δa(0, t) = 4πGρ0ξ0e−iωt

(

aSP
1

kPa
h

(2)
1 (kPa) + bSS

1

kSa
h

(2)
1 (kSa)

)

ex (83)

In the Rayleigh-scattering regime, kPa ≪ 1 and kSa ≪ 1, the scattering coefficients
can be expanded according to

aSP
1 (a) = −2i

9
(kPa)3

[

1 − 1

18

(

5(kPa)2 + 6(kSa)2
)

]

bSS
1 (a) = 2i

9
(kSa)3

[

1 − 1

40

(

20(kPa)2 + 87(kSa)2
)

] (84)

Note that the explicit expressions for the scattering coefficients in the appendix of
Korneev and Johnson (1996) are wrong. However, since the equations in the main part
of the paper are correct, it is straight-forward to recalculate the scattering coefficients.
Finally, we can write down the gravity perturbation in the Rayleigh-scattering regime

δa(0, t) = 4π

9
Gρ0ξ0e−iωt

(

2

3
(kPa)2 − 7

10
(kSa)2

)

ex (85)

This completes our analysis of scattering effects on gravity perturbations. We found
that waves scattered from a spherical cavity with incident P-waves and S-waves have
negligible impact on gravity perturbations if the cavity radius is much smaller than
the length of seismic waves. The gravity change according to Eqs. (77) and (85) is
quadratic in the cavity radius a. In addition, the gravity perturbation from scattered
waves is in phase with gravity perturbations of the incident wave (in the Rayleigh-
scattering regime), which is beneficial for coherent noise cancellation, if necessary.

3.4 Gravity perturbations from seismic waves in a homogeneous half space

In this section, the gravity perturbation produced by plane seismic waves in a homo-
geneous half space will be calculated. The three types of waves that will be considered

123



6 Page 42 of 154 J. Harms

are compressional, shear, and Rayleigh waves. Reflection of seismic waves from the
free surface will be taken into account. The purpose is to provide equations that can be
used to estimate seismic Newtonian noise in GW detectors below and above surface.
For underground detectors, corrections from the presence of a cavity will be neglected,
but with the results of Sect. 3.3, it is straight-forward to calculate the effect of a cavity
also for the half-space problem.

3.4.1 Gravity perturbations from body waves

As a first step, we will calculate the gravity perturbation from plane shear and com-
pressional waves without taking reflection from the free surface into account. The
compressional wave has the form in Eq. (30), and the perturbation of the gravity
potential above surface integrated over the half space and including the surface con-
tribution is found to be

δφP(r, t) = −2πGρ0ξ
P
0 ei(k̺ ·̺−ωt)e−k̺h 1

ikP , (86)

with h being the height of the point r above surface, ̺ being the projection of r

onto the surface, and k̺ being the horizontal wave vector (omitting superscript ’P’
to ease notation). The solution above surface can be understood as pure surface term
characterized by an exponential suppression with increasing height. Also the phase
term is solely a function of horizontal coordinates. These are typical characteristics for
a surface gravity perturbation, and we will find similar results for gravity perturbations
from Rayleigh waves. Below surface, h reinterpreted as (positive valued) depth, the
solution reads

δφP(r, t) = −2πGρ0ξ
P
0 e−iωt 1

ikP

(

2eikP·r − e−k̺heik̺·̺
)

(87)

It consists of a surface term with exponential suppression as a function of depth, and of
the infinite-space solution of Eq. (55). If the point r is at the surface (h = 0), then the
total half-space gravity perturbation is simply half of the infinite-space perturbation.

The calculation is substantially easier for shear waves. Shear waves being transver-
sal waves can have two different orthogonal polarizations. If the displacement is
parallel to the free surface, then the polarization is called SH, otherwise it is called
SV. An SH polarized wave cannot produce gravity perturbation, since shear waves do
not produce density perturbations inside media, and SH waves also do not displace
the surface along its normal. Gravity perturbations can be produced by SV waves
through surface displacement. The result valid for gravity perturbations underground
and above surface is

δφSV(r, t) = 2πGρ0ξ
SV
0 ei(k̺ ·̺−ωt)e−k̺h 1

kS , (88)

where h is the distance to the surface. These solutions can now be combined to calculate
the gravity perturbation from an SV or P wave reflected from the surface. An incident
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compressional wave is partially converted into an SV wave and vice versa. Only waves
with the same horizontal wave vector k̺ couple at reflection from a flat surface (Aki
and Richards 2009). Therefore, the total gravity perturbation above surface in the case
of an incident compressional wave can be written

δφP(r, t) = −2πGρ0ξ
P
0 ei(k̺ ·̺−ωt)e−k̺h 1

ikP

(

(1 + PP(k̺)) − i
kP

kS PS(k̺)

)

(89)

The conversion of amplitudes is described by two reflection coefficients PP(k̺),

PS(k̺), as functions of the horizontal wave number. Their explicit form can for exam-
ple be found in Aki and Richards (2009), which leads to the gravity perturbation

δφP(r, t) = −2πGρ0ξ
P
0 ei(k̺·̺−ωt)e−k̺h 1

ikP δ(ν, k̺)

δ(ν, k̺) ≡
8k2

̺kP
z kS

z − i4k̺kP
z ((kS)2 − 2k2

̺)

((kS)2 − 2k2
̺)2 + 4k2

̺kP
z kS

z

(90)

The gravity perturbation vanishes for horizontally and vertically propagating incident
P-waves: the total P-wave contribution proportional to 1+PP(k̺) vanishes because of
interference of the incident and reflected P-wave, while there is no conversion PS(k̺)

from P to S-waves for these two angles. The gravity amplitude δ(·) depends on the
Poisson’s ratio, and the angle of incidence of the P-wave. Its absolute value is plotted in
Fig. 10 for three different angles of incidence 10◦, 45◦, 80◦ of the P-wave with respect
to the surface normal. Important to note is that above surface, the gravity perturbation
produced by shear and body waves assumes the form of a surface density perturbation
with exponential suppression as a function of height above ground, determined by the
horizontal wavenumber. The expression for an incident S-wave can be constructed
analogously.

3.4.2 Gravity perturbations from Rayleigh waves

The results for body waves can be compared with gravity perturbations from funda-
mental Rayleigh waves. There are two options to calculate the gravity perturbation.
One is based on a representation of the Rayleigh wave in terms of seismic potentials
(explicit expression can be found in Novotný 1999), and using the last line in Eq. (54).
In the following, we choose to calculate gravity based on the displacement field since
it is more intuitive, and not significantly more difficult. The Rayleigh displacement
field can be written as (Hassan and Nagy 1998)

ξ(r, t) = ξk(r, t)ek + ξz(r, t)ez

ξk(r, t) = i
(

H1eh1z + H2eh2z
)

ei(k̺·̺−ωt)

= iH(z)ei(k̺ ·̺−ωt)

ξz(r, t) =
(

V1ev1z + V2ev2z
)

ei(k̺ ·̺−ωt)

= V (z)ei(k̺ ·̺−ωt)

(91)
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The parameters Hi , Vi , hi , vi are real numbers, see Eq. (39), and so there is a constant
90◦ phase difference between horizontal and vertical displacement leading to elliptical
particle motion. The surface displacement and the density change inside the medium
caused by the Rayleigh wave lead to gravity perturbations. The surface contribution
valid below and above ground is given by

δφsurf(r0, t) = −Gρ0V (0)ei(k̺ ·̺0−ωt)

∫

dS
eik̺̺ cos(φ)

√

̺2 + h2

= −2πGρ0(V1 + V2)e
−hk̺ ei(k̺ ·̺0−ωt) (92)

As before, the distance of the test mass to the surface is denoted by h. The density
perturbations in the ground are calculated from the divergence of the Rayleigh-wave
field:

∇ · ξ(r, t) = (−k̺ H(z) + V ′(z))ei(k̺ ·̺−ωt), (93)

and therefore the bulk contribution to the gravity perturbation above surface reads:

δφbulk(r0, t) = Gρ0ei(k̺ ·̺0−ωt)

∫

dV
(−k̺ H(z) + V ′(z))eik̺ cos(φ)

√

̺2 + (h − z)2

= 2πGρ0ei(k̺ ·̺0−ωt) 1

k̺

0
∫

−∞

dz(−k̺ H(z) + V ′(z))e−(h−z)k̺ (94)

Inserting the definitions of H(z), V (z) from Eq. (91) into the last equation, we finally
obtain

δφbulk(r0, t) = 2πGρ0e−hk̺ ei(k̺ ·̺0−ωt) 1

k̺

×
[

− k̺ H1

h1 + k̺

− k̺ H2

h2 + k̺

+ v1V1

v1 + k̺

+ v2V2

v2 + k̺

]

(95)

Adding bulk and surface contributions, one obtains the full gravity perturbation from
a Rayleigh wave above surface:

δφsurf(r0, t) + δφbulk(r0, t)

= −2πGρ0e−hk̺ ei(k̺ ·̺0−ωt)

[

H1

h1 + k̺

+ H2

h2 + k̺

+ V1

v1 + k̺

+ V2

v2 + k̺

]

= −2πGρ0 Ae−hk̺ ei(k̺ ·̺0−ωt)(1 − ζ(k̺)),

(96)
where in the last line the parameters Hi , Vi , hi , vi have been substituted by the
expressions in Eq. (39) for fundamental Rayleigh waves. The gravity perturbation
underground contains an additional contribution from the compressional-wave content
of the Rayleigh field:
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δφsurf(r0, t) + δφbulk(r0, t) = 2πGρ0 Aei(k̺ ·̺0−ωt)
(

−2e−hqP
z + (1 + ζ(k̺))e−hk̺

)

,

(97)
where qP

z is the vertical wavenumber of evanescent compressional waves defined in
Sect. 3.1, and h is the depth of the test mass. Contributions from a cavity wall need
to be added, which is straight-forward at least for a very small cavity, by using results
from Sect. 3.3.1 and amplitudes of shear and compressional waves dependent on depth
as given in Eq. (39).

Comparing with Eq. (90), one can see that the analytical expressions of gravity
perturbations above ground produced by incident compressional waves or by Rayleigh
waves are very similar. Only the wavenumber-dependent amplitude term, either in
the form of wave-reflection coefficients or Rayleigh-wave amplitude coefficients, is
different. In order to plot the results, it is convenient to substitute the amplitude A by
vertical surface displacement:

A = ξz(0, 0)

qP
z − k̺ζ(k̺)

(98)

Inserting this expression into Eq. (96), and applying the gradient operator to both sides
of the equation (which yields an expression for δa(r0, t)), we obtain a unit-less factor
that depends on the elastic properties of the half-space:

γ (ν) = k̺(1 − ζ(k̺))

qP
z − k̺ζ(k̺)

. (99)

The wavenumbers of shear, compressional, and Rayleigh waves all have fixed pro-
portions determined by the Poisson’s ratio ν of the half-space medium (see Sect. 3.1).
Therefore, γ itself is fully determined by ν. A plot of γ (ν) is shown in Fig. 10. The
maximum value of γ (ν) is equal to 1, which also corresponds to the case of gravity
perturbations from pure surface displacement. This means that the density perturba-
tions generated by the Rayleigh wave inside the medium partially cancel the surface
contribution for ν < 0.5.

Fig. 10 Gravity amplitudes for a
medium with free, flat surface as
functions of the Poisson’s ratio.
The solid line shows the gravity
amplitude for Rayleigh waves,
whereas the dashed lines show
the gravity amplitudes for
incident P-waves for three
different angles of incidence:
10◦, 45◦, 80◦ with increasing
dash length
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3.5 Numerical simulations

Numerical simulations have become an important tool in seismic Newtonian-noise
modelling. There are two types of numerical simulations. The first will be called
“kinematic” simulation. It is based on a finite-element model where each element is
displaced according to an explicit, analytical expression of the seismic field. These
can be easily obtained for individual seismic surface or body waves. The main work
done by the kinematic simulation is to integrate gravity perturbations from a complex
superposition of waves over the entire finite-element model according to Eq. (45).
Today, we have explicit expressions for all types of seismic waves produced by all
types of seismic sources, in infinite and half-space media. While this means in prin-
ciple that many interesting kinematic simulations can be carried out, some effects are
very hard to deal with. The kinematic simulation fails whenever it is impossible to
provide analytical expressions for the seismic field. This is generally the case when
heterogeneities of the ground play a role. Also deviations from a flat surface may
make it impossible to run accurate kinematic simulations. In this case, a “dynamical”
simulation needs to be employed.

A dynamical simulation only requires accurate analytical models of the seismic
sources. The displacement field evolves from these sources governed by equations
of motion that connect the displacement of neighboring finite elements. Even though
the dynamical simulation can be considered more accurate since it does not rely on
guessing solutions to the equations of motion, it is also true that not a single simu-
lation of Newtonian noise has been carried out so far that could not have been done
with a kinematic simulation. The reasons are that dynamical simulations are computa-
tionally very expensive, and constructing realistic models of the medium can be very
challenging. It is clear though dynamical simulations will play an important role in
future studies when effects from heterogeneities on gravity signals are investigated in
detail.

Since kinematic simulations are easy to set up from scratch, we will focus on
the discussion of dynamical simulations. Two tools have been used in the past for
Newtonian-noise simulations. The first one is the commercial software comsol. It
interfaces with Matlab, which facilitates analyzing sometimes complex results. Sim-
ulation results for a seismic field produced by a point force at the origin are shown in
Fig. 11.

The results were presented in Beker et al. (2010). A snapshot of the displacement
field is plotted on the left. The P-wavefront is relatively weak and has already passed
half the distance to the boundaries of the grid. Only a spherical octant of the entire
finite-element grid is shown. The true surface in this simulation is the upper face
of the octant. Consequently, a strong Rayleigh-wave front is produced by the point
force. Slightly faster than the Rayleigh waves, an S-wavefront spreads underground. Its
maximum is close to the red marker located underground. This seismic field represents
a well-known problem in seismology, the so-called Lamb’s problem, which has an
explicit time-domain solution (Richards 1979). The plots on the right show the gravity
perturbations evaluated at the two red markers. The P-wave, S-wave and Rf-wave
arrival times are tP, tS and tR respectively. The gravity perturbations are also divided
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Fig. 11 comsol simulation of gravity perturbation from seismic fields. The plot to the left shows a snapshot
of the displacement field produced by a step-function point source at the origin. The plots to the right show
the corresponding gravity perturbations evaluated at the two points marked in red in the left plot. Image
reproduced with permission from Beker et al. (2010); copyright by the authors

into contributions from density perturbations inside the medium according to Eq. (46)
and surface contributions according to Eq. (47).

A second simulation package used in the past is specfem3d. It is a free software that
can be downloaded at http://www.geodynamics.org/cig/software/specfem3d. It is one
of the standard simulation tools in seismology. It implements the spectral finite ele-
ment method (Komatitsch and Vilotte 1998; Komatitsch and Tromp 1999). Recently,
Eq. (45) has been implemented for gravity calculations (Harms et al. 2015). specfem3d

simulations typically run on computer clusters, but it is also possible to execute simple
examples on a modern desktop. Simulations of wave propagation in heterogeneous
ground and based on realistic source models such as shear dislocations are probably
easier to carry out with specfem3d than with commercial software. However, it should
be noted that it is by no means trivial to run any type of simulation with specfem3d,
and a large amount of work goes into defining a realistic model of the ground for
specfem3d simulations.

Nonetheless, this is the realm of dynamical simulations, and simplifying geological
models one should always check if a kinematic simulation can be used. An example
of a gravity simulation using specfem3d is shown in Fig. 12. The contour plots are
snapshots of the gravity field after 5 s of rupture on a strike-slip fault. The length of the
vertical fault is 30 km with hypocenter located 7.5 km underground. The plots show
the gravity perturbation on a horizontal plane that includes the hypocenter. Gravity
perturbations in the vicinity of the fault are dominated by the lasting gravity change.
The transient perturbation carried by seismic waves is invisible in these plots sim-
ply because of their small amplitudes compared to the lasting gravity change. An
explicit time-domain expression of the gravity field does not exist, but it could be
constructed with a kinematical simulation using the results of Sect. 4.4. In conclu-
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Fig. 12 specfem3d simulation of a strike-slip fault rupture. The gravity is evaluated on a horizontal plane
that includes the hypocenter

sion, while dynamical simulations are required to represent seismic fields in complex
geologies and surface topographies, one should always favor kinematic simulations
when possible. Kinematic simulations are faster by orders of magnitude facilitating
systematic studies of gravity perturbations.

3.6 Seismic Newtonian-noise estimates

The results of the analytical calculations can be used to estimate seismic Newtonian
noise in GW detectors above surface and underground. The missing steps are to convert
test-mass acceleration into gravity strain, and to understand the amplitudes of pertur-
bation as random processes, which are described by spectral densities (see Sect. 5).
For a precise noise estimate, one needs to measure the spectrum of the seismic field, its
two-point spatial correlation or anisotropy. These properties have to be known within
a volume of the medium under or around the test masses, whose size depends on the
lengths of seismic waves within the relevant frequency range. Practically, since all
these quantities are then used in combination with a Newtonian-noise model, one can
apply simplifications to the model, which means that some of these quantities do not
have to be known very accurately or do not have to be known at all. For example, it
is possible to obtain good Newtonian-noise estimates based on the seismic spectrum
alone. All of the published Newtonian-noise estimates have been obtained in this way,
and only a few conference presentations showed results using additional information
such as the anisotropy measurement or two-point spatial correlation. In the following,
the calculation of Newtonian-noise spectra is outlined in detail.

3.6.1 Using seismic spectra

We start with the simplest approach based on measured spectra of the ambient seis-
mic field, all other quantities are represented by simple analytical models. At the
LIGO Hanford site, it was found by array measurements that the main contribution to
the vertical seismic spectrum at frequencies relevant to Newtonian noise comes from
Rayleigh waves (Driggers 2012). Even if the wave composition of a seismic field at
a surface site is unknown, then it would still be reasonable to assume that Rayleigh
waves dominate the vertical spectrum since they couple most strongly to surface or
near-surface sources (Mooney 1976; Bonnefoy-Claudet et al. 2006). We emphasize
that this only holds for the vertical displacement since horizontal displacement can
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contain strong contributions from Love waves, which are shear waves with purely hor-
izontal displacement trapped in surface layers. This means that we can use Eq. (96) to
obtain an estimate of seismic Newtonian noise. We first rewrite it to give the Cartesian
components of gravity acceleration:

δa(r0, t) = 2πGρ0ξze−hk̺ ei(k̺ ·̺0−ωt)γ (ν)

⎛

⎝

i cos(φ)

i sin(φ)

−1

⎞

⎠ (100)

where φ is the angle of propagation with respect to the x-axis. Note that all three
components of acceleration are determined by vertical surface displacement. This
is possible since vertical and horizontal displacements of Rayleigh waves are not
independent. As we will argue in Sect. 7, expressing Newtonian noise in terms of
vertical displacement is not only a convenient way to model Newtonian noise, but it
is also recommended to design coherent cancellation schemes at the surface based
on vertical sensor data, since horizontal sensor data can contain contributions from
Love waves, which do not produce Newtonian noise. Hence, horizontal channels are
expected to show lower coherence with Newtonian noise. Assuming that the Rayleigh-
wave field is isotropic, one can simply average the last equation over all propagation
directions. The noise spectral density of differential acceleration along a baseline of
length L parallel to the x-axis reads

S(δa(Lex ) − δa(0);ω) =
(

2πGρ0e−hk̺γ (ν)
)2

S(ξz;ω)
⎛

⎝

1 − 2J0(k̺L) + 2J1(k̺L)/(k̺L)

1 − 2J1(k̺L)/(k̺L)

2 − 2J0(k̺L)

⎞

⎠ (101)

The vector contains the three direction-averaged response functions of horizontal and
vertical gravity perturbations. Rayleigh Newtonian noise in one direction is uncor-
related with Newtonian noise in the other two directions independent of the value
of L . Introducing λR ≡ 2π/k̺, the response functions, i.e., the square roots of the
components of the vector in Eq. (101), divided by L/λR are shown in Fig. 13.

Fig. 13 Strain response to
Rayleigh gravity perturbations.
The solid curve shows the
horizontal response for gravity
perturbations along the line of
separation, the dotted curve the
horizontal response for
perturbations perpendicular to
the line of separation, and the
dashed curve for perturbations in
vertical direction
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Fig. 14 Histograms of seismic spectra at the central station of the Virgo detector and modelled Rayleigh-
wave Newtonian noise. A sensitivity model of the Advanced Virgo detector is plotted for comparison.
(Seismic data stem from channel SEBDCE06 between June 4, 2011, UTC 00:00 and September 3, 2011,
UTC 00:00.)

Gravity perturbations at the two locations x = {0, L}, y = z = 0 are uncorre-
lated for sufficiently large distances, and therefore the strain response decreases with
increasing L . In other words, increasing the length of large-scale GW detectors would
decrease Newtonian noise. Rayleigh Newtonian noise is independent of L for short
separations. This corresponds to the regime relevant to low-frequency GW detectors
(Harms et al. 2013). Equation (101) is the simplest possible seismic surface Newtonian-
noise estimate. Spatial correlation of the isotropic seismic field is fully determined by
the fact that all seismic waves are assumed to be Rayleigh waves. Practically one just
needs to measure the spectral density of vertical surface displacement, and also an esti-
mate of the Poisson’s ratio needs to be available [assuming a value of ν = 0.27 should
be a good approximation in general (Zandt and Ammon 1995)]. In GW detectors, the
relevant noise component is along the x-axis. Taking the square-root of the expression
in Eq. (101), and using a measured spectrum of vertical seismic motion, we obtain the
Newtonian-noise estimate shown in Fig. 14. Virgo’s arm length is L = 3000 m, and
the test masses are suspended at a height of about h = 1 m (although, it should be
mentioned that the ground is partially hollow directly under the Virgo test masses).
In order to take equal uncorrelated noise contributions from both arms into account,
the single-arm strain noise needs to be multiplied by

√
2. The seismic spectrum falls

approximately with 1/ f in units of m/s/
√

Hz within the displayed frequency range,
which according to Eq. (101) means that the Newtonian-noise spectrum falls with
1/ f 4 (two additional divisions by f from converting differential acceleration noise
into differential displacement noise, and another division by f from converting the
seismic spectrum into a displacement spectrum). Note that the knee frequency of the
response curve in Fig. 13 lies well below the frequency range of the spectral plots,
and therefore does not influence the frequency dependence of the Newtonian-noise
spectrum.

Since seismic noise is non-stationary in general, and therefore can show relatively
large variations in spectra, it is a wise idea to plot the seismic spectra as histograms
instead of averaging over spectra. The plots can then be used to say for example that
Newtonian noise stays below some level 90% of the time (the corresponding level
curve being called 90th percentile). In the shown example, a seismic spectrum was
calculated each 128 s for 7 days. Red colors mean that noise spectra often assume
these values, blue colors mean that seismic spectra are rarely observed with these
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Fig. 15 Histograms of seismic spectra at the central station of the LIGO Livingston detector and modelled
Rayleigh-wave Newtonian noise. In the left plot, the dashed black curves are the global seismic high-noise
and low-noise models. The white curves are the 10th, 50th, and 90th percentiles of the histogram. In the
right plot, a sensitivity model of the Advanced LIGO detector is plotted for comparison. (Seismic data
stem from channel L0:PEM-LVEA_SEISZ between August 1, 2009, UTC 00:00 and August 1, 2010,
UTC 00:00

values. No colors mean that a seismic spectrum has never assumed these values within
the 7 days of observation. Interesting information can be obtained in this way. For
example, it can be seen that between about 11–12 Hz a persistent seismic disturbance
increases the spectral variation, which causes the distribution to be wider and therefore
the maximum value of the histogram to be smaller.

Generally, seismic spectra at the Virgo and LIGO sites show a higher grade of
stationarity above 10 Hz than at lower frequencies. For example, between 1 Hz and
10 Hz, seismic spectra have pronounced diurnal variation from anthropogenic activity,
and between 0.05 Hz and 1 Hz seismic spectra follow weather conditions at the oceans.
These features are shown in Fig. 15. The white curves mark the 10th, 50th and 90th
percentiles of the histogram. The histogram is based on a full year of 128 s spectra.
Strong disturbances during the summer months from logging operations near the site
increase the width of the histogram in the anthropogenic band. In general, a 90th
percentile curve exceeding the global high-noise model is almost certainly a sign of
anthropogenic disturbances. At lowest frequencies, strong spectra far above the 90th
percentile are frequently being observed due to earthquakes. Additional examples of
Newtonian-noise spectra evaluated in this way can be found in Driggers et al. (2012b)
and Beker et al. (2012).

3.6.2 Corrections from anisotropy measurements

Anisotropy of the seismic field can be an important factor in Newtonian-noise mod-
elling. According to Eq. (96), Rayleigh waves that propagate perpendicularly to the
relevant displacement direction of a test mass (which is along the arm of a GW detec-
tor), do not produce Newtonian noise. The chances of the Rayleigh-wave field to
show significant anisotropy at Newtonian-noise frequencies are high since the domi-
nant contribution to the field comes from nearby sources, probably part of the detector
infrastructure. At one of the end stations of the LIGO Hanford detector, an array of 44
vertical seismometers was used to show that indeed the main seismic source of waves
around 10 Hz lies in the direction of an exhaust fan (Harms 2013). Coincidentally, this
direction is almost perpendicular to the direction of the detector arm.

123



6 Page 52 of 154 J. Harms

0 2000 4000 6000 8000

−150

−100

−50

0

50

100

150

A
z
im

u
th

, 
1

0
H

z
 [
d

e
g

]

Time [s]
6 7 8 9 10 20 30

0.1

1

Frequency [Hz]

A
n
is

o
tr

o
p
y
: 
N

N
 s

u
p
p
re

s
s
io

n

Fig. 16 Anisotropy of the Rayleigh-wave field at 10 Hz and Newtonian-noise suppression of a single test
mass

Figure 16 shows the anisotropy measurement at 10 Hz and Newtonian-noise sup-
pression of a single test mass obtained from anisotropy measurements over a range of
frequencies. The seismic array was used to triangulate the source of dominant seismic
waves over a period of a few hours. As shown in the left plot of Fig. 16, the waves
at 10 Hz almost always come from a preferred direction approximately equal to 100◦.
The same is true at almost all frequencies between 5 Hz and 30 Hz. Using the mean
azimuth of waves within this range of frequencies, the Newtonian-noise suppression
was calculated using Eq. (100) inserting the mean azimuth at each frequency as direc-
tion of propagation φ of the Rayleigh waves. An azimuth of 90◦ corresponds to a
direction perpendicular to the arm, which means that one expects Newtonian noise to
be lower compared to the isotropic case. The suppression factor is plotted on the right
of Fig. 16 with a typical value of about 2. If the situation is the same at the other end
station at LIGO Hanford (which is a reasonable assumption, also for the Livingston
site), and conservatively assuming that the field is isotropic in the central station, then
Newtonian noise would be reduced overall by about a factor

√
2.

3.6.3 Corrections from two-point spatial correlation measurements

A calculation of Newtonian noise based on seismic two-point spatial correlation was
first presented in Beker et al. (2011). In this section, we will outline the main part of
the calculation focussing on gravity perturbations of a single test mass. The goal is to
provide the analytical framework to make optimal use of array data in Newtonian-noise
estimation. We will also restrict the analysis to surface arrays and Rayleigh waves. It is
straightforward though to extend the analysis to 3D arrays, and as explained below, it is
also in principle possible to integrate contributions from other wave types. Assuming
that surface displacement is dominated by Rayleigh waves, the most general form of
the single test-mass surface gravity perturbation is given by

S(δax ; ̺, ω) = (2πGρ0γ (ν))2
∫

d2k

(2π)2

d2k′

(2π)2 S(ξz; k̺, k′
̺, ω)

kx

k̺

k′
x

k ′̺ e−hk̺ e−hk′
̺ ei̺·(k̺−k′

̺) (102)
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If the Rayleigh field is homogeneous, then the last equation can be simplified to

S(δax ;ω) = (2πGρ0γ (ν))2
∫

d2k

(2π)2 S(ξz; k̺, ω)
k2

x

k2
̺

e−2hk̺ (103)

If in addition the field is isotropic, one obtains

S(δax ;ω) = (2πGρ0γ (ν))2 1

4π

∞
∫

0

dk̺ k̺S(ξz; k̺, ω)e−2hk̺ (104)

Eq. (103) is probably the most useful variant since one should always expect that
isotropy does not hold, and at the same time, it is practically unfeasible to characterize
a seismic field that is inhomogeneous (corrections from inhomogeneities are proba-
bly minor as well). Nevertheless, the wavenumber spectra in all three equations can
be measured in principle with seismic arrays as Fourier transforms of two-point spa-
tial correlation measurements. In general, the correlation function and wavenumber
spectrum are related via

S(ξz; k̺, k′
̺, ω) =

∫

d2̺ d2̺′ C(ξz; ̺, ̺ ′, ω)e−i(̺·k̺−̺ ′·k′
̺) (105)

For a homogeneous field, we have

S(ξz; k̺, ω) =
∫

d2̺ C(ξz; ̺, ω)e−i̺·k̺ (106)

We can first insert this expression into Eq. (103), and integrate over wavenumbers
to obtain the Newtonian noise spectrum in terms of the two-point spatial correlation
C(ξz; ̺, ω) of the seismic field:

S(δax ;ω) = (2πGρ0γ (ν))2 1

2π

∫

d2̺

[

x2

̺2

2h
(

(2h)2 + ̺2
)3/2

+ y2 − x2

̺4

(

1 − 2h
(

(2h)2 + ̺2
)1/2

)]

C(ξz; ̺, ω) (107)

For isotropic and homogeneous fields, the wavenumber spectrum can be calculated as

S(ξz; k̺, ω) = 2π

∞
∫

0

d̺ ̺J0(k̺̺)C(ξz; ̺, ω) (108)

Together with Eq. (104), we can express the gravity spectrum in terms of the isotropic
two-point correlation:
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Fig. 17 Newtonian-noise kernel
for isotropic, homogeneous
Rayleigh fields. The dashed line
is the kernel in wavenumber
domain, Eq. (104), the solid line
is the kernel in coordinate space,
Eq. (109)
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S(δax ;ω) = (2πGρ0γ (ν))2 1

2

∞
∫

0

d̺
2h̺

(

(2h)2 + ̺2
)3/2 C(ξz; ̺, ω) (109)

This result can also be obtained directly from Eq. (107) by integrating over the
azimuth. The fraction inside the integral can be understood as the kernel of an inte-
gral transformation of the spatial correlation function with the two variables ̺, h. For
vanishing test-mass height h, the kernel is to be substituted by the Delta-distribution
δ(̺). This means that for negligible test-mass height, the gravity perturbation from
a homogeneous and isotropic field is determined by the seismic spectral density
S(ξz;ω) = C(ξz; 0, ω).

