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Abstract—We describe an integrated framework for system-on-chip (SOC) test automation. Our framework is based on a new test

access mechanism (TAM) architecture consisting of flexible-width test buses that can fork and merge between cores. Test wrapper

and TAM cooptimization for this architecture is performed by representing core tests using rectangles and by employing a novel

rectangle packing algorithm for test scheduling. Test scheduling is tightly integrated with TAM optimization and it incorporates

precedence and power constraints in the test schedule, while allowing the SOC integrator to designate a group of tests as

preemptable. Test preemption helps avoid hardware and power consumption conflicts, thereby leading to a more efficient test

schedule. Finally, we study the relationship between TAM width and tester data volume to identify an effective TAM width for the SOC.

We present experimental results on our test automation framework for four benchmark SOCs.

Index Terms—Core-based systems, rectangle packing, system-on-a-chip, test access mechanism, test scheduling, testing time, test

wrapper.
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1 INTRODUCTION

MODULAR testing of embedded cores in a system-on-chip
(SOC) is now recognized as an effective method to

tackle the SOC testing poblem. Modular test refers to the
process of isolating embedded cores and groups of cores
and gaining test access to these separate SOC partitions for
test data delivery. The primary motivation for modular test
is to use a “divide-and-conquer” approach and to promote
the reuse of precomputed test sets for embedded cores. In
addition, for nonlogic cores, such as memories or intellec-
tual property (IP) cores, for which vendor-computed tests
are mandatory, isolation and modular test is often the only
option. To facilitate modular test, an embedded core must
be isolated from surrounding logic and test access must be
provided from the I/O pins of the SOC [26]. Test wrappers
are used to isolate the core for modular test application,
while test access mechanisms (TAMs) transport test
patterns and test responses between SOCs pins and core
I/Os [20]. In addition, core tests must be scheduled such
that precedence and power constraints are met and conflicts
in TAM usage are avoided.

To reduce cost and ensure quality, testing must make

effective use of SOC test resources [4]. The rapidly

increasing size of SOCs has spurred an enormous growth

in test resource usage, leading to complex test hardware,

long test application times, and large test data. An

integrated framework for SOC test automation that in-

creases the utilization of test resources is therefore

necessary to increase production capacities and reduce test

cost. This paper describes the design of such a framework

that integrates the following three design processes into the

test automation flow.

1. Wrapper/TAM cooptimization. Our framework
maximizes the effectiveness of on-chip test struc-
tures. Test wrapper design and TAM optimization
are of critical importance during system integration
since they directly impact hardware costs, testing
time, and tester data volume. Our TAM architecture
is based on flexible-width test buses. The new
approach proposed for TAM optimization uses a
generalized version of rectangle packing [7].

2. Constraint-driven preemptive test scheduling. The
test automation framework integrates an efficient
test scheduling algorithm with the TAM design
process. The objective of the scheduling algorithm is
to minimize the testing time, while addressing the
following issues: a) resource conflicts between cores
arising from the use of shared TAMs and on-chip
BIST engines, b) precedence constraints among tests,
and c) power consumption constraints. Testing time
is further decreased through the selective use of test
preemption.

3. Tester data volume reduction. The third component
in our framework addresses the issue of identifying
an SOC TAM width that reduces testing time as well
as tester data volume. Test data for large SOCs now
require several Gigabits of tester memory, which is a
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significant contributor to test cost [2], [4]. The impact
of TAM design and test schedules on tester memory
requirements has not been directly studied before. In
particular, we show that TAM widths that minimize
testing time do not always lead to minimum tester
data volume. We investigate the correlation of TAM
width to the tester data volume,and determine TAM
widths that minimize a cost function involving both
the testing time and the amount of tester data. This
allows the system integrator to trade off testing time
with data volume.

The remainder of this paper is organized as follows: In
Section 2, we discuss related prior work. In Section 3, we
describe the new flexible-width TAM architecture. In
Section 4, we define the integrated TAM optimization/test
scheduling problem and formulate it as a version of
generalized rectangle packing. In Section 5, we present the
new approach to constraint-driven test scheduling. Our
framework provides the system integrator with the ability
to specify a partial precedence ordering among the core
tests as well as ensure that test parallelism does not violate
constraints on power consumption. Furthermore, the in-
tegrator is provided with the means to identify certain tests
for preemption to minimize testing time. In Section 6, we
describe the impact of TAM width on tester data volume.
Experimental results for four benchmark SOCs are pre-
sented in Section 7. Section 8 concludes the paper.

