
Tesseract: Reconciling Guest I/O and
Hypervisor Swapping in a VM

Kapil Arya ∗

Northeastern University
kapil@ccs.neu.edu

Yury Baskakov
VMware, Inc.

ybaskako@vmware.com

Alex Garthwaite ∗

agarthwaite@acm.org

Abstract
Double-paging is an often-cited, if unsubstantiated, problem
in multi-level scheduling of memory between virtual ma-
chines (VMs) and the hypervisor. This problem occurs when
both a virtualized guest and the hypervisor overcommit their
respective physical address-spaces. When the guest pages
out memory previously swapped out by the hypervisor, it
initiates an expensive sequence of steps causing the contents
to be read in from the hypervisor swapfile only to be written
out again, significantly lengthening the time to complete the
guest I/O request. As a result, performance rapidly drops.

We present Tesseract, a system that directly and transpar-
ently addresses the double-paging problem. Tesseract tracks
when guest and hypervisor I/O operations are redundant and
modifies these I/Os to create indirections to existing disk
blocks containing the page contents. Although our focus is on
reconciling I/Os between the guest disks and hypervisor swap,
our technique is general and can reconcile, or deduplicate,
I/Os for guest pages read or written by the VM.

Deduplication of disk blocks for file contents accessed in
a common manner is well-understood. One challenge that our
approach faces is that the locality of guest I/Os (reflecting the
guest’s notion of disk layout) often differs from that of the
blocks in the hypervisor swap. This loss of locality through
indirection results in significant performance loss on subse-
quent guest reads. We propose two alternatives to recovering
this lost locality, each based on the idea of asynchronously
reorganizing the indirected blocks in persistent storage.

We evaluate our system and show that it can significantly
reduce the costs of double-paging. We focus our experiments

∗ Work done while all authors were at VMware.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VEE ’14, March 1–2, 2014, Salt Lake City, Utah, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2764-0 /14/03. . . $15.00.
http://dx.doi.org/10.1145/2576195.2576198

on a synthetic benchmark designed to highlight its effects.
In our experiments we observe Tesseract can improve our
benchmark’s throughput by as much as 200% when using
traditional disks and by as much as 30% when using SSD. At
the same time worst case application responsiveness can be
improved by a factor of 5.

Categories and Subject Descriptors D.4.2 [Storage Man-
agement]: Virtual memory, Main memory, Allocation/deallocation
strategies, Storage hierarchies

Keywords Virtualization; memory overcommitment; swap-
ping; paging; virtual machines; hypervisor

1. Introduction
Guests running in virtual machines read and write state
between their memory and virtualized disks. Hypervisors
such as VMware ESXi [1] likewise may page guest memory
to and from a hypervisor-level swap file to reclaim memory.
To distinguish these two cases, we refer to the activity within
the guest OS as paging and that within the hypervisor as
swapping. In overcommitted situations, these two sets of
operations can result in a two-level scheduling anomaly
known as “double paging”. Double-paging occurs when the
guest attempts to page out memory that has previously been
swapped out by the hypervisor and leads to long delays for
the guest as the contents are read back into machine memory
only to be written out again.

While the double-paging anomaly is well known [6–
8, 13, 17], its impact on real workloads is not established.
In addition, recent studies show that other factors signifi-
cantly impact the performance of guests in the presence of
uncooperative hypervisor swapping activity [5]. This paper
also does not address the question of how often the double-
paging anomaly occurs in real workloads. Nonetheless, we
do show its effects can be mitigated in a virtual environment.

Our approach addresses the double-paging problem di-
rectly in a manner transparent to the guest. First, the vir-
tual machine is extended to track associations between guest
memory and either blocks in guest virtual disks or in the
hypervisor swap file. Second, the virtual disks are extended
to support a mechanism to redirect virtual block requests

to blocks in other virtual disks or the hypervisor swap file.
Third, the hypervisor swap file is extended to track references
to its blocks. Using these components to restructure guest
I/O requests, we eliminate the main effects of double-paging
by replacing the original guest operations with indirections
between the guest and swap stores. An important benefit of
this approach is that where hypervisors typically attempt to
avoid swapping pages likely to be paged out by the guest, the
two levels may now cooperate in selecting pages since the
work is complementary.

We have prototyped our approach on the VMware Work-
station [3] platform enhanced to explicitly swap memory in
and out. While the current implementation focuses on dedu-
plicating guest I/Os for contents stored in the hypervisor
swap file, it is general enough to also deduplicate redundant
contents between guest I/Os themselves or between the hy-
pervisor swap file and guest disks.

We present results using a synthetic benchmark that show,
for the first time, the cost of the double-paging problem.
We also show the impact of an unexpected side-effect of
our solution: loss of locality caused by indirections to the
hypervisor swap file which can substantially slow down
subsequent guest I/Os. Finally, we describe techniques to
detect this loss of locality and to recover it. These techniques
isolate the expensive costs of the double-paging effect and
making them asynchronous with respect to the guest.

We begin, in Section 2, with an exploration of the prob-
lems we are solving. In Section 3, we offer a high-level
overview of our solution and the challenges it addresses.
In Section 4, we describe the implementation of our basic
prototype, in Section 5 we consider extensions to recover
guest locality through defragmentation, and in Section 6, we
offer some initial results. In Section 7, we turn to related
work. Finally, in Sections 8 and 9, we outline possible future
directions and conclude.

2. Motivation: The Doubly-Paging Anomaly
Tesseract has four objectives. First, to extend VMware’s host
platforms to explicitly manage how the hypervisor pages
out memory so that its swap subsystem can employ many
of the optimizations used by the ESX platform. Second,
to prototype the mechanisms needed to identify redundant
I/Os originating from the guest and virtual machine monitor
(VMM) and eliminate these. Third, to use this prototype to
justify restructuring the underlying virtual disks of VMs to
support this optimization. Finally, to simplify the hypervisor’s
memory scheduler so that it need not avoid paging out
memory that guest may decide to page. To address these,
the project initially focused on the double-paging anomaly.

One of the tasks of the hypervisor is to allocate and
map host (or machine) memory to the VMs it is managing.
Likewise, one of the tasks of the guest operating system in a
VM is to manage the guest physical address space, allocating
and mapping it to the processes running in the guest. In both

Host

Paging

Device

Guest

VMDK

hypervisor view

guest view

Guest

Memory
Host

LP1

(3a)
(3b)

(6)

(5)

(1)

(4)

(2)

Phys Mem.
PPN

MPN MPN2

(1), (2) : Swap out
(3a,3b) : Guest block write request

(4) : Memory allocation and swap in
(5) : Establish PPN to MPN mapping
(6) : Write block to guest disk
(7) : Zero the new MPN for reuse

Figure 1: An example of double-paging.

cases, either the set of machine memory pages or the set of
guest physical pages may be oversubscribed.

In overcommitted situations, the appropriate memory
scheduler must repurpose some memory pages. For example,
the hypervisor may reclaim memory from a VM by swapping
out guest pages to the hypervisor-level swap file. Having
preserved the contents of those pages, the underlying machine
memory may be used for a new purpose. The guest OS may
reclaim memory within a VM too to allow a guest physical
page to be used by a new virtual mapping.

As hypervisor-level memory reclamation is transparent to
the guest OS, the latter may choose to page out to a virtualized
disk pages that were already swapped by the hypervisor. In
such cases, hypervisor must synchronously allocate machine
pages to hold the contents and read the already swapped
contents back into that memory so they can be saved, in turn,
to the guest OS’s swap device. This multi-level scheduling
conflict is called double-paging.