Eq. (109) also states that for a homogeneous, isotropic field, the values of ̺ that
are most relevant to the Newtonian-noise estimate lie around ̺ =

√
2h where the

kernel assumes its maximum. The kernel is plotted as solid curve in Fig. 17. For
example, LIGO test masses are suspended 1.5 m above ground. Spatial correlation
over distances much longer than 5 m are irrelevant to estimate Newtonian noise at the
LIGO sites from homogeneous and isotropic fields. Consequently a seismic experiment
designed to measure spatial correlations to improve Newtonian-noise estimates does
not need to cover distances longer than this. Of course, in reality, fields are neither
homogeneous nor isotropic, and seismic arrays should be designed conservatively so
that all important features can be observed. The kernel of the integral transform in
Eq. (104) is a function of the variables k̺, h with maximum at k̺ = 1/(2h). It is
displayed in Fig. 17 as dashed curve. The behavior of the two kernels with changing h

is intuitive. The higher the test mass above ground, the larger the scales of the seismic
field that dominate the gravity perturbation, which means larger values of ̺ and smaller
values of k̺. Kernels in higher dimension can also be calculated for homogeneous
seismic fields, and for the general case. The calculation is straightforward and will not
be presented here.

The isotropic, homogeneous case is further illustrated for the Rayleigh field. A
homogeneous, isotropic Rayleigh wave field has a two-point spatial correlation given
by (Driggers et al. 2012b)

C(ξz; ̺, ω) = S(ξz;ω)J0(k
R
̺ ̺), (110)
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Fig. 18 Wavenumber spectra measured at the LIGO Hanford site using a 44 seismometer array.
The white circles with decreasing radius mark wave speeds of 100 m/s, 250 m/s, 500 m/s and
1000 m/s. (The data of the LIGO Hanford array are stored in LIGO channels H2:PEM-EY_AUX_

NNARRAY_ACC_{1-44}_OUT_DQ. The plot uses 16 s starting from April 28, 2012, UTC 09:00.)

which gives rise to a wavenumber spectrum equal to

S(ξz; k̺, ω) = 2π S(ξz;ω)
δ(kR

̺ − k̺)

kR
̺

, (111)

where we used the closure relation in Eq. (232). According to Eq. (104) or (109), the
corresponding Newtonian noise of a single test mass is

SR(δax ;ω) =
(

2πGρ0e−hkR
̺ γ (ν)

)2 1

2
S(ξz;ω) (112)

This result is consistent with our previous solution (the limit L → ∞ of Eq. (101) is
twice as high). As mentioned already, in the form given here with the numerical factor
γ (ν), the results are strictly only valid for Rayleigh waves. Contributions from other
types of waves to C(ξz; ̺, ω) could potentially be integrated separately with different
numerical factors, but then one needs some prior information helping to distinguish
wave types in these spectra (e.g., based on estimated seismic speeds).

In Fig. 18, wavenumber spectra measured at the LIGO Hanford site are shown for
three different frequencies. The maxima in all three spectra correspond to Rayleigh
waves (since the corresponding speeds are known to be Rayleigh-wave speeds). How-
ever, the 50 Hz spectrum contains a second mode with significant amplitude that lies
much closer to the origin, which is therefore much faster than a Rayleigh wave. It
can only be associated with a body wave. One can now split the integration of this
map into two parts, one for the Rayleigh wave, and one for the body wave, using a
different numerical factor in each case. This can work, but with the information that
can be extracted from this spectrum alone, it is not possible to say what type of body
wave it is. So one can either study particle motion with three-axes sensors to char-
acterize the body wave further (which was not possible in this case since the array
consisted of vertical sensors only), or instead of γ (ν) < 1 one can use the conservative
numerical factor equal to 1 to calculate at least the corresponding gravity perturbation
from pure surface displacement. The latter method would neglect sub-surface density
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perturbations produced by a P-wave. It should be noted that one can obtain a model
independent estimate of Newtonian noise with a 3D array. The numerical factor γ (ν)

came from a calculation of sub-surface gravity perturbations based on surface dis-
placement. With information about the entire 3D displacement field, this step is not
necessary and the noise estimate becomes model independent and does not require
any other prior knowledge. An example of calculating Newtonian noise based on a
3D spatial correlation function is given in Sect. 5.2.

3.6.4 Low-frequency Newtonian-noise estimates

There are qualitative differences between low- and high-frequency Newtonian noise
that are worth being discussed more explicitly. First of all, we need to provide a
definition of what should be considered low frequencies. There are two length scales
relevant to Newtonian-noise estimates. The first is the size L of the GW detector. The
second is the depth h of the detector. In this section, we will consider the scenario
where both length scales are much shorter than the reduced length of seismic waves:
h, L ≪ λ/(2π). This should typically be the case below about 1 Hz.

If the detector is much smaller than the reduced wavelength, then gravity pertur-
bations along the same directions are significantly correlated over the extent of the
detector. We can see this by expanding Eq. (101) rewritten into units of strain accel-
eration for small L:

S((δaL − δa0)/L;ω) =
(

2πGρ0e−hk̺γ (ν)
)2

S(ξz;ω)
k2
̺

8

⎛

⎝

3
1
4

⎞

⎠ (113)

The next order is proportional to L2, and we recall that the test masses are separated
by L along the x-coordinate. The first important observation is that the strain noise is
independent of the detector size. The common-mode rejection of the differential accel-
eration, which is proportional to L2 with respect to noise power, exactly compensates
the 1/L2 from the conversion into strain. This also means that Newtonian-noise is
significantly weaker at low frequencies consistent with Fig. 13, which shows that
gravity gradient response saturates below some test-mass distance.

Next, we discuss the role of detector depths. It should be emphasized that Eq. (113)
is valid only above surface. As we have seen in Eq. (87), density changes below sur-
face give rise to additional contributions if the test mass is located underground. We
have not explicitly calculated these contributions for Rayleigh waves in this article.
The point that we want to make though is that if the length of the Rayleigh wave
is much longer than the depth of the detector, then the surface model in Eq. (113)
is sufficiently accurate. It can be used with the parameter h set to 0. This is not
only true for Newtonian noise from Rayleigh waves, but for all forms of seismic
Newtonian noise. It should be noted though that these conclusions are not gener-
ally true in the context of coherent Newtonian-noise cancellation. If a factor 1000
noise reduction is required (as predicted for low-frequency GW detectors, see Harms
et al. 2013), then much more detail has to be included into the noise models, to
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be able to predict cancellation performance. Here, not only the depth of the detec-
tor could matter, but also the finite thickness of the crust, the curvature of Earth,
etc.

Estimates of seismic Newtonian noise at low frequencies were presented with focus
on atom-interferometric GW detectors in Vetrano and Viceré (2013). The interesting
aspect here is that atom interferometers in general have a more complicated response
to gravity perturbations. A list of gravity couplings for atom interferometers can be
found in Dimopoulos et al. (2008). So while atom-interferometric GW detectors would
also be sensitive to gravity strain only, the response function may be more complicated
compared to laser interferometers depending on the detector design.

3.7 Summary and open problems

In this section on Newtonian noise from ambient seismic fields, we reviewed basic
analytical equations to calculate density perturbations in materials due to vibrations, to
calculate the associated gravity perturbations, and to estimate Newtonian noise based
on observations of the seismic field. Equations were given for gravity perturbations of
seismic body waves in infinite and half spaces, and for Rayleigh waves propagating
on a free surface. Newtonian noise above a half space can be fully characterized by
surface displacement, even for body waves. It was found that analytical expressions
for gravity perturbations from body and Rayleigh waves have the same form, just the
numerical, material dependent conversion factor between seismic and gravity ampli-
tudes has different values also depending on the propagation direction of a body wave
with respect to the surface normal. In practice, this means that prior information such
as seismic speeds of body waves is required to calculate gravity perturbations based
on surface data alone. Another important difference between body and Rayleigh grav-
ity perturbations is that the conversion factor has a material and propagation-direction
dependent complex phase in the body-wave case. This has consequences on the design
of a seismic surface array that one would use to coherently cancel the gravity pertur-
bations, which will be discussed further in Sect. 7.

Scattering of body waves from spherical cavities was calculated concluding that
gravity perturbations on a test mass inside a cavity are insignificantly affected by
seismic scattering from the cavity. Here, “insignificantly” is meant with respect to
Newtonian-noise estimates. In coherent noise cancellation schemes, scattering could
be significant if the subtraction goals are sufficiently high. An open problem is to
understand the impact of seismic scattering on gravity perturbations in heterogeneous
materials where scattering sources are continuously distributed. This problem was
studied with respect to its influence on the seismic field (Norris 1986; Liu et al. 2009),
but the effect on gravity perturbations has not been investigated yet.

We also showed that the calculation of simple Newtonian-noise estimates can be
based on seismic spectra alone, provided that one has confidence in prior information
(e.g., that Rayleigh waves dominate seismic noise). In general, seismic arrays help
to increase confidence in Newtonian-noise estimates. It was shown that either simple
anisotropy measurements or measurements of 2D wavenumber spectra can be used to
improve Newtonian-noise estimates. In this section, we did not discuss in detail the
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problem of estimating wavenumber spectra. Simply carrying out the Fourier trans-
form in Eq. (106) is prone to aliasing. A review on this problem is given in Krim and
Viberg (1996). Estimation of wavenumber spectra has also become an active field of
research in GW groups, using data from the LIGO Hanford array deployed between
April 2012 and February 2013, and the surface and underground arrays at the Sanford
Underground Research Facility, which are currently being deployed with data to be
expected in 2015. The problem of Newtonian-noise estimation using seismic arrays
needs to be separated though from the problem of Newtonian-noise cancellation. The
latter is based on Wiener filtering. From an information theory perspective, the Wiener
filtering process is easier to understand than the noise estimation since Wiener filters
are known to extract information from reference channels in an optimal way for the
purpose of noise cancellation (under certain assumptions). There is no easy way to
define a cost function for spectral estimation, which makes the optimal estimation of
wavenumber spectra rather a philosophical problem than a mathematical or physical
one. The optimal choice of analysis methods depends on which features of the seis-
mic field are meant to be represented most accurately in a wavenumber spectrum. For
example, some methods are based on the assumption that all measurement noise is
stationary and effectively interpreted as isotropic seismic background. This does not
have to be the case if the seismic field itself acts as a noise background for measure-
ments of dominant features of the field. Nonetheless, designs of seismic arrays used
for noise cancellation need to be based on information about wavenumber spectra.
Initially, array data are certainly the only reliable sources of information, but also
with Newtonian-noise observations, optimization of noise-mitigation schemes will be
strongly guided by our understanding of the seismic field.

4 Gravity perturbations from seismic point sources

In Sect. 3, we have reviewed our understanding of how seismic fields produce gravity
perturbations. We did, however, not pay attention to sources of the seismic field. In this
section, gravity perturbations will be calculated based on models of seismic sources,
instead of the seismic field itself. This can serve two purposes. First, a seismic source
can be easier to characterize than the seismic field itself, since characterization of a
seismic field requires many seismometers in general deployed in a 3D array configura-
tion. Second, in the context of geophysical observations, source models are essential to
infer source parameters. For example, it was suggested to promptly detect and charac-
terize fault ruptures leading to earthquakes using gravimeters and gravity gradiometers
(Chiba and Obata 1990; Harms et al. 2015; Juhel et al. 2018a). In this case, the anal-
ysis of gravity data from high-precision gravity gradiometers can be understood as a
new development in the field of terrestrial gravimetry. First observations of prompt
gravity perturbations from earthquakes have recently been achieved with gravimeters
(Montagner et al. 2016; Vallée et al. 2017). Such observations require clever filtering
of the data since otherwise seismic perturbations from oceanic microseisms mask the
underlying gravity signal. The signals were predicted based on a theory of co-seismic
gravity perturbations from fault rupture in infinite homogeneous media and homoge-
neous half spaces (Harms et al. 2015; Harms 2016), and longer observation times of at
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least a few tens of seconds were required. A new generation of high-precision gravity
gradiometers will make it possible to detect these signals within a few seconds (Juhel
et al. 2018a). The basics of modeling gravity fluctuations from seismic point sources
are provided in this chapter. The same formalism can be applied to point sources of
sound waves as shown in Sect. 5.3.

4.1 Gravity perturbations from a point force

Point forces can be a good model of various real sources such as vibrating engines
or impacts of small objects on ground. A point force is modeled as force density
according to

f(r, t) = F(t)e f δ(r ) (114)

with source function F(t) = 0 for t < 0, and e f being the normal vector pointing
along the direction of the force. Such a force generates a complicated seismic field
that is composed of a near field, and shear and compressional waves propagating in
the intermediate and far field (Aki and Richards 2009), all components with differ-
ent radiation patterns (explicit expressions for a point shear dislocation are given in
Sect. 4.2). However, Eq. (55) can be applied here, which means that we only need
to know the potential of compressional waves in infinite media to simply write down
the corresponding gravity perturbation. It is not too difficult to calculate the seismic
potential, but one can also find the solution in standard text books (Aki and Richards
2009). The solution for the perturbed gravity acceleration reads

δa(r0, t) = G

r3
0

(e f − 3(e f · er0)er0)

r0/α
∫

0

dτ τ F(t − τ)+ G

r0α2 (e f · er0)er0 F(t − r0/α)

(115)
with the source being located at the origin. This perturbation is based on the full seismic
field produced by the point force. The solution consists of a component proportional
to an integral over the source function, and another component proportional to the
retarded source function. At early times, when t < r0/α, i.e., when the seismic waves
produced by the source have not yet reached the location r0, the second term vanishes
while the integral can be rewritten as double time integral

t
∫

0

dτ τ F(t − τ) =
t
∫

0

dτ

τ
∫

0

dτ ′ F(τ ′) ≡ I2[F](t) (116)

The acceleration simplifies to

δa(r0, t) = G

r3
0

(e f − 3(e f · er0)er0)I2[F](t), for t < r0/α (117)

Interestingly, the early-time solution is independent of any geophysical parameters
such as ground density and seismic speeds (assuming that the ground is homogeneous).
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Fig. 19 Gravity perturbation
from a point force assumed to be
the only source of seismic noise,
and switching on at t = 0

The gravity perturbation from a point force can be used to model the contribution of
local sources to Newtonian noise based on a measured source time function F(t). In
this section, we use it to present another interesting result. It has often been conjectured
that a transient source of seismic vibrations would be a problem to coherent mitiga-
tion schemes since the gravity perturbation starts to be significant before any of the
seismometers can sense the first ground motion produced by this source. Therefore,
it would be impossible to coherently remove a significant contribution to Newtonian
noise using seismic data. Some evidence speaking against this conjecture was already
found in numerical simulations of approaching wavefronts from earthquakes (Harms
et al. 2009a), but there was no analytical explanation of the results. We can make
up for this now. Let us make the following Gedankenexperiment. Let us assume that
all seismic noise is produced by a single source. Let us assume that this source is
switched on at time t = 0. Before this time, the entire seismic field is zero. Now
the source starts to irradiate seismic waves. The waves do not reach the test mass
before t = r0/α, where r0 is the distance between the source and the test mass. The
situation is illustrated in Fig. 19. The dashed line marks the arrival of seismic waves.
From that time on, we have the usual Newtonian noise from ambient seismic fields.
Interesting however is what happens before arrival. The Newtonian noise is hardly
visible. Therefore, an inset plot was added to show gravity perturbations before wave
arrival. Not only is the rms of the gravity perturbation much lower, but as expected,
it evolves much slower than the Newtonian noise from ambient seismic fields. Equa-
tion (117) says that the source function is filtered by a double integrator to obtain the
gravity acceleration. Another double integrator needs to be applied to convert gravity
acceleration into test-mass displacement. Therefore, whatever the source function is,
and the corresponding source spectrum F(ω), gravity perturbations will be strongly
suppressed at high frequencies. Due to the transient character of this effect, it is diffi-
cult to characterize the problem in terms of Newtonian-noise spectra, but it should be
clear that a seismic source would have to be very peculiar (i.e., radiating very strongly
at high frequencies and weakly at low frequencies), to cause a problem to coherent
Newtonian-noise cancellation, without causing other problems to the detector such as
a loss of cavity lock due to low-frequency ground disturbances.
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Fig. 20 Definition of the
coordinate system used to
describe a point shear
dislocation

4.2 Density perturbation from a point shear dislocation in infinite homogeneous

media

In this subsection, we briefly review the known solution of the seismic field produced
by a shear dislocation. The shear dislocation is modelled as a double couple, which
consists of two perpendicular pairs of forces pointing against each other with infinites-
imal offset. The coordinate system used in the following is shown in Fig. 20. Its origin
coincides with the location of the shear dislocation, with the z-axis being parallel to
the slip direction, and the x-axis perpendicular to the fault plane. Spherical coordi-
nates r , θ, φ will be used in the following that are related to the Cartesian coordinates
via x = r sin(θ) cos(φ), y = r sin(θ) sin(φ), z = r cos(θ), with 0 < θ < π , and
0 < φ < 2π . The double couple drives a displacement field that obeys conservation
of linear and angular momenta. Its explicit form is given in Aki and Richards (2009).
It consists of a near-field component:

ξN(r , t) = 1

4πρ0
AN

1

r4

r/β
∫

r/α

dτ τ M0(t − τ),

AN ≡ 9 sin(2θ) cos(φ)er − 6(cos(2θ) cos(φ)eθ − cos(θ) sin(φ)eφ),

(118)

an intermediate-field component

ξ I(r , t) = 1

4πρ0α2 AIP
1

r2 M0(t − r/α) + 1

4πρ0β2 AIS
1

r2 M0(t − r/β),

AIP ≡ 4 sin(2θ) cos(φ)er − 2(cos(2θ) cos(φ)eθ − cos(θ) sin(φ)eφ),

AIS ≡ −3 sin(2θ) cos(φ)er + 3(cos(2θ) cos(φ)eθ − cos(θ) sin(φ)eφ),

(119)

and a far-field component

ξF(r , t) = 1

4πρ0α3 AFP
1

r
Ṁ0(t − r/α) + 1

4πρ0β3 AFS
1

r
Ṁ0(t − r/β),

AFP ≡ sin(2θ) cos(φ)er ,

AFS ≡ cos(2θ) cos(φ)eθ − cos(θ) sin(φ)eφ,

(120)
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Fig. 21 Density perturbation
produced by a double couple

which have to be added to give the total displacement field ξ(r , t). The source function
M0(t) of the double couple is called moment function. As for the point force, we
assume again that the source function is zero for t < 0. If a double couple is used to
represent fault ruptures, than the source function increases continuously as long as the
fault rupture lasts.

In contrast to the intermediate and far-field terms, the near-field term does not
describe a propagating seismic wave. The far field is the only component that gen-
erally vanishes for t → ∞. According to Eq. (42), density perturbations in infinite,
homogeneous media can only be associated with compressional waves, since the diver-
gence of the shear field is zero. This is confirmed by inserting the total displacement
field into Eq. (42). One obtains the density change

δρ(r , t) = −ρ0∇ · ξ(r , t)

= 3 cos(φ) sin(2θ)

4πr3α2

(

M0(t − r/α) + r

α
Ṁ0(t − r/α) + r2

3α2 M̈0(t − r/α)

)

≡ cos(φ) sin(2θ)R(r , t) (121)

The density perturbation assumes a much simpler form than the seismic field. The
perturbation propagates with the speed of compressional waves, and has a quadrupole
radiation pattern. A lasting density change is built up proportional to the final moment
M0(t → ∞) of the shear dislocation. In Fig. 21, the gravity perturbation is shown for
θ = π/4, φ = 0. The source function is M0(t) = M0 tanh(t/τ) for t > 0 and zero
otherwise. A log-modulus transform is applied to the density field since its value varies
over many orders of magnitude (John and Draper 1980). This transform preserves the
sign of the function it is applied to. A transient perturbation carried by compressional
waves propagates parallel to the line t = r/α. A lasting density change, which quickly
decreases with distance to the source, forms after the transient has passed.

4.3 Gravity perturbations from a point shear dislocation

Fault slip generates elastodynamic deformation (static and transient), including com-
pression and dilation that induce local perturbations of the material density. These
in turn lead to global perturbations of the gravity field. In this section, we consider
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an elementary problem: we develop an analytical model of time-dependent gravity
perturbations generated by a point-shear dislocation in an infinite, elastic, and homo-
geneous medium. We are interested in frequencies higher than 0.01 Hz, for which we
can ignore the effects of self-gravitation (Dahlen et al. 1998): we compute the gravity
changes induced by mass redistribution caused by elastic deformation, but ignore the
effect of gravity force fluctuations on the deformation. The results in this subsection
were published in Harms et al. (2015). The gravity perturbation can either be obtained
analogously to the case of a point force by seeking for a known solution of the P-wave
potential and rewriting it as gravity potential, or by attempting a direct integration of
density perturbations. First, we will show how to carry out the direct integration.

The density perturbation δρ(r , t) caused by the displacement field ξ(r , t) was
presented in Eq. (121). The perturbation of the gravity potential at some point r0 is
obtained by integrating over the density field according to

δψ(r0 , t) = −G

∫

dV
δρ(r , t)

|r − r0|
. (122)

The integration can be carried out using a multipole expansion of the gravity potential.
This requires us to divide the integration over the radial coordinate r into two intervals:
0 < r < r0 and r0 < r . Over the first interval, one obtains the exterior multipole
expansion:

δψext(r0 , t) =
∞
∑

l=0

l
∑

m=−l

I m
l (r0)

∗ ·
r0
∫

0

dr r2
∫

dΩ δρ(r, t)Rm
l (r) (123)

The corresponding expression for the interior multipole expansion is given by

δψint(r0 , t) =
∞
∑

l=0

l
∑

m=−l

Rm
l (r0)

∗ ·
∞
∫

r0

dr r2
∫

dΩ δρ(r, t)I m
l (r), (124)

where we used the solid spherical harmonics defined in Eq. (261). The two integrals in
Eqs. (123) and (124) are readily solved by expressing the radiation pattern in Eq. (121)
in terms of the surface spherical harmonics (see Table 4),

sin(2θ) cos(φ) = 2
√

2π/15
(

Y −1
2 (θ, φ) − Y 1

2 (θ, φ)
)

, (125)

and subsequently making use of the orthogonality relation in Eq. (247). For example,
inserting the density perturbation into the exterior multipole expansion of the gravity
potential we have

δψext(r0 , t) =
∞
∑

l=0

l
∑

m=−l

I m
l (r0)

∗ ·
r0
∫

0

dr r2 R(r , t)

∫

dΩ sin(2θ) cos(φ)Rm
l (r)
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= 4π

5

1

r3
0

2
∑

m=−2

Y m
2 (θ0, φ0)

∗ ·
r0
∫

0

dr r4 R(r , t)

∫

dΩ sin(2θ) cos(φ)Y m
2 (θ, φ) (126)

The integral over angles can be carried out using Eq. (248). The result is again a
quadrupole radiation pattern. The integral over the radius can be simplified consider-
ably by integration by parts. The solution δψ(r0 , t) = δψext(r0 , t)+ δψint(r0 , t) for
the gravity potential perturbation can then be written in the form

δψ(r0 , t) = G sin(2θ0) cos(φ0)

⎡

⎣

1

r0α2 M0(t − r0/α) − 3

r3
0

r0/α
∫

0

du uM0(t − u)

⎤

⎦

(127)

For t < r0/α, the first term in the square-brackets vanishes and the second term can be
rewritten as double time integral using integration by parts. A more elegant approach
was taken in Harms et al. (2015) to obtain the gravity potential based on a simple
relation between seismic and gravity potentials.

The model of Eq. (127) can also be used to predict gravity perturbations for sources
buried in half spaces at least until the seismic waves reach the surface. In reality, this
typically allows us to model up to a few seconds of time series of an earthquake, but it
was shown in Harms et al. (2015) using numerical simulations that the duration of the
modeled gravity perturbation can be extended for some time without causing major
deviations from the half-space signal. Clearly, a half-space model is favored to include
surface effects.

4.4 Seismic sources in a homogeneous half space

It turns out that the calculation of seismic fields from point sources in a homogeneous
half-space is signifciantly more complicated. This is to be expected of course since a
seismic source produces compressional, shear and Rayleigh waves emerging in the far
field from a rather complex near field depending on the depth of the source and how it
is oriented with respect to the plane surface. It was shown that the Green’s function can
be cast into a single integral using the so-called Cagniard–de Hoop method, and for
arbitrary source-time functions, another convolutional integral is required (de Hoop
1962; Richards 1979; Aki and Richards 2009; Kausel 2012). The most explicit deriva-
tion of these results can be found in Watanabe (2014), where the author outlines in
detail the analysis carried out in the complex plane dealing with poles and branch cuts.
It is this paper that provided the starting point for a calculation of gravity perturbations
from seismic point sources in a half-space (Harms 2016). In the following, we will
review the most important results of this paper.

The first important equation is for the perturbation of the gravity potential at height
z0 from the surface at z = 0, where z0 can also assume negative values:

123



Terrestrial gravity fluctuations Page 65 of 154 6

δφ(k̺, z0, t) = −2πGρ0

[

e−k̺|z0| (sgn(z0)φs(k̺, 0, t)

+ k̺ψs(k̺, 0, t)
)

+ 2φs(k̺, z0, t)
]

, (128)

where φs, ψs are the scalar compressional and shear-wave potentials. A spatial Fourier
transform with respect to the two horizontal coordinates was applied to all fields in
this equation. The seismic potentials determine the displacement field according to

ξ(r, t) = ∇φs(r, t) + ∇ × ψ s(r, t),

ψ s(r, t) = ∇ × (0, 0, ψs(r, t)) + (0, 0, χs(r, t)).
(129)

The second shear-wave potential χs is not associated with gravity perturbations since
it describes horizontally polarized shear waves. In Eq. (128), k̺ is the wave number of
horizontal (2D) wave vectors k̺. Above surface, the last term in the square-brackets
vanishes, which means that the gravity perturbation above surface is entirely deter-
mined by the values of seismic potentials at the surface z = 0. It is remarkable that
the gravity potential resulting from an integral over density perturbations within the
entire half-space for arbitrary seismic fields reduces to such a simple form. This result
was key to calculate the gravity perturbation δφ(r0, t) from seismic point sources.

The next step is to solve the elastodynamic equation for the Green’s function of
seismic potentials. This can be easily done in transform domain, which includes a
Laplace transform with respect to time, and Fourier transforms with respect to the
spatial coordinates. Next, the solutions for the seismic potentials obtained in this way
require an inverse Fourier transform with respect to the wave-vector component kz so
that potentials depend on k̺ and z as in Eq. (128). Not only can we use Eq. (128) in this
way to calculate the gravity potential, but expressing fields in terms of these variables
is also an essential step for the Cagniard–de Hoop method. The remaining problem is
to calculate the other three inverse transforms: two inverse Fourier transforms to obtain
a dependence of fields on horizontal coordinates, and one inverse Laplace transform
to obtain a dependence on time. The elegance of the Cagniard–de Hoop method is
then to recast this triple integral of inverse transforms into a single integral. This
remaining integral cannot be solved in general, and as mentioned before, the result is a
Green’s function, which means that an additional convolution is required for arbitrary
source-time functions.

It needs to be pointed out that the calculation in Harms (2016) neglects gravity
induced ground motion as described in Sect. 2.1.3. This means that the calculation is
not sufficient to predict a gravimeter signal. Consequently, the calculation also neglects
second and higher-order effects in the gravitational constant G, e.g., changes in the
gravity field due to the induced ground motion, which is a so-called self-gravity effect

(Rundle 1980; Wang 2005).
Let us now consider the specific example of the 2011 Tohoku-Oki earthquake, which

had a magnitude of 9.0, and ruptured a fault of width and length of several hundred
kilometers (Ammon et al. 2011). The hypocenter was located at latitude N37.52 and
longitude E143.05. To model seismic fields or gravity perturbations from fault rupture,
one needs to understand the focal mechanism. It is described by a so-called moment
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Fig. 22 Focal mechanism
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Fig. 23 Simulated gravity
perturbation at 100 km distance
from the epicenter of the 2011
Tohoku-Oki earthquake. Image
reproduced with permission
from Harms (2016); copyright
by the author
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tensor, whose components are estimated and published by seismological institutions
such as USGS.7 For the actual calculation, one needs to translate the coordinates used
for the published moment tensors into the fault-slip oriented coordinate system used
for example in Harms et al. (2015) and Harms (2016).

The focal mechanisms can be specified by three angles: the strike angle γS, the dip
angle γd, and the rake angle γr. The strike angle is subtended by the intersection of the
fault plane with the horizontal plane, and the North cardinal direction. The dip is the
angle between the fault plane and the horizontal plane. Finally, the rake is subtended
by the slip vector and the horizontal direction on the fault plane. The fault geometry
is displayed in Fig. 22. For the Tohoku earthquake, the angles are γS = 3.54, the dip
angle γd = 0.17, and the rake angle γr = 1.54. In the coordinate system shown in
Fig. 20, the normal vector of the fault defines the direction of the x-axis, and the slip
vector defines the direction of the z-axis. Now, vectors are to be expressed in a new
coordinate system whose axes correspond to the cardinal directions eE, eN, and the
normal vector of Earth’s surface eV. Based on the geometry shown in Fig. 22, the
following relations can be found

ex = R(eV,−γS) · R(eN,−γd) · eV,

ez = R(eV,−γS) · R(eN,−γd) · R(eV, γr) · eN,
(130)

and ey = ez × ex . A matrix R(a, α) describes a rotation around axis a by an angle α.

7 http://earthquake.usgs.gov/.
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Figure 23 shows the result for the perturbation of gravity acceleration in vertical
direction at 100 km distance to the epicenter. The curve uses the estimated source
function of the Tohoku-Oki earthquake (Wei et al. 2012),8 which had a total rupture
duration of about 300 s, with almost all of the total seismic moment, 5 × 1022 Nm,
already released after 120 s. After 16 s, the first seismic waves reach an epicentral
distance of 100 km. After all waves have passed, the gravity potential settles to a
new value offset by about 6 ¯m/s2 from the previous value. It is this lasting change in
gravity that was first observed by networks of gravimeters (Imanishi et al. 2004) and
the satellite mission GRACE (Wahr et al. 2004; Cafaro and Ali 2009; Wang et al. 2012).
In the meantime, also the prompt gravity signal during fault rupture of the Tohoku-Oki
earthquake was observed with several gravimeters (Montagner et al. 2016; Vallée et al.
2017). These observations match well the predictions from numerical codes, which
also include the gravity-induced ground motion (Juhel et al. 2018b).