2 RELATED PRIOR WORK

Here, we review prior work in TAM design, test scheduling,
and tester data volume reduction.

Prior work in TAM architecture design includes a
dedicated test bus [24], partial isolation rings [23], reuse
of the system bus [10], a scalable architecture called TestRail
[18], and a P1500-compatible TAM known as CAS-BUS [3].
The TestRail and test bus architectures appear to be the
most amenable to optimization because a broad range of
algorithmic techniques [9], [11], [13] can be employed to
optimize the TestRail and test bus widths to minimize the
SOC testing time. However, most proposed TAM optimiza-
tion methods have studied wrapper design and TAM
optimization as independent problems [4], [19]. These
methods have either not addressed wrapper design [1],
[11], [17] or not explicitly addressed the issue of sizing
TAMs to minimize SOC testing time [22].

The first integrated wrapper/TAM cooptimization meth-
ods to minimize SOC testing time were proposed in [13],
[14], [16]. A drawback of the approach in [13] is that the
problem formulation is intrinsically intractable; the compu-
tation time therefore increases exponentially with the
number of TAMs. In [14], an efficient heuristic was
proposed to address the wrapper/TAM design problems
in [13]. The heuristic method was able to prune the solution-
space and achieve significant reductions in CPU time over
the method of [13]. Furthermore, in [14], it was possible to
design test architectures with a larger number of TAMs and,
therefore, reductions in testing time were also achieved in a
few cases. In [16], a graph formulation of the TAM design
and test scheduling problem was presented. An algorithm

based on bipartite graph matching was used to optimize the
test bus architecture.

However, the approaches in [13], [14], [16] are limited to
“fixed-width” test bus architectures. In fixed-width TAMs,
the total TAM width is explicitly partitioned among a finite
number of TAMs and each core is assigned to a TAM.
Therefore, a large number of cores of varying TAM width
requirements are often assigned to a small number of
TAMs. Since TAM widths cannot be explicitly tailored to
each core’s requirement, wasteful TAM wires are often
assigned to certain cores. For example, if a core is connected
to a TAM of width w, the same testing time may actually be
obtained using only w0 < w wires (due to the “staircase”
nature of the core’s testing time variation with TAM width;
see Section 3). This leads to unneccessary hardware over-
head. This also leads to idle bits stored on the tester for the
extra w� w0 wires, hence increasing tester data volume as
well. In this paper, we design “flexible-width” test buses for
cores. In a flexible-width TAM architecture, the TAM width
supplied to each core is based explicitly on the core’s TAM
width needs; each core can be assigned a unique number of
TAM wires corresponding to its testing time versus TAM
width function. This leads to a more effective TAM design.

Several techniques for SOC test scheduling have been
proposed in the literature [4], [6], [15], [17], [20], [25].
Methods to incorporate precedence and power constraints
in a preemptive test schedule were presented in [12]. While
these methods are useful to obtain test schedules, they
assume that a predesigned TAM for the SOC is provided.
Here, we address the design of an integrated framework for
SOC test automation where TAM optimization and test
scheduling are performed in conjunction.

Tester data volume reduction methods are either based
on built-in self test (BIST) [5] or test data compression [4].
BIST can be used effectively to reduce the volume of test
data stored in tester memory by generating test patterns
directly on-chip. However, the cores for which the system
integrator can insert BIST are mostly limited to certain types
of memories. For logic cores and hard IP, if BIST is desired,
it must be inserted by core vendors. Moreover, BIST can be
expensive in terms of hardware costs and may not be
feasible for cores that are not BIST-ready. While test set
compression has been shown to be useful for test data
volume reduction, there has not been a concerted effort to
examine its use coupled with TAM design and test
scheduling in the form of an integrated framework for test
automation. TAM widths optimized for test data volume
can reduce tester load time and facilitate multisite testing.