Figure 1 illustrates the double-paging problem. Suppose
the hypervisor decides to reclaim a machine page (MPN)
that is backing a guest physical page (PPN). In step 1, the
mapping between the PPN and MPN is invalidated and, in
step 2, the contents of MPN is saved to the hypervisor’s swap
file. Suppose the guest OS later decides to reallocate PPN for
a new guest virtual mapping. It, in turn, in step 3a invalidates
the guest-level mappings to that PPN and initiates an I/O to
preserve its contents in a guest virtual disk (or guest VMDK).
In handling the guest I/O request, the hypervisor must ensure
that the contents to be written are available in memory. So,
in step 4, the hypervisor faults the contents into a newly
allocated page (MPN2) and, in step 5, establishes a mapping
from PPN to MPN2. This sequence puts extra pressure on the
hypervisor memory system and may further cause additional
hypervisor-level swapping as a result of allocating MPN2. In
step 6, the guest OS completes the I/O by writing the contents
of MPN2 to the guest VMDK. Finally, the guest OS is able to

zero the contents of the new MPN so that the PPN that now
maps to it can be used for a new virtual mapping in step 7.

A hypervisor has no control over when a virtualized guest
may page memory out to disk, and may even employ reclama-
tion techniques like ballooning [17] in addition to hypervisor-
level swapping. Ballooning is a technique that co-opts the
guest into choosing pages to release back to the platform. It
employs a guest driver or agent to allocate, and often pin,
pages in the guest’s physical address-space. Ballooning is
not a reliable solution in overcommitted situations since it
requires guest execution to choose pages and release memory
and the guest is unaware of which pages are backed by MPNs.
Hypervisors that do not also page risk running out of mem-
ory. While preferring ballooning, VMware uses hypervisor
swapping to guarantee progress. Because levels of overcom-
mitment vary over time, hypervisor swapping may interleave
with the guest, under pressure from ballooning, also paging.
This can lead to double paging.

The double-paging problem also impacts hypervisor de-
sign. Citing the potential effects of double-paging, some [13]
have advocated avoiding the use of hypervisor-level swapping
completely. Others have attempted to mitigate the likelihood
through techniques such as employing random page selection
for hypervisor-level swapping [17] or employing some form
of paging-aware paravirtualized interface [7, 8]. For example,
VMware’s scheduler uses heuristics to find “warm” pages to
avoid paging out what the guest may also choose to page out.
These heuristics have extended effects, for example, on the
ability to provide large (2MB) mappings to the guest. Our
goals are to address the double-paging problem in a man-
ner that is transparent to the guest running in the VM and
identifies and elides the unnecessary intermediate steps such
as steps 4, 5 and 6 in Figure 1 and to simplify hypervisor
scheduling policies. Although we do not demonstrate that
double-paging is a problem in real workloads, we do show
how its effects can be mitigated.

3. Design
We now describe our prototype’s design. First, we describe
how we extended the hosted platform to behave more like
VMware’s server platform, ESX. Next, we outline how we
identify and eliminate redundant I/Os. Finally, we describe
the design of the hypervisor swap subsystem and the exten-
sions to the virtual disks to support indirections.

3.1 Extending The Hosted Platform To Be Like ESX
VMware supports two kinds of hypervisors: the hosted plat-
form in which the hypervisor cooperatively runs on top of
an unmodified host operating system such as Windows or
Linux, and ESX where the hypervisor runs as the platform
kernel, the vmkernel. Two key differences between these two
platforms are how memory is allocated and mapped to a VM,
and where the network and storage stacks execute.

In the existing hosted platform, each VM’s device support
is managed in the vmx, a user-level process running on the
host operating system. Privileged services are mediated by
the vmmon device driver loaded into the host kernel, and
control is passed between the vmx and the VMM and its
guest via vmmon. An advantage of the hosted approach is
that the virtualization of I/O devices is handled by libraries
in the vmx and these benefit from the device support of the
underlying host OS. Guest memory is mmapped into the
address space of the vmx. Memory pages exposed to the
VMM and guest by using the vmmon device driver to pin the
pages in the host kernel and return the MPNs to the VMM.
By backing the mmapped region for guest memory with a
file, hypervisor swapping is a simple matter of invalidating all
mappings for the pages to be released in the VMM, marking,
if necessary, those pages as dirty in the vmx’s address space,
and unpinning the pages on the host.

In ESX, network and storage virtual devices are managed
in the vmkernel. Likewise, the hypervisor manages per-
VM pools of memory for backing guest memory. To page
memory out to the VM’s swap file, the VMM and vmkernel
simply invalidate any guest mappings and schedule the pages’
contents to be written out. Because ESX explicitly manages
the swap state for a VM including its swap file, it is able to
employ a number of optimizations unavailable on the current
hosted platform. These optimizations include the capturing
of writes to entire pages of memory [4], and the cancellation
of swap-ins for swapped-out guest PPNs that are targets for
disk read requests.

The first optimization is triggered when the guest accesses
an unmapped or write-protected page and faults into the
VMM. At this point, the guest’s instruction stream is analyzed.
If the page is shared [17] and the effect of the write does not
change the content of the page, page-sharing is not broken.
Instead, the guest’s program counter is advanced past the
write and it is allowed to continue execution. If the guest’s
write is overwriting an entire page, one or both of two actions
are taken. If the written pattern is a known value, such as
repeated 0x00, the guest may be mapped a shared page. This
technique is used, for example, on Windows guests because
Windows zeroes physical pages as they are placed on the
freelist. Linux, which zeroes on allocation of a physical page,
is simply mapped a writeable zeroed MPN. Separately, any
pending swap-in for that PPN is cancelled. Since the most
common case is the mapping of a shared zeroed-page to
the guest, this optimization is referred to as the PShareZero
optimization.

The second optimization is triggered by interposition on
guest disk read requests. If a read request will overwrite whole
PPNs, any pending swap-ins associated with those PPNs are
deferred during wrie-preparation, the pages are pinned for
the I/O, and the swap-ins are cancelled on successful I/O
completion.

We have extended Tesseract so that its guest-memory and
swap mechanisms behave more like those of ESX. Instead
of mmapping a pagefile to provide memory for the guest,
Tesseract’s vmx process mmaps an anonymously-backed
region of its address space, uses madvise to mark the range as
NOTNEEDED, and explicitly pins pages as they are accessed
by either the vmx or by the VMM. Paging by the hypervisor
becomes an explicit operation, reading from or writing to an
explicit swap file. In this way, we are able to also employ
the above optimizations on the hosted platform. We consider
these as part of our baseline implementation.

3.2 Reconciling Redundant I/Os
Tesseract addresses the double-paging problem transparently
to the guest allowing our solution to be applied to unmodi-
fied guests. To achieve this goal, we employ two forms of
interposition. The first tracks writes to PPNs by the guest
and is extended to include a mechanism to track valid re-
lationships between guest memory pages and disk blocks
that contain the same state. The second exploits the fact that
the hypervisor interposes on guest I/O requests in order to
transform the requests’ scatter-gather lists. In addition, we
modify the structure of the guest VMDKs and the hypervisor
swap file, extending the former to support indirections from
the VMDKs into the hypervisor swap disk. Finally, when the
guest reallocates the PPN and zeroes its contents, we apply
the PShareZero optimization in step 7 in Figure 1.

In order to track which pages have writable mappings in
the guest, MPNs are initially mapped into the guest read-
only. When written by the guest, the resulting page-fault
allows the hypervisor to track that the guest page has been
modified. We extend this same tracking mechanism to also
track when guest writes invalidate associations between guest
pages in memory and blocks on disk. The task is simpler
when the hypervisor, itself, modifies guest memory since it
can remove any associations for the modified guest pages.
Likewise, virtual device operations into guest pages can
create associations between the source blocks and pages. In
addition, the device operations may remove prior associations
when the underlying disk blocks are written. This approach,
employed for example to speed the live migration of VMs
from one host to another [14], can efficiently track which
guest pages in memory have corresponding valid copies of
their contents on disks.

The second form of interposition occurs in the handling
of virtualized guest I/O operations. The basic I/O path can
be broken down into three stages. The basic data structure
describing an I/O request is the scatter-gather list, a structure
that maps one or more possibly discontiguous memory ex-
tents to a contiguous range of disk sectors. In the preparation
stage, the guest’s scatter-gather list is examined and a new
request is constructed that will be sent to the underlying phys-
ical device. It is here that the unmodified hypervisor handles
the faulting in of swapped out pages as shown in steps 4 and
5 of Figure 1. Once the new request has been constructed, it

is issued asynchronously and some time later there is an I/O
completion event.