4.5 Summary and open problems

We have reviewed the calculation of gravity perturbations based on models of seis-
mic sources. The general expressions for these perturbations can be complicated, but
especially when neglecting surface effects, the gravity perturbations assume a very
simple form due to a fundamental equivalence between seismic and gravity potentials
according to Eq. (55).

The solution of the point force was used to highlight the difference between locally
generated gravity perturbations, i.e., at the test mass, and perturbations from an incident
seismic wavefront. It was shown that such gravity perturbations experience additional
integrations with respect to perturbations from the local seismic field at the test mass.
Gravity perturbations from distant seismic wavefronts are more likely to play a role
in sub-Hz GW detectors, and also there the seismic event producing the wavefront
needs to be very strong. As an example, we have presented the formalism to estimate
perturbations from earthquakes in Sects. 4.2 to 4.4.

These results also have important implications for coherent Newtonian-noise can-
cellation schemes. It was argued in the past that seismic sensors deployed around the
test mass can never provide information of gravity perturbations from incident seismic
disturbances that have not yet reached the seismic array. Therefore, there would be a
class of gravity perturbations that cannot be subtracted with seismic sensors. While
the statement is generally correct, we now understand that the gravity perturbations
are significant only well below the GW detection band (of any > 1 Hz GW detec-
tor), unless the source of the seismic wavefront has untypically strong high-frequency
content.

The theory of gravity perturbations from seismic point sources has just begun to be
explored. In Sect. 4.4, a first calculation of gravity perturbations from point sources in
half spaces was reviewed. Self-gravity effects, i.e., effects at second and higher order
in G, are still poorly understood. The approach of Sect. 2.1.3 might provide further
insight, but it has not been combined yet with the calculation of gravity perturbations
from point sources.

8 http://www.tectonics.caltech.edu/slip_history/2011_tohoku_joint/.
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5 Atmospheric gravity perturbations

The properties of the atmosphere give rise to many possible mechanisms to produce
gravity perturbations. Generally, one can associate gravity fluctuations with fields
of pressure, temperature, or humidity. It is often useful to categorize atmospheric
processes according to a characteristic length scale describing the phenomena: global
scale, synoptic scale (several 100 km to several 1000 km), mesoscale (several 1 km
to several 100 km), and the microscale (up to several 1 km). Mostly the microscale
phenomena are relevant to Newtonian noise modeling in GW detectors. Mesoscale
phenomena might become relevant at frequencies below a few 10 mHz, i.e., below the
Brunt–Väisälä frequency. One source of gravity perturbations are microscale pressure
fluctuations in the planetary or atmospheric boundary layer (Elliott 1972b; McDonald
and Herrin 1975), which is the lowest part of the atmosphere directly influenced by
the surface. They can be divided into fluctuations of static and dynamic pressure.
Fluctuations of static pressure, which include sound, are present even in the absence
of wind (Albertson et al. 1998), while fluctuations of dynamic pressure are connected
to anything that requires wind (Bollaert et al. 2004; Schaffarczyk and Jeromin 2018).
There is also a connection between the two, for example, through the Lighthill process,
which describes the generation of sound waves by turbulence (Lighthill 1952, 1954).
Additional structures emerge with the presence of wind such as vortices or so-called
coherent structures (Träumner et al. 2015).

The variety of phenomena also makes the monitoring of certain variables a chal-
lenging task. Sound is typically measured with microphones. However, pressure
fluctuations produced by turbulent flow in the vicinity of a microphone can mask an
underlying sound signal (Green 2015). This contribution is often called wind noise.
Clever sensor design, averaging pressure signals over some baseline, or construct-
ing wind shields can prove effective (Elliott 1972a; Walker and Hedlin 2009; Noble
et al. 2014). However, when it comes to an order of magnitude suppression of gravity
perturbations from pressure fluctuations, then even a small incoherent contribution to
signals from wind noise can be detrimental. In this case, entirely new approaches need
to be considered. LIDAR (derived from light and radar) technology has been applied
to investigate microscale physics in the atmospheric boundary layer. It consists of a
laser beam that scatters back from the atmosphere and can be operated in a scanning
fashion providing volumetric information about the temporal evolution of wind veloc-
ity (Chai et al. 2004), or the temperature (Behrendt 2005; Hammann et al. 2015) and
humidity fields (Späth et al. 2016). LIDAR is a promising candidate to also monitor
pressure fluctuations in the frequency band relevant to GW detectors, 10 mHz–20 Hz,
but it does not have the required sensitivity yet.

Atmospheric gravity perturbations have been known since long to produce noise in
gravimeter data (Neumeyer 2010), where they can be observed below about 1 mHz.
Creighton published the first detailed analysis of atmospheric Newtonian noise in
large-scale GW detectors (Creighton 2008). It includes noise models for infrasound
waves, quasi-static temperature fields advected in various modes past test masses,
and shockwaves. Atmospheric gravity perturbations are expected to be the dominant
contribution to ambient Newtonian noise below 1 Hz, and can still be significant
at higher frequencies (Fiorucci et al. 2018). Generally, the Navier–Stokes equations
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need to be used to calculate density perturbations and associated gravity fluctua-
tions (Davidson 2004). The models of gravity perturbations from sound fields are
very similar to perturbations from seismic compressional waves as given in Sect. 3.
Quasi-static density perturbations associated with non-uniform temperature or humid-
ity fields can be transported past a gravity sensor and cause gravity fluctuations. One
goal of Newtonian-noise modeling is to provide a strategy for noise mitigation. For
this reason, it is important to understand the dependence of each noise contribution on
distance between source and test mass, and also to calculate correlation functions. The
former determines the efficiency of passive isolation schemes, such as constructing
detectors underground, the latter determines the efficiency of coherent cancellation
using sensor arrays.

Analytic models of atmospheric Newtonian noise are summarized in Sects. 5.1
and 5.2. In addition, based on the point-source formalism of Sect. 4, a new shockwave
model is presented in Sect. 5.3. Preliminary work on modeling gravity perturbations
from turbulence was first published in Cafaro and Ali (2009), and is reviewed and
improved in Sect. 5.4.

5.1 Gravity perturbation from atmospheric sound waves

Sound waves are typically understood as propagating perturbations of the atmosphere’s
mean pressure p0. The pressure change can be translated into perturbation of the mean
density ρ0. The relation between pressure and density fluctuations depends on the
adiabatic index γ ≈ 1.4 of air (Wood 1955)

γ
δρ(r, t)

ρ0
= δ p(r, t)

p0
(131)

The classical explanation for γ > 1 is that the temperature increases when the sound
wave compresses the gas sufficiently slowly, and this temperature increase causes an
increase of the gas pressure beyond what is expected from compression at constant
temperature. Note that in systems whose size is much smaller than the length of a sound
wave, the statement needs to be reversed, i.e., fast pressure fluctuations describe an
adiabatic process, not slow changes. An explanation of this counter-intuitive state-
ment in terms of classical thermodynamics is given in Fletcher (1974). It can also be
explained in terms of the degrees of freedom of gas molecules (Henderson 1963). At
very high frequencies (several kHz or MHz depending on the gas molecule), vibrations
and also rotations of the molecules cannot follow the fast sound oscillation, and their
contribution to the specific heat freezes out (thereby lowering the adiabatic index). At
low audio frequencies, sound propagation in air is adiabatic.9

Let us return to the calculation of gravity perturbations from sound fields. Assuming
that a sound wave incident on the surface is reflected without loss such that its hori-
zontal wavenumber is preserved, one obtains the gravity perturbation as the following
integral over the half space z > 0:

9 Only at really low frequencies, below 10 mHz, where the finite size of the atmosphere starts to matter,
pressure oscillations can be isothermal again.
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δφ(r0, t) = − Gρ0

γ p0
ei(k̺·̺0−ωt)δ p(ω)

∫

H

dV
(e−ikz z + eikz z)eik̺ ·̺

(̺2 + (z − z0)2)1/2

= 4π
Gρ0

γ p0
ei(k̺ ·̺0−ωt)(e−k̺|z0|(2Θ(z0) − 1) − 2 cos(kzz0)Θ(z0))

δ p(ω)

k2

(132)
Here, the Heaviside function Θ(·) has the value 1 at z0 = 0. The gravity poten-
tial and acceleration are continuous across the surface. We neglect the surface term
here, but this is mostly to simplify the calculation and not fully justified. Part of
the energy of a sound wave is transmitted into the ground in the form of seismic
waves. Intuitively, one might be tempted to say that only a negligible amount of the
energy is transmitted into the ground, but at the same time the density of the ground is
higher, which amplifies the gravity perturbations. Let us analyze the case for a sound
wave incident at a normal angle to the surface. In this case, the sound wave is trans-
mitted as pure compressional wave into the ground. We denote the air medium by
the index “1” and the ground medium by “2”. Multiplying the seismic transmission
coefficient (see Aki and Richards 2009) by ρ2/ρ1, the relative amplitude of gravity
perturbations is

δa1

δa2
= 2

ρ2α1

ρ1α1 + ρ2α2
, (133)

where α1 is the speed of sound, and α2 the speed of compressional waves. The sum in
the denominator can be approximated by ρ2α2, which leaves 2α1/α2 as gravity ratio.
The ratio of wave speeds does not necessarily have to be small at the surface. We
know that the Rayleigh-wave speed at the LIGO sites is about 250 m/s (Harms and
O’Reilly 2011), which we can use to estimate the compressional-wave speed to be
around 600 m/s (by making a guess about the Poisson’s ratio of the ground medium).
This means that the effective transmissivity with respect to gravity perturbations could
even exceed a value of 1! Therefore, it is clear that the physics of infrasound gravity
perturbations is likely more complicated than outlined in this section. Nonetheless,
we will keep this for future work and proceed with the simplified analysis assuming
that sound waves are fully reflected by the ground.

The gravity acceleration caused by infrasound waves is shown in Fig. 24 for two
different angles of incidence with respect to the surface normal. Note that the infra-
sound field modelled in Eq. (132) consists of two plane waves propagating in opposite
directions with respect to the normal, and along the same direction with respect to the
horizontal. Therefore, the pressure and consequently gravity field have the form of
a standing wave along the normal direction. Below surface, the gravity perturbation
falls off exponentially. The decrease is faster when the infrasound wave propagates
nearly horizontally. The length scale that determines the exponential fall off becomes
infinite if the wave propagates vertically, but at the same time the projection of gravity
acceleration onto a horizontal direction vanishes. This is why underground construc-
tion of GW detectors is an efficient means to mitigate infrasound Newtonian noise.
Creighton also considered the case of a shield against infrasound disturbances around
the test masses of surface detectors, which in its simplest form is already given by
the buildings hosting the test masses (Creighton 2008). A detailed investigation of
noise-reduction techniques is given in Sect. 7.
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Fig. 24 Gravity acceleration along a horizontal direction produced by plane infrasound waves. The left plot
shows the field for an angle of incidence of 7π/16, the right plot for an angle of π/16 with respect to the
surface normal

5.2 Gravity perturbations from quasi-static atmospheric temperature

perturbations

In this section, we review the rather complex calculation of gravity perturbations from
a temperature field presented as appendix in Creighton (2008). The calculation is also
instructive to solve similar problems in the future. The basic idea is the following.
Temperature fluctuations in the atmosphere lead to density changes. In terms of the
mean temperature T0 and density ρ0 of the atmosphere, and according to the ideal gas
law at constant pressure, small fluctuations in the temperature field cause perturbations
of the density:

δρ(r, t) = −ρ0

T0
δT (r, t) (134)

Pressure fluctuations also cause density perturbations, but as we have seen in the
previous section, they result in quickly propagating infrasound waves. The effect that
we want to study here is the Newtonian noise from slowly changing density fields,
transported past a test mass by air flow. These are predominantly associated with slow
temperature fluctuations. The gravity perturbation produced by such a temperature
field is given by

δa(r0, t) = −Gρ0

T0

∫

dV
δT (r, t)

|r − r0|3
(r − r0) (135)

Trying to obtain an explicit expression of the temperature field, inserting it into this
integral, and solving the integral is hopeless here. What one can do instead is to
work with the statistical properties of the temperature field. If the temperature field is
stationary, then we can calculate the spectral density as

S(δax ; r0, ω) = 2

(

Gρ0

T0

)2 ∫

dτ

∫

dV

∫

dV ′ (x − x0)(x ′ − x0)

|r − r0|3|r ′ − r0|3

〈δT (r, t)δT (r ′, t + τ)〉e−iωτ , (136)

where we have used Eq. (273). The vectors r, r ′ point from the test mass to temperature
fluctuations in the atmosphere.
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The next step is to characterize the temperature field. Temperature fluctuations
in the vicinity of Earth surface are distributed by turbulent mixing. As shown in
Kukharets and Nalbandyan (2006), temperature inhomogeneities of the surface play
a minor role in the formation of the temperature field at frequencies above a few
tens of a mHz. Therefore, at sufficiently high frequencies, one can approximate the
temperature perturbations as homogeneous and isotropic. In this case, the second-
order noise moments of δT (r, t) can be characterized by the temperature structure

function D(δT ; r):

〈(δT (r, t) − δT (r + Δr, t))2〉 = D(δT ;Δr) (137)

The structure function can typically be approximated as a power law

D(δT ; |Δr|) = c2
T (Δr)p (138)

provided that the distance Δr is sufficiently small. This relation also breaks down
at distances similar to and smaller than the Kolmogorov length scale, which is about
0.4 mm for atmospheric surface layers (Antonia and Van Atta 1978). Turbulent mixing
enforces power laws with p ∼ 2/3 (Antonia and Van Atta 1978). Applying Taylor’s
hypothesis, the distance Δr can be substituted by the product of wind speed v with
time τ , and Eq. (137) can be reformulated as

〈δT (r, t)δT (r, t + τ)〉 = σ 2
T −

c2
T

2
(vτ)p (139)

The parameter cT depends on the dissipation rate of turbulent kinetic energy and the
temperature diffusion rate, and σT is the standard deviation of temperature fluctua-
tions. Since Taylor’s hypothesis is essential for the following calculations, we should
make sure to understand it. Qualitatively it states that turbulence is transported as
frozen pattern with the mean wind speed. More technically, it links measurements in
Eulerian coordinates, i.e., at points fixed in space, with measurements in Lagrangian
coordinates, i.e., that are connected to fluid particles. The practical importance is
that two-point spatial correlation functions such as Eq. (137) can be estimated based
on a measurement at a single location when carried out over some duration τ as in
Eq. (139). In either case, the hypothesis can be expected to fail over sufficiently long
periods τ or distances Δr , which are linked to the maximal scale of turbulent struc-
tures (Dahm and Southerland 1997). In any case, we assume that Taylor’s hypothesis
is sufficiently accurate for our purposes. The Fourier transform of Eq. (139) yields the
spectral density of temperature fluctuations

S(δT ; r0, ω) = c2
T v p(r0)ω

−(p+1)Ŵ(p + 1) sin(π p/2) (140)

The Fourier transform cannot be calculated without employing an upper cutoff on the
variable τ . This means that the spectral density given here only holds at sufficiently
high frequencies (at the same time not exceeding the Kolmogorov limit defined by
the size l of the smallest turbulence structures, ω < v/l, which is of the order kHz).
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Fig. 25 Sketch of laminar air flow past the test mass. Air volume is divided into cells that move along
streamlines. Speed can change with time, and be different along a streamline

Technically, the Fourier transform can be calculated by multiplying an exponential
term exp(−ǫτ) to the integrand, and subsequently taking the limit ǫ → 0.

The next step is to calculate the temperature correlation that appears in Eq. (136).
Using Taylor’s hypothesis to convert Eq. (139) back into a two-point spatial correlation,
we see that correlations over large distances are negligible. In terms of the frequency
of temperature fluctuations, correlations are significant over distances of the order v/ω

(which is shown in the following). Consider the scenario displayed in Fig. 25. Two air
pockets are shown at locations r, r ′ and times t, t ′ on two steam lines that we denote
by S and S′.

If τ = t − t ′ is sufficiently small, then the separation of the two pockets can be
written (s2 + (vτ)2)1/2, where the distance s of the two streamlines S, S′ and v are
evaluated at r. Together with Taylor’s hypothesis, temperature fluctuations between
the two pockets are significant if τ is sufficiently close to the time τ0 it takes for the
pocket at r ′ to reach the reference plane, and also s must be sufficiently small. The
temperature correlation can then be written as

〈δT (r ′, t ′)δT (r, t ′ + τ)〉 = σ 2
T −

c2
T

2
(s2 + v2(τ − τ0)

2)p/2 (141)

This allows us to carry out the integral over τ in Eq. (136):

∫

dτ 〈δT (r ′, t ′)δT (r, t ′ + τ)〉e−iωτ =
√

2p+1

π

s

vω
Ŵ(p/2 + 1)c2

T

(vs

ω

)p/2
sin(π p/2)K(p+1)/2(ωs/v)e−iωτ0 ,

(142)

where Kn(·) is the modified Bessel function of the second kind, and v, s are functions
of r. Again, the integral can only be evaluated if an exponential upper cutoff on the
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Fig. 26 Two-point temperature correlation spectrum

variable τ is multiplied to the integrand, which means that we neglect contributions
from large-scale temperature perturbations. The correlation spectrum is plotted in
Fig. 26.

At frequencies above v/s, the spectrum falls exponentially since Kν(x) →√
π/(2x) exp(−x) for x ≫ |ν2 − 1/4|. This means that the distance between stream-

lines contributing to the two-point spatial correlation must be very small to push the
exponential suppression above the detection band. The integral over V ′ in Eq. (136)
can be turned into an integral over streamlines S′ that lie within a bundle s � v/ω

of streamline S, which allows us to approximate the volume element as cylindrical
bundle dV ′ = 2πsds dτ0v(r ). The form of the volume element is retained over the
whole extent of the streamline since the air is nearly incompressible for all conceivable
wind speeds, i.e., changes in the speed of the cylindrical pocket are compensated by
changes in the radius of the pocket to leave the volume constant. Hence, the speed
in the volume element can be evaluated at r. With this notation, the integral can be
carried out over 0 < s < ∞ since the modified Bessel function automatically enforces
the long-distance cutoff necessary for our approximations, which yields

S(δax ; r0, ω) =
(

Gρ0

T0

)2

4πc2
T Ŵ(2 + p) sin(π p/2)

∫

dV

∫

dτ0
xx ′

r3(r ′)3

(

v(r )

ω

)p+3

e−iωτ0 , (143)

Here the vector r is parameterized by τ0. This result can be interpreted as follows. We
have two streamlines S, S′, whose contributions to this integral are evaluated in terms
of the duration τ0 it takes for the pocket at r ′ to reach the reference plane that goes
through all streamlines, and contains the test mass at r0 and location r (as indicated
in Fig. 25). Since we consider the pocket on streamline S to be at the reference plane
at time t , we can set τ0 = t − t ′, and integrating contributions from all streamlines
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over the reference plane with area element dA, with wind speed v(̺ ), and ̺ pointing
from the test mass to streamlines on the reference plane, we can finally write

S(δax ; r0, ω) =
(

Gρ0

T0

)2

4πc2
T ω−(p+3)Ŵ(2 + p) sin(π p/2)

·
∫

A (r0)

dA v(̺ )

∫

dt ′
x ′

(r ′)3 e−iωt ′
∫

dt
x

r3 v(r )p+3eiωt

=
(

Gρ0

T0

)2 4π

ω2 (2 + p)S(δT ; r0, ω) ·
∫

A (r0)

dA v(̺ )

∫

dt ′
x ′

(r ′)3 e−iωt ′
∫

dt
x

r3

(

v(r )

v(r0)

)p

v3(r )eiωt (144)

In this equation, r ′ = r ′(̺, t ′), and r = r(̺, t) are the parameterized streamlines.
For uniform airflow we have v = const, and the remaining integrals can be solved
with the results given in Sect. 6.2. Other examples have been calculated by Creighton
(2008).

5.3 Gravity perturbations from shock waves

In Creighton (2008), an estimate of gravity perturbations from a shock wave produced
in air was presented based on the infrasound perturbation in Eq. (132). The goal was
to estimate the transient gravity perturbation produced when the shock wave reaches
the test mass. It did not address the question whether significant gravity perturbations
can be produced before the arrival of the shock wave. A time-domain description may
give further insight into this problem. As we have seen for seismic point sources, a
time domain solution can reveal important characteristics of the gravity perturbation,
such as the distinction between gravity perturbations from a distant wavefront, and
from a wavefront that has reached the test mass. In the following, we will provide a
full time-domain solution for an explosive point source of an atmospheric shock wave.
It is assumed that the shock wave is produced sufficiently close to the test mass so
that the pressure field can be approximated as spherical at the time the shock wave
reaches the test mass. Reflections from the surface and upper atmospheric layers need
to be considered for a more refined model applicable to distant sources. A shock wave
from an explosive source is isotropic (which is rather a definition of what we mean by
explosive source). The pressure change is built up over a brief amount of time initially
involving an air mass M = V ρ0 determined by the source volume V . In the theory of
moment tensor sources, an explosion in air at t0 = 0 can be represented by a diagonal
moment tensor according to

M(t) = −α2 M

γ p0
Δp(t)1 (145)

where α is the speed of sound, γ is the adiabatic coefficient of air, p0 the mean air pres-
sure, Δp(t) the pressure change, and 1 the unit matrix. Since shock-wave generation
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is typically non-linear (Whitham 1974), the source volume should be chosen suffi-
ciently large so that wave propagation is linear beyond its boundary. This entails that
the pressure change Δp is also to be evaluated on the boundary of the source volume.
Note that in comparison to solitons, shock waves always show significant dissipation,
which means that there should not be a fundamental problem with this definition of
the source volume. Alternatively, if nonlinear wave propagation is significant over
long distances, then one can attempt to linearize the shock-wave propagation by intro-
ducing a new nonlinear wave speed, which needs to be used instead of the speed of
sound (Whitham 1974). In general, a sudden increase of atmospheric pressure by an
explosive source must relax again in some way, which means that Δp(t → ∞) = 0.

Next, we need an expression to obtain the acoustic potential in terms of the moment
tensor. The acoustic potential is analogous to the seismic P-wave potential for a medium
with vanishing shear modulus, and we can calculate the corresponding perturbation
of the gravity potential using Eq. (55). The coupling of a tensor source to the acoustic
field can be expressed in terms of the Green’s matrix

Φ(r, t) = 1

4πρ0

⎡

⎣− 1

α2r
δ(t − r/α)(er ⊗ er ) + 1

r3 (3er ⊗ er − 1)

r/α
∫

0

dτ τδ(t − τ)

⎤

⎦ ,

(146)
where we assume that the shock wave is linear and propagates with the speed of sound
outside the source volume, i.e., the amplitude of the shock wave has decreased to a
level where non-linear propagation effects can be neglected. The acoustic potential
can now be written

φs(r, t) =
∫

dτ Tr(Φ(r, t)M(t − τ)) (147)

and together with Eq. (55), we find the gravity potential perturbation

δφ(r0, t) = −G M

r0

Δp(t − r0/α)

γ p0
, (148)

where r0 points from the source to the test mass. This result is of very different
nature compared to the gravity potentials for point forces and point shear dislocations
presented in Sect. 4. Due to spherical symmetry of the source, the instantaneous
gravity perturbation far away from the source vanishes. If the diagonal components
of the source tensor had different values, then the integral contribution in Eq. (146)
would remain, which gives rise to instantaneous gravity perturbations at all distances.
Source symmetry plays an important role.

The corresponding perturbation of gravity acceleration reads

δa(r0, t) = −G M

r2
0

1

γ p0

(

Δp(t − r0/α) + r0

α
Δp′(t − r0/α)

)

er0 (149)

The gravity perturbation in the far field is dominated by the derivative of the pressure
change. One of the examples given in Creighton (2008) was a sonic boom from a
supersonic aircraft. In this case, the source location changes with time along the
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Fig. 27 Gravity perturbation from a sonic boom produced by an aircraft. The curve with v/α = 0.5 is only
for illustration purposes since a shockwave is not produced in sub-sonic flight. The direction of gravity
perturbation plotted here is along the direction of the aircraft trajectory. The separation of the initial and
final pressure change of a propagating wavefront is Δt = 0.1r0/α

trajectory of the aircraft. This amounts to an integral of Eq. (149) over the trajectory.
It is convenient in this case to introduce r0 as distance at closest approach of the air
craft to the test mass. The source volume is replaced by the rate V → Av (A being
the cross-sectional area of the “source tube” around the aircraft trajectory, and v the
speed of the aircraft). In the case of uniform motion of the aircraft, the calculation of
the integral over the trajectory is straight-forward.

The result is shown in Fig. 27 for three different ratios of aircraft speed over speed
of sound. The pressure change is modelled as N-profile (Creighton 2008)

Δp(t) = −2Δp

Δt
(t − Δt/2)θ(t)θ(Δt − t), (150)

which consists of two positive pressure changes by Δp at times t = 0 and t = Δt =
0.1r0/α, and a linear pressure fall between these two times. The aircraft trajectory
is assumed to be horizontal and passing directly above the test mass. Time t = 0
corresponds to the moment when the aircraft reaches the point of closest approach.
If v < α, then sound waves reach the test mass well before the aircraft reaches the
closest point of approach. In the case of supersonic flight, α < v, the first sound waves
reach the test mass at t = r0/α. Inserting the pressure change into Eq. (149), we see
that the far-field gravity perturbation is characterized by two δ-peaks. The derivative of
the linear pressure change between the peaks cancels with a contribution of the near-
field term. As can be understood from the left plot in Fig. 27, the gravity perturbation
falls gradually after the initial peak since a test mass inside the cone still responds to
pressure changes associated with two propagating wavefronts.

5.4 Gravity perturbations in turbulent flow

In this section, we review the calculation of gravity perturbations from turbulent flow
(Cafaro and Ali 2009). While in Sect. 5.2, the problem was to calculate gravity pertur-
bations from an advected temperature field whose spectrum is determined by turbulent
mixing, we are now interested in the gravity perturbations from pressure fluctuations
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produced in turbulent flow. Generation of pressure fluctuations (sound) in air is a non-
linear phenomenon known as Lighthill process (Lighthill 1952, 1954). Lighthill found
that the Navier–Stokes equations can be rearranged into equations for the propagation
of sound,

(

Δ − 1

c2
s
∂2

t

)

ρ(r, t) = − 1

c2
s
(∇ ⊗ ∇) : τ (r, t), (151)

where τi j = ρviv j + σi j − c2
s ρδi j is an effective stress field, and cs is the speed of

sound in the uniform medium. The terms in the effective stress tensor are the fluctuating
Reynolds stress ρviv j , the compressional stress tensor σi j , and the stress c2

s ρδi j of a
uniform acoustic medium at rest. In other words, the effective stress tensor acting as
a source term of sound is the difference between the stresses in the real flow and the
stress of a uniform medium at rest. Equation (151) is exact.

In order to calculate the associated gravity perturbations, we introduce some approx-
imations. First, we consider viscous stress contributions to σi j unimportant (we neglect
viscous damping in sound propagation), and therefore the temperature field can be
assumed to be approximately uniform. This means that the difference σi j − c2

s ρδi j is
negligible with respect to the fluctuating Reynolds stress. Furthermore, we will assume
that the root mean square of the velocities vi are much smaller than the speed of sound
cs (i.e., the turbulence has a small Mach number), and consequently the relative pres-
sure fluctuations δ p(r, t)/p0 produced by the Reynolds stress is much smaller than 1.
In this case, we can rewrite the Lighthill equation into the approximate form

(

Δ − 1

c2
s
∂2

t

)

δ p(r, t)

p0
= − 1

c2
s
(∇ ⊗ ∇) : (v(r, t) ⊗ v(r, t)), (152)

with (∇ ⊗ ∇) : (v ⊗ v ) ≡ ∂xi
∂x j

viv j (summing over indices i, j). This equation
serves as a starting point for the calculation of the pressure field. It describes the
production of sound in turbulent flow through conversion of shear motion into lon-
gitudinal motion. The Reynolds stress represents a quadrupole source, which means
that sound production is less efficient in turbulent flow than for example at vibrating
boundaries where the source has dipole form. The remaining task is to characterize
the velocity fluctuations in terms of spatial correlation functions, translate these into a
two-point correlation function of the pressure field using Eq. (152), and finally obtain
the spectrum of gravity fluctuations from these correlations. The last step is analogous
to the calculation carried out in Sect. 5.2, specifically Eq. (136), for the perturbed
temperature field. The calculation of gravity perturbations will be further simplified
by assuming that the velocity field is stationary, isotropic, and homogeneous. These
conditions can certainly be contested, but they are necessary to obtain an explicit solu-
tion to the problem (at least, solutions for a more general velocity field are unknown
to the author).

Since the source term is quadratic in the velocity field, it is clear that the problem
of this section is rather complicated. For example, the relation between temperature
perturbations and gravity fluctuations was linear. For this reason, Cafaro and Ali (2009)
decided to carry out the calculation in Fourier space (with respect to time and space).
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From Eq. (152), we can calculate the Fourier transform of the auto-correlation of the
pressure field, which yields (see Sect. 5)

S(δ p; k, ω) = 1

(2π)4

p2
0

(ω2 − c2
s k2)2

·
∫

dτ e−iωτ

∫

dV eik·r〈(k · v(r0, t))(k · v(r0, t))(k · v(r0 + r, t + τ))

(k · v(r0 + r, t + τ))〉
(153)

Note that the convention in turbulence theory used here to normalize the Fourier
transform by 1/(2π)4 is different from the convention used elsewhere in this article,
where the inverse Fourier transform obtains this factor. The fact that noise amplitudes at
different wave vectors and frequencies do not couple is a consequence of homogeneity
and stationarity of the velocity field. Once the spectral density of pressure fluctuations
is known, we can use it to calculate the gravity perturbation according to

S(δa; k, ω) =
(

4πG

c2
s

)2
k ⊗ k

k4 S(δ p; k, ω), (154)

which is given in tensor form to describe spectral densities of the three acceleration
components including their cross-spectral densities. This equation is obtained by tak-
ing the negative gradient of the first line in Eq. (43), and subsequently calculating its
spatial Fourier transform.