In this paper, we present a new approach to integrated
wrapper/TAM cooptimization and test scheduling based
on a generalized version of rectangle packing, also referred
to as two-dimensional packing [7]. Rectangle representation
of core tests has previously been studied in [6], [17] and a
method based on rectangle packing was proposed to
schedule tests for SOCs in [11]. We use the wrapper design
method presented in [13] to design a wrapper for each core
based on the knowledge of how the core’s testing time
varies with TAM width. We design flexible-width TAMs by
assigning an appropriate number of TAMwires to each core
in the test schedule. Therefore, the granularity of TAM
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assignment to cores is per wire and not per test bus as in the
fixed-width case. This fine-grained TAM wire assignment
leads to more efficient TAM architectures. Precedence
constraints among tests can be embedded into the schedule
by the system integrator and the maximum power con-
sumption limit can be specified. Moreover, the system
integrator can identify certain tests as preemptable, as well
as specify limits on the number of preemptions allowed for
each test. Finally, the relationship between TAM width and
tester data volume is investigated to identify an effective
choice of total TAM width for the SOC. Note that other
flexible-width TAM architectures can also be designed,
such as a flexible-width TestRail architecture. In this work,
we consider the flexible-width test bus architecture, based
on our prior work on using test buses for TAM design.

3 FLEXIBLE-WIDTH TEST BUS ARCHITECTURE

The test bus model for TAMs was first proposed in [24]. In
this model, a TAM consists of a set of wires that can be
grouped into a test bus and connected to cores. The TAMs
operate independently of each other; however, the cores on
a single TAM are tested sequentially. This can be
implemented either by 1) multiplexing all the cores
assigned to a TAM or 2) by testing one of the cores on the
TAM, while the other cores on the TAM are bypassed.

In [13], [14], TAMs were modeled as fixed-width test
buses. In a fixed-width test bus architecture, the total TAM
width is partitioned among several test buses. For example,
a total TAM width of 7 can be partitioned among three test
buses as follows: 3þ 2þ 2. Each core in the SOC is assigned
to exactly one of these fixed-width test buses. TAM
assignment is therefore on a test bus basis. This is illustrated
in Fig. 1a for an example SOC containing six cores.

There are three main drawbacks of fixed-width archi-
tectures that limit the choice of available TAM widths for
cores. First, each core does not receive a TAM width
explicitly tailored to its own requirements. The TAM width
assigned to each core is based on the overall requirement of

the group of cores assigned to the test bus. Second, the
maximum TAM width available to any core equals the
width of the widest test bus in the SOC. Therefore, to
increase TAM width per core, the number of TAMs is
reduced and a large number of cores are assigned to only a
few TAMs. This further reduces the choice of TAM widths
available to any individual core. Third, the computation
time for the exact method in [13] grows exponentially with
the number of TAMs, therefore solutions can be obtained
for only a small number of TAMs, again limiting the
number of available TAM width choices for cores.

We next introduce the concept of Pareto-optimal TAM
widths to show how flexible-width TAM architectures can
be designed in which TAM widths are explicitly tailored to
the requirements of each core, thereby minimizing hard-
ware overhead, testing time, and test data volume.

Pareto-optimal points. We achieve a significant im-
provement in TAM wire utilization over the method in [13]
by noting that only a few TAM widths between 1 and W ,
where W is the total SOC TAM width, are efficient if
assigned to cores. It was shown in [13] that, for a given core,
the testing time varies with TAM width as a “staircase”
function. From Fig. 1b, we see that the testing time
decreases only at Pareto-optimal points, which are formally
defined as follows: A solution to the wrapper design
problem for Core i can be expressed as a 2-tuple
ðwj; TiðwjÞÞ, where wj is the TAM width supplied to the
wrapper and TiðwjÞ is the testing time of Core i with the
given wrapper. A solution ðwj; TiðwjÞÞ is Pareto-optimal if
and only if there does not exist a solution ðwk; TiðwkÞÞ such
that wk � wj and TiðwkÞ � TiðwjÞ, where at least one of the
inequalities is strict [8]. Intuitively, the steps at which the
testing time decreases (as TAM width is increased) are the
Pareto-optimal points and only Pareto-optimal TAM width
values need to be considered. For example, in Fig. 1b, a
TAM width of 46 results in a testing time of 115,850 cycles,
while all TAM widths from 47 up to 64 result in the same
testing time of 114,317 cycles. Hence, 47 is a Pareto-optimal
TAM width and widths between 48 and 64 can be ignored.
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Since the number of available TAM widths for cores is
limited in fixed-width architectures, cores are often assigned
to non-Pareto-optimal TAM widths. These wasteful assign-
ments increase hardware overhead unneccesarily. Further-
more, the tester is required to store don’t-care (idle) bits that
must be transported to the wasteful TAM wires during test,
thereby increasing test data volume and testing time.