To support the elimination of I/Os to and from virtual disks
and the hypervisor block-swap store (or BSST), each guest
VMDK has been extended to maintain a mapping structure
allowing its virtual block identifiers to refer to blocks in other
VMDKs. Likewise, the hypervisor BSST has been extended
with per-block reference counts to track whether blocks in
the swap file are accessible from other VMDKs or from guest
memory.

The tracking of associations and interposition on guest
I/Os allows four kinds of I/O elisions:

swap - guest-I/O a guest I/O follows the hypervisor swap-
ping out a page’s contents

swap - swap a page is repeatedly swapped out to the BSST
with no intervening modification

guest-I/O - swap the case in which the hypervisor can take
advantage of prior guest reads or writes to avoid writing
redundant contents to the BSST

guest-I/O - guest-I/O the case in which guest I/Os can avoid
redundant operations based on prior guest operations
where the results known reside in memory (for reads)
or in a guest VMDK (for writes)

For simplicity, Tesseract focuses on the first two cases since
these capture the case of double-paging. Because Tesseract
does not introspect on the guest, it cannot distinguish guest
I/Os related to memory paging from other kinds of guest
I/O. But the technique is general enough to support a wider
set of optimizations such as disk deduplication for content
streamed through a guest. It also complements techniques
that eliminate redundant read I/Os across VMs [13].

3.3 Tesseract’s Virtual Disk and Swap Subsystems
Figure 2 shows our approach embodied in Tesseract. The
hypervisor swaps guest memory to a block-swap store (BSST)
VMDK, which manages a map from guest PPNs to blocks
in the BSST, a per-block reference-counting mechanism to
track indirections from guest virtual disks, and a pool of 4KB
disk blocks. When the guest OS writes out a memory page
that happens to be swapped out by the hypervisor, the disk
subsystem detects this condition while preparing to issue the
write request. Rather than bringing memory contents for the
swapped out page back to memory, the hypervisor updates
the appropriate reference counts in the BSST, issues the I/O,
and updates metadata in guest VMDK and adds a reference
to the corresponding disk block in BSST.

Figure 3 shows timelines for the scenario when guest OS is
paging out an already swapped page with and without Tesser-
act. With Tesseract we are able to eliminate the overheads of
a new page allocation and a disk read.

To achieve this, Tesseract modifies the I/O preparation and
I/O completion steps. For write requests, the memory pages
in the scatter-gather list are checked for valid associations to

Guest

VMDK

BSSTB
lo

ck
 M

ap
p
in

g
 I

n
fo

LP1

Guest Physical Memory

Host Memory

hypervisor view

guest view

PPN

MPN

Figure 2: Double-paging with Tesseract.

VMM SwapOut Allocate Memory

Synchronous SwapIn
Guest

Write I/O
Zero
Write

Update
PTE...

(a) Baseline (without Tesseract)

VMM SwapOut
Guest
Write

Write
Metadata

PShare
Zero

Update
PTE...

(b) With Tesseract

Figure 3: Write I/O and hypervisor swapping.

blocks in the BSST. If these are found, the target VMDK’s
mapping structure is updated for those pages’ corresponding
virtual disk blocks to reference the appropriate blocks in the
BSST and the reference counts of these referenced blocks in
the BSST are incremented. For read requests, the guest I/O
request may be split into multiple I/O requests depending on
where the source disk blocks reside.

Consider the state of a guest VMDK and the BSST as
shown in Figure 4a. Here, a guest write operation wrote five
disk blocks in which two were previously swapped to the
BSST. In this example, block 2 still contains the swapped
contents of some PPN and has a reference count reflecting
this fact and the guest write. Hence, its state has “swapped”
as true and a reference count of 2. Similarly, block 4 only has
a nonzero reference count because the PPN whose swapped
contents originally created the disk block has since been
accessed and its contents paged back in. Hence, its state
has “swapped” as false and a reference count of 1. To read
these blocks from the guest VMDK now requires three read
operations: one against the guest VMDK and two against
the BSST. The results of these read operations must then be
coalesced in the read completion path.

One can view the primary cost of double-paging in an
unmodified hypervisor as impacting the write-preparation
time for guest I/Os. Likewise, one can view the primary cost
of these cases in Tesseract as impacting the read-completion
time. To mitigate these effects, we consider two forms of
defragmentation. Both strategies make two assumptions:

• the original guest write I/O request (represented in blue)
captures the guest’s notion of expected locality, and

1

D

3

D

5

Guest VMDK

2

Block-Swap Store (BSST)

swapped: true

swapped: false

refcnt: 2

refcnt: 1

(a) With Tesseract

1

D

3

D

5

Guest VMDK

2

Block-Swap Store (BSST)

swapped: false

swapped: false

refcnt: 0

swapped: true
refcnt: 2

refcnt: 0

swapped: false
refcnt: 1

2

(b) With Tesseract and BSST defragmentation

1

2

3

4

5

Guest VMDK

S

Block-Swap Store (BSST)

swapped: true

swapped: false

refcnt: 1

refcnt: 0

(c) With Tesseract and guest VMDK defragmentation

Figure 4: Examples of Tesseract and of defragmentation.
• the guest is unlikely to immediately read the same disk

blocks back into memory

Based on these assumptions, we extended Tesseract to asyn-
chronously reorganize the referenced state in the BSST.
In Figure 4b, we copy the referenced blocks into a contiguous
sequence in the BSST and update the guest VMDK indirec-
tions to refer to the new sequence. This approach reduces the
number of split read operations. In Figure 4c, we copy the
references blocks back to the locations in the original guest
VMDK where the guest expects them. With this approach, the
typical read operation need not be split. In effect, Tesseract
asynchronously performs the expensive work that occurred in
steps 4, 5, and 6 of Figure 1 eliminating its cost to the guest.

4. Implementation
Our prototype extends VMware Workstation as described
in section 3.1. Here, we provide more detail.

4.1 Explicit Management of Hypervisor Swapping
VMware Workstation relies on the host OS to handle much of
the work associated with swapping guest memory. A pagefile
is mapped into the vmx’s address space and calls to the
vmmon driver are used to lock MPNs backing this memory
as needed by the guest. When memory is released through

hypervisor swapping, the pages are dirtied, if necessary, in
the vmx’s address space and unlocked by vmmon. Should the
host OS need to reclaim the backing memory, it does so as if
the vmx were any other process: it writes out the state to the
backing pagefiles and repurposes the MPN.

For Tesseract, we modified Workstation to support explicit
swapping of guest memory. First, we eliminated the pagefile
and replaced it with a special VMDK, the block swap store
(BSST) into which swapped-out contents are written. The
BSST maintains a partial mapping from PPNs to disk blocks
tracking the contents of currently swapped-out PPNs. In
addition, BSST maintains a table of reference counts on the
blocks in the BSST referenced by other guest VDMKs.

Second, we split the process for selecting pages for swap-
ping from the process for actually writing out contents to
the BSST and unlocking the backing memory. This split is
motivated by the fact that having eliminated duplicate I/Os
between hypervisor swapping and guest paging, the system
should benefit by both levels of scheduling choosing the same
set of pages. The selected swap candidates are placed in a
victim cache to “cool down”. Only the coldest pages are even-
tually written out to disk. This victim cache is maintained as
a percentage of locked memory by the guest—for our study,
10%. Should the guest access a page in the pool, it is removed
from the pool without being unlocked.

When the guest pages out memory, it does so to repurpose
a given guest physical page for a new linear mapping. Since
this new use will access that guest physical page, one may be
concerned that this access will force the page to be swapped
in from the BSST first. However, because the guest will either
zero the contents of that page or read into it from disk and
because the VMM can detect that the whole page will be
overwritten before it is visible to the guest, the vmx is able to
cancel the swap-in and complete the page locking operation.

