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the same time [fig. S5A (19)] are consistent with

extracellular signals.

After a relatively brief (~40-s) period of extra-

cellular signals, we observed several pronounced

changes in recorded signals (Fig. 4, B and C, II

and III) without application of external force to

the PDMS/cell support. Specifically, the initial

extracellular signals gradually disappeared (Fig.

4, B and C, II, pink stars). There was a con-

comitant decrease in baseline potential, and new

peaks emerged that had an opposite sign, similar

frequency, much greater amplitude, and longer

duration (Fig. 4B, II, green stars). These new

peaks, which are coincident with cardiomyocyte

cell beating, rapidly reached a steady state (Fig.

4B, III) with an average calibrated peak ampli-

tude of ~80 mV and duration of ~200 ms. The

amplitude, sign, and duration are near those re-

ported for whole-cell patch clamp recordings

from cardiomyocytes (27, 28); thus, we conclude

that these data represent a transition to steady-

state intracellular recording (Fig. 4A, right) with

the 3D nanowire probe.

Detailed analysis of the latter steady-state

peaks (Fig. 4C, III) shows five characteristic phases

of a cardiac intracellular potential (27, 28),

including (a) resting state, (b) rapid depolarization,

(c) plateau, (d) rapid repolarization, and (e) hy-

perpolarization. In addition, a sharp transient peak

(blue star) and the notch (orange star) possibly

associated with the inward sodium and outward

potassium currents (28) can be resolved. Optical

images recorded at the same time as these

intracellular peaks (fig. S5B) showed the kinked

nanowire probe tips in a possible intracellular

region of the cell (19). When the PDMS/cell

substrate was mechanically retracted from the 3D

kinked nanowire devices, the intracellular peaks

disappeared, but they reappeared when the cell

substrate was brought back into gentle contact

with the device. This process could be repeated

multiple times without degradation in the rec-

orded signal. When vertical 3D nanoprobe

devices were bent into a configuration with angle

q < ~50° with respect to the substrate, or when

kinked nanowire devices were fabricated on

planar substrates, we could record only extra-

cellular signals. These results confirm that elec-

trical recording arises from the highly localized,

pointlike nanoFET near the probe tip, which (i)

initially records only extracellular potential, (ii)

simultaneously records both extracellular and

intracellular signals as the nanoFET spans the

cell membrane, and (iii) records only intracellular

signals when fully inside the cell.

Additional work remains to develop this new

synthetic nanoprobe as a routine tool like the

patch-clamp micropipette (10, 11), although we

believe that there are already clear advantages:

Electrical recording with kinked nanowire

probes is relatively simple without the need for

resistance or capacitance compensation (9, 11);

the nanoprobes are chemically less invasive than

pipettes, as there is no solution exchange; the

small size and biomimetic coating minimizes me-

chanical invasiveness; and the nanoFETs have high

spatial and temporal resolution for recording.
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Terrestrial Gross Carbon Dioxide
Uptake: Global Distribution and
Covariation with Climate
Christian Beer,1* Markus Reichstein,1 Enrico Tomelleri,1 Philippe Ciais,2 Martin Jung,1

Nuno Carvalhais,1,3 Christian Rödenbeck,4 M. Altaf Arain,5 Dennis Baldocchi,6

Gordon B. Bonan,7 Alberte Bondeau,8 Alessandro Cescatti,9 Gitta Lasslop,1 Anders Lindroth,10

Mark Lomas,11 Sebastiaan Luyssaert,12 Hank Margolis,13 Keith W. Oleson,7

Olivier Roupsard,14,15 Elmar Veenendaal,16 Nicolas Viovy,2 Christopher Williams,17

F. Ian Woodward,11 Dario Papale18

Terrestrial gross primary production (GPP) is the largest global CO2 flux driving several ecosystem
functions. We provide an observation-based estimate of this flux at 123 T 8 petagrams of carbon per
year (Pg C year−1) using eddy covariance flux data and various diagnostic models. Tropical forests and
savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation.
State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large
between-model variation of GPP’s latitudinal patterns and show higher spatial correlations between
GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which
attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its
covariation with climate can help improve coupled climate–carbon cycle process models.