We can now focus on the calculation of the source spectrum. According to Isserlis’
theorem, the ensemble average in Eq. (153) can be converted into a product of second-
order moments in case that the velocity fluctuations are Gaussian. We assume this to
be the case (one of the less disputable assumptions), and write:

〈viv jv
′
lv

′
m〉 = 〈viv j 〉〈v′

lv
′
m〉 + 〈viv

′
l〉〈v jv

′
m〉 + 〈viv

′
m〉〈v jv

′
l〉 (155)

The second-order moments are determined by turbulence theory. An isotropic turbu-
lence has the wavenumber spectrum (Davidson 2004)

〈(k · v(r0, t))(k · v(r0, t))〉 = 2

3
k2

kν
∫

k0

dk′
E (k′)

〈(k · v(r0, t))(k · v(r0 + r, t))〉 = k2
∫

I

d3k′ e−ik′·r
(

1 − (k · k ′)2

k2k′2

)

E (k′)

4πk′2

= 2

3
k2

kν
∫

k0

dk′
E (k′)

(

( j0(k
′r) − 1

2
j2(k

′r))

+3

2

(k · r)2

k2r2 j2(k
′r)

)

(156)
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where E (k) = K0ǫ
2/3k−5/3 is the Kolmogorov energy spectrum, K0 the Kolmogorov

number, and ǫ the total (specific) energy dissipated by viscous forces

ǫ = 2ν

∞
∫

0

dk′ k′2
E (k′) (157)

Here, ν is the fluid’s viscosity. The Kolmogorov energy spectrum holds for the inertial
regime I (viscous forces are negligible), i.e., for wavenumbers between k0 = 2π/R

and kν = (ǫ/ν3)1/4, where R is the linear dimension of the largest eddy in the
turbulent flow. In Eq. (156), we have only written the equal-time correlations (the first
following from the second equation). The velocities in the second equation should
however be evaluated at two different times t, t + τ . In Kaneda (1993), we find that
for k ≫ k0

∫

dV eik·r〈vi (r0, t)v j (r0 + r, t + τ)〉 = exp

(

−1

2

τ 2

τ 2
0 (k)

)

∫

dV eik·r〈vi (r0, t)v j (r0 + r, t)〉 (158)

with τ 2
0 (k) = 1/(k2〈v2

i 〉), where vi is any of the components of the velocity vector.
The first term in Eq. (155) is independent of time for a stationary velocity field (both
expectation values are equal-time). Therefore, its energy only contributes to frequency
ω = 0, and we can neglect it. The Fourier transform in Eq. (153) of the second and
third terms in Eq. (155) with respect to τ can be carried out easily using Eq. (158). Also
integrating over the angular coordinates of the spatial Fourier transform in Eq. (153),
the gravity spectrum can be written

S(δa;k, ω) =
(

4πG

c2
s

)2
k ⊗ k

k4

1

(2π)3

p2
0

(ω2 − c2
s k2)2

τ0(k)

2
√

π
exp

(

−τ 2
0 (k)ω2

4

)

· 2
∫

dV eik·r

⎡

⎢

⎣

2

3
k2

kν
∫

k0

dk′
E (k′)

(

( j0(k
′r) − 1

2
j2(k

′r)) + 3

2

(k · r)2

k2r2 j2(k
′r)

)

⎤

⎥

⎦

2

=
(

2Gp0

c2
s

)2
k ⊗ k

(ω2 − c2
s k2)2

τ0(k)

π3/2
exp

(

−τ 2
0 (k)ω2

4

)

·
{

4

9

∞
∫

0

dr r2 j0(kr)

⎡

⎢

⎣

kν
∫

k0

dk′
E (k′)

(

j0(k
′r) − 1

2
j2(k

′r)

)

⎤

⎥

⎦

2

+ 4

9

∞
∫

0

dr r2 ( j0(kr) − 2 j2(kr))

⎡

⎢

⎣

kν
∫

k0

dk′
E (k′)

(

j0(k
′r) − 1

2
j2(k

′r)

)

⎤

⎥

⎦
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Fig. 28 Newtonian-noise spectra
from Lighthill acoustic noise.
The four curves are plotted for
k = 0.1 m−1, k = 0.67 m−1,
k = 1.58 m−1, k = 3.0 m−1

(with decreasing dash length)

⎡

⎢

⎣

kν
∫

k0

dk′
E (k′) j2(k

′r)

⎤

⎥

⎦
+

∞
∫

0

dr r2
(

1

5
j0(kr) − 4

7
j2(kr) + 8

35
j4(kr)

)

×

⎡

⎢

⎣

kν
∫

k0

dk′
E (k′) j2(k

′r)

⎤

⎥

⎦

2
}

(159)

Probably the best way to proceed is to carry out the integral over the radius r . The
integrands are products of three spherical Bessel functions. An analytic solution for
this type of integral was presented in Mehrem et al. (1991) where we find that the
integral is non-zero only if the three wavenumbers fulfill the triangular relation |k′ −
k′′| ≤ k ≤ k′ + k′′ (i.e., the sum of the three corresponding wave vectors needs to
vanish), and the orders of the spherical Bessel functions must fulfill |n′ − n′′| ≤ n ≤
n′ + n′′. Especially the last relation is useful since many products can be recognized
by eye to have zero value. In each case, the result of the integration is a rational
function of the three wavenumbers if the triangular condition is fulfilled, and zero
otherwise. While it may be possible to solve the integral analytically, we will stop
the calculation at this point. Numerical integration as suggested in Cafaro and Ali
(2009) is a valuable option. The square-roots of the noise spectra normalized to units
of GW amplitude, 2S(δa; k, ω)/(Lω2)2, are shown in Fig. 28 for k = 0.1 m−1,
k = 0.67 m−1, k = 1.58 m−1, k = 3.0 m−1, where L = 3000 m is the length of an
interferometer arm.

Each spectrum is exponentially suppressed above the corner frequency 1/τ0(k)

with τ0 = 3.5 s, 0.52 s, 0.22 s, 0.12 s. Below the corner frequency, the spectrum is
proportional to 1/ω2. In order to calculate the dissipation rate ǫ, a measured spectrum
was used (Albertson et al. 1997), which has a value of about 1 m3 s−2 at k = 1m−1,
and wavenumber dependence approximately equal to the Kolmogorov spectrum. In
this way, we avoid the implicit relation of the dissipation rate in Eq. (157), since ǫ

also determines the Kolmogorov energy spectrum. Solving the implicit relation for ǫ

gave poor numerical results, and also required us to extend the energy spectrum (valid
in the inertial regime) to higher wavenumbers (the viscous regime). It is also worth
noting that the energy spectrum and the scale R (we used a value of 150 m) are the
only required model inputs related to properties of turbulence. Any other turbulence
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parameter in this calculation can be calculated from these two (and a few standard
parameters such as air viscosity, air pressure, . . .). The resulting spectra show that
Newtonian noise from the Lighthill process is negligible above 5 Hz, but it can be a
potential source of noise in low-frequency detectors. In the future, it should be studied
how strongly the Lighthill gravity perturbation is suppressed when the detector is built
underground.

5.5 Atmospheric Newtonian-noise estimates

In the following, we present the strain-noise forms of gravity perturbations from infra-
sound fields and uniformly advected temperature fluctuations. While the results of the
previous sections allow us in principle to estimate noise at the surface as well as under-
ground, we will only present analytic expressions for surface-noise spectra here. An
analysis of infrasound Newtonian noise in underground detectors was presented by
Fiorucci et al. (2018), which uses a numerical method to average Eq. (132) over prop-
agation directions of sound waves. Gravity perturbations associated with advection of
temperature and humidity fields are still poorly understood, and predictions of how it
is suppressed with increasing detector depth would be highly speculative.

We start with the infrasound Newtonian noise. According to Eq. (132), the gravity
acceleration of a single test mass at z0 = 0 due to an infrasound wave is given by

δax (̺0, ω) = −4π i
Gρ0

γ p0
e−ik̺ ·̺0

ex · k

k2 δ p(ω) (160)

Averaging over all propagation directions, the strain noise measured between two test
masses separated by a distance L along ex reads

S(h;ω) = 2

3

(

4π

kLω2

Gρ0

γ p0

)2

S(δ p;ω)(1 − j0(kL) + 2 j2(kL)) (161)

The gravity-strain amplitude response is plotted in Fig. 29 expressing the distance
L between the two test masses in units of sound wavelength λIS = 2π/k. For short
distances between the test masses, the response is independent of L , and at large
distances, the response falls with 1/L . The long-distance response follows from the
fact that gravity noise is uncorrelated between the two test masses, which means that
the spectral densities of displacement noise of the two test masses can be added and
subsequently divided by their distance, (S1(x;ω) + S2(x;ω))/L , to yield the strain
noise. Instead, the response for small L corresponds to the regime where the two test
masses experience two very similar gravity accelerations, which turn into a gravity-
gradient signal when subtracted. The gravity gradient across two close test masses
does not depend significantly on their distance L .

The strain noise spectrum from uniformly advected temperature fluctuations is
calculated from Eq. (144) using the solution of the integrals given in Sect. 6.2:

S(h;ω) = (2π)3
(

Gρ0cT

LT0

)2

ω−(p+7)Ŵ(2 + p) sin(π p/2)e−2rminω/vv p+2, (162)
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Fig. 29 Gravity-strain amplitude response to infrasound fields

Fig. 30 Infrasound Newtonian noise in low-frequency GW detectors. Left: low-frequency concept (see
Sect. 2.3). Right: Einstein Telescope. The sound spectra are taken from Bowman et al. (2005). Images
reproduced with permission from Fiorucci et al. (2018); copyright by APS

where the modified Bessel functions were approximated according to Eq. (167). We
assume that both test masses experience gravity perturbations characterized by the
same spectral densities. The integral over stream lines in Eq. (144) was carried out over
a semi-infinite disk with a disk-shaped excision of radius rmin around the test mass.
The excision enforces a minimum distance between stream lines and test masses,
for example because of buildings hosting the test masses. Due to the exponential
suppression, it is tempting to conclude that this noise contribution is insignificant deep
underground. However, vortices or other non-uniform air flow, or coherent structures
in the atmospheric boundary layer might cause important deviations from this simple
result, which means that any prediction of advective Newtonian-noise suppression
with depth would be highly speculative.

Figure 30 shows infrasound Newtonian noise spectra for low-frequency detector
concepts (left) and for the proposed third-generation GW detector Einstein Telescope
(right). For the low-frequency part, it can be seen that infrasound Newtonian noise
is only weakly suppressed with increasing detector depth, since fluctuations of static
pressure maintain high coherence over long distances in this band. Consequently, to
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reach the final sensitivity target below 10−19 Hz−1/2 at 0.1 Hz, several orders of magni-
tude reduction of sound Newtonian noise are still required. In comparison, infrasound
Newtonian noise will play a minor role for the Einstein Telescope if constructed at
least 100 m underground. There is a smaller, but significant contribution from sound
fields inside the several tens of meters large cavities that host the vortex stations of the
detector.

The slope of infrasound Newtonian noise is steeper than of seismic Newtonian
noise (see Fig. 35), which can be taken as an indication that there may be a frequency
below which atmospheric Newtonian noise dominates over seismic Newtonian noise.
This has in fact been predicted in Harms et al. (2013). Using measured spectra of
atmospheric pressure fluctuations and seismic noise, the intersection between seismic
and infrasound Newtonian noise happens at about 1 Hz for a test mass at the sur-
face. We also know (see Sect. 7.1.5) that Newtonian noise from atmospheric pressure
fluctuations is the dominant ambient noise background around 1 mHz. One might be
tempted to conclude that gravity perturbations from advected temperature fields may
be an even stronger contribution at low frequencies. However, one has to be careful
since models presented in this chapter cannot easily be extended to mHz frequencies,
and temperature structure functions as in Eq. (137) can take different forms. The quasi-
static approximation of the temperature field will fail at sufficiently low frequencies,
and the temperature field cannot be characterized anymore as a result of turbulent
mixing (Kukharets and Nalbandyan 2006).

5.6 Summary and open problems

In this section, we reviewed models of atmospheric gravity perturbations that are
either associated with infrasound waves, or with quasi-stationary temperature fields
advected by wind. For surface detectors, atmospheric Newtonian noise starts to be
significant below 10 Hz according to these models, but this is only true for sound spectra
representative of remote places. Sound levels in laboratory buildings can exceed sound
levels at remote locations by more than an order of magnitude even without heavy
machinery running, e.g., due to ventilation systems or pumps (Fiorucci et al. 2018).
In this case, sound Newtonian noise can become significant above 10 Hz already, and
become a potentially limiting noise contribution in advanced detectors.

According to Eqs. (161) and (162), and comparing with seismic Newtonian noise
(see Fig. 35), we see that atmospheric spectra are steeper and therefore potentially the
dominating gravity perturbation in low-frequency detectors. However, both models are
based on approximations that may not hold at frequencies below a few Hz. A summary
of approximations applied to the infrasound Newtonian noise model can be found in
Harms et al. (2013). Also, the noise model of advected temperature fluctuations is
likely inaccurate at sub-Hz frequencies since it is based on the assumption that the
temperature field is quasi-stationary, is produced by turbulent mixing, and transported
by uniform air flow.

As we have seen, few time-varying atmospheric noise models have been developed
so far, which leaves plenty of space for future work in this field. For example, con-
vection may produce atmospheric gravity perturbations, and only very simple models
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of gravity perturbations from turbulence have been calculated so far. While these
yet poorly modeled forms of atmospheric noise are likely insignificant in GW detec-
tors sensitive above 10 Hz, they may become important in low-frequency detectors.
Improving these models will also answer to the important question how strongly
atmospheric Newtonian noise is suppressed with depth. Finally, the question should
be addressed whether atmospheric disturbances transmitted in the form of seismic
waves into the ground can be neglected in Newtonian-noise models. As we outlined
briefly in Sect. 5.1, even though transmission coefficients of sound waves into the
ground are negligible with respect to their effect on seismic and infrasound fields, it
seems that they may be relevant with respect to their effect on the gravity field.

6 Gravity perturbations from objects

In the previous sections, Newtonian-noise models were developed for density perturba-
tions described by fields in infinite or half-infinite media. The equations of motion that
govern the propagation of disturbances play an important role since they determine the
spatial correlation functions of the density field. In addition, gravity perturbations can
also be produced by objects of finite size, which is the focus of this section. Typically,
the objects can be approximated as sufficiently small, so that excitation of internal
modes do not play a role in calculations of gravity perturbations. The formalism that
is presented can in principle also be used to calculate gravity perturbations from objects
that experience deformations, but this scenario is not considered here. In the case of
deformations, it is advisable to make use of a numerical simulation. For example, to
calculate gravity perturbations from vibrations of vacuum chambers that surround the
test masses in GW detectors, Pepper used a numerical simulation of chamber deforma-
tions (Pepper 2007). A first analytical study of gravity perturbations from objects was
performed by Thorne and Winstein who investigated disturbances of anthropogenic
origin (Thorne and Winstein 1999). The paper of Creighton has a section on gravity
perturbations from moving tumbleweeds, which was considered potentially relevant to
the LIGO Hanford detector (Creighton 2008). Interesting results were also presented
by Lockerbie (2012), who investigated corrections to gravity perturbations related to
the fact that the test masses are cylindrical and not, as typically approximated, point
masses.

Section 6.1 presents rules of thumb that make it possible to estimate the relevance
of perturbations from an object “by eye” before carrying out any calculation. Sec-
tions 6.2 and 6.3 review well-known results on gravity perturbations from objects in
uniform motion, and oscillating objects. A generic analytical method to calculate grav-
ity perturbations from oscillating and rotating objects based on multipole expansions
is presented in Sects. 6.5 and 6.6.

6.1 Rules of thumb for gravity perturbations

From our modelling effort so far, we conclude that seismic fields produce the dominant
contribution to Newtonian noise above a few Hz. In terms of test-mass acceleration,
seismic Newtonian noise is proportional to the displacement ξ , and ground density ρ:
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δa ∼ Gρξ (163)

This relation is true for any type of seismic field, underground and above surface, with
or without scattering, and to make this equation exact, a numerical factor needs to be
multiplied, which, in the cases studied so far, should realistically lie within the range
1–10. This was one of the results of Sect. 3. Other forms of Newtonian noise would
be deemed relevant if they lay within a factor 10 to seismic Newtonian noise (this
number can increase in the future with improving noise-cancellation performance).
The question that we want to answer now is under which circumstances an object
would produce gravity perturbations comparable to perturbations from seismic fields.
Intuitively, one might think that an object only needs to be close enough to the test
mass, but this is insufficient unless the object almost touches the test mass, as will be
shown in the following.

Let us consider the gravity perturbation from a small mass of volume δV and density
ρ0 at distance r to the test mass that oscillates with amplitude ξ(t) ≪ r . We can use
the dipole form in Eq. (45) to calculate the gravity perturbation at r0 = 0:

δa(t) = Gρ0
δV

r3 (ξ(t) − 3(er · ξ(t))er ) (164)

Acceleration produced by a point mass scales similarly to acceleration from seismic
fields according to Eq. (163), but the amplitude is reduced by δV /r3. In numbers, a
solid object with 1 m diameter at a distance of 5 m oscillating with amplitude equal to
seismic amplitudes, and equal density to the ground would produce Newtonian noise,
which is about a factor 100 weaker than seismic Newtonian noise. Infrastructure at GW
detectors near test masses include neighboring chambers, which can have diameters
of several meters, but the effective density is low since the mass is concentrated in the
chamber walls.

If the distance r is decreased to its minimum when the test mass and the perturbing
mass almost touch, then the factor δV /r3 is of order unity. It is an interesting question
if there exist geometries of disturbing mass and test mass that minimize or maximize
the gravitational coupling of small oscillations. An example of a minimization problem
that was first studied by Lockerbie (2012) is presented in Sect. 6.4. The maximization of
gravitational coupling by varying object and test-mass geometries could be interesting
in some experiments. Maybe it is possible to base a general theorem on the multipole
formalism for small oscillations introduced in Sect. 6.5.

One mechanism that could potentially boost gravity perturbations from objects are
internal resonances. It is conceivable that vibration amplitudes are amplified by factors
up to a few hundred on resonance, and therefore it is important to investigate carefully
the infrastructure close to the test mass. There is ongoing work on this for the Virgo
detector where handles attached to the ground are located within half a meter to the
test masses. While the rule of thumb advocated in this section rules out any significant
perturbation from the handles, handle resonances may boost the gravity perturbations
to a relevant level. Finally, we want to emphasize that the rule of thumb only applies
to perturbative motion of objects. An object that changes location, or rotating objects
do not fall under this category.
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6.2 Objects moving with constant speed

Objects moving at constant speed produce gravity perturbations through changes in
distance from a test mass. It is straight-forward to write down the gravitational attrac-
tion between test mass and object as a function of time. The interesting question is
rather what the perturbation is as a function of frequency. While gravity fluctuations
from random seismic or infrasound fields are characterized by their spectral densities,
gravity changes from moving objects need to be expressed in terms of their Fourier
amplitudes, which are calculated in this section. Since the results should also be appli-
cable to low-frequency detectors where the test masses can be relatively close to each
other, the final result will be presented as strain amplitudes.

We consider the case of an object of mass m that moves at constant speed v along a
straight line that has distance r1, r2 to two test masses of an arm at closest approach.
The vectors r1, r2 pointing from the test mass to the points of closest approach are
perpendicular to the velocity v. The closest approach to the first test mass occurs at
time t1, and at t2 to the second test mass.

As a function of time, the acceleration of test mass 1 caused by the uniformly
moving object reads

δa1(t) = − Gm
(

r2
1 + v2(t − t1)2

)3/2 (r1 + v(t − t1)) (165)

The Fourier transform of δa1(t) can be directly calculated with the result

δa1(ω) = −2Gmω

v2

(

K1(r1ω/v)r1/r1 + iK0(r1ω/v) v/v
)

eiωt1 (166)

with Kn(x) being the modified Bessel function of the second kind. This equation
already captures the most important properties of the perturbation in frequency domain.
The ratio v/r1 marks a threshold frequency. Above this frequency, the argument of
the modified Bessel functions is large and we can apply the approximation

Kn(x) ≈
√

π

2x
e−x

(

1 + 4n2 − 1

8x
+ · · ·

)

, (167)

which is valid for x ≫ |n2−1/4|. We see that the Fourier amplitudes are exponentially
suppressed above v/r1. The expression in Eq. (166) has the same form for the second
test mass. We can however eliminate t2 in this equation since the distance travelled
by the object between t1 and t2 is L(e12 · v)/v, where L is the distance between the
test masses, and e12 is the unit vector pointing from test mass 1 to test mass 2, and so
t2 = t1 + L(e12 · v)/v2. Another substitution that can be made is

r2 = r1 − Le12 + L(e12 · v)v/v2 (168)
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Fig. 31 Gravity perturbations from a uniformly moving point mass. In the left plot, distance between test
masses is kept constant at L = 500 m, while in the right plot speed is kept constant at 20 m/s

The strain amplitude is then simply given by

h(ω) = −e12 · (δa2(ω) − δa1(ω))/(ω2 L) (169)

Let us consider a simplified scenario. The test masses are assumed to be underground
at depth D, and a car is driving directly above the test masses with v parallel e12 and
perpendicular to r1. Therefore, r1 = r2, and t2 − t1 = L/v. The corresponding strain
amplitude is

h(ω) = 2Gm

v2ωL
iK0(ωD/v)

(

eiωL/v − 1
)

eiωt1 (170)

Notice that the strain amplitude is independent of the test mass separation L at fre-
quencies ω ≪ v/L . The plots in Fig. 31 show the strain amplitudes with varying
speeds v and arm lengths L . In the former case, the arm length is kept constant at
L = 500 m, in the latter case, the speed is kept constant at v = 20 m/s. The mass of
the car is 1000 kg, and the depth of the test masses is 300 m.

While this form of noise is irrelevant to large-scale GW detectors sensitive above
10 Hz, low-frequency detectors could be strongly affected. According to the left plot,
one should better enforce a speed limit on cars to below 10 m/s if the goal is to have
good sensitivity around 0.1 Hz. Another application of these results is to calculate
Newtonian noise from uniformly advected atmospheric temperature fields as discussed
in Sect. 5.2. For uniform airflow, the remaining integrals in Eq. (144) are the Fourier
transform of Eq. (165), whose solution was given in this section.

6.3 Oscillating point masses

Oscillating masses can be a source of gravity perturbations, where we understand
oscillation as a periodic change in the position of the center of mass. As we have
seen in Sect. 6.1, it is unlikely that these perturbations are dominant contributions to
Newtonian noise, but in the case of strongly reduced seismic Newtonian noise (for
example, due to coherent noise cancellation), perturbations from oscillating objects
may become significant. For an accurate calculation, one also needs to model distur-
bances resulting from the reaction force on the body that supports the oscillation. In
this section, we neglect the reaction force. Oscillation is only one of many possible
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Fig. 32 A point mass m

oscillating with amplitude ξ

produces differential
displacement of two test masses
separated by L

modes of object motion that can potentially change the gravity field. A formalism
that can treat all types of object vibrations and other forms of motion is presented in
Sect. 6.4.

The goal is to calculate the gravity perturbation produced by an oscillating point
mass m as strain noise between two test masses at distance L to each other separated
along the direction of the unit vector e12 (Fig. 32).

While the direction of oscillation is assumed to be constant, the amplitude is random
and therefore characterized by a spectral density. As usual, we will denote the ampli-
tudes of oscillation by ξ(ω) keeping in mind that these only have symbolic meaning
and need to be translated into spectral densities. We only allow for small oscillations,
i.e., with ξ being much smaller than the distance of the object to the two test masses.
The acceleration of the first test mass has the well-known dipole form

δa1(ω) = Gm

r3
1

(

ξ(ω) − 3(ξ(ω) · er1)er1

)

(171)

where er1 is the unit vector pointing from the first test mass to the object, and r1 is the
distance between them. The acceleration of the second test mass has the same form, and
we can substitute er2 = (er1 −λe12)/δ and r2 = r1δ with δ ≡ (1+λ2−2λ(er1 ·e12))

1/2

and λ ≡ L/r1.
Let us consider the case of an object oscillating along the direction e12, and e12

being perpendicular to er1 . Then we can write for the strain noise

h‖(ω) = e12 · (δa2(ω) − δa1(ω))/(Lω2) = Gmξ(ω)

r4
1ω2

1

λ

(

1 − 2λ2

(1 + λ2)5/2
− 1

)

(172)

Changing the direction of oscillation from e12 to er1 , the strain noise reads

h⊥(ω) = Gmξ(ω)

r4
1 ω2

1

λ

3λ

(1 + λ2)5/2
(173)

While h‖(ω)becomes arbitrarily small with decreasingλ, h⊥(ω) approaches a constant
value. Towards high frequencies, h⊥ falls rapidly since there is no force along e12 on
the first test mass, and the distance of the object to the second test mass increases with
growing λ, and also the projection of the gravity perturbation at the second test mass
onto e12 becomes smaller.

Figure 33 shows the gravity strain response to an oscillating object for oscillations
parallel to e12 (left) and perpendicular to e12 (right). The position of the object is
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Fig. 33 Strain response to gravity perturbations from oscillating objects

Fig. 34 Bipolar multipole
expansion

parameterized by the angle φ = arccos(e12 · er1) (which we call polar angle). Equa-
tions (172) and (173) correspond to the response on the lines φ = π/2. The response
grows to infinity for λ = 1 and polar angle φ = 0 since the object is collocated with
the second test mass. Note that λ > 1 and φ = 0 means that the object lies between
the two test masses.

6.4 Interaction betweenmass distributions

In the following, we discuss gravitational interaction between two compact mass distri-
butions. We consider the case where the distance RAB between the two centers of mass
is greater than the object diameters at largest extent. The so-called bipolar expansion
allows us to express the gravitational force in terms of mass multipole moments. The
idea is to split the problem into three separate terms. One term depends on the vector
RAB that points from the center of mass A to the center of mass B. Each individual
mass is expanded into its multipoles according to Eq. (262) calculated in identically
oriented coordinate systems, but with their origins corresponding to the two centers
of mass. The situation is depicted in Fig. 34.

Technically, the origins do not have to be the centers of mass, but in many cases
it is certainly the preferred choice. The calculation of the bipolar expansion of the
interaction energy between two charge distributions is outlined (Solov’yov et al. 2007).
The result can either be expressed in terms of the Wigner 3-j symbols or Clebsch–
Gordan coefficients. We will use Clebsch–Gordan coefficients (see Appendix 4):
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UAB(RAB ) = −G

∞
∑

l1=0

∞
∑

l2=0

(−1)l2

(

2L

2l1

)1/2

×
l1
∑

m1=−l1

l2
∑

m2=−l2

(

I M
L (RAB )

)∗
X

m1, A
l1

X
m2, B
l2

〈l1, m1; l2, m2|L, M〉,

(174)

where I M
L (·) are the interior solid spherical harmonics defined in Eq. (261), and L ≡

l1 + l2, M ≡ m1 + m2. It is not very difficult to generalize this equation for arbitrary
mass distributions (one object inside another hollow object, etc), but we will leave
this for the reader. The method is essentially an exchange of irregular and regular
solid spherical harmonics in Eq. (174) together with Eqs. (262) and (263). Also, in
general it may be necessary to divide the multipole integral in Eq. (262) into several
integrals over regular and irregular harmonics. A practical method to calculate the
Clebsch-Gordan coefficients 〈l1, m1; l2, m2|L, M〉 is outlined in Sect. 4.

As a first example, we apply the formalism to calculate the gravity force between a
point mass and a cylindrical mass. This scenario has been first considered by Lockerbie
(2012) to investigate whether the typical approximation of the test mass as a point mass
is valid. The only non-vanishing multipole moment of a point mass M in a coordinate
system centered on its position is X0

0 = M . Therefore the interaction energy can be
written

UAB(RAB ) = −G M

∞
∑

l=0

l
∑

m=−l

(

I m
l (RAB )

)∗
Xm B

l (175)

Let us consider the specific example of a point mass interacting with the quadrupole
moment of a cylindrical mass of uniform density (the dipole moment of the cylinder
is zero). The cylinder of mass M has a radius R and a height H . Aligning the z-axis of
the coordinate system with the symmetry axis of the cylinder, the only non-vanishing
moments of the cylinder have m = 0 due to axial symmetry. Therefore, the relevant
solid spherical harmonic expressed in cylindrical coordinates is given by

R0
2 = 1

2
(2z2 − ρ2) (176)

According to Eq. (262), the corresponding quadrupole moment with respect to the
center of mass is

X0
2 = Mc

12

(

H2 − 3R2
)

(177)

Since the z-axis is defined parallel to the symmetry axis of the cylinder, the spherical
angular coordinate θ in I 0

2 (RAB ) represents the angle between the symmetry axis
and the separation vector RAB . The interaction energy of the quadrupole term can be
written

UAB(RAB ) = −G M Mc

24R3
AB

(

H2 − 3R2
)

(3 cos2(θ) − 1) (178)
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Next we outline briefly how to calculate a gravitational force between two bodies
based on the bipolar expansion involving one point mass m. The gravitational force is
the negative gradient of the interaction energy, which can be calculated using Eq. (254)

F(RAB ) = G M

∞
∑

l=0

l
∑

m=−l

(

∇ I m
l (RAB )

)∗
X

m, A
l

= G M

∞
∑

l=0

√

4π

2l + 1

1

Rl+2
AB

l
∑

m=−l

(

−(l + 1)Ym
l (RAB ) + Ψ m

l (RAB )
)∗

X
m, A
l ,

(179)
which involves the vector spherical harmonics defined in Eq. (251). Interestingly, the
quadrupole moment of the cylinder, and the associated interaction energy and force, are
zero when H =

√
3R. Since the quadrupole moment can be considered describing the

lowest-order correction of the monopole gravitational force, a cylinder with vanishing
quadrupole moment behaves very much like a point mass in interactions with nearby
point masses. An interesting application of this result is presented in Lockerbie (2002).

The interaction of the point mass with the monopole and quadrupole moments
of the cylinder can also lead to a cancellation of certain components of the force.
For example, calculating the sum of the monopole and quadrupole terms of the last
equation in radial direction, we have

0 = −G M Mc

R2
AB

− 3G M Mc

R4
AB

1

2
(3 cos2(θ) − 1)

1

12

(

H2 − 3R2
)

R2
AB =

(

H2 − 3R2
)

8
(1 − 3 cos2(θ))

(180)

Obviously, cancellation is impossible if H =
√

3R. Conversely, the quadrupole
moment can also lead to an enhancement of components of the gravitational force
relative to the monopole term.

6.5 Oscillating objects

In the previous section, we introduced the formalism of bipolar expansion to calculate
gravitational interactions between two bodies. However, what we typically want is
something more specific such as the change in gravity produced by translations and
rotations of bodies. Translations in the form of small oscillations will be studied in
this section, rotations in the following section. We emphasize that the same formalism
can also be used to describe changes in the gravity field due to arbitrary vibrations of
bodies by treating these as changes in the coefficients of a multipole expansion.