4.2 Tracking Memory Pages and Disk Blocks
There are two steps to maintaining a mapping between disk
blocks and pages in memory. The first is recognizing the
pages read and written in guest and hypervisor I/O operations.
By examining scatter-gather lists of each I/O, one can identify
when the contents in memory and on disk match. While we
plan to maintain this mapping for all associations between
guest disks and guest memory, we currently only track the
associations between blocks in the BSST and main memory.

The second step is to track when these associations are
broken. For guest memory, this event happens when the
guest modifies a page of memory. The VMM tracks when
this happens by trapping the fact that a writable mapping is
required and this information is communicated to the vmx.
For device accesses, on the other hand, this event is tracked
either through explicit checks in the module which provides
devices the access to guest memory, or by examining page-
lists for I/O operations that read contents into memory pages.

Asynchronous I/O Manager

VMDK Management Library

VMX

Host File Layer

SCSI Disk Device

Virtual Machine Monitor (VMM)

Guest Operating System

Figure 5: VMware Workstation I/O Stack

4.3 I/O Paths
When the guest OS is running inside a virtual machine,
guest I/O requests are intercepted by the VMM, which is
responsible for storage adaptor virtualization, and then passed
to the hypervisor, where further I/O virtualization occurs.

Figure 5 identifies the primary modules in VMware Work-
station’s I/O stack. Tesseract inspects scatter-gather lists of
incoming guest I/O requests in the SCSI Disk Device layer,
where a request to the guest VMDK may be updated and extra
I/O requests to the BSST may be issued as shown in table 2.
Waiting for the completion of all the I/O requests needed to
service the original guest I/O request is isolated to the SCSI
Disk Device layer as well. When running with defragmen-
tation enabled (see Section 5), Tesseract allocates a pool of
worker threads for handling defragmentation requests.

4.3.1 Guest Write I/Os
Guest I/O requests have PPNs in scatter-gather lists. The vmx
rewrites the scatter-gather list, replacing guest PPNs with
virtual pages from its address space before passing it further
to the physical device. Normally, for write I/O requests, if
a page was previously swapped, so that PPN does not have
a backing MPN, the hypervisor allocates a new MPN and
brings page’s contents from disk.

With Tesseract, we check if the PPNs are already swapped
out to BSST blocks by querying the PPN BSST-block map-
ping. We then use a virtual address of a special dummy page
in the scatter-gather list for each page that resides in the BSST.
On completion of the I/O, metadata associated with the guest
VMDK is updated to reflect the fact that the contents of guest
disk blocks for BSST-resident pages are in the BSST. This se-
quence allows the guest to page out memory without inducing
double-paging.

Figure 6 illustrates how write I/O requests to the guest
VMDK are handled by Tesseract. Tesseract recognizes that
contents for pages 2, 4, 6 and 7 in the scatter-gather list
provided by the guest OS reside in the BSST (Figure 6a).
When a new scatter-gather list to be passed to the physical
device is formed, a dummy page is used for each BSST
resident (Figure 6b).

1 2 3 4 5 6 7 8

(a) Scatter-gather prepared by the guest OS for disk write.

1 3 5 8

(b) Modified scatter-gather to avoid double-paging
pages swapped out to BSSTpages in host memory dummy page

Figure 6: The pages swapped out to BSST are replaced with a
dummy page to avoid double-paging. Indirections are created
for the corresponding guest disk blocks.

1 3 5 8 2 4 6 7

1 2 3 4 5 6 7 8

pages swapped out to BSSTpages in host memory dummy page

Figure 7: Original guest read request split into multiple reads
requests due to holes in the guest VMDK.

4.3.2 Guest Reads I/Os and Guest Disk Fragmentation
Recognizing that data may reside in both the guest VMDK
and the BSST is a double-edged sword. On the guest write
path it allows us to dismiss pages that are already present
in the BSST and thus avoid swapping them in just to be
written out to the guest VMDK. However, when it comes to
guest reads, the otherwise single I/O request might have to
be split into multiple I/Os. This happens when some of the
data needed by the I/O is located in the BSST.

Since data that has to be read from the BSST may not
be contiguous on disk, the number of extra I/O requests to
the BSST may be as high as the number of data pages in the
original I/O request that reside in the BSST. We refer to a
collection of pages in the original I/O request for which a
separate I/O request to the BSST must be issued as a hole.
Read I/O requests to the guest VMDK which have holes are
called fragmented.

We modify a fragmented request so that all pages that
should be filled in with the data from the BSST are replaced
with a dummy page which will serve as a placeholder and
will get random data read from the guest VMDK. So in the
end for each fragmented read request we issue one modified
I/O request to the guest VMDK and N requests to the BSST,
where N is the number of holes. After all the issued I/Os are
completed, we signal the completion of the originally issued
guest read I/O request.

In Figure 7, the guest read I/O request finds disk blocks for
pages 2, 4, 6 and 7 located on the BSST, where they are taking
non-contiguous space. Tesseract issues one read request to
the guest VMDK to get data for pages 1, 3, 5 and 8. In the
scatter-gather list sent to the physical device, a dummy page
is used as a read target for pages 2, 4, 6 and 7. Together with
that one read I/O request to the guest VMDK, four read I/O

requests are issued to the BSST. Each of those four requests
reads data from one of the four disk blocks in the BSST.

4.3.3 Optimization of Repeated Swaps
In addition to addressing the double-paging anomaly by
tracking guest I/Os whose contents exist in the BSST, we
also implemented an optimization for back-to-back swap-out
requests for a memory page whose contents remain clean.
If a page’s contents are written out to the BSST, and later
swapped back in, we continue to track the old block in the
BSST as a form of victim cache. If the same page is chosen
to be swapped out again and there has been no intervening
write, we simply adjust the reference count for the block copy
that is already in the BSST.

4.4 Managing Block Indirection Metadata
Tesseract keeps in-memory metadata for tracking PPN-to-
BSST block mappings and for recording block indirections
between guest and BSST VMDKs. The PPN-to-BSST block
mapping is stored as key-value pair using a hash table.
Indirection between guest and BSST VMDKs are tracked
in a similar manner.

Tesseract also keeps reference counts for the BSST blocks.
When a new PPN-to-BSST mapping is created, the reference
count for the corresponding BSST block is set to 1. The
reference count is incremented in the write prepare stage
for PPNs found to have PPN-to-BSST block mappings. This
ensures that such BSST blocks are not repurposed while the
guest write is still in progress. Later, on the write completion
path, the guest-VMDK-to-BSST indirection is created. The
reference count of the BSST blocks is decremented during
hypervisor swap in operation. It is also decremented when the
guest VMDK block is overwritten by new contents and the
previous guest block indirection is invalidated. Blocks with
zero reference counts are considered free and reclaimable.

4.4.1 Metadata Consistency
While updating metadata in memory is faster than updating it
on the disk, it poses consistency issues. What if the system
crashes before the metadata is synced back to persistent
storage? To reduce the likelihood of such problems, Tesseract
periodically synchronizes the metadata to disk on the same
schedule used by the VMDK management library for virtual
disk state. However, because reference counts in the BSST
and block-indirections in VMDKs are written at different
stages in an I/O request, crashes must be detected and a
fsck-like repair process run.

4.4.2 Entanglement of guest VMDKs and BSST
Once indirections are created between guest and BSST
VMDK, it becomes impossible to move just the guest VMDK.
To disentangle the guest VMDK, we must copy each block
from the BSST to its guest VMDK for which there is an
indirection. This can be done both online and offline. More
details about the online process are in Section 5.2.

5. Guest Disk Fragmentation
As mentioned in Section 4.3.2, when running with Tesseract,
guest read I/O requests might be fragmented in the sense that
some of the data the guest is asking for in a single request
may reside in both the BSST and the guest VMDK.