T
errestrial plants fix carbon dioxide (CO2)

as organic compounds through photo-

synthesis, a carbon (C) flux also known

at the ecosystem level as gross primary produc-

tion (GPP). Terrestrial GPP is the largest global

carbon flux, and it drives several ecosystem func-

tions, such as respiration and growth. GPP thus

contributes to human welfare because it is the

basis for food, fiber, and wood production. In

addition, GPP, along with respiration, is one of

the major processes controlling land-atmosphere

CO2 exchange, providing the capacity of terres-

trial ecosystems to partly offset anthropogenic

CO2 emissions.

Although photosynthesis at the leaf and can-

opy level are quite well understood, only tentative

observation-based estimates of global terrestrial

GPP have been possible so far. Plant- and stand-

level GPP has previously been calculated as two

times biomass production (1, 2), with substantial
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variation between biomes and sites (3–5). In the

absence of direct observations, a combined GPP

of all terrestrial ecosystems of 120 Pg C year−1

was obtained (6) by doubling global biomass pro-

duction estimates (7) without an empirical basis of

spatially resolved biomass production and its rela-

tionship to GPP. A global terrestrial GPP of 100 to

150 Pg C year−1 is consistent with the observed

variation of 18OCO in the atmosphere (8, 9). How-

ever, the ability of 18OCO to constrain GPP de-

pends critically on the isotopic imbalance between

GPP and respiration, and large uncertainties re-

main associated with isotope fractionation pro-

cesses (10). The coupled uptake of carbonyl sulfide

and CO2 by plants (11, 12) could potentially be

used to further constrain terrestrial GPP by the

combination of atmospheric [COS] measurements

with an inversion of the atmospheric transport (13)

once the ratio of CO2 versus COS uptake, the ad-

ditional COS deposition to soils, and the COS

efflux from oceans is more precisely quantified.

As an alternative to directly constraining at-

mospheric data to estimate GPP, local informa-

tion can be built into a process-oriented biosphere

model, which is then applied globally. Knowl-

edge of radiative transfer within vegetation can-

opies and of leaf photosynthesis has been used to

represent GPP within process-oriented biosphere

models, which explicitly simulate the behavior of

the ecosystem as an interaction of the system com-

ponents (e.g., leafs, roots, and soil) in a reductionist

or mechanistic way. If these models are designed

to also simulate a changing state of the biosphere

(e.g., leaf area index and carbon pools), predictions

of ecosystem dynamics under changing environ-

mental conditions can be attempted (14). However,

these process-oriented models are complex com-

binations of scientific hypotheses; hence, their re-

sults depend on these embedded hypotheses. A

complementary approach is data-oriented or diag-

nostic modeling where general relationships be-

tween existing data sets are first inferred at site-level

and then applied globally by using global grids

of explanatory variables. Particularly when data-

adaptive machine learning approaches are em-

ployed (e.g., artificial neural networks), results

are much less contingent on theoretical assump-

tions and can be considered as data benchmarks

for process models. However, being essentially a

statistical approach, the diagnostic models do lack

the capacity of extrapolating to completely differ-

ent conditions and hinge on the availability of suf-

ficient data. With the advent of a global network of

ecosystem-level observations of CO2 biosphere-

atmosphere exchange (15) (www.fluxdata.org) and

the development of new diagnostic modeling

approaches, a data-oriented global estimation of

GPP has become feasible. In this study, we estimate

terrestrial GPP and its spatial details by diagnostic

models and compare spatial correlationswith climate

variables to results from process-oriented models.

The diagnostic modeling comprises two steps,

the parametrization of GPP in relation to explan-

atory variables at sites and the application of the

model by using gridded information about these

explanatory variables. For the first step, GPP was

estimated by partitioning continuousmeasurements

of net ecosystem exchange (NEE) into GPP and

ecosystem respiration at flux tower sites (16). Two

flux partitioning methods were considered using

night-time or day-time NEE (16). Such site-level

GPP data was then used to calibrate five highly

diverse diagnostic models, which relate GPP to

meteorology, vegetation type, or remote sensing

indices at daily, monthly, or annual time scales

(16). Two of these approaches are machine learn-

ing techniques: a model tree ensemble (MTE) (17)