In this section, we assume that the orientation of the two bodies does not change,
while the separation between them changes. This can either be incorporated into the
formalism as a change of RAB, which, according to Eq. (174), requires a transforma-
tion rule for the irregular solid spherical harmonics under translation. Alternatively,
we could also treat RAB as constant, but translate one of the bodies inside its own
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coordinate system leading to changes in its multipole moments. In either case, the
effect of translation can be accounted for using the transformation rules on the regular
or irregular solid spherical harmonics in the form of addition theorems. In the case of
regular solid spherical harmonics, the result can be written in terms of Clebsch-Gordan
coefficients

Rm
l (r1 + r2 ) =

l
∑

l ′=0

l ′
∑

m′=−l ′
R

l ′m′
lm Rm′

l ′ (r1 )Rm−m′
l−l ′ (r2 )

R
l ′m′
lm ≡

(

2l

2l ′

)1/2

〈l ′, m′; l − l ′, m − m′|lm〉

(181)

The addition theorem for the irregular solid spherical harmonics reads

I m
l (r1 + r2 ) =

∞
∑

l ′=0

l ′
∑

m′=−l ′
I

l ′m′
lm Rm′

l ′ (r< )I m−m′
l+l ′ (r> )

I
l ′m′

lm ≡
(

2l + 2l ′ + 1

2l ′

)1/2

〈l ′, m′; l + l ′, m − m′|lm〉

(182)

where r> is the longer of the two vectors r1, r2, and r< is the shorter one. These
addition theorems can be found in different forms (Steinborn and Ruedenberg 1973;
Caola 1978). We chose the Clebsch–Gordan variant since it bears some similarity to
the bipolar expansion.

In the following, we describe oscillations of a body as a small change in RAB,
which means that we need to apply the addition theorem of irregular harmonics. In
Eq. (182), we set r1 = RAB and r2 = ξ . Since the oscillation amplitude ξ is assumed
to be small, we only keep terms up to linear order in ξ :

I M
L (RAB + ξ ) =

∞
∑

l ′=0

l ′
∑

m′=−l ′
I

l ′m′
L M Rm′

l ′ (ξ )I M−m′
L+l ′ (RAB )

≈
1
∑

l ′=0

l ′
∑

m′=−l ′
I

l ′m′
L M Rm′

l ′ (ξ )I M−m′
L+l ′ (RAB )

= I M
L (RAB ) + I

1,−1
L,M I M+1

L+1 (RAB )R−1
1 (ξ )

+ I
1,0
L,M I M

L+1(RAB )R0
1(ξ ) + I

1,1
L,M I M−1

L+1 (RAB )R1
1(ξ ) (183)

Let us illustrate this result with an example. We apply the linearized addition theorem to
the case of an interaction between a quadrupole moment of a cylinder and an oscillating
point mass. The cylinder is meant to represent a test mass of a GW detector, the point
mass can represent part of a larger vibrating object in the vicinity of the test mass.
Using the notation of the example in the previous section, the perturbed interaction
energy can be written as
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UAB(RAB + ξ ) = −G M
(

I 0
2 (RAB + ξ )

)∗
X0 B

2

= −G M Mc

12
(H2 − 3R2)

·
[

I 0
2 (RAB ) + 2

√
6ℜ[I 1

3 (RAB )R−1
1 (ξ )] − 3I 0

3 (RAB )R0
1(ξ )

]

= −G M Mc

24R3
AB

(H2 − 3R2) ·
[

3(eAB · ez)
2 − 1 − 3ξ

RAB

((5(eAB · ez)
2 − 1)(eAB · eξ ) − 2(eAB · ez)(eξ · ez))

]

(184)

where ez is the symmetry axis of the cylinder, eAB ≡ RAB/RAB , and eξ ≡ ξ/ξ . In
the case of a point mass being displaced along the radial direction, parallel to RAB ,
the perturbed interaction potential simplifies to

UAB(RAB + ξ ) = −G M Mc

24R3
AB

(H2 − 3R2)(3(eAB · ez)
2 − 1)

(

1 − 3ξ

RAB

)

(185)

This result can also be derived directly from Eq. (178). For displacements perpendic-
ular to the radial direction RAB , the interaction potential simplifies to

UAB(RAB + ξ )

= −G M Mc

24R3
AB

(H2 − 3R2)

[

3(eAB · ez)
2 − 1 + 6ξ

RAB

(eAB · ez)(eξ · ez)

]

(186)

In this scenario, the displacement ξ of the point mass should be considered a function of
time. The result describes the lowest order correction of the monopole-monopole time-
varying interaction between a point mass and a cylinder. We see that the quadrupole
contribution is suppressed by a factor ξ/RAB (the vibration amplitude is at most a few
millimeters). Therefore it is clear that corrections from higher-order moments only
matter if gravitational interaction is measured very precisely, or the vibrating point
mass is very close to the cylinder.

6.6 Rotating objects

Gravity perturbations can be generated by rotating objects such as exhaust fans or
motors. We will again use the formalism of the bipolar expansion to calculate the
gravitational interaction. In analogy to the previous section, a transformation rule is
required for solid spherical harmonics under rotations. For this, we need to work in two
coordinate systems. One coordinate system is body fixed. When the body rotates, this
coordinate system rotates with it. For the bipolar expansion, we also need to define a
coordinate system of the “laboratory frame”, and the purpose of the rotation transfor-
mation is to describe the relative orientation of a body-fixed coordinate system to the
laboratory frame. Rotations are easier to describe since we have chosen to work with
spherical multipole expansions in this article. According to Eq. (261), if we understand
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the transformation of scalar surface spherical harmonics under rotations, then we auto-
matically have the transformation of solid spherical harmonics. The transformation
of surface spherical harmonics under rotations can be written in terms of the Wigner
D-matrices (Romanowski and Krukowski 2007; Steinborn and Ruedenberg 1973):

Y m
l (θ, φ) =

l
∑

m′=−l

Y m′
l (θ ′, φ′)D

(l)

m′,m(α, β, γ ) (187)

and since the transformation is unitary:

Y m
l (θ ′, φ′) =

l
∑

m′=−l

Y m′
l (θ, φ)D

(l)∗

m,m′(α, β, γ ) (188)

Primed coordinates stand for the body-fixed system, while coordinates without prime
belong to the laboratory frame. Rotations preserve the degree l of spherical harmonics.

The rotation is defined in terms of the Euler angles α, β, γ around three axes
derived from the body-fixed system. The first rotation is by α around the z-axis of
the body-fixed system, then by β around the y′-axis of the once rotated coordinate
system (following the convention in Steinborn and Ruedenberg 1973), and finally by
γ around the z′′-axis of the twice rotated coordinate system. Rotations around the z-
axes lead to simple complex phases being multiplied to the spherical harmonics. The
rotation around the y′-axis is more complicated, and the general, explicit expressions
for the components D

(l)∗

m,m′(α, β, γ ) of the rotation matrix are given by Steinborn and
Ruedenberg (1973):

D
(l)

m′,m(α, β, γ ) = e−im′αd
(l)

m′,m(β)e−imγ

d
(l)

m′,m(β) =
√

(l + m′)!(l − m′)!
(l + m)!(l − m)! (−1)m′−m

·
∑

k

(−1)k

(

l + m

k

)(

l − m

l − m′ − k

)

· (cos(β/2))2l−m′+m−2k(sin(β/2))m′−m+2k

(189)

where the sum is carried out over all values of k that give non-negative factorials in the
two binomial coefficients: max(0, m−m′) ≤ k ≤ min(l −m′, l +m). In the remainder
of this section, we apply the rotation transformation to the simple case of a rotating
ring of N point masses. Its multipole moments have been calculated in Sect. 3. The
goal is to calculate the gravity perturbation produced by the rotating ring, assumed to
have its symmetry axis pointing towards the test mass that is now modelled as a point
mass. In this case, we can take Eq. (175) as starting point. The rotation transforms the
exterior multipole moments X

m,B
l . We have seen that multipole moments of the ring

vanish unless m = 0, N , 2N , . . . and l + m must be even. Only the first (or last) Euler
rotation by an angle α = ωt is required, which yields
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UAB(RAB, t) = −G M

∞
∑

l=0

l
∑

m=−l

(

I m
l (RAB )

)∗
X

m,B
l e−imωt (190)

This result is obtained immediately using d
(l)

m′,m(0) = δm′,m . This result could have
been guessed directly by noticing that the azimuthal angle φk that determines the
position of a point mass on the ring appears in the spherical harmonics as phase
factor exp(imφk). When the ring rotates, all azimuthal angles change according to
φk(t) = φk(0) − ωt .

Since Xm
l vanishes unless m = 0, N , 2N , . . ., only specific multiples of the rotation

frequency ω can be found in the time-varying gravity field. The number N of point
masses on the ring quantifies the level of symmetry of the ring, and acts as an up-
conversion factor of the rotation frequency. Therefore, if gravity perturbations are
to be estimated from rotating bodies such as a rotor, then the level of symmetry is
important. However, the higher the up-conversion, the stronger is the decrease of the
perturbation with distance from the ring. It would of course be interesting to study
the effect of asymmetries of the ring on gravity perturbations. For example, the point
masses can be slightly different, and their distance may not be equal among them. It
is not a major effort to generalize the symmetric ring study to be able to calculate the
effect of these deviations.

6.7 Summary and open problems

In this section, we reviewed the theoretical framework to calculate gravity perturba-
tions produced by finite-size objects. Models have been constructed for uniformly
moving objects, oscillating objects, as well as rotating objects. In all examples, the
object was assumed to be rigid, but expanding a mass distribution into multipole
moments can also facilitate simple estimates of gravity perturbations from excited
internal vibration modes. An “external” vibration in the sense of an isolated oscil-
lation does not exist strictly speaking since there must always be a physical link to
another object to compensate the momentum change, but it is often possible to iden-
tify a part of a larger object as main source of gravity perturbations and to apply the
formalism for oscillating masses.

Many forms of object Newtonian noise have been estimated (Pepper 2007; Driggers
et al. 2012b). So far, none of the potential sources turned out to be relevant. In Sect. 6.1,
we learned why it is unlikely that object Newtonian noise dominates over seismic
Newtonian noise. Still, one should not take these rules of thumb as a guarantee. Strong
vibration, i.e., with amplitudes much larger than ground motion, can in principle lead
to significant noise contributions, especially if the vibration is enhanced by internal
resonances of the objects. Any form of macroscopic motion including rotations (in
contrast to small-amplitude vibrations) should of course be avoided in the vicinity of
the test masses.

A Newtonian-noise budget based on an extensive study of potential sources at the
LIGO sites was published in Driggers et al. (2012b). The result is shown in Fig. 35.
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Fig. 35 Newtonian-noise budget for the LIGO sites as published in Driggers et al. (2012b). Gravity pertur-
bations from the wall panels, building, and fan were estimated based on equations from this section

The curves are based on seismic, sound, and vibration measurements. The seis-
mic Newtonian noise curves are modelled using Eq. (100), the sound Newtonian
noise using Eq. (161), and estimates of gravity perturbations from wall panels, the
buildings, and fans are modelled using equations from this section. Gravity pertur-
bations from the buildings assume a rocking motion of walls and roof. The exhaust
fan strongly vibrates due to asymmetries of the rotating parts, which was taken as
source of gravity perturbations. Finally, panels attached to the structure of the build-
ings show relatively high amplitudes of a membrane like vibration. Nonetheless, these
sources, even though very massive, do not contribute significantly to the noise bud-
get.

Greater care is required when designing future GW detectors with target frequen-
cies well below 10 Hz. These will rely on some form of Newtonian-noise mitigation
(passive or active), which increases the relative contribution of other forms of gravity
perturbations. Also, in some cases, as for the uniform motion discussed in Sect. 6.2,
there is a link between the shape of the gravity perturbation spectrum and the dis-
tance between object and test mass. These classes of gravity perturbations (and we
have identified only one of them so far), can be much stronger at lower frequen-
cies.

Future work on object Newtonian noise certainly includes a careful study of this
problem for low-frequency GW detectors. In general, it would be beneficial to set
up a catalogue of potential sources and corresponding gravity models to facilitate the
process of estimating object Newtonian noise in new detector designs. Another inter-
esting application of the presented formalism could be in the context of experiments
carried out with the intention to be sensitive to gravity perturbations produced by an
object [such as the quantum-gravity experiment proposed by Feynman (Zeh 2011)].
The formalism presented in this section may help to optimize the geometrical design
of such an experiment.
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7 Newtonian-noise mitigation

In early sensitivity plots of GW detectors, Newtonian noise was sometimes included
as infrastructure noise. It means that it was considered a form of noise that cannot
be mitigated in a straight-forward manner, except maybe by changing the detector
site or applying other major changes to the infrastructure. Today however, some form
of Newtonian-noise mitigation is part of every design study and planning for future
generations of GW detectors, and it is clear that mitigation techniques will have a major
impact on the future direction of ground-based GW detection. The first to mention
strategies of seismic Newtonian-noise mitigation “by modest amounts” were Hughes
and Thorne (1998). Their first idea was to use arrays of dilatometers in boreholes, and
seismometers at the surface to monitor the seismic field and use the sensor data for
a coherent subtraction of Newtonian noise. The second idea was to construct narrow
moats around the test masses that reflect incoming Rayleigh waves and therefore
reduce seismic disturbances and associated gravity perturbations. As they already
recognized in their paper, and as will be discussed in detail in Sect. 7.3, moats must be
very deep (about 10 m for the LIGO and Virgo sites). They are also less effective to
reduce Newtonian noise from body waves, and above all, it is assumed that the seismic
sources are located outside the region protected by the moats.

Coherent cancellation of seismic Newtonian noise will be based on techniques that
have already been implemented successfully in GW detectors to mitigate other forms of
noise (Giaime et al. 2003; Driggers et al. 2012a; De Rosa et al. 2012; Driggers et al (The
LIGO Scientific Collaboration Instrument Science Authors) 2019). These techniques
are known as active noise mitigation. It is currently considered as a means to reduce
seismic Newtonian noise, but the same scheme may also be applied to atmospheric
Newtonian noise (see especially Sect. 7.1.5) and possibly also other forms of gravity
perturbations. While for example active seismic isolation cancels seismic disturbances
before they reach the final suspension stages of a test mass, gravity perturbations have
to be canceled in the data of the GW detector. It is said that coherent cancellation
comes without ultimate limitations, but this statement is likely incorrect and certainly
misleading. Many issues can limit the effectiveness of noise cancellation: available
number of sensors, available quality and type of sensors, sub-optimal filter design, e.g.,
due to statistical and numerical errors, back-action of the sensors on the monitored
field, non-stationarity of noise, and even fundamental aspects like the equivalence
principle can interfere (see Eq. (18)). The prediction by Hughes and Thorne of a modest
noise reduction rather follows from a vision of a practicable solution at the time the
paper was written. The first detailed study of coherent Newtonian-noise cancellation
was carried out by Cella (2000). He studied the Wiener-filter scheme. Wiener filters are
based on observed mutual correlation between environmental sensors and the target
channel. The Wiener filter is the optimal linear filter to reduce variance in a target
channel as explained in Sect. 7.1.1. The goal of a cancellation scheme can be different
though, e.g., reduction of a stationary noise background in non-stationary data. The
focus in Sect. 7.1 will also lie on Wiener filters, but limitations will be demonstrated,
and the creation of optimal filters using real data is mostly an open problem.

Techniques to mitigate Newtonian noise without using environmental data are sum-
marized under the category of passive Newtonian-noise mitigation. Site selection is the
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best understood passive mitigation strategy. The idea is to identify the quietest detector
site in terms of seismic noise and possibly atmospheric noise, which obviously needs
to precede the construction of the detector as part of a site-selection process. The first
systematic study was carried out for the Einstein Telescope (Beker et al. 2012) with
European underground sites. Other important factors play a role in site selection, and
therefore one should not expect that future detector sites will be chosen to minimize
Newtonian noise, but rather to reduce it to an acceptable level. Current understanding
of site selection for Newtonian-noise reduction is reviewed in Sect. 7.2. Other pas-
sive noise-reduction techniques are based on building shields against disturbances that
cause density fluctuations near the test masses, such as moats and recess structures
against seismic Newtonian noise, which are investigated in Sect. 7.3.

7.1 Coherent noise cancellation

Coherent noise cancellation, also known as active noise cancellation, is based on the
idea that the information required to model noise in data can be obtained from auxiliary
sensors that monitor the sources of the noise. The noise model can then be subtracted
from the data in real time or during post processing with the goal to minimize the
noise. In practice, cancellation performance is limited for various reasons. Depending
on the specific implementation, non-stationarity of data, sensor noise, and limited
information content in sensor data can limit the performance. Sensor noise poses
a limitation since the noise-cancellation filter maps sensor noise (together with the
interesting signal) to the filter output, which is then added to the target channel. It
follows that the auxiliary sensors must provide information about the sources with
sufficiently high signal-to-noise ratio.

The best way to understand the noise-cancellation problem is to think of it as an
optimization of extraction of information, subject to constraints. Constraints can exist
for the maximum number of auxiliary sensors, for the possible array configurations,
and for the amount of data that can be used to calculate the optimal filter. Also the type
of filter and the algorithm used to calculate it can enforce constraints on information
extraction. There is little understanding of how most of these constraints limit the per-
formance. A well-explored cancellation scheme is based on Wiener filters (Orfanidis
2007). Wiener filters are linear filters calculated from correlation between reference
and target channels. They are introduced in Sect. 7.1.1. In the context of seismic or
atmospheric Newtonian-noise cancellation, the sensors monitor fields, which means
that correlations between them are to be expected. In this case, if the field is wide-sense
stationary (defined in Sect. 7.1.1), if the target channel is wide-sense stationary, and
if all forms of noise are additive, then the Wiener filter is known to be the optimal
linear filter for a given configuration of the sensor array (Rey Vega and Rey 2013). In
Sects. 7.1.2 to 7.1.4, the problem is described for seismic and infrasound Newtonian
noise. The focus lies on gravity perturbations from fluctuating fields. Noise cancella-
tion from objects is expected to be far less challenging since it is easier to monitor the
object’s motion or vibration. Calculating a Wiener filter does not address the problem
whether the sensors have their optimal locations in the field to extract information
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most efficiently. The optimization of array configurations for noise cancellation is a
separate problem, which is discussed in Sect. 7.1.6.

7.1.1 Wiener filtering

A linear filter that produces an estimate of a random stationary (target) process mini-
mizing the mean-square error between target and estimation is known as Wiener filter
(Benesty et al. 2008). It is based on the idea that data from reference channels exhibit
some form of correlation to the target channel, which can therefore be used to provide
a coherent estimate of certain contributions to the target channel. Strictly speaking,
the random processes only need to be wide-sense stationary, which means that noise
moments are independent of time up to second order (i.e., variances and correlations).
Without prior knowledge of the random processes, the Wiener filter itself needs to be
estimated. In this section, we briefly review Wiener filtering, and discuss some of its
limitations.

Two main modes of Wiener filtering exist: filtering in time domain (real-valued) or
frequency domain (complex-valued). Let us start with the time-domain filter. Wiener
filter require random processes as inputs that are assumed to be correlated with the
target process. We will call these reference channels, and collect them as components of
a vector xn . The subindex n represents time tn = t0 + nΔt , where Δt is the common
sampling time of the random processes. With discretely sampled data, a straight-
forward filter implementation is the convolution with a finite-impulse response filter
(FIR). These filters are characterized by a filter order N . Assuming that we have M

reference channels, the FIR filter w is a (N + 1) × M matrix with components wnm .
The convolution assumes the form

ŷn =
N
∑

k=0

wk · xn−k

≡ w ◦ xn

(191)

where the dot-product is with respect to the M reference channels. This equation
implies that there is only one target channel yn , in which case the FIR filter is also
known as multiple-input-single-output (MISO) filter. We have marked the filter output
with a hat to indicate that it should be interpreted as an estimate of the actual target
channel. The coefficients of the Wiener filter can be calculated by demanding that the
mean-square deviation 〈(yn − ŷn)2〉 between the target channel and filter output is
minimized, which directly leads to the Wiener–Hopf equations:

Cxx · w(:) = Cxy (192)

The Wiener–Hopf equations are a linear system of equations that determine the filter
coefficients. Here, w(:) is the N M-dimensional vector that is obtained by concatenat-
ing the M columns of the matrix w. The (N + 1)M × (N + 1)M matrix Cxx is the
cross-correlation matrix between reference channels. Correlations must be evaluated
between all samples of all reference channels where sample times differ at most by
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NΔt . It contains the autocorrelations of each reference channel as (N + 1)× (N + 1)

blocks on its diagonal:

Cauto
xx =

⎛

⎜

⎜

⎜

⎝

c0 c1 · · · cN

c1 c0 · · · cN−1
...

...
. . .

...

cN cN−1 · · · c0

⎞

⎟

⎟

⎟

⎠

(193)

with ck ≡ 〈xn xn+k〉 for each of the M reference channels. In this form it is a sym-
metric Toeplitz matrix. The (N + 1)M-dimensional vector Cxy is a concatenation of
correlations between each reference channel and the target channel. The components
contributed by a single reference channel are

C
sgl
xy = (s0, s1, . . . , sN ) (194)

with sk ≡ 〈xn yn+k〉. Note that we do not assume independence of noise between
different reference channels. This is important since there can be forms of noise corre-
lated between reference channels, but uncorrelated with the target channel (e.g., shear
waves in Newtonian-noise cancellation, see Sect. 7.1.3). In general, the correlations
that determine the Wiener–Hopf equations are unknown and need to be estimated
from measurements using data from reference and target channels. How to solve the
Wiener–Hopf equations is explained in Orfanidis (2007). An implementation of the
code that calculates the required correlations from data and solves the equations can
be found in Pepper (2007).

The residual of the target channel after subtraction of ŷn is given by

rn = yn − w ◦ xn (195)

This equation summarizes the concept of coherent noise cancellation. In the context
of Newtonian noise subtraction, the target channel yn corresponds to the GW strain
signal contaminated by Newtonian noise, and ŷn is the estimate of Newtonian noise
provided by the Wiener filter using reference data from seismometers or other sensors.
Time-domain Wiener filters were successfully implemented in GW detectors for the
purpose of noise reduction (Driggers et al. 2012a; De Rosa et al. 2012). Results from
a time-domain simulation of Newtonian-noise cancellation using Wiener filters was
presented in Driggers et al. (2012b).

A frequency-domain version of the Wiener filter can be obtained straight-forwardly
by dividing the data into segments and calculating their discrete Fourier transforms.
Equation (195) translates into a segment-wise noise cancellation where n stands for
a double index to specify the segment and the discrete frequency (also known as fre-
quency bin). For stationary random processes, correlations between noise amplitudes
at different frequencies are zero. This means that coherent noise cancellation in fre-
quency domain can be done on each frequency bin separately, which is numerically
much less demanding and more accurate since the dimensionality of the system of
equations in Eq. (192) is reduced from N M to M (for N different frequency bins). In

123



6 Page 102 of 154 J. Harms

contrast, time-domain correlations ck, sk can be large for non-zero values of k. This
can cause significant numerical problems to solve the Wiener–Hopf equations, and as
observed in Coughlin et al. (2014), FIR filters of lower order can be more effective
(even though theoretically, increasing the filter order should not make the cancellation
performance worse).

It should be noted that coherence between channels needs to be very high even
for “modest” noise cancellation. The ideal suppression factor s(ω) as a function of
frequency in the case of a single reference channel is related to the reference-target
coherence c(ω) via

s(ω) = 1
√

1 − c(ω)2
(196)

where the coherence is defined in terms of the spectral densities (see Sect. 5):

c(ω) = S(x, y;ω)

(S(x;ω)S(y;ω))1/2 (197)

If coherence between reference and target channels at some frequency is {0.9, 0.99,

0.999, 0.9999995}, then the residual amplitude spectrum at that frequency will ide-
ally be reduced by factors {2.3, 7.1, 22, 1000}, respectively. In the case of multiple
reference sensors, the coherence c(ω) is between the MISO Wiener-filter output and
the target channel.

7.1.2 Cancellation of Newtonian noise from Rayleigh waves

Generally, there are two ways to model Newtonian-noise cancellation. First, one can
use analytic models of the correlations between seismic sensors and with test-mass
acceleration. Studies based on models have the advantage that they allow us to inves-
tigate in detail the impact of sensor noise and array configuration on cancellation
performance. For Rayleigh-wave Newtonian noise, this was first presented in an ear-
lier version of this review article and then in greater detail by Coughlin et al. (2016).
The second method is to estimate the required correlation functions from seismic data.
While it is straight-forward to calculate correlations Cxx in Eq. (192), or equivalently,
the cross-spectral densities CSS(ω) between seismometers, correlations between seis-
mometers and Newtonian-noise test-mass acceleration are not always available. So
far, we only have weak indication of the presence of Newtonian noise in data of the
LIGO Hanford detector (Coughlin et al. 2018b). The best one can do in this case is to
use the seismic correlations to obtain a more accurate model of correlations with the
test mass. The equations providing such a model for the most general Rayleigh-wave
field were first presented in Coughlin et al. (2016). In this section, we will derive
simplified expressions for the homogeneous field.

Another aspect that we do not consider in this section is to make use of seismic tilt-
meters for Newtonian-noise reduction. As shown in Harms and Venkateswara (2016),
the tiltmeter is the ideal instrument to cancel Newtonian noise from Rayleigh waves. If
the seismic field is homogeneous, then only one sufficiently sensitive tiltmeter under
each test mass would be required. We choose to present methods since seismic fields
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Fig. 36 Homogeneous
displacement-gravity kernel for
Rayleigh fields according to
Eq. (198)

can be strongly inhomogeneous as for example at the Virgo site due to subsurface
laboratory space under the test masses, divided concrete platforms to support different
heavy infrastructure, and anchoring of these platforms into lower layers of hard rock
by several tens of meter long poles.

For a homogeneous field, we can choose to evaluate the gravity acceleration at
̺0 = 0, and the surface coordinate system with position vector ̺ = (x, y) is centered
around the test mass. For the gravity acceleration along the x-axis measured at height h

above surface, the correlation is given by (see Sect. 3.6.3 for the definition of correlation
between random signals in frequency domain)

〈δax (0, ω), ξz(̺ , ω)〉 = −2π iGρ0γ (ν)

∫

d2k

(2π)2 S(ξz; k̺, ω)
kx

k̺

e−hk̺ eik̺̺

= Gρ0γ (ν)

∫

d2̺′ C(ξz; ̺ ′, ω)
x − x ′

(h2 + |̺ − ̺ ′|2)3/2 (198)

The two dimensional kernel of the integral in the second line is plotted in Fig. 36. The
important coordinate range of the correlation function lies around the two extrema at
x ′ = x ±h/

√
2 and y′ = y. Next, we will consider the explicit example of an isotropic

Rayleigh wave field. The easiest way to obtain the result is to insert the known solution
of the wavenumber spectrum, Eq. (111), into the first line in Eq. (198), which gives:

〈δax (0, ω), ξz(̺ , ω)〉 = 2πGρ0γ (ν)S(ξz;ω)e−hkR
̺ cos(φ)J1(k

R
̺ ̺), (199)

where ̺ is a surface coordinate vector. Interestingly, the correlation between vertical
displacement and the gravity perturbation vanishes for ̺ = 0. This is a consequence
of the fact that any elastic perturbation of the ground must fulfill the wave equation.
If instead the ground were considered as a collection of infinitely many point masses
without causal link, then the correlation of displacement of point masses nearest to
the test mass with the gravity perturbation would be strongest.

Since the purpose of this section is to evaluate and design a coherent noise cancella-
tion of gravity perturbations in x-direction, one may wonder why the correlation with
the vertical surface displacement is used, and not the displacement along the direction
of the x-axis. The reason is that in general horizontal seismic motion of a flat surface
correlates weakly with gravity perturbations produced at the surface. Other waves
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such as horizontal shear waves can produce horizontal surface displacement without
perturbing gravity. Vertical surface displacement always perturbs gravity, no matter
by what type of seismic wave it is produced. The situation is different underground as
we will see in Sect. 7.1.3.

Notice that the results so far can only be applied to the case where Newtonian noise
is uncorrelated between different test masses. In future GW detectors that measure
signals below 1 Hz, correlation of seismic Newtonian noise between two test masses
can be very high since the seismic wavelength is much larger than the dimension of the
detector. Since the only position dependence in Eq. (96) is the phase term exp(ik̺ ·̺0),
the differential acceleration between two test masses is governed by the difference of
phase terms at the two test masses, which simplifies to ik̺ · L when the distance L

between the test masses is much smaller than the length of the Rayleigh wave. In other
words, the detector measures gravity gradients. Considering the case that direction of
acceleration and direction of separation are the same, the correlation is given by

〈∂xδax (0, ω), ξz(̺ , ω)〉 = 2πGρ0γ (ν)

∫

d2k

(2π)2 S(ξz; k̺, ω)
k2

x

k̺

e−hk̺ eik̺̺

= Gρ0γ (ν)

∫

d2̺′ C(ξz; ̺ ′, ω)
h2 − 3(x − x ′)2 + |̺ − ̺ ′|2

(h2 + |̺ − ̺ ′|2)5/2

(200)
The maximum of the kernel lies at the origin x ′ = x , y′ = y independent of test-mass
height. Now, for the homogeneous and isotropic field, the solution with respect to the
strain acceleration reads

〈∂xδax (0, ω), ξz(̺ , ω)〉 = πGρ0γ (ν)S(ξz;ω)e−hkR
̺ kR

̺ (J0(k
R
̺ ̺) − cos(2φ)J2(k

R
̺ ̺))

(201)

The correlation does not vanish in the limit ̺ → 0, which indicates that conventional
seismometers are more effective to cancel Rayleigh-wave gravity-gradient noise than
acceleration noise in large-scale GW detectors. Also notice that the result is inde-
pendent of the distance L . This is the typical situation for strain quantities at low
frequencies since the differential signal is proportional to the distance, which then can-
cels in the strain variable when dividing by L . We have seen this already in Sect. 3.6.4.