The fragmentation level depends on the nature of the
workload, the guest OS, and swap activity at the guest and the
hypervisor level. Our experiments with SPECjbb2005 [16]
showed that even for moderate level of memory pressure as
much as 48% of all read I/O requests had at least one hole.

By solving double-paging problem Tesseract significantly
reduced write-prepare time of the guest I/O requests since
synchronous swap-in requests no longer cause delays. How-
ever, a non-trivial overhead was added to read-completion.
Indeed, instead of waiting for a single read I/O request to the
guest VMDK, the hypervisor may now have to wait for sev-
eral extra read I/O requests to the BSST to complete before
reporting the completion to the guest.

To address these overheads, Tesseract was extended with a
defragmentation mechanism that improves read I/O access lo-
cality and thus reduces read-completion time. We investigated
two approaches to implementing defragmentation - BSST
defragmentation and guest VMDK defragmentation. While
defragmentation is intended to help reduce read-completion
time, it has its own cost. Defragmentation requests are asyn-
chronous and reduce time to complete affected guest I/Os,
but, at the same time, they contribute to a higher disk load
and in the extreme cases may have an impact on read-prepare
times. The defragmentation activity can be throttled on detect-
ing performance bottlenecks due to higher disk load. ESX,
for example, provides a mechanism, SIOC, that measures
latencies to detect overload and enforce proportional-share
fairness [9, 12]. The defragmentation mechanism could par-
ticipate in this protocol.

5.1 BSST Defragmentation
The idea behind BSST defragmentation is to take guest write
I/O requests and use them as a hint of what BSST blocks
might be accessed together in a single I/O read request in
the future. Given that information we then group together the
identified blocks in the BSST.

Figure 8 shows a scatter-gather list of the write I/O request
that goes to the guest VMDK. In that request, the contents
of pages 2, 4, 6 and 7 is already present in the BSST. As
soon as these blocks are identified, a worker thread picks up
a reallocation job that will allocate a new block in BSST and
will copy the contents of BSST blocks for pages 2, 4, 6 and 7
into that new block.

BSST defragmentation is not perfect. Since blocks are
still present in both the guest VMDK and the BSST, extra
I/O requests to the BSST can not be entirely eliminated.
In addition, BSST defragmentation tries to predict read
access locality from write access locality and obviously
the boundaries of read requests will not match with the

4

7 6

7642

2

1 3 5 8

BSST VMDKGuest VMDK

Figure 8: Defragmenting the BSST

4

7 6

2

2 4 761 3 5 8

BSST VMDKGuest VMDK

Figure 9: Defragmenting the guest VMDK

boundaries of the write requests. So each read I/O request
that without defragmentation would have required reads from
both the guest VMDK and the BSST will still be split into the
one which goes to the guest VMDK and one or more requests
to the BSST. All this contributes to longer read completion
times as shown in table 4.

However, it is relatively easy to implement BSST defrag-
mentation without worriying too much about data races with
the I/O going to the guest VMDK. It can significantly reduce
the number of extra I/Os that have to be issued to the BSST
to service the guest I/O request as shown in Table 3.

If a guest read I/O request preserves the locality observed
at the time of guest writes, we need more than one read I/O
request from the BSST only when it hits more than one group
of blocks created during BSST defragmentation. Although
this is entirely dependent on a workload, one can expect read
requests to typically be smaller than write requests, and, so,
the number of extra I/O requests to BSST being reduced
to one (fits into one defragmented area) or two (crosses the
boundary of two defragmented areas) in many cases.

5.2 Guest VMDK Defragmentation
Like BSST defragmentation, guest VMDK defragmentation
uses the scatter-gather lists of write I/O requests to identify
BSST blocks that must be copied. But unlike BSST defrag-
mentation, these blocks are copied to the guest VMDK. The
goal is to restore the guest VMDK to the state it would have
had without Tesseract. Tesseract with guest VMDK defrag-
mentation replaces swap-in operations with asynchronous
copying from the BSST to the guest VMDK. For example,
in Figure 9, blocks 2, 4, 6 and 7 are copied to the relevant
locations on the guest VMDK by a worker thread.

We enqueue a defragmentation request as soon as the
scatter-gather list of the guest write I/O request is processed
and blocks to be asynchronously fetched to the guest VMDK
are identified. The defragmentation requests are organized
as a priority queue. If a guest read I/O request needs to read
data from the block that has not been copied from the BSST,
the priority of the defragmentation request that refers to the

0 30 60 90 120 150 180 240

Memhog Sizes (MB)

0

5

10

15

20

25

30
M

a
x
 p

a
u
se

/b
lo

ck
a
g
e
 t

im
e
 (

se
co

n
d
s)

tesseract

baseline

Figure 11: Maximum single pauses observed in SPECjbb instanta-
neous scoring with various levels of guest memory pressure. Host
memory overcommitment is 10%.

block is raised to highest and the guest read I/O request is
blocked until copying of all the missing blocks finishes.

While Tesseract with guest defragmentation can have an
edge over Tesseract without defragmentation, it is not always
a win. With guest defragmentation, before a guest I/O read
request has a chance to be issued to the guest VMDK, it
may become blocked waiting for a defragmentation request
to complete. This may end up being slower than issuing
requests to the BSST and the guest VMDK in parallel.

Disentanglement of Guest and BSST VMDKs. Guest de-
fragmentation has an added benefit of removing the entan-
glement between guest and BSST VMDK. Once there are
no block indirections between guest and BSST VMDK, the
guest VMDK can be moved easily. This also allows us to
disable Tesseract double-paging optimization on-the-fly.

6. Evaluation
We ran our experiments on an AMD Opteron 6168 (Magny-
Cours) with 12 1.9 GHz cores, 1.5 GB of memory and a
1 TB 7200rpm Seagate SATA drive, a 1 TB 7200rpm Western
Digital SATA drive, and a 128 GB Samsung SSD drive. We
used OpenSUSE 11.4 as the host OS and a 6 VCPU 700 MB
VM running Ubuntu 11.04. We used Jenkins [2] to monitor
and manage execution of the test cases.

To ensure same test conditions for all test runs, we created
a fresh copy of the guest virtual disk from backup before
each run. For the evaluation we ran SPECjbb2005 [16] that
was modified to emit instantaneous scores every second. It
was run with 6 warehouses for 120 seconds. The heap size
was set to 450 MB. The SPECjbb benchmark creates several
warehouses and processes transactions for each of them.

We induced hypervisor-level swapping by setting a max
limit on the pages the VM can lock. The BSST VMDK was
preallocated. Swap-out victim cache size was chosen to be
10% of the VM’s memory size.

Figure 10 and Figures 12–14, represent results from five
trial runs. Figure 17 represents results from three trial runs.

6.1 Inducing Double-Paging Activity
To control hypervisor swapping, we set a hypervisor-imposed
limit on the machine memory available for the VM. Guest
paging was induced by running the SPECjbb benchmark with
a working set larger than the available guest memory.

To induce double-paging, the guest must page out the
pages that were already swapped by the hypervisor. Since,
the hypervisor would choose only the cold pages from the
guest memory, we employed a custom memhog that would
lock some pages in the guest memory for a predetermined
amount of time inside the guest. While the pages were locked
by this memhog, a different memhog would repeatedly touch
the rest of available guest pages making them “hot”. At this
point the pages locked by the first memhog are considered
“cold” and swapped out by the hypervisor.

Next, memhog unlocks all its memory and the SPECjbb
benchmark is started inside the guest. Once the warehouses
have been created by SPECjbb, the memory pressure in-
creases inside the guest. The guest is forced to find and page
out “cold pages”. The pages unlocked by memhog are good
candidates as they have not been touched in the recent past.

We used memhog and memory locking in our setup to
make the experiments more repeatable. In real world the
conditions we were simulating could have been observed, for
example, when execution phase shift of an application occurs,
or when an application that caches a lot of data in memory
and not actively uses is descheduled and another memory
intensive application is woken up by the guest.