Flexible-width test bus architectures allow us to explicitly
fix the TAM width for each core to one of its Pareto-optimal
points, thereby eliminating wasteful TAM wires; see Fig. 2.
The staircase nature of the testing time variation with TAM
width for cores is thus exploited to reduce the TAM width
assigned to cores to the minimal value required to achieve a
specific testing time. The extra TAM wires can be used for
other cores in the SOC, thereby reducing total testing time.
Furthermore, it is even possible to assign the entire TAM
width to a certain core if required. (For fixed-width test
buses, assigning the entire TAM width to a core is seldom
efficient since there can be only one TAM and all cores
receive the complete TAM width.) Moreover, in the new
approach, TAMs can fork and merge between cores to
improve TAM wire utilization. TAMs that fork and merge
can also ultimately lead to lower TAM wiring area if
implemented carefully. This is because all the wires of a
wide TAM that are connected to a large core need not be
routed to other smaller cores that are also on the same TAM.
Finally, in fixed-width architecture design, test scheduling
is performed after TAM design, by shifting tests back and
forth on the TAMs to avoid conflicts. In flexible-width
architecture design, however, test scheduling is tightly
integrated with TAM design, leading to a more effective
overall test planning flow.

4 INTEGRATED TAM DESIGN AND TEST

SCHEDULING

The general integrated wrapper/TAM cooptimization and
test scheduling problem that we address in this paper is as
follows: We are given the total SOC TAM width W and the
test set parameters for each core, i.e., the numbers of input,
output, and bidirectional terminals, test patterns, scan
chains, and the scan chain lengths. Unlike in [1], we assume
that the scan chains in the cores cannot be redesigned, i.e.,
the number and lengths of scan chains are fixed. The goal is
to determine the TAM width and a wrapper design for each
core and a test schedule that minimizes the testing time for
the SOC such that the following constraints are satisfied.

1. The total number of TAM wires utilized at any
moment does not exceed W ;

2. Precedence constraints are met;
3. Concurrency constraints are met;
4. The maximum power consumption value is not

exceeded during test;
5. Selective preemption of tests is allowed.

An additional goal is to determine a value of W for the SOC
to trade off testing time with tester data volume.

The overall optimization problem consists of three main
parts: wrapper and TAM cooptimization, test scheduling,
and identification of a TAM width for tester data volume
reduction. These parts must be solved in conjunction to
achieve the minimum system testing time and reduced
tester data volume. We formulate a progression of three
problems of increasing complexity that lead up to the
overall optimization problem. These three problems are as
follows:

Problem 1. Wrapper/TAM cooptimization and test sche-
duling.

Problem 2. Wrapper/TAM cooptimization and test sche-
duling with selective preemption and precedence and
power constraints.

Problem 3. Wrapper/TAM cooptimization, test scheduling
with selective preemption, and precedence and power
constraints, and identification of a TAM width to trade
off testing time with tester data volume.

In this section, we address Problem 1 and show how
wrapper/TAM cooptimization can be integrated with test
scheduling. In Section 5, we show how this problem is
generalized to include precedence, preemption, and power-
constraints—Problem 2. Finally, in Section 6, we study
Problem 3, i.e., we identify TAM widths that provide a
trade off between test time and tester data volume.

Problem 1. Given the test set parameters for each core, and
the total TAM width W for the SOC, determine the TAM
width and a wrapper design for each core and a test
schedule for the SOC that minimizes the total testing
time such that the total number of TAM wires utilized at
any moment does not exceed W .