and an artificial neural network (ANN) (18). The

Köppen-Geiger cross Biome (KGB) approach is

a look-up table of mean GPP per ecoregion. GPP

of whole river catchment areas is estimated by the

water use efficiency approach (WUE) (19, 20),
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ratoire des Sciences du Climat et de L’Environnement, Institut
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Fig. 1. (A) Distributions
of global GPP (Pg C year−1)
for the five data-driven ap-
proaches that are most
constrained by data, their
combined global GPP dis-
tribution, and the GPP
distribution by the Miami
model. Shown are the me-
dian (red horizontal lines),
the quartiles (blue boxes),
and the 2.5 and 97.5 per-
centiles (vertical black lines),
indicating the 95% con-
fidence interval. MTE is
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either driven by fAPAR only (MTE1) or by both fAPAR and climate data (MTE2) (16). (B)
Spatial details of the median annual GPP (gC/m2/a) from the spatially explicit approaches
MTE1, MTE2, ANN, LUE, and KGB. (C) Latitudinal pattern (0.5° bands) of annual GPP. The
gray area represents the range of the diagnostic models MTE1, MTE2, ANN, LUE, and KGB.
The red area represents the range of process model results (LPJ-DGVM, LPJmL, ORCHIDEE,
CLM-CN, and SDGVM). The thick lines represent the medians of both ranges. The dashed
black line shows the result for northern extratropical regions from an independent diagnostic
model. In this approach, we combined gridded information about the seasonal NEE am-
plitude based on atmospheric CO2 data and an inversion of atmospheric CO2 transport with
empirical relationships between annual GPP and the seasonal amplitude of NEE derived at
flux tower sites.
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which combines recently derived global WUE

fields with the long-term averaged evapotranspi-

ration at the watershed scale. This is an important

constraint at the global scale, but the spatial res-

olution is too coarse to use the WUE approach for

estimating the spatial distribution of GPP. The

light-use efficiency approach (LUE) (21, 22) was

applied by combining in situ Bayesian calibration

with an uncertainty propagation per vegetation and

climate class. The Miami model (23) simply ex-

ploits the empirically obtained dependence of

photosynthesis on temperature and precipitation.

The second step, the mapping of flux tower GPP

to the land surface, was performed by applying

these diagnosticmodels to fields of remote sensing

(24–26) and climatic data (27–29), which are now

available with improved accuracy and high spa-

tial resolution. In so doing, we take into account

several sources of uncertainty, including uncer-

tainty from model parametrization and from ex-

planatory variables (16).

By making use of the new data streams and

the ensemble of five diagnostic models, we pre-

sent an observation-based estimate of an average

global terrestrial GPP of 123 Pg C year−1 during

the period 1998 to 2005 (Fig. 1A). Uncertainties

and preprocessing of tower CO2 flux measure-

ments, tower representativeness, flux partitioning

into GPP, uncertainties of climate and remote

sensing data sets, and structural uncertainties of

the diagnostic models propagate to a global un-

certainty with a 95% confidence range from 102

to 135 PgC year−1 or a robust estimate of standard

deviation (30) of 8 Pg C year−1. Results from the

LUE approach were higher when using National

Centers for Environmental Prediction (NCEP) ra-

diation. However, we do not show NCEP-driven

results because NCEP radiation and precipitation

is known to be biased (31, 32). The Miami model

overestimates GPP compared to other approaches,

particularly in sparsely vegetated areas with strong

seasonality, such as savannahs, shrublands, and tun-

dra (16) (table S5), because it does not account

for the effect of climate-independent changes in

vegetation structure (e.g., degradation) and vege-

tation type onGPP. Indeed, residuals of this model

correlate significantly with mean annual fraction

of absorbed photosynthetically active radiation

(fAPAR) from remote sensing (fig. S14). Hence,

being a classic model, it is shown only for com-

parison, but results from the Miami model were

not taken into account in the following analyses.

Tropical forests assimilate 34% of the global

terrestrial GPP (Table 1) and have the highest

GPP per unit area (table S5). Savannahs account

for 26% of the global GPP and are the second

most important biome in terms of global GPP.