As a baseline we ran with Tesseract disabled. This effec-
tively disabled analysis and rewriting of guest I/O commands
so that all pages affected by an I/O command that happened
to be swapped out by the hypervisor had to be swapped back
in before the command could be issued to disk.

6.2 Application Performance
While it is hard to control and measure the direct impact of
individual double-paging events, we use the pauses observed
in the instantaneous score of SPECjbb to characterize the
application behavior. Depending upon the amount of double-
paging activity, the pauses can be as big as 60 seconds in a
120 second run and negatively affect the final score. Often
the pauses are associated with garbage collection activity.

6.2.1 Varying Levels Of Guest Memory Pressure
Figure 10 shows scores and pause times for different sizes
of memhog inside the guest with 10% host overcommitment.
When the guest is trying to page out pages which are swapped
by the hypervisor, the latter is swapping them back in and
is forced to swap out some other pages. This cascade effect
is responsible for increased pause period for the baseline.
With Tesseract, however, the pause periods grow at a lower
rate. This growth can be explained by longer wait times due
to increased disk activity. It should be noted that although
the scores are about the same for higher guest memory

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(a) No memhog

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(b) 30 MB memhog

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(c) 60 MB memhog

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(d) 90 MB memhog

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(e) 120 MB memhog

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500
S
P
E
C
jb
b
 s
co

re
baseline

tesseract

(f) 150 MB memhog

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(g) 180 MB memhog

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(h) 240 MB memhog
Figure 10: Trends for the score and pauses in SPECjbb runs with various levels of guest memory pressure. Host overcommitment is 10%.

0 10 20 30 40 50 60
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(a) 0% host overcommitment

0 10 20 30 40 50 60
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(b) 5% host overcommitment

0 10 20 30 40 50 60
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000
S
P
E
C
jb
b
 s
co

re
baseline

tesseract

(c) 15% host overcommitment

0 20 40 60 80 100
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000

S
P
E
C
jb

b
 s

co
re

baseline

tesseract

(d) 20% host overcommitment
Figure 12: Score corresponding to length of max pause in SPECjbb runs with various levels of host overcommitment and 60 MB memhog.

pressure, the total pauses for Tesseract are less than that
for the baseline.

Figure 11 shows the effect of increased memory pressure
on the length of the biggest application pause. The bars
represent the range of max pauses for individual sets of
runs. There are five runs in each set. Notice that Tesseract
clearly outperforms the baseline. The highest max pause time
with Tesseract is 7 seconds, whereas for the baseline it is
30 seconds. This shows that with Tesseract the application is
more responsive.

6.2.2 Varying Levels Of Host Memory Pressure
To study the effect of increasing memory pressure by the
hypervisor, we ran the application with various levels of host
overcommitment with 60 MB memhog inside the guest.

Figure 12 shows the effect of increasing the host memory
pressure on the application pauses. For lower host pressure
(0% and 5%), the score and pause times for the baseline and
Tesseract are about the same. However, for higher memory
pressure there is a significant difference in the performance.
For example, in the 20% case, the baseline observes pauses
in the range of 80–110 seconds. Tesseract on the other hand
observes pauses in a much lower range of 30–60 seconds.

Figure 16 shows the max pauses observed by the applica-
tion as the host memory pressure grows. As before, the max

Host Guest I/Os I/Os I/Os I/Os Double-
(%) I/Os with 1 – 20 21 – 50 > 50 paging

Issued holes holes holes holes candi-
(#) (#) (#) (#) (#) dates (#)

0 1,030 0 0 0 0 0
5 981 537 343 106 88 11,254

10 1,042 661 358 132 171 19,381
15 1,292 766 377 237 152 22,584
20 1,366 981 524 177 280 32,547

Table 1: Holes in write I/O requests for various levels of host
overcommitment. The memhog inside the guest is 60 MB.
pause is insignificant at lower memory pressure, but with a
higher pressure Tesseract clearly outperforms the baseline.

6.3 Double-Paging and Guest Write I/O Requests
Table 1 shows why double-paging is affecting guest write
I/O performance. As expected, if the host is not experiencing
memory pressure, none of the 1,030 guest write I/O requests
refer to pages swapped by the hypervisor.

As memory pressure builds up, more and more guest write
I/O requests require one or more pages to be swapped in
before a write can be issued to the physical disk. All of this
contributes to a longer write-prepare time for such a requests.

Consider a setup with 20% host memory is overcommit-
ment. Of 1,366 guest write I/O requests 981 had at least one
page that had to be swapped in. Then, 524 guest write I/O re-
quests needed between 1 and 20 swap-in requests completed

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500

S
P
E
C
jb
b
 s
co

re

baseline

no-defrag

bsst-defrag

guest-defrag

(a) 60 MB memhog

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500

S
P
E
C
jb
b
 s
co

re

baseline

no-defrag

bsst-defrag

guest-defrag

(b) 120 MB memhog

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500

S
P
E
C
jb
b
 s
co

re

baseline

no-defrag

bsst-defrag

guest-defrag

(c) 180 MB memhog

0 5 10 15 20 25 30 35 40
Total SPECjbb blockage time (seconds)

4500

5000

5500

6000

6500

7000

7500

S
P
E
C
jb
b
 s
co

re

baseline

no-defrag

bsst-defrag

guest-defrag

(d) 240 MB memhog
Figure 13: Score and pauses in SPECjbb runs under various defragmentation schemes with 10% host overcommitment.

0 10 20 30 40 50 60
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000

S
P
E
C
jb
b
 s
co

re

baseline

no-defrag

bsst-defrag

guest-defrag

(a) 0% host overcommitment

0 10 20 30 40 50 60
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000

S
P
E
C
jb
b
 s
co

re

baseline

no-defrag

bsst-defrag

guest-defrag

(b) 5% host overcommitment

0 10 20 30 40 50 60
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000

S
P
E
C
jb
b
 s
co

re

baseline

no-defrag

bsst-defrag

guest-defrag

(c) 15% host overcommitment

0 20 40 60 80 100
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000

S
P
E
C
jb

b
 s

co
re

baseline

no-defrag

bsst-defrag

guest-defrag

(d) 20% host overcommitment
Figure 14: Score and pauses in SPECjbb under various defragmentation schemes with varying host overcommitment and 60 MB memhog

Host Guest I/Os I/Os w/ Total Total I/Os Score
(%) Issued Holes Holes Issued

(#) (#) (#) (#)
0 5,152 0 0 5,152 7,010
5 5,230 708 1,675 6,197 6,801

10 5,206 2,161 5,820 8,865 6,271
15 4,517 2,084 6,990 9,423 6,048
20 5,698 2,739 11,854 14,813 2,841

Table 2: Holes in read I/O requests for Tesseract without
defragmentation for various levels of host overcommitment.
The memhog inside the guest is 60 MB.

Defrag Reads Reads Total BSST Total Defrag I/Os
Strategy w/o w/ Holes Reads Reads Reads Writes

Holes Holes Issued Issued Issued Issued
(#) (#) (#) (#) (#) (#) (#)

No-Defrag 3,025 1,203 2,456 2,456 6,684 0 0
BSST 2,946 1,235 2,889 1,235 5,416 12,674 616
Guest 3,909 0 0 0 3,909 11,538 11,538

Table 3: Total I/Os with BSST and guest defragmentation.

by the hypervisor in order to proceed, 177 needed between
21 and 50 swap-in requests completed, and, finally, 280 guest
write I/O requests needed more than 50 swap-in requests.

6.4 Fragmentation in Guest Read I/O Requests
Table 2 quantifies the amount of extra read I/O requests that
has to be issued to the BSST if defragmentation is not used.

If the host is not under memory pressure there is no
hypervisor level swapping activity and all 5,152 guest read
I/O requests can be satisfied without going to the BSST.

At higher levels of memory pressure, the hypervisor starts
swapping pages to disk. Tesseract detects pages in guest
write I/O requests that are already in the BSST to avoid swap-
in requests for such pages. The amount of work saved by
Tesseract on the write I/O path is quantified in Table 1.