At this point, we have the required analytic expressions to evaluate the performance
of Wiener filters. The goal is to derive equations that allow us to calculate the perfor-
mance of the Wiener filter, given a specific array configuration and seismometer self
noise. We also want to know whether it is possible to use the results to design opti-
mal array configurations based on seismic correlation measurements alone. First, we
continue with the specific example of a homogeneous and isotropic field, and a single
test mass. Since the Wiener filter is based on measured correlations between seis-
mometers and a gravity channel, we need to introduce the seismometer self noise. It is
convenient to express the noise in terms of the signal-to-noise ratio σ(ω) with respect
to measurements of seismic displacement. According to Eq. (110), the cross-spectral
density between two seismometers at locations ̺i , ̺ j can be written
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C
i j
SS(ξz;ω) = S(ξz;ω)

(

J0(k
R
̺ |̺i − ̺ j |) + δi j

σ 2
i (ω)

)

(202)

Seismometer self noise is assumed to be uncorrelated between different seismometers
and with the test-mass acceleration. The cross-spectral densities between all seis-
mometer pairs form a matrix CSS. The cross-spectral density of each seismometer
with the gravity perturbation is given by

C i
SN(ξz, δax ;ω) ≡ 2πGρ0γ (ν)S(ξz;ω)e−hkR

̺ cos(φi )J1(k
R
̺ ̺i ) (203)

Subtracting the output of a Wiener filter leaves a residual, whose spectrum relative to
the original gravity spectrum CNN(ω) = S(δax ;ω) is (Cella 2000)

R(ω) = 1 − C T
SN(ω) · (CSS(ω))−1 · CSN(ω)

CNN(ω)
(204)

A simple question to answer is where a single seismometer should be placed to mini-
mize the residual. In this case, the residual spectrum is given by

R1(ω) = 1 −
2 cos2(φ1)J 2

1 (kR
̺ ̺1)

1 + 1/σ 2
1 (ω)

(205)

Since the fraction is always positive and smaller than 1, it needs to be maximized.
This means that φ1 = 0 or π , and ̺1 is chosen to maximize the value of the Bessel
function. In the presence of N > 1 seismometers, the optimization problem is non-
trivial. One approach to solve this problem is outlined in Sect. 7.1.6. In general, global
optimization algorithms need to be employed (Harms and Badaracco 2019). An easier
procedure that we want to illustrate now is to perform a step-wise optimal placement of
seismometers. In other words, one after the other, seismometers are added at the best
locations, with all previous seismometers having fixed positions. The procedure can
be seen in Fig. 37. The first seismometer must be placed at x1 = ±0.3λR and y1 = 0.
We choose the side with positive x-coordinate. Assuming a signal-to-noise ratio of
σ = 10, the single seismometer residual would be 0.38. The second seismometer needs
to be placed at x2 = −0.28λR and y2 = 0, with residual 0.09. The third seismometer

Fig. 37 Step-wise optimal placement of seismometers for Wiener filtering of Rayleigh Newtonian noise.
Maxima indicate best placement. Left: optimal location(s) of first seismometer. Middle: optimal location
of second seismometer. Right: optimal location of third seismometer
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Fig. 38 Residuals from Wiener noise cancellation using spiral seismometer arrays. The curves show the
residuals for different numbers N of seismometers, and also different spiral radii. In all cases, the spirals have
two full windings. Left: subtraction of uncorrelated test-mass noise. Right: subtraction of gravity-gradient
noise typical for low-frequency detectors

at x3 = 0.75λR and y3 = 0, with residual 0.07. The step-wise optimization described
here works for a single frequency since the optimal locations depend on the length λR

of a Rayleigh wave. In reality, the goal is to subtract over a band of frequencies, and the
seismometer placement should be optimized for the entire band. The result is shown
in the left of Fig. 38 for a sub-optimal spiral array, and seismometers with frequency-
independentσ = 100. Rayleigh-wave speed decreases from 1.5 km/s at 1 Hz to 250 m/s
at 50 Hz. There are three noteworthy features. First, the minimal relative residual lies
slightly below the value of the inverse seismometer signal-to-noise ratio. It is a result
of averaging of self noise from different seismometers. Second, residuals increasing
with 1/ω at low frequencies is a consequence of the finite array diameter. An array
cannot analyze waves much longer than its diameter. Third, the residuals grow sharply
towards higher frequencies. The explanation is that the array has a finite seismometer
density, and therefore, waves shorter than the typical distance between seismometers
cannot be analyzed. If the seismic speed is known, then the array diameter and number
of seismometers can be adjusted in this way to meet a subtraction goal in a certain
frequency range.

Residuals are also shown in the right plot of Fig. 38 for the subtraction of gravity-
gradient noise (i.e., the low-frequency case). The sensor signal-to-noise ratio is the
same as before. Rayleigh-wave speed decreases from 3.5 km/s at 0.1 Hz to 1.5 km/s at
1 Hz. The low-frequency slope of the residual spectra has an additional 1/ω compared
to the residual spectra of acceleration Newtonian noise due to an effective decrease of
seismometer signal-to-noise ratio from common-mode rejection of Newtonian noise
in the detector. Overall, the reduction of Newtonian noise in low-frequency detectors
remains more challenging since Newtonian noise from Rayleigh waves needs to be
reduced by about three orders of magnitude (Harms et al. 2013; Canuel et al. 2016). It
was proposed to achieve additional mitigation by averaging locally over many inde-
pendent strain measurements (Chaibi et al. 2016). A combination of measures might
provide the required noise reduction.

A special case of GW detector is the full-tensor design, which is able to observe all
components of the spatial part of the metric perturbation (or gravity gradient) (Paik
et al. 2016). Such a detector would have uniform sensitivity over GW propagation
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directions provided that all channels are consistently included in a polarization-
dependent analysis. The question emerges whether full-tensor detectors offer any
advantage to NN cancellation, since out of 5 independent gravitational channels, only
two effectively carry information about the two polarizations of a passing GW. The
three remaining channels can be used for NN cancellation. Concerning Rayleigh-wave
NN, it was shown that NN can be suppressed by the same amount in full-tensor detec-
tors as in conventional detectors independent of the GW propagation direction, which
results in a significant sensitivity gain due to the omnidirectional GW response (Paik
and Harms 2016). Moreover, the authors also found that combining detector chan-
nels and microphones deployed in a surface array, cancellation of sound NN is more
effective in full-tensor detectors compared to conventional detectors. Since channels
of full-tensor detectors can only be used optimally with respect to one source of NN, it
was proposed that a full-tensor detector should be operated such that it minimizes the
sound NN, while NN from seismic fields is to be canceled only using seismometers.

7.1.3 Cancellation of Newtonian noise from body waves

In this section, the focus lies on noise subtraction in infinite media. As we have seen in
Sects. 3.2 and 3.4, any gravity perturbation can be divided into two parts, one that has
the form of gravity perturbations from seismic fields in infinite space, and another that
is produced by the surface. Subtraction of the surface part follows the scheme outlined
in Sect. 7.1.2 using surface arrays. The additional challenge is that body waves can
have a wide range of angles of incidence leading to a continuous range of apparent
horizontal speeds, which could affect the array design. In the following, we introduce
the formalism to describe coherent noise cancellation of the bulk contribution. We
assume here that Newtonian noise is uncorrelated between test masses, which makes
the results relevant only to large-scale GW detectors. In order to simplify the analysis,
only homogeneous and isotropic body-wave fields are considered, without contribu-
tions from surface waves. This case was first studied in detail by Harms and Badaracco
(2019). We will review their main results.

The test masses are assumed to be located underground inside cavities. We know
from Sect. 3.3.1 that gravity perturbations are produced by compressional waves
through density perturbations of the medium, and by shear and compressional waves
due to displacement of cavity walls. Since for body waves it is interesting to con-
sider the measurement of arbitrary displacement directions, a seismic measurement
is represented by the projection en · ξ(r, ω), where en is the direction of the axis of
the seismometer. Also the gravity measurement is represented by a similar projection
en · δa(r, ω). Therefore, the general two-point correlation function depends on the
directions e1, e2 of two measurements, and the unit vector e12 that points from one
measurement location at r1 to the other at r2.

The correlation functions are calculated using the formalism presented in Flanagan
(1993), Allen and Romano (1999), developed for correlations between measurements
of strain tensors representing gravitational waves. The first step is to obtain an expres-
sion of correlations from single plane waves characterized by a certain polarization
and direction of propagation, and then to average over all directions. Here our goal
is to calculate separate solutions for compressional and shear waves. The two-point
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spatial correlation between two seismic measurements of a field composed of P-waves
reads:

〈(e1 · ξ P(r1, ω)), (e2 · ξ P(r2, ω))〉

= 3S(ξP
n ;ω)

4π

∫

dΩk(e1 · ek)(e2 · ek)e
ikP·(r2−r1)

= 3S(ξP
n ;ω)

4π
e1 ·

(∫

dΩk(ek ⊗ ek)e
ikP|r2−r1|(ek ·e12)

)

· e2,

(206)

where ek is the direction of propagation of a P-wave. The factor 3 accounts for the
isotropic distribution of P-wave energy among the three displacement directions:
S(ξP

n ;ω) = S(ξP;ω)/3. The integral is carried out easily in spherical coordinates
θ, φ by choosing the z-axis parallel to e12 so that ek · e12 = cos(θ). Instead of writing
down the explicit expression of ek ⊗ ek and evaluating the integral over all of its inde-
pendent components, one can reduce the problem to two integrals only. The point is
that the matrix that results from the integration can in general be expressed in terms of
two “basis” matrices 1 and e12⊗e12. For symmetry reasons, it cannot depend explicitly
on any other combination of the coordinate basis vectors ex ⊗ex , ex ⊗ey , …Expressing
the integral as linear combination of basis matrices, P1(Φ12)1 + P2(Φ12)(e12 ⊗ e12)

with Φ12 ≡ kP|r2 − r1|, solutions for P1(Φ12), P2(Φ12) can be calculated as outlined
in Flanagan (1993), Allen and Romano (1999), and the correlation function finally
reads

〈(e1 · ξ P(r1, ω)), (e2 · ξ P(r2, ω))〉 = S(ξP
n ;ω)(P1(Φ12)(e1 · e2) + P2(Φ12)

(e1 · e12)(e2 · e12))

P1(Φ12) = j0(Φ12) + j2(Φ12)

P2(Φ12) = −3 j2(Φ12)

(207)

P-wave correlation is zero when the two measurement directions are orthogonal to each
other and to the separation vector. For small distances between the two seismometers,
correlation is higher when the two measurement directions are similar.

For compressional waves, the correlation with the bulk contribution to the gravity
acceleration is calculated using the gradient of Eq. (55). The analytic form of the
correlation is identical to Eq. (207) since the gravity acceleration is simply a multiple
of the seismic displacement. Therefore, we can immediately write

〈(e1 ·ξ P(r1, ω)), (e2 ·δa(r2, ω))〉 = 4πGρ0〈(e1 ·ξ P(r1, ω)), (e2 ·ξ P(r2, ω))〉 (208)

Consequently, also here, correlation does not necessarily vanish if gravity acceleration
is measured in orthogonal direction to the seismic displacement. In contrast to the
Rayleigh-wave correlation in Eq. (199), correlation between gravity perturbation and
compressional wave displacement is maximal when r1 = r2 assuming that e1 = e2.
The numerical factor needs to be changed from 4π to 8π/3 if the effect of a cavity
wall is to be included.

Next, the S-wave correlation is calculated. Since shear waves can be polarized in
two orthogonal transverse directions, we form two polarization matrices in terms of
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basis vectors of the spherical coordinate system, eθ ⊗ eθ , eφ ⊗ eφ , and average the
integrals over these two matrices. The result is

〈(e1 · ξ S(r1, ω)), (e2 · ξ S(r2, ω))〉 = S(ξS
n ;ω) (S1(Φ12)(e1 · e2)

+S2(Φ12)(e1 · e12)(e2 · e12))

S1(Φ12) = j0(Φ12) − 1

2
j2(Φ12)

S2(Φ12) = 3

2
j2(Φ12)

(209)

A correlation between S-wave displacement and gravity acceleration needs to be taken
into account when considering test masses inside cavities giving rise to a correlation
like in Eq. (208) with numerical factor 4π substituted by −4π/3.

A mixing ratio p needs to be introduced that parameterizes the ratio of energy in
the P-wave field over the total energy in P- and S-waves. The correlation between
seismometers depends on p:

〈(e1 · ξ(r1, ω)),(e2 · ξ(r2, ω))〉

= S(ξn;ω)

(

p

S(ξP
n ;ω)

〈(e1 · ξ P(r1, ω)), (e2 · ξ P(r2, ω))〉

+
1 − p

S(ξS
n ;ω)

〈(e1 · ξ S(r1, ω)), (e2 · ξ S(r2, ω))〉
)

, (210)

with S(ξn;ω) = S(ξP
n ;ω) + S(ξS

n ;ω) All required quantities are calculated now to
evaluate the Wiener filter.

In the case of a single seismometer, the residual spectrum defined in Eq. (204) is
given by

R1(ω) = 1 −
p

1 + 1/σ 2
1 (ω)

(P1(Φ12)(e1 · e2) + P2(Φ12)(e1 · e12)(e2 · e12))
2

(211)

The optimal placement of a single seismometer is independent of the mixing ratio.
The minimal residual is achieved for Φ12 = 0, i.e., when the seismometer is placed
at the test mass. The residual is solely limited by the mixing ratio and signal-to-noise
ratio. The case was different for Rayleigh waves, see Eq. (205), where a limitation was
also enforced by the seismic correlations. If the mixing ratio is p = 1 (only P-waves),
then it can be shown that the optimal placement of all seismometers would be at the
test mass. With a single seismometer, a residual of ≈ 1/σ 2 would be achieved over all
frequencies. However, the case is different for mixing ratios smaller than 1. Assuming
a conservative mixing ratio of p = 1/3 (P-waves are one out of three possible body-
wave polarizations), the single-seismometer residual is about 2/3 provided that σ ≫ 1.

As in Sect. 7.1.2, we consider the step-wise optimized array configuration, which
is illustrated in Fig. 39. The array is designed for cancellation of gravity perturbations
along the x-axis. The plot only shows a plane of possible seismometer placement, and
all seismometers measure along the relevant direction of gravity acceleration. Ideally,

123



6 Page 110 of 154 J. Harms

Fig. 39 Step-wise array optimization for noise cancellation of bulk Newtonian noise. The red maxima mark
the optimal location of the next seismometer to be placed. Left: placement of first seismometer with residual
0.67. Middle: placement of second seismometer with residual 0.54. Right: placement of third seismometer
with residual 0.44

optimization should be done in three dimensions, but for the first three seismometers,
the 2D representation is sufficient. In these calculations, the P-wave speed is assumed
to be a factor 1.8 higher than the S-wave speed. The mixing ratio is 1/3, and the
signal-to-noise ratio is 100. The optimal location of the second seismometer lies in
orthogonal direction at x2 = z2 = 0 and y2 = ±0.33λP. We choose the positive
y-coordinate. In this case, the third seismometer needs to be placed at x3 = z3 = 0
and y3 = −0.33λP. With three seismometers, a residual of 0.44 can be achieved.

The left plot in Fig. 41 shows the subtraction residuals of bulk Newtonian noise
using a 3D spiral array with all seismometers measuring along the relevant direction
of gravity acceleration. The mixing ratio is 1/3. The ultimate limit enforced by seis-
mometer self noise, 1/(σ

√
N ), is not reached. Nonetheless, residuals are strongly

reduced over a wide range of frequencies. Note that residuals do not approach 1 at
highest and lowest frequencies, since a single seismometer at the test mass already
reduces residuals to 0.67 at all frequencies assuming constant σ = 100.

Another idea is to use seismic strainmeters instead of seismometers. Seismic strain-
meters are instruments that measure the diagonal components of the seismic strain
tensor (Agnew 1986). Off-diagonal components are measured by seismic tiltmeters.
Strainmeters are also to be distinguished from dilatometers, which are volumetric
strainmeters measuring the trace of the seismic strain tensor. The advantage would be
that strainmeters are ideally insensitive to shear waves. This means that the optimiza-
tion of the array is independent of the mixing ratio p. The seismic strain field h(r , t)

produced by a compressional wave can be written as

h(r , t) = −ikP(ek ⊗ ek)ξ
Pei(ωt−kP·r), (212)

which is a 3×3 strain tensor. A seismic strainmeter measures differential displacement
along a direction that coincides with the orientation of the strainmeter, which rules out
any type of rotational measurements. In this case, the correlation between two seismic
strainmeters measuring strain along direction e1, e2 is given by

〈(e1 · h(r1, ω) · e1), (e2 · h(r2, ω) · e2)〉

= 5S(hP
n;ω)

4π

∫

dΩk(e1 · ek)
2(e2 · ek)

2eikP|r2−r1|e12·ek (213)
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The factor 5 accounts for the isotropic distribution of strain-wave energy among the
five strain degrees of freedom: S(hP

n;ω) = S(hP;ω)/5, with hP ≡ kPξP. There are
five degrees of freedom since the strain tensor is symmetric and its trace is a constant
(note that any symmetric tensor with constant trace can be diagonalized, in which case
the resulting tensor only has two independent components, but here we also need to
include the three independent rotations).

This integral can be solved fully analogously to the tensor calculation given in
Flanagan (1993), Allen and Romano (1999), or more specifically, using the gener-
alized result in Coughlin and Harms (2014b). The required steps are to define a 4D
polarization tensor ek ⊗ ek ⊗ ek ⊗ ek so that the projection along directions e1, e2
can be applied outside the integral, solve the integral, and then project the solution. As
for the vector fields, due to symmetry, we can express the 4D matrix resulting from
the integral as a sum over a relatively small number of basis matrices (in this case
5), and solve for the five expansion coefficients. It turns out (in the case of seismic
strain measurements) that only 3 expansion coefficients are different, which means
that the final solution can be expressed as a linear combination of three coefficients
T1(Φ12), T2(Φ12), T3(Φ12). The result is the following:

〈(e1 · h(r1,ω) · e1), (e2 · h(r2, ω) · e2)〉

= S(hP
n; ω)

(

T1(Φ12)(1 + 2(e1 · e2)
2) + T2(Φ12)((e1 · e12)

2 + (e2 · e12)
2

+ 4(e1 · e2)(e12 · e1)(e12 · e2)) + T3(Φ12)(e12 · e1)
2(e12 · e2)

2
)

T1(Φ12) = 1

21
(7 j0(Φ12) + 10 j2(Φ12) + 3 j4(Φ12))

T2(Φ12) = −5

7
( j2(Φ12) + j4(Φ12))

T3(Φ12) = 5 j4(Φ12) (214)

Even though this expression looks rather complicated, it is numerically straight-
forward to implement it in Wiener-filter calculations. Spherical plots of the two-point
spatial correlation are shown in Fig. 40. The vector e1 is kept constant, while the vector
e2 is expressed in spherical coordinates θ, φ. For each value of these two angles, the
resulting correlation between the two strainmeters corresponds to the radial coordinate
of the plotted surfaces. Since the focus lies on the angular pattern of the correlation
function, each surface is scaled to the same maximal radius. It can be seen that there
is a rich variety of angular correlation patterns, which even includes near spherically
symmetric patterns (which means that the orientation of the second strainmeter weakly
affects correlation).

A similar calculation yields the correlation between seismic strainmeter and gravity
perturbation:

〈(e1 · h(r1, ω) · e1), (e2 · δa(r2, ω))〉 = 4πGρ0S(hP
n;ω)

1

kP

·
(

T1(Φ12)((e2 · e12) + 2(e1 · e12)(e1 · e2)) + T2(Φ12)(e12 · e1)
2(e12 · e2)

)
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Fig. 40 Two-point correlation between seismic strain measurements. The direction e1 is kept constant. The
components of e2 are represented in angular spherical coordinates, with z-axis parallel to e12 (i.e., the
“vertical” direction in these plots parallel to the symmetry axes in the lower row). From left to right, the
value of Φ12 changes from 0 to 2π in equidistant steps. Upper row: e1 · e12 = 0. Lower row: e1 · e12 = 1
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Fig. 41 Residual spectra using seismic displacement and strain sensors in a 3D spiral array configuration.
Left: seismometer array. Right: seismic strain-meter array

T1(Φ12) = j1(Φ12) + j3(Φ12)

T2(Φ12) = −5 j3(Φ12) (215)

The Wiener-filter cancellation using seismic strainmeters is independent of the mix-
ing ratio. However, in contrast to the seismometer case, a strainmeter located at the
test mass has zero correlation with the gravity perturbation. Therefore, a strainmeter
located near the test mass can only have an indirect effect on the Wiener filter, such as
improving the ability of a sensor array to disentangle shear and compressional waves.
Without other seismic sensors, a strainmeter near the test mass is fully useless for the
purpose of Newtonian-noise cancellation. The subtraction residuals from a strainmeter
array are shown in the right of Fig. 41. The array configuration is the same 3D spiral
array used for the seismometer array in the left plot, but with twice as large extent to
have peak performance at similar frequencies. All strainmeters are oriented parallel
to the relevant direction of gravity perturbations. Apparently, there is no advantage
in using strain-meter arrays even though the subtraction performance is independent
of shear-wave content. It should be emphasized though that subtraction performance
of 3D arrays depends strongly on the array configuration. Therefore, optimized array
configurations may perform substantially better, and it is also possible that orient-
ing sensors along different directions, and combining strainmeters with seismometers
leads to lower subtraction residuals. This needs to be investigated in the future.

123



Terrestrial gravity fluctuations Page 113 of 154 6

7.1.4 Cancellation of Newtonian noise from infrasound

Coherent cancellation of Newtonian noise from infrasound is substantially different
from the seismic case. Seismic sensors are substituted by microphones, which have
more complicated antenna patterns. Here we will assume that a microphone measures
the pressure fluctuations at a point without being able to distinguish directions. This
is an important difference to seismic sensing. Furthermore, it is unfeasible to deploy a
3D array of microphones in the atmosphere. There may be other methods of sensing
pressure fluctuations (e.g., some type of light/radar tomography of the atmosphere
around the test masses), but it is unclear if they can be used to resolve the fast, relatively
small-scale fluctuations produced by infrasound. So for now, we assume that pressure
fluctuations can only be measured on surface. We also want to stress that we have not
succeeded yet to calculate the correlation functions for the Wiener filtering in the case
of a test mass underground. One can probably make progress in this direction starting
with the scalar plane-wave expansion in Eq. (240) and using the half-space integral
in Eq. (250), but we will leave this as future work. In the following, we consider the
test mass and all microphones to be located on the surface. In this case, the two-point
spatial correlation is found to be

〈δ p(̺1, ω), δ p(̺2, ω)〉 = S(δ p;ω)

4π

∫

dΩkeikP·(̺2−̺1)

= S(δ p;ω) j0(k
P|̺2 − ̺1|)

(216)

This can be calculated starting with the plane-wave expansion in Eq. (240), and using
Eqs. (259) and (247). Note that it makes no difference for microphones at z0 = 0 that
sound waves are reflected from the surface (apart from a doubling of the amplitude).
This also means that the direction average can be carried out over the full solid angle.
For z0 > 0, one has to be more careful, explicitly include the reflection of sound waves,
and only average over propagation directions incident “from the sky” (assuming also
that there are no sources of infrasound on the surface).

The correlation between pressure fluctuations and resulting gravity perturbations
at the surface can be calculated using the negative gradient of Eq. (132). Since the
projection of δa onto the x-coordinate can be technically obtained by calculating the
derivative ∂x , with x ≡ x2 − x1 and Eq. (216), we find

〈δax (̺1, ω), δ p(̺2, ω)〉 = − S(δ p;ω)

2(kP)2

Gρ0

γ p0
∂x

∫

dΩkeikP
̺ ·(̺2−̺1)

= 2π
S(δ p;ω)

kP

Gρ0

γ p0

x2 − x1

|̺2 − ̺1|
j1(k

P|̺2 − ̺1|) (217)

The correlation vanishes for microphones collocated with the test mass. For this rea-
son, the optimization of a microphone array is similar to the optimization of a surface
seismometer array for Rayleigh-wave Newtonian-noise cancellation. Formally, the dif-
ference is that spherical Bessel functions determine correlations of the infrasound field
instead of ordinary Bessel functions since the infrasound field is three dimensional.
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Fig. 42 Residual spectra after
coherent subtraction of
infrasound Newtonian-noise.
Signal-to-noise ratio of
microphones is assumed to be
100 over all frequencies. The
spirals have two full windings
around the test mass
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This results in a slightly weaker correlation of microphones near the test mass with
gravity perturbations. The residual spectra using spiral surface arrays of microphones
can be seen in Fig. 42. The sensors have a signal-to-noise ratio of 100. Important
to realize is that the arrays are very small, and therefore located completely or par-
tially inside the buildings hosting the test masses. In this case, the assumptions of an
isotropic and homogeneous infrasound field may not be fulfilled. Nonetheless, based
on detailed studies of infrasound correlation, it is always be possible to achieve similar
noise residuals, potentially with a somewhat increased number of microphones.

As a final remark, infrasound waves have properties that are very similar to com-
pressional seismic waves, and the result of Sect. 7.1.2 was that broadband cancellation
fo Newtonian noise from compressional waves can be achieved with primitive array
designs, provided that the field is not mixed with shear waves. Air does not support
the propagation of shear waves, so one might wonder why subtraction of infrasound
Newtonian noise does not have these nice properties. The reason lies in the sensors.
Microphones provide different information. In a way, they are more similar in their
response to seismic strainmeters. According to Eq. (215), correlations between a strain-
meter and gravity perturbations also vanishes if the strainmeter is located at the test
mass. What this means though is that a different method to monitor infrasound waves
may make a big difference. It is a “game with gradients”. One could either monitor
pressure gradients, or the displacement of air particles due to pressure fluctuations.
Both would restore correlations of sensors at the test mass with gravity perturbations.

7.1.5 Demonstration: Newtonian noise in gravimeters

The problem of coherent cancellation of Newtonian noise as described in the previous
sections is not entirely new. Gravimeters are sensitive to gravity perturbations caused
by redistribution of air mass in the atmosphere (Neumeyer 2010). These changes can
be monitored through their effect on atmospheric pressure. For this reason, pressure
sensors are deployed together with gravimeters for a coherent cancellation of atmo-
spheric Newtonian noise (Banka and Crossley 1999). In light of the results presented
in Sect. 7.1.4, it should be emphasized that the cancellation is significantly less chal-
lenging in gravimeters since the pressure field is not a complicated average over many
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Fig. 43 Spectral histogram of
subtraction residuals using a
local pressure sensor as
reference channel. The two solid
curves correspond to the
medians of spectral histograms
before (red) and after (green)
subtraction

sound waves propagating in all directions. This does not mean though that modelling
these perturbations is less challenging. Accurate calculations based on Green’s func-
tions are based on spherical Earth models, and the model has to include the additional
effect that a change in the mass of an air column changes the load on the surface,
and thereby produces additional correlations with the gravimeter signal (Guo et al.
2004). Nonetheless, from a practical point of view, the full result is more similar to
the coherent relations such as Eq. (132), which means that local sensing of pressure
fluctuations should yield good cancellation performance.

This is indeed the case as shown in Fig. 43. The original median of gravity spectra is
shown as red line. Using a very simple filter, which is based on direct proportionality
of local pressure and gravity fluctuations, gravity noise can be reduced by about a
factor 5 at 0.1 mHz. The subtraction residuals are close to the instrumental noise of
the gravimeters, which means that the simple scheme based on proportionality of the
data is already very effective at these frequencies. Especially at lower frequencies, the
filter design needs to be more complicated to achieve good broadband cancellation
performance. Typically, a frequency domain version of Wiener filtering is applied in
standard subtraction procedures (Neumeyer 2010). Due to non-Gaussianity and non-
stationarity of the data, time-domain FIR Wiener filters as discussed in Sect. 7.1.1 are
less effective. We want to stress though that cancellation results are not this good in
all gravimeters. Sometimes it can be explained by data quality of the pressure sensors,
but often it is not clear what the reasons are. It may well be that detailed knowledge
of the gravimeter sites can provide ideas for explanations.

7.1.6 Optimizing sensor arrays for noise cancellation

In the previous sections, we focussed on the design and performance evaluation of an
optimal noise-cancellation filter for a given set of reference sensors. In this section,
we address the problem of calculating the array configuration that minimizes noise
residuals given sensor noise of a fixed number of sensors. The analysis will be restricted
to homogeneous fields of density perturbations. The optimization can be based on a
model or measured two-point spatial correlations C(δρ; r, ω). We start with a general
discussion and later present results for the isotropic Rayleigh-wave field.
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The optimization problem will be formulated as a minimization of the noise residual
R defined in Eq. (204) as a function of sensor locations ri . Accordingly, the optimal
sensor locations fulfill the equation

∇k R = 0, (218)

where the derivatives are calculated with respect to the coordinates of each of the M

sensors, i.e., k ∈ 1, . . . , M . In homogeneous fields, the Newtonian-noise spectrum
and seismic spectrum are independent of sensor location,

∇kCNN = 0, ∇kCkk
SS = 0, (219)

which allows us to simplify Eq. (218) into

∇kC T
SN · w T + w · ∇kCSN − w · ∇kCSS · w T = 0,

2w · ∇kCSN = w · ∇kCSS · w T,
(220)

where we have introduced the Wiener filter w = C T
SN · C−1

SS . For the following steps,
let us use a slightly different notation. We will write the sensor cross-correlation
matrix CSS = C(s; s), and the correlations between sensor and target channels as
CSN = C(s; n). Only the component k of the vector C(s; n) and the kth row and
column of C(s; s) depend on the coordinates of the sensor k. This means that the
derivative ∇k produces many zeros in the last equation, which allows us to simplify it
into the following form:

∇kC(sk; n) − w · ∇kC(s; sk) = 0. (221)

The optimal array fulfills this equation for derivatives with respect to the coordinates
of all M sensors. Solutions to this equation need to be calculated numerically. Opti-
mization of arrays using Eq. (221) produces accurate solutions more quickly than
traditional optimization methods, which directly attempt to find the global minimum
of the residual R. Traditional codes (nested sampling, particle swarm optimization)
produce solutions that converge to the ones obtained by solving Eq. (221).

In the following, we will present optimization results for a homogeneous and
isotropic Rayleigh-wave field. The correlation functions are given in Eq. (110) and
(199). The filled contour plot in Fig. 44 shows the residual R as a function of sensor
coordinates for a total of 1 to 3 sensors, from left to right. In the case of a single
sensor, the axes represent its x and y coordinates. For more than one sensor, the axes
correspond to the x coordinates of two sensors. All coordinates not shown in these
plots assume their optimal values.