The large area of savannahs (about twice the sur-

face area of tropical forests) explain their high

contribution. Moreover, the results highlight the

importance of taking into account C4 vegetation

in global GPP estimates. Based on the C4

distribution (figs. S6 and S7), more than 20% of

terrestrial GPP is conducted by C4 vegetation.

Given that there were less than 20 site-years of

flux data for C4-dominated ecosystems, our

uncertainty is largest for this type of vegetation.

Therefore, an expansion of observational net-

works should focus on tropical C4 ecosystems.

Boreal forests show a clear longitudinal gradient

in GPP in northern Eurasia where GPP in the

boreal zone decreases toward the east, where

Table 1. GPP for biomes of the world as defined by Prentice et al. (6). Combining the biome extent (fig.
S17) with the spatially explicit GPP distributions by the approaches MTE1, MTE2, ANN, LUE, WUE, and
KGB led to the respective median GPP per unit area separately for each biome (fig. S4). These medians
were then multiplied by the biome area (6, 7) (fig. S4) to estimate GPP in column 2. The estimated GPP
total of 122 Pg C year−1 does not equal our overall median of 123 Pg C year−1 because the biome area
defined by fig. S17 and by (6) differ slightly. The third column shows GPP as estimated by using NPP
numbers from Saugier et al. (7) under the assumption that NPP/GPP = 0.5 (6).

Biome
GPP

(Pg C year–1)

GPP = 2 × NPP*

(Pg C year–1)

Tropical forests 40.8 43.8

Temperate forests 9.9 16.2

Boreal forests 8.3 5.2

Tropical savannahs and grasslands 31.3 29.8

Temperate grasslands and shrublands 8.5 14

Deserts 6.4 7

Tundra 1.6 1

Croplands 14.8 8.2

Total 121.7 125.2

*Based on integrated numbers for biomes (6, 7)

Fig. 2. Partial correla-
tion in the spatial do-
main between GPP from
Fig. 1B and either (A)
CRU precipitation, (B)
CRU air temperature, or
(C) ECMWF ERA-Interim
short-wave radiation af-
ter applying a moving
4.5° by 4.5° spatial win-
dow and subsequent
median filtering. Shown
are significant correla-

Partial correlation median GPP and air temperature

 

 

−1

−0.5

0

0.5

1

Partial correlation median GPP and short−wave radiation

 

 

−1

−0.5

0

0.5

1

Partial correlation median GPP and precipitation

 

 

−1

−0.5

0

0.5

1

A B

Ctions (P < 0.01) of which the correlation coefficient is higher/lower than T 0.2.

13 AUGUST 2010 VOL 329 SCIENCE www.sciencemag.org836

REPORTS
o
n
 O

c
to

b
e
r 1

6
, 2

0
1
9

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://science.sciencemag.org/


photosynthesis is subject to an increasingly

continental climate (Fig. 1B).

The latitudinal pattern derived by the different

diagnostic models falls into a quite narrow range

(Fig. 1C). In contrast, there is a larger range among

an ensemble of five process-oriented biosphere

models (Fig. 1C); in comparison toour data-oriented

range, some consistently overestimate GPP, and

others underestimate tropical GPPwhile matching

or slightly overestimating GPP in the temperate

zone (fig. S26). A standard global parametrization

of the process-orientedmodels has been applied in

this study; it was not optimized against flux tower

GPP because we aimed at evaluating the process-

based GPP fields and their correlations to climatic

variables. For comparison, we show results by an

additional, completely different approach of scaling

GPP from flux tower sites to the regional scale

(fig. S16), where a reationship between the sea-

sonal NEE amplitude and annual GPP is derived

at flux tower sites and applied to the seasonal

NEE amplitude derived through atmospheric in-

version [update of (33)]. This approach leads to

values at the upper end of the range of the diag-

nostic bottom-up approaches in northern extra-

tropical regions but is still at the lower end of the

range estimated by the process-oriented models.

The differences between process-oriented and

data-oriented estimates could lie in human-induced

degradation of GPP by land use (34). However,

other reasons are possible, including insufficient

model parametrization or structural model errors

that lead to an overestimation of GPP.