When host memory is 20% overcommitted we can see that
out of 5,698 guest read I/O requests 2,739 will require extra

read I/Os to be issued to read data from the BSST. The total
number of such an extra I/Os to the BSST was 11,854, which
made the total number of read I/O requests issued to both the
guest VMDK and the BSST equal 14,813.

6.5 Evaluating Defragmentation Schemes
Figures 13 and 14 show the impact of using BSST and guest
VMDK defragmentation on SPECjbb throughput, while Fig-
ures 15 and 16 give an insight into SPECjbb responsiveness.

Guest defragmentation performs better than the baseline
in all situations and is as good or better than BSST defrag-
mentation. With low levels of host memory overcommitment
Tesseract with guest VMDK defragmentation secures better
SPECjbb scores than Tesseract without defragmentation and
performs on par in responsiveness metrics.

With increasing host memory overcommitment, Tesseract
without defragmentation starts outperforming Tesseract with
either of the defragmentation schemes in both the application
throughput and responsiveness as the total and maximum
pause times grow slower for the no-defragmentation case.
This is due to the fact that at a higher level of hypervisor level
swapping, guest read I/O becomes more and more fragmented
and pending defragmentation requests become a bottleneck
leading to longer read completion times.

Table 3 shows the I/O overheads of the two defragmenta-
tion schemes compared to Tesseract without them. For this
table, 3 runs with similar scores and similar number of guest
read I/O requests were selected. With BSST VMDK defrag-
mentation enabled, Tesseract was able to reduce the number
of synchronous I/O requests to BSST VMDK from 2,889
(2.23 reads per I/O with holes on average) to 1,235 (1 read
per I/O with holes). To do BSST VMDK defragmentation,
12,674 asynchronous reads from BSST VMDK and 616 asyn-
chronous writes to BSST VMDK had to be issued. This num-

60 120 180 240

Memhog Sizes (MB)

0

5

10

15

20

25

30
M

a
x
 p

a
u
se

/b
lo

ck
a
g
e
 t

im
e
 (

se
co

n
d
s)

no-defrag

guest-defrag

bsst-defrag

baseline

Figure 15: Comparing max single pause for SPECjbb under various
defragmentation schemes with 10% host memory overcommitment.

0 5 15 20

Host Memory Overcommitment (%)

0

10

20

30

40

50

60

70

80

M
a
x
 p

a
u
se

/b
lo

ck
a
g
e
 t

im
e
 (

se
co

n
d
s)

no-defrag

guest-defrag

bsst-defrag

baseline

Figure 16: Comparing max single pause for SPECjbb under vari-
ous defragmentation schemes with various levels of host memory
overcommitment. Memhog was sized at 60 MB.

ber of writes equals the number of guest write I/O requests
with holes. Guest VMDK defragmentation eliminated holes
in guest read I/O requests entirely, so there were no guest-
related reads from BSST VMDK. To achieve this, 11,538
asynchronous reads from BSST VMDK and the same num-
ber of asynchronous writes to the guest VMDK were issued.

6.6 Using SSD For Storing BSST VMDK
SSDs have drastically better performance over magnetic disk
in terms of lower seek times for random reads. However,
their relatively higher cost keeps them from getting into
mainstream server market. They are used in smaller units
for boosting performance. One potential application for SSDs
in servers is as a hypervisor swap device allowing for higher
memory overcommitment as the cost of swapping is reduced.

In our experiment, we placed the BSST VMDK on a SATA
SSD. Figure 17 shows the performance of the baseline and
Tesseract. At lower memory pressure, there is no difference
in the performance, but as the memory pressure increases,
at both guest and hypervisor level, Tesseract starts to show
benefits over the baseline.

6.7 Overheads
I/O Path Overhead Table 4 presents Tesseract overheads
on I/O paths. The average overhead per I/O is on the order of

I/O Path Baseline No-defrag BSST defrag Guest defrag
Read prepare 0 37 30 109
Read completion 0 232 247 55
Write prepare 24,262 220 256 265
Write completion 0 49 91 101

Table 4: Average read and write prepare/completion times for
baseline and for tesseract with and without defragmentation
(in microseconds). The host overcommitment was 10% while
the memhog size was 60 MB.

microseconds. Read prepare time for guest defragmentation
is higher than the others due to the contention on guest
VMDK during defragmentation. At the same time, the read
completion time for guest defragmentation case is much
lower than the other two cases as there are no extra reads
going to the BSST. On the write I/O path, the defragmentation
schemes have larger overhead. This is due to the background
defragmentation of the disks which is kicked off as soon as
the write I/O is scheduled.

Memory Overhead Per Section 4.4, Tesseract maintains
in-memory metadata for three purposes: tracking (a) associa-
tions between PPN and BSST blocks; (b) reference counts for
BSST blocks; and (c) indirections between guest VMDK and
BSST VMDK. We use 64 bits to store a (4 KB) block number.
To track associations between PPN and BSST blocks we re-
use MPN field in page frames maintained by the hypervisor
so there is no extra memory overhead here. In general case
where associations between PPN and blocks in guest VMDK
have to be tracked we will need a separate memory structure
with a maximum overhead of 0.2% of VM’s memory size.
Each BSST block’s reference count requires 4 bytes per disk
block. To optimize the lookup for free/available BSST blocks,
a bitmap is also maintained with one bit for each block. The
guest VMDK to BSST VMDK indirection metadata requires
24 bytes for each guest VMDK block for which there is a
valid indirection to BSST. A bitmap similar to that for BSST
is maintained for guest VMDK blocks to determine if an
indirection to BSST exists for a given guest VMDK block.

7. Related Work
Our project intersects three areas. The first is that of uncoop-
erative hypervisor swapping and the double-paging problem.
The second concerns the tracking of associations between
guest memory and disk state. The third concerns memory and
I/O deduplication.

7.1 Hypervisor Swapping and Double Paging
Recent, concurrent work by Amit, Tsafrir, and Schuster [5]
systematically explores the behavior of uncooperative hyper-
visor swapping and implement an improved swap subsystem
for KVM called VSwapper. The main components of their
implementation are the Swap Mapper and the False Reader
Preventer. The paper identifies five primary causes for per-
formance degradation, studies each, and offers solutions to
address them. The first, “silent swap writes”, corresponds to

0 10 20 30 40 50
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(a) 15% host overcommitment

0 10 20 30 40 50
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(b) 20% host overcommitment

0 10 20 30 40 50
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(c) 25% host overcommitment

0 10 20 30 40 50
Total SPECjbb blockage time (seconds)

1000

2000

3000

4000

5000

6000

7000

S
P
E
C
jb
b
 s
co

re

baseline

tesseract

(d) 30% host overcommitment
Figure 17: Tesseract performances with BSST placed on an SSD disk. The memhog size was 60 MB.

our notion of guest-I/O–swap optimization which we do not
yet support because we do not support reference-counting on
blocks in guest VMDKs. The second and third, “stale swap
reads” and “false swap reads”, and their solutions are similar
to the existing ESX optimizations that cancel swap-ins for
memory pages that are either overwritten by disk I/O or by
the guest. For “silent swap writes” and “stale swap reads”,
the Swap Mapper uses the same techniques Tesseract does
to track valid associations between pages in guest memory
and blocks on disk. Their solution to “false swap reads”, the
False Reader Preventer, is more general, however, because
it supports the accumulation of successive guest writes in a
temporary buffer to identify if a page is entirely overwritten
before next read. The last two, “decayed swap sequentiality”
and “false page anonymity”, are not issues we consider. In
their investigation, they did not observe double-paging to
have much impact on performance. This is likely due to the
fact that they followed guidelines from VMware and pro-
visioned guests with enough VRAM that guest paging was
uncommon and most of the experiments were run with a
persistent level of overcommitment. We view their effort as
complementary to ours.

The double-paging problem was first identified in the
context of virtual machines running on VM/370 [6, 15].
Goldberg and Hassinger [6] discuss the impact of increased
paging when the virtual machine’s address exceeds that with
which it is backed. Seawright and MacKinnon [15] mention
the use of handshaking between the VMM and operating
system to address the issue but do not offer details.