The green and orange curves represent Eq. (221) either for the derivatives ∂x , ∂y

or ∂x1 , ∂x2 . These curves need to intersect at the optimal coordinates. It can be seen
that they intersect multiple times. The numerical search for the optimal array needs to
find the intersection that belongs to the minimum value of R. For the isotropic case,
it is not difficult though to tune the numerical search such that the global minimum is
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Fig. 44 Array optimization for cancellation of Rayleigh Newtonian noise. The array is optimized for
cancellation at a single frequency using 1 to 3 sensors (left to right) with SNR = 100. The curves represent
Eq. (221) for the coordinates in the axis labels. The filled contour plots show the noise residual R. All
coordinates not shown assume their optimal values

Fig. 45 Minimized noise
residuals from Rayleigh
Newtonian-noise cancellation.
The dashed line marks the
sensor-noise limit
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found quickly. The optimal intersection is always the one closest to the test mass at
the origin. While it is unclear if this holds for all homogeneous seismic fields, it seems
intuitive at least that one should search intersections close to the test mass in general.

In order to find optimal arrays with many sensors, it is recommended to build these
solutions gradually from optimal solutions with one less sensor. In other words, for the
initial placement, one should use locations of the M − 1 optimal array, and then add
another sensor randomly nearby the test mass. The search relocates all sensors, but it
turns out that sensors of an optimal array with a total of M − 1 sensors only move by
a bit to take their optimal positions in an optimal array with M sensors. So choosing
initial positions in the numerical search wisely significantly decreases computation
time, and greatly reduces the risk to get trapped in local minima.

Figure 45 shows the noise residuals of Newtonian noise from an isotropic Rayleigh-
wave field using optimal arrays with 1 to 6 sensors and sensor SNR = 100. The residuals
are compared with the sensor-noise limit 1/SNR/

√
M (dashed curve). Arrays with

M > 3 yield residuals that are close to a factor
√

2 above the sensor-noise limit. The
origin of the factor

√
2 has not been explained yet. It does not appear in all noise

residuals, for example, the noise residual of a Wiener filter using a single reference
channel perfectly correlated with the target channel, see Eq. (196), is given by 1/SNR.

In many situations, it will not be possible to model the correlations CSS and CSN.
In this case, observations of seismic correlations CSS can be used to calculate CSN,
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Table 2 Cancellation of Newtonian noise from isotropic Rayleigh-wave fields at wavelength λ

Sensor coordinates [λ] Noise residual
√

R

(0.293,0) 0.568

(0.087,0), (−0.087,0) 2.28 × 10−2

(0.152,−0.103), (0.152,0.103), (−0.120,0) 1.24 × 10−2

(0.194,0.112), (0.194,−0.112), (−0.194,0.112), (−0.194,−0.112) 7.90 × 10−3

(0.191,0.215), (0.299,0), (0.191,−0.215), (−0.226,0.116),
(−0.226,−0.116)

6.69 × 10−3

(0.206,0.196), (0.295,0), (0.206,−0.196), (−0.206,0.196),
(−0.295,0), (−0.206,−0.196)

6.04 × 10−3

Shown are the optimal arrays for 1 to 6 sensors with SNR = 100

see Eq. (198), and also CNN, see Eq. (107). Seismic correlations are observed with
seismometer arrays. It is recommended to choose a number of seismometers for this
measurement that is significantly higher than the number of seismometers foreseen for
the noise cancellation. Otherwise, aliasing effects and resolution limits can severely
impact the correlation estimates. Various array-processing algorithms are discussed
in Krim and Viberg (1996).

Table 2 summarizes the noise residuals from optimized arrays of 1 to 6 sensors
with SNR = 100, which may serve as reference values for alternative optimization
methods. The N = 7 array is the first optimal array that requires two seismometers
placed on top of each other. Consequently, the broadband performance of the N = 6
array is similar to the N = 7 array. Residuals of optimal arrays can be compared
with the stepwise optimized arrays as discussed in Sect. 7.1.2, taking into account that
SNR = 10 was used in Sect. 7.1.2.

The noise residuals of the stepwise optimization were R = 0.38, 0.09, and 0.07 for
the first three seismometers, while the fully optimized residuals are R = 0.38, 0.014
and 0.0074, i.e., much lower for N ≥ 2.

7.1.7 Newtonian noise cancellation using gravity sensors

In the previous sections, we have investigated Newtonian-noise cancellation using
auxiliary sensors that monitor density fluctuations near the test masses. An alternative
that has been discussed in the past is to use gravity sensors instead. One general concern
about this scheme is that a device able to subtract gravity noise can also cancel GW
signals. This fact indeed limits the possible realizations of such a scheme, but it is
shown in the following that at least Newtonian noise in large-scale GW detectors from
a Rayleigh-wave field can be cancelled using auxiliary gravity sensors. However, it
will become clear as well that it will be extremely challenging to build a gravity sensor
with the required sensitivity.
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In the following discussion, we will focus on cancellation of gravity noise from
isotropic Rayleigh-wave fields. Most of the results can be obtained from the two-point
spatial correlation of gravity fluctuations,

〈δax (0, ω), δax (̺, ω)〉 =
(

2πGρ0γ e−hk̺
)2 1

2
S(ξz; ω) ·

[

J0(k̺ρ) − cos(2φ)J2(k̺ρ)
]

,

(222)
evaluated at a specific frequency. Here, ̺ = ̺(cos(φ), sin(φ)), and k̺ is the wavenum-
ber of a Rayleigh wave. This result turns into Eq. (112) for ̺ → 0.

The only (conventional) type of gravity sensor that can be used to cancel Newtonian
noise in GW detectors is the gravity strainmeter or gravity gradiometer.10 As we
have discussed in Sect. 2.2, the sensitivity of gravimeters is fundamentally limited
by seismic noise, and any attempt to mitigate seismic noise in gravimeters inevitably
transforms its response into a gravity gradiometer type. So in the following, we will
only consider gravity strainmeters/gradiometers as auxiliary sensors.

Let us first discuss a few scenarios where noise cancellation cannot be achieved. If
two identical large-scale GW detectors are side-by-side, i.e., with test masses approx-
imately at the same locations, then Newtonian-noise cancellation by subtracting their
data inevitably means that GW signals are also cancelled. Let us make the arms of
one of the two detectors shorter, with both detectors’ test masses at the corner sta-
tion staying collocated. Already one detector being shorter than the other by a few
meters reduces Newtonian-noise correlation between the two detectors substantially.
The reason is that correlation of gravity fluctuations between the end test masses falls
rapidly with distance according to Eq. (222). It can be verified that subtracting data of
these two detectors to cancel at least gravity perturbations of the inner test masses does
not lead to sensitivity improvements. Instead, it effectively changes the arm length of
the combined detector to ΔL , where ΔL is the difference of arm lengths of the two
detectors, and correspondingly increases Newtonian noise.

If Newtonian noise is uncorrelated between two test masses of one arm, then
decreasing arm length increases Newtonian strain noise. However, as shown in Fig. 13,
if the detector becomes shorter than a seismic wavelength and Newtonian noise starts
to be correlated between test masses, Newtonian strain noise does not increase fur-
ther. Compared to the Newtonian noise in a large-scale detector with arm length L ,
Newtonian noise in the short detector is greater by (up to) a factor k̺L . In this regime,
the small gravity strainmeter is better described as gravity gradiometer. The common-
mode suppression of Newtonian noise in the gradiometer due to correlation between
test masses greatly reduces Newtonian-noise correlation between gradiometer and
the inner test masses of the large-scale detector. Consequently, a gravity gradiometer
cannot be used for noise cancellation in this specific configuration.

It turns out though that there is a class of gravity gradiometers, known as full-tensor
gradiometers, that can be used for cancellation of Newtonian noise from Rayleigh
waves. The key is to understand that gravity gradients ∂zδax = ∂xδaz , where δa

are the fluctuations of gravity acceleration, and x points along the arm of the large-
scale detector, are perfectly correlated with δax . This can be seen from Eq. (100),
since derivatives of the acceleration δax with respect to z, i.e., the vertical direc-

10 Here, we do not consider using seismic data from a gravimeter for Newtonian-noise cancellation.
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Fig. 46 Left: coherence of Newtonian noise between two test masses according to Eq. (222) as a function
of distance ̺ in units of seismic wavelength (φ = 0). Right: maximal noise reduction that can be achieved
with the channel ∂zδax of a gravity gradiometer as a function of maximal distance between test masses of
the gravity gradiometer and the large-scale detector

tion, does not change the dependence on directions φ. The coherence (normalized
correlation) between δax and ∂zδax is shown in the left of Fig. 46 making use of
〈δax (0 ), ∂zδax (̺ )〉norm = 〈δax (0 ), δax (̺ )〉norm.

The idea is now to place one full-tensor gravity gradiometer at each test mass of
the large-scale detector, and to cancel Newtonian noise of each mass. In this way, it
is also impossible to cancel GW signals since GW signals of the gradiometers cancel
each other. The limitations of this scheme are determined by the distance between
the test mass of the large-scale detector and test-masses of the gravity gradiometer.
The smaller the distance, the better the correlation and the higher the achievable noise
reduction. Using Eq. (196), the maximal noise reduction can be calculated as a function
of the coherence. In Fig. 46, right plot, the achievable noise suppression is shown as
a function of distance between test masses. For example, at 10 Hz, and assuming a
Rayleigh-wave speed of 250 m/s, the distance needs to be smaller than 1 m for a factor
5 noise reduction. This also means that the size of the gradiometer must be of order
1 m.

Let us calculate what the required sensitivity of the gradiometer has to be. From
Eqs. (196) and (222), we find that the maximal noise-suppression factor is given by

s ∼ 1

k̺r
, (223)

where r ≪ λ is the distance between test masses of the large-scale detector and the
gradiometer, which one can also interpret as maximal size of the gradiometer to achieve
a suppression s. A numerical factor of order unity is omitted. Given a Newtonian strain
noise hNN of the large-scale detector with arm length L , the gradiometer observes

h
grad
NN = hNNk̺L = ξNNk̺. (224)

Here, ξNN denotes the relative displacement noise in the large-scale detector. Now, the
relative displacement noise in the gradiometer is

ξ
grad
NN = 1

k̺s
ξNNk̺ = ξNN

s
(225)
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While the gravity gradiometer observes much stronger Newtonian noise in units strain,
its displacement sensitivity needs to match the displacement sensitivity of the large-
scale detector, and even exceed it by a factor s. One could raise well-justified doubts at
this point if a meter-scale detector can achieve displacement sensitivity of large-scale
GW detectors. Nonetheless, the analysis of this section has shown that Newtonian-
noise cancellation using gravity sensors is in principle possible.

7.2 Site selection

An elegant way to reduce Newtonian noise is to select a detector site with weak gravity
fluctuations. It should be relatively straightforward to avoid proximity to anthropogenic
sources (except maybe for the sources that are necessarily part of the detector infras-
tructure), but it is not immediately obvious how efficient this approach is to mitigate
seismic or atmospheric Newtonian noise. With the results of Sects. 3 and 5, and using
numerous past observations of infrasound and seismic fields, we will be able to pre-
dict the possible gain from site selection. The aim is to provide general guidelines that
can help to make a site-selection process more efficient, and help to identify suitable
site candidates, which can be characterized in detail with follow-up measurements.
These steps have been carried out recently in Europe as part of the design study of
the Einstein Telescope (Beker et al. 2012, 2015), and promising sites were indeed
identified.

Already with respect to the minimization of Newtonian noise, site selection is a
complicated process. One generally needs to divide into site selection for gravity
measurements at low and high frequencies. The boundary between these two regimes
typically lies at a few Hz. The point here is that at sufficiently low frequencies, gravity
perturbations produced at or above surface are negligibly suppressed at underground
sites with respect to surface sites. At higher frequencies, a detailed site-specific study is
required to quantify the gain from underground construction since it strongly depends
on local geology. In general, sources of gravity perturbations have different character-
istics at lower and higher frequencies. Finally, to complicate the matter even further,
one may also be interested to identify a site where one can expect to achieve high
noise cancellation through Wiener filtering or similar methods.

7.2.1 Global surface seismicity

We start with the assessment of ambient seismicity. Today this can be done systemati-
cally and easily for many surface locations since publicly available data from a global
network of seismometers is continuously recorded and archived on servers. For exam-
ple, Coughlin and Harms have characterized thousands of sites world-wide in this way,
processing years of data from broadband seismometers (Coughlin and Harms 2012a).
Among others, the data are provided by the US-based IRIS Data Management Ser-
vice11 (archiving global seismic data), and the Japanese seismic broadband network
F-Net12 operated by NIED. Seismic data cannot be easily obtained from countries that

11 http://www.iris.edu/ds/nodes/dmc/.
12 http://www.fnet.bosai.go.jp/.
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Fig. 47 Information of world-wide ambient seismicity as a function of frequency was made available as
Google Earth kmz file by Coughlin and Harms. The files can be downloaded at https://www.atlas.aei.uni-
hannover.de/~janosch/

have not signed the Comprehensive Nuclear-Test-Ban Treaty (which are few though).
The results of their analysis were presented in the form of spectral histograms for each
site, accessible through a Google Earth kmz file. An example is shown in Fig. 47 for
a seismic station in the US.

Studying these maps gives an idea where to find quiet places on Earth, and helps to
recognize generic patterns such as the influence of mountain ranges, and the proximity
to oceans. A more detailed analysis based on these data can be found in Coughlin and
Harms (2012a). It should be noted that especially in Japan, many seismic stations
used in this study are built a few meters underground, which may lead to substantial
reduction of observed ambient seismicity above a few Hz with respect to surface
sites. Nonetheless, there are regions on all continents with very low surface seismicity
above 1 Hz, approaching a global minimum often referred to as global low-noise model
(Berger et al. 2004; Coughlin and Harms 2012a). This means that one should not expect
that a surface or underground site can be found on Earth that is significantly quieter
than the identified quietest surface sites. Of course, underground sites may still be
attractive since the risk is lower that seismicity will change in the future, while surface
sites can in principle change seismicity over the course of many years, because of
construction or other developments. For the same reason, it may be very challenging
to find quiet surface sites in densely populated countries. As a rule of thumb, a site
that is at least 50 km away from heavy traffic and seismically active faults, and at
least 100 km away from the ocean, has a good chance to show low ambient seismicity
above a few Hz. Larger distances to seismically active zones may be necessary for
other reasons such as avoiding damage to the instrument.

Below a few Hz, ambient seismicity is more uniform over the globe. Oceanic
microseisms between 0.1 Hz and 1 Hz are stronger within 200 km to the coast, and
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then decreasing weakly in amplitude towards larger distances. This implies that it is
almost impossible to find sites with a low level of oceanic microseisms in countries
such as Italy and Japan. At even lower frequencies, it seems that elevated seismic noise
can mostly be explained by proximity to seismically active zones, or extreme proximity
to cities or traffic. Here one needs to be careful though with the interpretation of data
since quality of low-frequency data strongly depends on the quality of the seismic
station. A less protected seismometer exposed to wind and other weather phenomena
can have significantly increased low-frequency noise. In summary, the possibility to
find low-noise surface sites should not be excluded, but underground sites are likely the
only seismically quiet locations in most densely populated countries (which includes
most countries in Europe).

7.2.2 Underground seismicity

Seismologists have been studying underground seismicity at many locations over
decades, and found that high-frequency seismic spectra are all significantly quieter
than at typical surface sites. This can be explained by the exponential fall off of
Rayleigh-wave amplitudes according to Eq. (39), combined with the fact that high-
frequency seismicity is typically generated at the surface, and most surface sites are
covered by a low-velocity layer of unconsolidated soil. The last means that ampli-
tude decreases over relatively short distances to the surface. Seismic measurements
have been carried out in boreholes (Douze 1964; Sax and Hartenberger 1964), and
specifically in the context of site characterization for future GW detectors at former
or still active underground mines (Harms et al. 2010; Beker et al. 2012, 2015; Natic-
chioni et al. 2014). There are however hardly any underground array measurements
to characterize the seismic field in terms of mode composition. An exception is the
last underground array measurements at the former Homestake mine in South Dakota,
USA (Mandic et al. 2018; Coughlin et al. 2018a). This is mostly due to the fact that
these experiments are very costly, and seismic stations have to be maintained under
unusual conditions (humidity, temperature, dust, …).

The picture seems to be very simple. Underground seismicity above a few Hz is
generally very weak approaching the global low-noise model. Variations can however
be observed, and have in some cases been identified as anthropogenic noise produced
underground (Harms et al. 2010). Therefore, it is important to evaluate how much
noise is produced by the underground infrastructure that is either already in place, or
is brought to the site for the underground experiment itself. Pumps and ventilation
are required for the maintenance of an underground site, which may lead to excess
noise. Measurements were carried out in the context of the design study of the Einstein
Telescope in Europe (Abernathy et al. (ET Science Team) 2011). Some of the collected
seismic spectra were presented in Beker et al. (2012), which is shown again here in
Fig. 48.

The underground sites have similar seismic spectra above about 1 Hz, which are
all lower by orders of magnitude compared to the surface spectrum measured inside
one of the Virgo buildings. The Virgo spectrum however shows strong excess noise
even for a surface site, which is due to strong oceanic microseisms (the site is about
15 km from the coast) and noise produced by the detector infrastructure such as pumps
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Fig. 49 Seismic Newtonian-noise in comparison with the ET-D instrumental-noise model. Shaded areas
comprise typical variations of seismic spectra used for the NN model. Surface denotes contributions from
Rayleigh waves. Image reproduced from Harms and Badaracco (2019); copyright by the authors

and the ventilation system. The Netherland spectrum is closer to spectra from typical
surface locations, with somewhat decreased noise level above a few Hz since the
measurement was taken 10 m underground. Nevertheless, the reduction of seismic
Newtonian noise to be expected by building a GW detector underground relative to
typical surface sites is about 2 orders of magnitude, which is substantial. Whether the
reduction is sufficient to meet the requirements set by the ET sensitivity goal is not
clear. It depends strongly on the composition of the seismic field and how deep the
detector is constructed. While previous results presented in Beker (2012) indicated
that the reduction is sufficient, results based on more accurate modeling in Harms and
Badaracco (2019) show that further reduction of seismic Newtonian noise is likely
necessary.

The seismic underground Newtonian-noise estimate from Harms and Badaracco
(2019) is shown in Fig. 49. This can be compared with the underground acoustic New-
tonian noise shown in Fig. 30. According to these results, seismic surface and acoustic
Newtonian noise are sufficiently suppressed if the detector is 700 m underground, and
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Fig. 50 Investigation of topographic scattering for site selection. The map in the left plot shows the rms of
topographies evaluated on 10 km × 10 km squares. Scattering coefficients of incident Rayleigh waves for
a high-rms site in Montana (station F13A) are shown in the contour plot on the right. Image reproduced
from Coughlin and Harms (2012b)

for quiet surface sites, even 300 m would likely be sufficient. The body-wave Newto-
nian noise however likely lies above the targeted noise level (according to the ET-D
model), and cancellation of body-wave Newtonian noise would still be required.

7.2.3 Site selection criteria in the context of coherent noise cancellation

An important aspect of the site selection that has not been considered much in the past
is that a site should offer the possibility for efficient coherent cancellation of New-
tonian noise. From Sect. 7.1 we know that the efficiency of a cancellation scheme is
determined by the two-point spatial correlation of the seismic field. If it is well approx-
imated by idealized models, then we have seen that efficient cancellation would be
possible. However, if scattering is significant, or many local sources contribute to the
seismic field, then correlation can be strongly reduced, and a seismic array consisting
of a potentially large number of seismometers needs to be deployed. The strongest
scatterer of seismic waves above a few Hz is the surface with rough topography.
This problem was investigated analytically in numerous publications, see for example
Gilbert and Knopoff (1960), Abubakar (1962), Hudson (1967), and Ogilvy (1987). If
the study is not based on a numerical simulation, then some form of approximation
needs to be applied to describe topographic scattering. The earliest studies used the
Born approximation, which means that scattering of scattered waves is neglected. In
practice, it leads to accurate descriptions of seismic fields when the seismic wave-
length is significantly longer than the topographic perturbation, and the slope of the
topography is small in all directions.

With this approximation, a systematic evaluation of sites in the US was carried
out (Coughlin and Harms 2012b). A topographic map of the US was divided into
10 km × 10 km squares. The elevation rms was calculated for each square. The rms
map is shown in Fig. 50. The hope was that flat squares can be found in low-seismicity
regions, which would combine the requirements on scattering and seismicity. High
elevation sites typically show weak seismic noise (above a few Hz), mostly likely
because of smaller population density.

Combining the rms map with knowledge of ambient seismicity, it was in fact pos-
sible to find many sites fulfilling the two requirements. Figure 50 shows the scattering
coefficients for incident Rayleigh waves at a high-rms site in Montana. Excluding
the Rayleigh-to-Rayleigh scattering channel (which, as explained in the study, does
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not increase the complexity of a coherent cancellation), a total integrated scatter of
0.04 was calculated. Including the fact that scattering coefficients for body waves are
expected to be higher even, this value is large enough to influence the design of seismic
arrays used for noise cancellation. Also, it is important to realize that the seismic field
in the vicinity of the surface is poorly represented by the Born approximation (which
is better suited to represent the far field produced by topographic scattering), which
means that spatial correlation at the site may exhibit more complicated patterns not cap-
tured by their study. As a consequence, at a high-rms site a seismic array would likely
have to be 3D and relatively dense to observe sufficiently high correlation between
seismometers. Heterogeneous ground may further add to the complexity, but we do
not have the theoretical framework yet to address this problem quantitatively. For this,
it will be important to further develop the scattering formalism introduced in Sect. 3.3.

Underground sites that were and are being studied by GW scientists are all located
in high-rms regions. This is true for the sites presented in the ET design study, for
the Homestake site that is currently hosting the R&D efforts in the US, and also for
the Kamioka site in Japan, which hosts the KAGRA detector. Nonetheless, a careful
investigation of spatial correlation and Wiener filtering in high-rms sites has never
been carried out, and therefore our understanding of seismic scattering needs to be
improved before we can draw final conclusions.

7.3 Noise reduction by constructing recess structures or moats

Hughes and Thorne suggested that one way to reduce Newtonian noise at a surface
site may be to dig moats at some distance around the test masses (Hughes and Thorne
1998). The purpose is to reflect incident Rayleigh waves and thereby create a region
near the test masses that is seismically quieter. The reflection coefficient depends on
the depth of the moat (Mal and Knopoff 1965; Fuyuki and Matsumoto 1980; Beskos
et al. 1986). If the moat depth is half the length of a Rayleigh wave, then the wave
amplitude behind the moat is weakened by more than a factor 5. Only if the moat
depth exceeds a full length of a Rayleigh wave, then substantially better reduction
can be achieved. If the distance of the moat to the test mass is sufficiently large,
then the reduction factor in wave amplitude should translate approximately into the
same reduction of Newtonian noise from Rayleigh waves. There are two practical
problems with this idea. First, the length of Rayleigh waves at 10 Hz is about 20 m
(at the LIGO sites), which means that the moat needs to be very deep to be effective.
It may also be necessary to fill moats of this depth with a light material, which can
slightly degrade the isolation performance. The second problem is that the scheme
requires that Rayleigh waves are predominantly produced outside the protected area.
This seems unlikely for the existing detector sites, but it may be possible to design
the infrastructure of a new surface site such that sources near the test masses can be
avoided. For example, fans, pumps, building walls set into vibration by wind, and the
chambers being connected to the arm vacuum pipes are potential sources of seismicity
in the vicinity of the test masses. The advantage is that the moats do not have to be
wide, and therefore the site infrastructure is not strongly affected after construction
of the moats. Another potential advantage, which also holds for the recess structures
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Fig. 51 Recess structures around test masses reduce mass, which would otherwise carry seismic waves that
act as sources of gravity perturbations. Image reproduced from Harms and Hild (2014)
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Fig. 52 The plot to the left shows the noise reduction factor from a recess. The red regime marks frequencies
where significant seismic scattering from the recess may occur. The plot to the right shows the corresponding
Newtonian-noise spectrum together with sensitivity models for aLIGO and a possible future version of LIGO

discussed below, is that the moat can host seismometers, which may facilitate coherent
cancellation schemes since 3D information of seismic fields is obtained. This idea
certainly needs to be studied quantitatively since seismic scattering from the moats
could undo this advantage.

Another approach is to dig recess structures around the test masses (Harms and
Hild 2014). Here the primary goal is not to reflect Rayleigh waves, but to remove
mass around the test masses that would otherwise be perturbed by seismic fields
to produce Newtonian noise. A sketch of how a recess structure may look like at a
detector site is shown in Fig. 51. A central pillar needs to be left to support the test-mass
chambers. The recess should have a depth of about 4 m, provided that the speed of
Rayleigh waves is about 250 m/s at 10 Hz (Harms and O’Reilly 2011). If the speed is
higher by a factor 2, then recess dimensions in all three directions need to be increased
by a factor 2 to maintain the same noise reduction. This means that it is infeasible
to construct effective recesses at sites with much higher Rayleigh-wave speeds (at
Newtonian-noise frequencies). For a 4 m deep recess and horizontal dimensions as
shown in Fig. 51, the reduction factor is plotted in the left of Fig. 52.

Even though the primary purpose of the recess is not to reflect Rayleigh waves,
seismic scattering can be significant. Due to the methods chosen by the authors, scat-
tering could not be simulated, and validity of this approximation had to be explained.
Above some frequency, the wavelength is sufficiently small so that scattering from a
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4 m deep recess is significant. This regime is marked red in the plot, and the prediction
of noise reduction may not be accurate. Above 20 Hz it can be seen that reduction
gets weaker. This is because the gravity perturbation starts to be dominated by density
perturbations of the central pillar. It is possible that the recess already acts as a moat
at these frequencies, and that the central pillar has less seismic noise than simulated in
their study. A detailed simulation of scattering from the recess structure using dynami-
cal finite-element methods is necessary to estimate the effect (see Sect. 3.5 for details).
The Newtonian-noise spectrum calculated from the reduction curve is shown in the
right of Fig. 52. The green curve models the sensitivity of a possible future version of
a LIGO detector. Without noise reduction, it would be strongly limited by Newtonian
noise. With recess, Newtonian noise only modestly limits the sensitivity and imple-
mentation of coherent noise cancellation should provide the missing noise reduction.
It is to be expected that the idea of removing mass around test masses only works at
the surface. The reason is that seismic speeds are much larger underground (by a factor
10 at least compared to 250 m/s). The idea would be to place test masses at the centers
of huge caverns, but Fig. 9 tells us that the radius of such a cavern would have to be
extremely large (of the order 100 m for a factor 2 Newtonian-noise reduction at 10 Hz).

7.4 Summary and open problems

In this section, we have described Newtonian-noise mitigation schemes including
coherent noise cancellation using Wiener filters, and passive mitigation based on
recess structures and site selection. While some of the mitigation strategies are well
understood (for example, coherent cancellation of Rayleigh-wave Newtonian noise, or
site selection with respect to ambient seismicity), others still need to be investigated
in more detail. Only first steps were taken to understand the coherent cancellation
of Newtonian noise from seismic body waves. For example, the study of cancella-
tion with arrays including seismometers as well as seismic strainmeters or tiltmeters
should be investigated. Also, the impact of field anisotropy and heterogeneity needs to
be studied. We have also reviewed our current understanding of site-dependent effects
on coherent noise cancellation in Sect. 7.2.3, which adds to the complexity of the site-
selection process. In this context, sites should be avoided where significant seismic
scattering can be expected. This is generally the case in complex topographies typical
for mountains. It should be emphasized though that an extensive and conclusive study
of the impact of scattering on coherent cancellation has not been carried out so far.

Concerning passive mitigation strategies, site selection is the preferred option and
should be part of any design study of future GW detectors. The potential gain in low-
frequency noise can be orders of magnitude, which cannot be guaranteed with any
other mitigation strategy. This fact is of course well recognized by the community, as
demonstrated by the detailed site-selection study for the Einstein Telescope and the
fact that it was decided to construct the Japanese GW detector KAGRA underground.
Alternative passive mitigation schemes such as the construction of recess structures
around test masses are likely effective only at surface sites as explained in Sect. 7.3.
The impact of these structures strongly depends on the ratio of structure size to seismic
wavelength. Newtonian noise at underground sites is dominated by contributions from
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body waves, which can have lengths of hundreds of meters even at frequencies as high
as 10 Hz. At the surface, smaller-scale structures may turn out to be sufficient since
Rayleigh-wave lengths at 10 Hz can be a factor 10 smaller than the lengths of body
waves underground. Results from finite-element simulations are indeed promising,
and more detailed follow-up investigations should be carried out to identify possible
challenges of this approach.
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A Mathematical formalism

The purpose of this appendix is to define the mathematical quantities used in the paper,
and to provide the key equations to master the more complex calculations. Only the
basic properties are described here. More complex applications can be found through-
out the paper. Comparing results in this article with results from other publications,
one should pay attention especially to the definition of spherical scalar and vector
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harmonics, and multipoles. Various normalization conventions can be found in the
literature, which can cause final results to look different.

Also, to share valuable experience, here is how almost all complicated calculations
can be carried out very efficiently. First, a problem needs to be calculated with pencil
and paper. Even if the initial calculation has errors, one acquires important under-
standing of the structure of the calculation, which makes it possible to translate the
calculation efficiently into a symbolic computational software program (the author
used Mathematica for this purpose). This scheme has worked for all calculations in
this article. Not solving the problem by hand first often leads to the situation that the
symbolic software is programmed in a way that it cannot find the solution. In some
cases, solutions are found by the software only for specific parameter ranges, and one
needs to generalize the solution using one’s understanding from the calculation by
hand. More satisfactorily even, knowing the solution helps to identify the mistakes
done in the first calculation by hand.

A.1 Bessel functions

Bessel functions exist in two types, the Bessel function of the first kind Jn(·), and the
Bessel function of the second kind Yn(·). The latter is irregular at the origin, and will
not be used in this article. A common definition of the Bessel function is

Jn(x) = 1

2π

π
∫

−π

dτ ei(nτ−x sin(τ )) (226)

Here, the order n needs to be integer. Only the J0(·) is non-zero at the origin. Many
important properties of Jn(·) can be derived from this equation. For example, negative
integer orders can be re-expressed as positive orders:

J−n(x) = (−1)n Jn(x) (227)

In this paper, the Bessel function will find application in cylindrical harmonics expan-
sions. Any field that fulfills the Laplace equation Δ f (r ) = 0, i.e., a harmonic function,
can be expanded into cylindrical harmonics Cn(k; ̺, φ, z). Cylindrical harmonics are
linearly independent solutions to the Laplace equation. Throughout this article, we will
only need harmonics that are regular at the origin. In this case, they can be written as:

Cn(k; ̺, φ, z) = Jn(k̺)einφe−kz, (228)

where ̺, φ, z are the cylindrical coordinates. A arbitrary harmonic function f (r ) that
is regular at the origin can then be expanded according to

f (r ) =
∞
∑

n=−∞

∫

dk an(k)Cn(k; ̺, φ, z) (229)
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Cylindrical harmonics find application in calculations of fields in a half space. The
integration range of the parameter k is not further specified here, since it depends on
the specific physical problem. The parameter k can in general be complex valued, and
in some cases, i.e., when the field is constrained to a finite range of radii ̺, it can also
take on discrete values.