Partial correlation analyses between GPP and

climatic variables for 4.5° by 4.5° moving win-

dows show that spatial variation of GPP is as-

sociated with precipitation in 50 to 70% of the

area of nontundra herbaceous ecosystems (Fig.

2A and Table 2). Also, 50% of the crop pro-

duction occurs in regions where photosynthesis is

colimited by precipitation, stressing the impor-

tance of water availability for food security. Inter-

estingly, GPP in the same proportion of temperate

forest areas correlates positivelywith precipitation

(Table 2). In contrast, the spatial GPP variability

in only 30% of tropical and boreal forests seems

to be associated positively with precipitation, but

GPP of more than half of the boreal forests

correlates positively with air temperature (Table

2). Therefore, the GPP of these biomes seems to

be robust against a moderate climate variation in

the order of magnitude of the current spatial var-

iability of climate, given the very low probability

of a decrease in air temperature in the boreal zone.

We find negative correlations of productivity

with incoming short-wave radiation, in particular

in savannahs, the Mediterranean, and Central

Asian grasslands (Fig. 2C and tables S6 to S8).

These negative partial correlations may indicate

an additional indirect effect of radiation or tem-

perature on GPP by the water balance. Both cli-

matic variables are usually associated with higher

evapotranspiration rates, which will yield more

negative water balances with higher temperature

or radiation levels with consequent negative effects

on primary productivity in these water-limited re-

gions. This interpretation is possible notwithstanding

a direct effect of temperature on vegetation by

heat stress as well as increased levels of diffuse

radiation associated with overall lower levels of

radiation (35).

After four decades of research on the global

magnitude of primary production of terrestrial

vegetation (23, 36), we present an observation-

based estimate of global terrestrial GPP. Although

we arrive at a global GPP of similar magnitude as

these earlier estimates, our results add confidence

and spatial details. The large range of GPP results

by process-oriented biosphere models indicates

the need for further constraining CO2 uptake pro-

cesses in these models. Furthermore, our spatially

explicit GPP results contribute to a quantification

of the climatic control of GPP. Complementing

theoretical or process-oriented results (37, 38)

about climatic limitations ofGPP, our observation-

based results now constitute empirical evidence

for a large effect of water availability on primary

production over 40%of the vegetated land (Fig. 3A)

and up to 70% in savannahs, shrublands, grass-

lands, and agricultural areas (Table 2). Our find-

ings imply a high susceptibility of these ecosystems’

productivity to projected changes of precipitation

over the 21st century (39), but a robustness of

tropical and boreal forests. Results of current pro-

cess models show a large range and a tendency to

overestimate precipitation-associated GPP (Fig.

3B). Most likely, the association of GPP and cli-

mate in process-oriented models can be improved

by including negative feedback mechanisms (e.g.,

adaptation) that might stabilize the systems. Our

high spatial resolution GPP estimates, their uncer-

tainty, and their relationship to climate drivers

should be useful for evaluating and thus improving

coupled climate–carbon cycle process models.

Fig. 3. Percentage of vegetated land
surface (A) and corresponding GPP (B)
that is controlled by precipitation, de-
pending on the chosen threshold for
the partial correlation coefficients that
signal a control of GPP by a climate fac-
tor. The blue areas represent the range
of data-driven estimates (MTE1, MTE2,
ANN, LUE, and KGB) using different cli-
mate sources [CRU, ECMWFERA-Interim,
and GPCP (16)]. This is compared to the
range of process-orientedmodel results
(LPJ-DGVM, LPJmL, ORCHIDEE, CLM-CN,
and SDGVM) in red. Purple shows the
overlapping area. The thick lines repre-
sent the medians of both ranges. For
instance, GPP of about 40% of the vegetated land surface is controlled by water availability by defining a water control of GPP as a partial correlation coefficient
between GPP and precipitation higher than 0.2.

Table 2. Percentage of biome area for which GPP is climatically controlled, indicated by a median partial
correlation coefficient higher than 0.2 (or 0.5 in brackets). Several climate grids (CRU, ECMWF ERA-
Interim, and GPCP precipitation) were used to perform a partial correlation between the median GPP map
(Fig. 1B) and climate variables for 4.5° by 4.5° moving windows (16). Then, the fractional area with
significant (P < 0.01) partial correlation higher than 0.2 (0.5) was calculated.