The Cellular Disco project at Stanford describes the prob-
lem of paging in the guest and swapping in the hypervi-
sor [7, 8]. They address this double-paging or redundant
paging problem by introducing a virtual paging device in
the guest. The paging device allows the hypervisor to track
the paging activity of the guest and reconcile it with its own.
Like our approach, the guest paging device identified already
swapped-out blocks and creates indirections to these blocks
that are already persistent on disk. There is no mention of the
fact that these indirections destroy expected locality and may
impact subsequent guest read I/Os.

Subsequent papers on scheduling memory for virtual ma-
chines also refer in passing to the general problem. Wald-
spurger [17], for example, mentions the impact of double-
paging and advocates random selection of pages by the hyper-

visor as a simple way to minimize overlap with page-selection
by the guest. Others projects, such as the Satori project [13],
use double-paging to advocate against any mechanism to
swap guest pages from the hypervisor.

Our approach differs from these efforts in several ways.
First, we have a system in which we can—for the first time—
measure the extent to which double-paging occurs. Second,
we have an approach that directly addresses the problem of
double-paging in a manner transparent to the guest. Finally,
our techniques change the relationship between the two levels
of scheduling: by reconciling and eliding redundant I/Os,
Tesseract encourages the two schedulers to choose the same
pages to be paged out.

7.2 Associations Between Memory and Disk State
Tracking the associations between guest memory and guest
disks has been used to improve memory management and
working-set estimation for virtual machines. The Geiger
project [10], for example, uses paravirtualization and intimate
knowledge of the guest disks to implement a secondary cache
for guest buffer-cache pages. Lu et al. [11] implement a
similar form of victim cache for the Xen hypervisor.

Park et al. [14] describe a set of techniques to speed live-
migration of VMs. One of these techniques is to track associ-
ations between pages in memory and blocks on disks whose
contents are shared between the source and destination ma-
chines. In cases where the contents are known to be resident
on disk, the block information is sent to the destination in
place of the memory contents. In the paper, the authors de-
scribe techniques for maintaining this mapping both through
paravirtualization and through the use of read-only mappings
for fully virtualized guests.

7.3 I/O and Memory Deduplication
The Satori project [13] also tracks the association between
disk blocks and pages in memory. It extends the Xen hypervi-
sor to exploit these associations, allowing it to elide repeated
I/Os that read the same blocks from disk across VMs imme-
diately sharing these pages of memory across those guests.

Originally inspired by the Cellular Disco and Geiger
projects, Tesseract shares much in common with these ap-
proaches. Like many of them, it tracks valid associations
between memory pages and disk blocks that contain identical
content. Like Park et al., it employs techniques that are fully
transparent to the guest allowing it to be applied in a wider

set of contexts. Unlike the Satori projects which focused on
eliminating redundant read operations across VMs, Tesser-
act uses that mapping information to deduplicate I/Os from
a specific guest and its hypervisor. As such, our approach
complements and extends these others.

8. Future Work
We plan to extend our prototype to support reconciliation
and elimination of all redundant I/Os whether from guest
operations or the hypervisor. For this, we need to do a
cleaner job of restructuring the VMDK structure to support
indirections and reference-counting of blocks. Following this
redesign to its logical conclusion, one would structure a set
of guest VMDKs as (thinly-provisioned) maps from guest
block identifiers to a general sea-of-blocks in some datastore.

Second, we plan to investigate the interaction of balloon-
ing and hypervisor-level swapping. Ballooning is often used
first and more frequently than swapping. Used in this order,
one typically does not see much double paging because the
balloon has already applied pressure within the guest before
swapping commences. However, over a longer period of os-
cillation, one can imagine double paging occurring because
of later inflations of ballooning in the guest.

Finally, our experience in this project has led us to question
the existing interface for issuing I/O requests with scatter-
gather lists. Given that the underlying physical organization
of the disk blocks can differ significantly from the virtual
disk structure, it makes little sense for a scatter-gather list to
require that the target blocks on disk be contiguous. Having
a more flexible structure may allow I/Os to be expressed
more succinctly and to be more effective at communicating
expected relationships or locality among those disk blocks.

9. Conclusion
We present Tesseract, a system that directly and transparently
addresses the double-paging problem. We have described
how this issue may arise in the context of guests and hypervi-
sors as each attempts to overcommit its memory resources.
We have outlined the design and implementation of Tesseract
describing how it reconciles and eliminates redundant I/O
activity between the guest’s virtual disks and the hypervi-
sor swap subsystem by tracking associations between the
contents of pages in guest memory and those on disk. We
have identified how, implemented naively, Tesseract inter-
feres with the guest’s notion of locality and we have offered
two approaches to recover that locality through defragmenta-
tion. We have presented the first empirical data on the cost
of the double-paging problem. Finally, we have outlined a
number of directions we plan to investigate.

10. Acknowledgements
We thank Maxime Austruy for his help with the hosted I/O
path and discussions about the BSST. We owe much to Joyce
Spencer and Jerri-Ann Meyer for continued support of the

project, and to Ron Mann who got telemetry on overcom-
mitment from shipped hosted products. The paper has been
improved much by thoughtful comments and feedback from
Gene Cooperman, from anonymous reviewers, and especially
from our shepherds, Dan Tsafrir and Nadav Amit.

References
[1] VMware vSphere hypervisor. http://www.vmware.

com/go/ESXiInfoCenter.
[2] Jenkins. http://jenkins-ci.org.
[3] VMware workstation. http://www.vmware.com/

products/workstation.
[4] O. Agesen. US patent 8380939: System/method for maintain-

ing memory page sharing in a virtual environment, 2011.
[5] N. Amit, D. Tsafrir, and A. Schuster. Vswapper: A memory

swapper for virtualized environments. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS-
XIX, 2014.

[6] R. P. Goldberg and R. Hassinger. The double paging anomaly.
In Proceedings of the May 6-10, 1974, national computer
conference and exposition, AFIPS ’74, pages 195–199, 1974.

[7] K. Govil. Virtual clusters: resource management on large
shared-memory multiprocessors. PhD thesis, Stanford Univer-
sity, 2001.

[8] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular
disco: resource management using virtual clusters on shared-
memory multiprocessors. ACM Trans. Comput. Syst., 18:229–
262, August 2000.

[9] A. Gulati, I. Ahmad, and C. A. Waldspurger. Parda: Propor-
tional allocation of resources for distributed storage access.
In Proccedings of the 7th Conference on File and Storage
Technologies, FAST ’09, pages 85–98, 2009.

[10] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Geiger: monitoring the buffer cache in a virtual machine envi-
ronment. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS-XII, 2006.

[11] P. Lu and K. Shen. Virtual machine memory access tracing
with hypervisor exclusive cache. In Proceedings of the 2007
USENIX Annual Technical Conference, 2007.

[12] P. Manning and J. Dieckhans. Storage i/o control
technical overview and considerations for deployment.
2010. URL http://www.vmware.com/files/pdf/
techpaper/VMW-vSphere41-SIOC.pdf.

[13] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman.
Satori: enlightened page sharing. In Proceedings of the
2009 conference on USENIX Annual technical conference,
USENIX’09, 2009.

[14] E. Park, B. Egger, and J. Lee. Fast and space-efficient virtual
machine checkpointing. In Proceedings of the 7th ACM SIG-
PLAN/SIGOPS international conference on Virtual execution
environments, VEE ’11, 2011.

[15] L. Seawright and R. MacKinnon. VM/370 - a study of
multiplicity and usefulness. IBM Sys. Jrnl, 18(1):4–17, 1979.

[16] Standard Performance Evaluation Corporation. SPECjbb2005.
http://www.spec.org/jbb2005.

[17] C. A. Waldspurger. Memory resource management in vmware
esx server. SIGOPS Oper. Syst. Rev., 36:181–194, Dec. 2002.