Most of the important, non-trivial relations used in this article involving Bessel
functions concern semi-infinite integrals. The first relation can be obtained as a limiting
case of the Hankel integral (Hankel 1875; Watson 1922)

∞
∫

0

d̺ ̺p Jn(k̺) = lim
a→0

∞
∫

0

d̺ e−a̺̺p Jn(k̺)

= 1

2

(

2

k

)p+1
Ŵ((n + p + 1)/2)

Ŵ((n − p + 1)/2)
,

(230)

with −n − 1 < p < 1/2 and k > 0. A related integral can be derived consistent with
the last equation, even though the conditions on the parameters are not fulfilled with
p = 1: ∞

∫

0

d̺ ̺Jn(k̺) = n

k2 (231)

Finally, an integral that is useful in calculations with cylindrical harmonic expansions,
see Sect. 4.4, is given by (Arfken and Weber 2005)

∞
∫

0

d̺ ̺Jn(k̺)Jn(s̺) = δ(s − k)

k
, (232)

with δ(·) being the Dirac δ-distribution. This equation allows us to reduce the number
of Bessel functions in more complicated integrals, and is known as closure relation.

Bessel functions can also be defined for non-integer orders, which requires a modi-
fication of the definition in Eq. (226). Using the generalized definition, one can define
the spherical Bessel functions of the first kind according to

jn(x) =
√

π

2x
Jn+1/2(x) (233)

The spherical Bessel functions have a form very similar to the Bessel functions. Also
here, j0(·) is the only spherical Bessel function that does not vanish at the origin.
Spherical Bessel functions of the first kind appear in correlation functions of 3D fields
(see Sect. 7.1.3). For example, correlations between scalar fields are given in terms of
j0(·), correlations of vector fields include j0(·), j2(·). They also appear in the vector
plane-wave expansions, see Eqs. (256) and (257). In many calculations involving
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Table 3 Legendre polynomials
P0(x) = 1 1 = P0(x)

P1(x) = x x = P1(x)

P2(x) = 1
2 (3x2 − 1) x2 = 1

3 (2P2(x) + P0(x))

P3(x) = 1
2 (5x3 − 3x) x3 = 1

5 (2P3(x) + 3P1(x))

spherical Bessel functions, the following to recurrence relations are useful

jl+1(x) = 2l + 1

x
jl(x) − jl−1(x)

∂x jl(x) = l

x
jl(x) − jl+1(x)

= l

2l + 1
jl−1(x) − l + 1

2l + 1
jl+1(x)

(234)

The first relation means that it is always possible to express a sum over spherical
Bessel functions with arbitrarily many different orders as a sum over two orders only.
Therefore, it is first of all a great tool to reduce complexity of a result. The second
equation is often applied in calculations with integrals following integration by parts.

A.2 Spherical harmonics

Spherical harmonics are the independent solutions to the Laplace equation in spherical
coordinates. We distinguish between surface spherical harmonics and solid spheri-
cal harmonics. Two-dimensional scalar harmonic fields on spheres can be expanded
into surface spherical harmonics. Three dimensional scalar harmonic fields can be
expanded into solid spherical harmonics. We will also introduce the vector surface
spherical harmonics used to expand vector fields on spheres. Spherical harmonics find
wide application. In this article, we will use them to calculate seismic fields scat-
tered from spherical cavities or gravity perturbations from seismic point sources (see
Sects. 3.3.3 and 4.3). Furthermore, solid spherical harmonics are the constituents of
the multipole expansion, which is an elegant means to describe gravity perturbations
from objects with arbitrary shape (see Sects. 6.5 and 6.6).

A.2.1 Legendre polynomials

Legendre polynomials are introduced since they are part of the definition of spherical
harmonics. They also directly serve in expansions of harmonic fields in spherical
coordinates when the fields have cylindrical symmetry. The Legendre polynomial of
integer order l is defined as

Pl(x) = 1

2ll!∂
l
x (x2 − 1)l (235)

123



Terrestrial gravity fluctuations Page 133 of 154 6

In order to evaluate integrals involving Legendre polynomials, it is often conve-
nient to express powers of the argument x in terms of Legendre polynomials. Table 3
summarizes the relations for the first 4 orders. Naturally, any polynomial of order l can
be expressed in terms of Legendre polynomials up to the same order. In most applica-
tions, the domain of the Legendre polynomials is the interval [−1; 1]. In this case, the
Legendre polynomials have interesting integral properties such as the orthogonality
relation

1
∫

−1

dx Pm(x)Pn(x) = 2

2m + 1
δmn (236)

Making use of the orthogonality relation of Eq. (236), the inverse expansion of mono-
mials xm into Legendre polynomials Pl(x), as shown for the first few orders in Table 3,
can be obtained from the integrals

1
∫

−1

dx xm Pl(x) = 22+l(1 + (m + l)/2)!m!
((m − l)/2)!(2 + m + l)! , (237)

for m ≥ l and m + l even. The integral vanishes for all other pairs m, l. The Legendre
polynomials obey Bonnet’s recursion formula:

(l + 1)Pl+1(x) = (2l + 1)x Pl(x) − l Pl−1(x) (238)

Also the derivative of a Legendre polynomial can be expressed as a sum of Legendre
polynomials according to

∂x Pl(x) = 1 + l

1 − x2 (x Pl(x) − Pl+1(x))

= 1

1 − x2

l(l + 1)

2l + 1
(Pl−1(x) − Pl+1(x))

(239)

In analytical calculations of seismic fields, it enters the equations through its role in
the scalar plane-wave expansion:

eik·r = eikr cos(θ) =
∞
∑

l=0

il(2l + 1) jl(kr)Pl(cos(θ)) (240)

Here, jn(·) is the spherical Bessel function defined in Eq. (233). For example, in
Sect. 3.3.2, we will calculate the scattered seismic field from a cavity with incident
longitudinal wave. This problem has cylindrical symmetry.

More important for spherical harmonics are the associated Legendre polynomi-
als Pm

l (·). They are parameterized by a second integer index m = −l, . . . , l. Their
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definition is given in terms of Legendre polynomials:

Pm
l (x) = (−1)m(1 − x2)m/2∂m

x Pl(x)

= (−1)m

2ll! (1 − x2)m/2∂ l+m
x (x2 − 1)l

(241)

Definitions of the associated Legendre polynomials can vary in terms of their l, m-
dependent normalization. For example, some authors would normalize Pm

l (·) such that
the factor in front of the Kronecker-δ in Eq. (242) is equal to 1. While this choice of
normalization has greater aesthetic appeal, we choose the more conventional definition
since we will never work explicitly with the associated Legendre polynomials. In this
article, they merely serve as building block of the spherical harmonics. Defined over
the domain x ∈ [−1; 1], the associated Legendre polynomials obey the orthogonality
relation

1
∫

−1

dx Pm
k (x)Pm

l (x) = 2

2l + 1

(l + m)!
(l − m)!δk,l (242)

Finally, positive and negative orders m are linked via

P−m
l (x) = (−1)m (l − m)!

(l + m)! Pm
l (x) (243)

Associated Legendre polynomials will never be used explicitly in this article, but only
as part of the definition of spherical harmonics. From the theory of spherical harmonics
it will become clear that cylindrically symmetric fields can always be expanded in terms
of the polynomials P0

l (x) = Pl(x).

A.2.2 Scalar surface spherical harmonics

Scalar surface spherical harmonics Y m
l (θ, φ) are eigenfunctions of the Laplace oper-

ator with respect to the angular coordinates

(

1

sin(θ)
∂θ sin(θ)∂θ + 1

sin2(θ)
∂2
φ

)

Y m
l (θ, φ) = −l(l + 1)Y m

l (θ, φ) (244)

As such, they form an important part in the expansion of harmonic functions expressed
in spherical coordinates (see Sects. 4 and 3). The degree l of the spherical harmonic
can assume all non-negative integer values, while the order m lies in the range m =
−l, . . . , l. Their explicit form is given by

Y m
l (θ, φ) =

√

2l + 1

4π

(l − m)!
(l + m)! Pm

l (cos(θ))eimφ (245)

The first 4 degrees of the harmonics are listen in Table 4. Another related role of the
spherical harmonics is that, on the unit sphere, any (square-integrable) function can
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Table 4 Spherical surface
harmonics Y 0

0
1

2

√

1

π

Y 0
1

1

2

√

3

π
cos(θ)

Y ±1
1 ∓ 1

2

√

3

2π
sin(θ)e±iφ

Y 0
2

1

4

√

5

π
(3 cos2(θ) − 1)

Y ±1
2 ∓ 1

2

√

15

2π
sin(θ) cos(θ)e±iφ

Y ±2
2

1

4

√

15

2π
sin2(θ)e±2iφ

Y 0
3

1

4

√

7

π
(5 cos2(θ) − 3) cos(θ)

Y ±1
3 ∓ 1

8

√

21

π
(5 cos2(θ) − 1) sin(θ)e±iφ

Y ±2
3

1

4

√

105

2π
cos(θ) sin2(θ)e±2iφ

Y ±3
3 ∓ 1

8

√

35

π
sin3(θ)e±3iφ

be expanded according to

f (θ, φ) =
∞
∑

l=0

l
∑

m=−l

f m
l Y m

l (θ, φ) (246)

In expansions with cylindrical symmetry, it is convenient to define the angle θ with
respect to the symmetry axis, in which case the order m can be set to 0, and the
associated Legendre polynomials reduce to ordinary Legendre polynomials.

In this article, the normalization of spherical harmonics is chosen such that

∫

dΩ Y m
l (Y m′

l ′ )∗ = δll ′δmm′ (247)

In other words, the surface spherical harmonics form on orthonormal basis of (square-
integrable) functions on the unit sphere. The relation between positive and negative
orders can be found using Eqs. (243) and (245):

Y −m
l (θ, φ) = (−1)m(Y m

l (θ, φ))∗ (248)

Finally, we conclude this section with a few obvious and not so obvious relations. The
first three relations are evaluations of the spherical harmonics at specific points:
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Y m
l (θ, 0) =

√

π(2l + 1)Pl(cos(θ))δm,0

Y m
l (0, φ) = 1

2

√

2l + 1

π
δm,0

Y m
l (π/2, φ) =

⎧

⎨

⎩

0 l + m odd

1
2l (−1)(l+m)/2

√

2l + 1

4π

√
(l + m)!(l − m)!

((l + m)/2)!((l − m)/2)! l + m even

(249)
All three relations can be useful if fields are to be expanded on planes. Useful integrals
of the spherical harmonics are

2π
∫

0

dφ Y m
l (θ, φ) = 2πY 0

l (θ, 0)δm,0 =
√

π(2l + 1)Pl(cos(θ))δm,0

2π
∫

0

dφ

π/2
∫

0

dθ sin(θ)Y m
l (θ, φ) =

√

π(2l + 1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 l = 0

0 l > 0 and l even

(−1)(l−1)/2 l!!
l(l + 1)(l − 1)!! l odd

(250)

The latter integral can be found in Byerly (1893). These equations demonstrate the
typical situation that integrals over angles constrain the degrees and orders of spherical
harmonics in infinite expansions as in Eq. (246). The second relation is quite exotic, but
could be useful in some half-space problems, for example, to predict the performance
of coherent cancellation of infrasound Newtonian noise (see Sect. 7.1.4).

A.2.3 Vector surface spherical harmonics

Vector spherical harmonics form a basis of square-integrable vector fields. One can
find various definitions of vector spherical harmonics that do not only differ in
normalization. The fact that so many definitions exist is because different classes
of differential operators are applied to these harmonics depending on the physical
problem. If the interest lies in angular momentum operators, then one defines the
harmonics to be eigenfunctions of the Laplace operator as shown in Thorne (1980),
or, from the perspective of rotation operators invariant under rotations of a spher-
ical coordinate system, Korneev and Johnson (1993). The convention chosen here
is similar to definitions typically used in seismology text books, see for example
Ben-Menahem and Singh (1981), Aki and Richards (2009), and a nice introduc-
tion to these harmonics can be found in Barrera et al. (1985). Here, they are defined
as
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Ym
l (θ, φ) = Y m

l (θ, φ)er

Ψ m
l (θ, φ) = 1√

l(l + 1)
r∇Y m

l (θ, φ)

Φm
l (θ, φ) = 1√

l(l + 1)
r × ∇Y m

l (θ, φ)

(251)

Note that even though the radial coordinate r appears explicitly in these definitions,
it cancels when carrying out the gradient operations. The normalization differs from
most other publications since it is chosen to make the vector spherical harmonics
orthonormal:

∫

dΩ Ym
l (θ, φ) · (Ym′

l ′ (θ, φ))∗ = δll ′δmm′

∫

dΩ Ψ m
l (θ, φ) · (Ψ m′

l ′ (θ, φ))∗ = δll ′δmm′

∫

dΩ Φm
l (θ, φ) · (Φm′

l ′ (θ, φ))∗ = δll ′δmm′

(252)

Integrals involving the product of two different vector spherical harmonics vanish.
Using the orthogonality relations, one can also calculate the integrals

∫

dΩ Ym
l (θ, φ) =

√

2π

3
δl,1

(

δm,−1(ex − iey) − δm,1(ex + iey) +
√

2δm,0ez

)

∫

dΩ Ψ m
l (θ, φ) =

√

4π

3
δl,1

(

δm,−1(ex − iey) − δm,1(ex + iey) + δm,0ez

)

∫

dΩ Φm
l (θ, φ) = 0

(253)
Vector spherical harmonics are essential in calculations of scattered seismic fields. In
some cases, the scattering problem can be formulated in terms of scalar quantities, but
in general, as shown in Sect. 3.3.3, the calculation requires the vector harmonics. The
most important properties of vector spherical harmonics are expressed by the equa-
tions that involve differential operators. For our purposes, the gradient and divergence
operators are the most important ones. For example, the gradient of a scalar spherical
harmonic has the following form

φ(r ) = f (r)Y m
l (θ, φ), ∇φ(r ) = (∂r f (r))Ym

l (θ, φ) +
√

l(l + 1)
f (r)

r
Ψ m

l (θ, φ),

(254)
while the divergence of the vector spherical harmonics reads

div( f (r)Ym
l (θ, φ)) =

(

(∂r f (r)) + 2
f (r)

r

)

Y m
l (θ, φ)

div( f (r)Ψ m
l (θ, φ)) = −

√
l(l + 1)

r
f (r)Y m

l (θ, φ)

div( f (r)Φm
l (θ, φ)) = 0

(255)
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As a second example, we give expansions of simple vector fields that we will need
later again. Expressed in vector harmonics as defined in this paper, the solution for a
longitudinal plane wave reads:

e−ikzez =
∞
∑

l=0

[

√

4π

2l + 1
(−i)l+1 ((l + 1) jl+1(kr) − l jl−1(kr)) Y0

l (θ, φ)

−
√

4π

2l + 1

√

l(l + 1)(−i)l+1 ( jl+1(kr) + jl−1(kr))Ψ 0
l (θ, φ)

]

(256)
As usual, expansion coefficients can be calculated by integrating products of the left-
hand side of the equation with vector spherical harmonics. The exact form of the result
given here can be obtained by subsequently using the recurrence relations of spherical
Bessel functions as given in Eq. (234). Transversal waves have a more complicated
expansion into vector spherical harmonics:

e−ikzex =
∞
∑

l=1

[

√

πl(l + 1)

2l + 1
(−i)l+1( jl+1(kr) + jl−1(kr))(Y1

l (θ, φ) − Y−1
l (θ, φ))

+
√

π

2l + 1
(−i)l+1(−l jl+1(kr) + (l + 1) jl−1(kr))(Ψ 1

l (θ, φ)

− Ψ −1
l (θ, φ)) +

√

π(2l + 1)(−i)l+1 jl(kr)(Φ1
l (θ, φ) + Φ−1

l (θ, φ))

]

e−ikzey =
∞
∑

l=1

[

−
√

πl(l + 1)

2l + 1
(−i)l( jl+1(kr) + jl−1(kr))(Y1

l (θ, φ) + Y−1
l (θ, φ))

−
√

π

2l + 1
(−i)l(−l jl+1(kr) + (l + 1) jl−1(kr))(Ψ 1

l (θ, φ)

+ Ψ −1
l (θ, φ)) −

√

π(2l + 1)(−i)l jl(kr)(Φ1
l (θ, φ) − Φ−1

l (θ, φ))

]

(257)
As complicated as these expressions may seem, they greatly simplify more compli-
cated calculations, especially of scattering problems as shown in Sect. (3.3).

A.2.4 Solid scalar spherical harmonics

Expanding a square-integrable field in terms of spherical harmonics, the expansion
coefficients will generally be functions of the radial coordinate r . If the field is a
solution of the Laplace equation, then it is easy to show using Eq. (244) that the radial
dependence can only have the two forms r l and 1/r l+1. Therefore, it is convenient
to define so-called solid spherical harmonics, which directly incorporate r into the
expansion. A nice review of solid spherical harmonics can be found in Steinborn
and Ruedenberg (1973). To introduce the solid spherical harmonics, we start with a
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well-known expansion of the inverse distance:

1

|r − r ′| = 1

(r2 + (r ′)2 − 2rr ′ cos(γ ))1/2 = 1

r>

∞
∑

l=0

(

r<

r>

)l

Pl(cos(γ )) (258)

where r> ≡ max(r , r ′), r< ≡ min(r , r ′), and γ is the angle between the two vectors
r, r ′. This equation is known as Laplace expansion of the distance between two points.
The expansion was later generalized to arbitrary powers of the distance, which can
often serve as a short cut for calculations (Sack 1964a, b, c).

This equation is not always directly helpful since the two position vectors r, r ′

are often defined in a coordinate system that does not allow us to provide a simple
expression of the angle γ . This can make it very difficult to calculate integrals of this
expansion over angular coordinates. Another important relation, known as spherical
harmonic addition theorem, can solve this problem:

Pl(cos(γ )) = 4π

2l + 1

l
∑

m=−l

(

Y m
l (θ ′, φ′)

)∗
Y m

l (θ, φ), (259)

where γ is now reexpressed in terms of the angular spherical coordinates (θ, φ) and
(θ ′, φ′) of the two position vectors. Together with Eq. (258), the Laplace expansion
can be rewritten as

1

|r − r ′| =
∞
∑

l=0

l
∑

m=−l

(

I m
l (r>)

)∗
Rm

l (r<) (260)

with the solid spherical harmonics defined in Racah’s normalization

Rm
l (r ) ≡

√

4π

2l + 1
r lY m

l (θ, φ), I m
l (r ) ≡

√

4π

2l + 1

Y m
l (θ, φ)

r l+1 (261)

The functions Rm
l (·), I m

l (·) are the regular and irregular solid spherical harmonics,
respectively. The explicit expressions of the first three degrees are listed in Table 5.

With an appropriate definition of vector surface spherical harmonics, different from
Eq. (251), since the surface harmonics need to be eigenfunctions of the Laplace oper-
ator, one could also define solid vector spherical harmonics. They will not be required
in this review article.

A.3 Spherical multipole expansion

The expansion of scalar and vector fields into spherical harmonics is an example of
a so-called multipole expansion. We will see interesting applications in Sect. 6, but
a simple example is discussed in this section already to illustrate the method. In the
context of calculating gravity perturbations between two objects, the goal is to provide
the multipole expansion of their mass distributions. These expansions come in two
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Table 5 Regular and irregular solid harmonics in Racah normalization

R0
0 1 I 0

0
1

r

R0
1 r cos(θ) I 0

1
1

r2
cos(θ)

R±1
1 ∓ r√

2
sin(θ)e±iφ I±1

1 ∓ 1

r2
√

2
sin(θ)e±iφ

R0
2

r2

2
(3 cos2(θ) − 1) I 0

2
1

2r3
(3 cos2(θ) − 1)

R±1
2 ∓r2

√

3

2
sin(θ) cos(θ)e±iφ I±1

2 ∓ 1

r3

√

3

2
sin(θ) cos(θ)e±iφ

R±2
2

r2

2

√

3

2
sin2(θ)e±2iφ I±2

2
1

2r3

√

3

2
sin2(θ)e±2iφ

forms. If the two objects are much smaller than the distance between them, then it is
possible to solve the problem in terms of the so-called exterior multipole moments

Xm
l ≡

∫

dV ρ(r )Rm
l (r ), (262)

which require the regular solid harmonics. The moment X0
0 is always equal to the

total mass of the object. As outlined in Sect. 4, the coordinate vector r needs to be
“shorter”, in this case shorter than the distance between the two objects. However, since
the length of the vector depends on the location of the origin of the coordinate system,
and since only one of two distant objects can be close to the origin, a more complicated
expansion scheme is required to make use of the exterior multipole moments of both
objects. This problem is discussed in Sect. 6.4. Another possible scenario is that one
mass is located inside another hollow mass. In this case, it is impossible to calculate
their gravitational attraction using only exterior mass multipole moments. At least one
mass distribution needs to be described in terms of its interior multipole moments

N m
l ≡

∫

dV ρ(r )I m
l (r ), (263)

In the remainder of this section, the calculation of an example will highlight the effect
of symmetry of mass distributions on their multipole moments. For this purpose, we
consider N point masses regularly distributed on a circle as shown in Fig. 53. The
results could for example be used to approximate the mass multipole moments of
a rotor. The mass density of a point mass mi at ri = (ri , θi , φi ) can be written in
spherical coordinates as

ρ(r ) = Mi

r2 sin(θ)
δ(r − ri )δ(θ − θi )δ(φ − φi ) (264)

We want to use this example to explore the effect of simple symmetries in multipole
expansion. The mass is considered to lie on a circle with radius R, so that we can
choose ri = R and θi = π/2. Together with Eq. (249), we find
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Fig. 53 Symmetric
configuration of point masses in
a plane

Rm
l (r = R, θ = π/2, φ) = Rl K m

l eimφ

K m
l =

⎧

⎨

⎩

0 l + m odd

1
2l (−1)(l+m)/2

√
(l + m)!(l − m)!

((l + m)/2)!((l − m)/2)! l + m even

(265)
Therefore the exterior multipoles of a point mass Mi at ri = (R, π/2, φi ) can be

written
Xm

l (ri ) = Mi Rl K m
l eimφi (266)

This result means that all multipole moments of a point mass with odd l + m vanish,
whereas moments with even l + m are nonzero independent of φi . Now we consider
two point masses at antipodal locations φ1 = 0, φ2 = π at the same distance R to the
origin and the same mass M . The multipoles are given by

Xm
l = M Rl K m

l

(

1 + (−1)m
)

(267)

Therefore, m needs to be even for non-vanishing multipole moments, which also means
that l needs to be even.

As a last example, we add two more point masses, so that the configuration now
consists of four equal masses at φ1 = 0, φ2 = π/2, φ3 = π, φ4 = 3π/2. The
multipoles moments are

Xm
l = M Rl K m

l

(

1 + (−1)m
) (

1 + im
)

(268)

Now m needs to be a multiple of 4 to generate a non-vanishing moment, and l needs
to be even as in the previous case. For N point masses, we have

Xm
l = M Rl K m

l

1 − e2π im

1 − e2π im/N
(269)

The fraction is equal to N for m being a multiple of N (including m = 0), and 0
otherwise. As before l +m needs to be even for non-vanishing K m

l . The limit N → ∞
turns the collection of point masses into a continuous ring, which can be obtained as
finite limit by expressing the individual point mass in terms of the total mass of the
ring as M = Mring/N . In this case only the m = 0 moments do not vanish. This is a
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Fig. 54 Illustration of recursion
relation for Clebsch–Gordan
coefficients: l1, l2 = 1

M=1

m
1

m
2

M=,-1 M=0

1

10

0

-1

-1

property of multipole moments of all axially symmetric mass distributions provided
that the angle θ is measured with respect to the symmetry axis. The only non-vanishing
moment of spherically symmetric mass distributions with total mass M is X0

0 = M .

A.4 Clebsch–Gordan coefficients

Clebsch–Gordan coefficients 〈l1, m1; l2, m2|L, M〉 are required for the bipolar expan-
sion discussed in Sect. 6.4. In general, they can be calculated recursively according
to

C±(L, M)〈l1, m1; l2, m2|L, M ± 1〉
= C±(l1, m1∓1)〈l1, m1∓1; l2, m2|L, M〉 + C±(l2, m2∓1)

〈l1, m1; l2, m2∓1|L, M〉
(270)

where the integer parameters can assume the values l1 ≥ 0, l2 ≥ 0, m1 = −l1, . . . l1,
m2 = −l2, . . . l2, 0 ≤ L ≤ l1 + l2, M = m1 + m2 and

C±(l, m) ≡
√

l(l + 1) − m(m ± 1), (271)

in Condon–Shortley phase convention. The Clebsch–Gordan coefficients obey the
orthogonality relation:

∑

m1+m2=M

〈L, M |l1, m1; l2, m2〉〈l1, m1; l2, m2|L, M〉 = 1 (272)

A practical method to calculate the coefficients using the recursion relation is based
on a graphical scheme, which we are going to outline with the help of Fig. 54 for the
case of l1 = l2 = 1.

The diagram shows a table with row index m2 = −1, 0, 1, and column index
m1 = −1, 0, 1. The points in the diagram represent Clebsch–Gordan coefficients.
Clebsch–Gordan coefficients are zero unless M = m1 + m2. We know that the upper
right corner must belong to L = 2 since M = 2. The two points marked with solid,
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red rings either belong to L = 2 or L = 1. Let us pick the value L = 1 as example.
Only the filled points represent possible coefficients in this case with M = −1, 0, 1.
Now, inserting M = 1 into Eq. (270) and choosing the lower sign, the recursion
relation links three points as for example the three marked with dashed, green rings.
If the values of two points of a triangle are known, then the value of the third can be
calculated. If we choose the point m1 = 1, m2 = 0 as upper corner of such a triangle,
then the recursion relation only involves two coefficients. The lower-right corner of
the triangle is off the diagram and therefore zero. Starting from there, one can fill in the
values of all other points using the recursion relation. The orientation of the triangle
formed by the green marked points can be flipped across the diagonal by using the
other sign in Eq. (270). We can set the value of one coefficient equal to 1, and later
use Eq. (272) to give all coefficients the correct normalization. Equation (272) says
that the sum of squares of coefficients along a M = const diagonal is equal to 1. Note
that all coefficients need to be recalculated for a different value of L . Nonetheless, the
procedure is straight-forward, and one only needs to set up a new diagram for each
combination of values of l1, l2.

A.5 Noise characterization in frequency domain

In this section, we give a brief introduction into frequency-domain functions used
to characterize random processes. We will assume throughout this section that the
random processes are Gaussian and stationary. Gaussianity implies that variances,
correlations, and their spectral variants, i.e., power spectral densities and cross spectral
densities, give a complete characterization of the noise. The role of stationarity is
explained below. This does not mean that the presented equations cannot be applied
in practice, when noise is non-stationary, and non-Gaussian, but then one needs to
be more careful with their interpretation. For stationary random processes the auto-
correlation between measurements at two different times t1, t2 is only a function of
the difference τ = t2 − t1. In this case, the power spectral density can be defined as
the Fourier transform of the auto-correlation with respect to τ :

S(x;ω) = 2
∫

dτ 〈x(t)x(t − τ)〉e−iωτ (273)

This equation assumes stationary noise x(t). If noise is non-stationary, then the spec-
trum S(x;ω) explicitly depends on the time t . Another property of stationary noise is
that Fourier amplitudes of the random process at different frequencies are uncorrelated:

〈x(ω)x∗(ω′)〉 = 2π
1

2
S(x;ω)δ(ω − ω′) (274)

The left-hand side is an ensemble average over many noise realizations. Since a sta-
tionary random process has a constant expectation value of its noise power for all
times −∞ < t < ∞, its Fourier transform does not exist strictly speaking (Root and
Pitcher 1955). This is the reason why the right-hand side involves a δ-distribution.
A more suitable form is obtained by integrating the last equation over frequency ω′.
Considering the product of Fourier amplitudes of two different random processes, one
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obtains

2

∞
∫

0

dω′

2π
〈x(ω)y∗(ω′)〉 = S(x, y;ω) (275)

The cross spectral density S(x, y;ω) is equal to the Fourier transform of the cross-
correlation 〈x(t)y(t−τ)〉. In this article, the cross spectral density will often be denoted
as 〈x(ω), y(ω)〉 and referred to as correlation function.

A typical case is that the two quantities x(t), y(t) represent measurements of a
field at two potentially different locations. In this case, the correlation function can be
cast into the form

〈x(r1, ω), x(r2, ω)〉 = S(x;ω)r (r1, r2 ) (276)

with r (r, r ) = 1. In practice, correlation functions are calculated based on plane-wave
(or normal-mode) solutions. A field can then be represented as a superposition of plane
waves, and field correlations are obtained by averaging the plane-wave correlations
over wave parameters such as propagation directions ek and polarizations p. If the
random field is isotropic, stationary, and unpolarized, then different modes k, p are
uncorrelated (Allen and Romano 1999). Consequently, we can focus on correlations
between waves that are described by the same parameters:

〈xk,p(r1, ω), yk,p(r2, ω)〉 = S(x, y;ω)s(k, p)eik·(r2−r1) (277)

Note that this expression is evaluated for fixed wave parameters, and the only random
quantities in this equation are the complex (scalar) amplitudes of the two waves. As a
next step, we consider the field as a superposition of waves with random polarization
and propagation direction. Averaging over directions and polarizations, we find

〈xk(r1, ω), yk(r2, ω)〉 = S(x, y;ω)
1

4π P

∫

dp

∫

dΩk s(k, p)eik·(r2−r1) (278)

Here, P ≡
∫

dp is the measure of the integral over all polarization parameters, and
since the number of polarizations is finite, the integral can also be rewritten as a sum
over polarizations. The last equation is formally identical to the definition of the so-
called overlap reduction function, which describes correlations between measurements
of a stochastic GW background at two different locations (Christensen 1992; Flanagan
1993). If the two random processes represent measurements of the same (scalar) field,
then together with Eq. (276), we have

r (r1, r2 ) = 1

4π P

∫

dp

∫

dΩk s(k, p)eik·(r2−r1) (279)

Two-point correlation functions can have rich structure if the two random processes
in Eq. (278) represent projections of a vector or tensor field at two different locations.
Examples of this case can be found in Sect. 7.1.
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