Biome P* controlled T† controlled R‡ controlled

Tropical forests 29 (12) 39 (26) 4 (1)

Temperate forests 50 (26) 41 (23) 6 (2)

Boreal forests 20 (5) 55 (31) 21 (7)

Tropical savannahs and grasslands 55 (31) 16 (5) 3 (0)

Temperate grasslands and shrublands 69 (41) 37 (18) 6 (1)

Deserts 61 (37) 18 (6) 8 (2)

Tundra 24 (13) 37 (27) 32 (12)

Croplands 51 (25) 28 (13) 5 (1)

*Precipitation †Air temperature ‡Short-wave radiation
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Global Convergence in the
Temperature Sensitivity of Respiration
at Ecosystem Level
Miguel D. Mahecha,1,2* Markus Reichstein,1 Nuno Carvalhais,1,3 Gitta Lasslop,1 Holger Lange,4

Sonia I. Seneviratne,2 Rodrigo Vargas,5 Christof Ammann,6 M. Altaf Arain,7 Alessandro Cescatti,8

Ivan A. Janssens,9 Mirco Migliavacca,10 Leonardo Montagnani,11,12 Andrew D. Richardson13

The respiratory release of carbon dioxide (CO2) from the land surface is a major flux in the global carbon
cycle, antipodal to photosynthetic CO2 uptake. Understanding the sensitivity of respiratory processes to
temperature is central for quantifying the climate–carbon cycle feedback. We approximated the sensitivity
of terrestrial ecosystem respiration to air temperature (Q10) across 60 FLUXNET sites with the use of a
methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that
Q10 is independent of mean annual temperature, does not differ among biomes, and is confined to values
around 1.4 T 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly
variable among sites. The results may partly explain a less pronounced climate–carbon cycle feedback
than suggested by current carbon cycle climate models.

Q
uantifying the intensity of feedback

mechanisms between terrestrial ecosys-

tems and climate is a central challenge

for understanding the global carbon cycle

and a prerequisite for reliable future climate sce-

narios (1, 2). One crucial determinant of the

climate–carbon cycle feedback is the temperature

sensitivity of respiratory processes in terrestrial

ecosystems (3, 4), which has been subject to

much debate (5–10). On the one hand, empirical

studies have found high sensitivities of soil

respiration to temperature, with values of Q10

(here an indicator of the sensitivity of terrestrial

ecosystem respiration to air temperature) well

above 2 (11, 12). Dependencies of Q10 values on

mean temperatures (12, 13) have been attributed

to the acclimatization of soil respiration (5), among

other factors (13). On the other hand, global-scale

models often make use of globally constant Q10

values of 2 or below to generate carbon dynamics

consistent with global atmospheric CO2 growth

rates (3, 14, 15). Nonetheless, several models have

directly included empirical dependencies of the

parameterization of respiratory processes to envi-

ronmental dynamics (16–18). This inclusion is

questionable, given that single-site studies have in-

dicated that factors seasonally covarying with tem-

perature can confound the experimental retrieval
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Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate
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recent climate models.
level of temperature sensitivity suggests a less-pronounced climate sensitivity of the carbon cycle than assumed by
to mean annual temperature, independent of the analyzed ecosystem type, with a global mean value for Q10 of 1.6. This 

 (p. 838, published online 5 July) now show that the Q10 of ecosystem respiration is invariant with respectet al.Mahecha 
of ecosystem respiratory processes is a key determinant of the interaction between climate and the carbon cycle. 
forests, and precipitation controls carbon uptake in more than 40% of vegetated land. The temperature sensitivity (Q10) 
comparison, burning fossil fuels emits about 7 billion tons annually. Thirty-two percent of this uptake occurs in tropical
observation and calculation to estimate that the total GPP by terrestrial plants is around 122 billion tons per year; in 

 (p. 834, published online 5 July) used a combination ofet al.Beer atmosphere every year to fuel photosynthesis. 
 removed from the2). Gross primary production (GPP) is a measure of the amount of COReichthe Perspective by 

As climate change accelerates, it is important to know the likely impact of climate change on the carbon cycle (see
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