We solve the problem of wrapper design for cores using
the Design_wrapper algorithm [13] based on the Best Fit
Decreasing heuristic for the Bin Packing problem. In order to
solve the problem of assigning TAM width to cores and
scheduling tests, we represent core tests by rectangles and
develop a rectangle packing algorithm. The use of rectangles
for core test representation during test scheduling has been
previously studied in [6], [11], [17]. The Design_wrapper
algorithm is used to obtain the different test application
times for each core for varying values of TAM width. A
set of rectangles representing these different testing times
for each value of TAM width for a core can now be
constructed such that the height of the rectangle corre-
sponds to the TAM width and the width of the rectangle
represents the core test application time for this value of
TAM width.
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We now formulate Problem 1 as a generalized version of

the rectangle packing problem [7]. The rectangle packing

problem, termed PRP, is described as follows: Given a

collection of rectangles and a bin of fixed height and

unbounded width, pack the rectangles into the bin such that

no two rectangles overlap and the width to which the bin is

filled is minimized.
Problem PRP is extended to address Problem 1 in two

ways. First, we are given a collection of sets of rectangles

and one rectangle must be chosen from each set for packing.

Second, during packing, each rectangle chosen can be

vertically split into several nonadjacent rectangles having

the same width. The generalized version of PRP that

addresses Problem 1 is termed PGRP1 and is formulated

as follows: Consider an SOC having jCj cores (where C is

the set of cores) and let Ri be the set of rectangles for core i,

1 � i � jCj. Problem PGRP1 (generalized rectangle packing)

is stated as follows:

PGRP1. Select one rectangle Rij 2 Ri from each set Ri,

1 � i � jCj, and pack the selected rectangles into a bin of

fixed height and unbounded width such that no two

rectangles overlap and the width to which the bin is

filled is minimized. Each rectangle selected is allowed to

be split vertically into several nonadjacent pieces, each

having the same coordinates on the horizontal axis.

In Problem PGRP1, during packing, the rectangle selected
for a core can be vertically split into several non-adjacent
rectangles having the same width, as illustrated for Core C
in Fig. 3a. This is because it is possible to assign a group of
noncontiguous TAM wires to a single core, using fork-and-
merge of TAM wires, as illustrated in Fig. 3b. All the pieces
of the split rectangle must, however, have the same
coordinates on the horizontal axis. Recall that, in [7],
rectangles are considered to be indivisible entities.

The relationship between Problem PGRP1 and Problem 1
is illustrated in Fig. 4. The height of the rectangle selected
for a core corresponds to the TAM width assigned to the
core, while the rectangle width corresponds to the testing
time for the core. The height of the bin corresponds to the
total SOC TAM width and the width to which the bin is
ultimately filled corresponds to the SOC testing time. The
unfilled area of the bin corresponds to the idle time on TAM
wires during test. Furthermore, the distance between the
left edge of each rectangle and the left edge of the bin
corresponds to the beginning time of each core test. Thus, a
one-to-one correspondence exists between the packed bin
and the final test schedule.

Problem PGRP1 can be shown to be NP-hard by a
restriction argument. A special case of PGRP1 in which the
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cardinality of each set Ri, 1 � i � jCj, equals one directly
corresponds to the rectangle packing problem in [7]. Since
the rectangle packing problem was shown to be NP-hard in
[7] (by restriction to Bin Packing), PGRP1 is also NP-hard.

5 CONSTRAINT-DRIVEN TEST SCHEDULING

In this section, we first detail Problem 2 (integrated TAM
design and constraint-driven test scheduling) and then
formulate Problem PGRP2, a generalized version of Problem
PGRP1 that is equivalent to Problem 2.

Problem 2. Given the test set parameters for each core, and
the total TAM width W for the SOC, solve Problem 1
such that

1. precedence constraints are met,
2. concurrency constraints are met,
3. the maximum power consumption value Pmax is

not exceeded, and
4. selective preemption of tests is allowed.

Precedence constraints are intended to express user-
defined (partial) ordering constraints. These arise due to
interdependencies between various core tests. For example,
a certain Core A might be tested before Core B because the
test of Core B relies on the integrity of Core A. Furthermore,
precedence constraints can be introduced such that tests
which are more likely to fail are scheduled before tests that
are less likely to fail [15]. Even though precedence
constraints can increase the overall test completion time,
“abort-at-first-fail” test strategies potentially lead to a
reduced average test time. Next, concurrency constraints
seek to avoid conflicts in the test hardware. For example, a
hierarchical parent core cannot be tested at the same time as
the child cores lying within it. This is because the wrappers
of the child cores must be in Extest (External Test) mode
while the parent core is being tested in Intest (Internal Test)
mode. Finally, power constraints must be incorporated in
the schedule to ensure that the power budget of the SOC is
not exceeded during test [6].

Problem 2 can be expressed in terms of rectangle packing
as follows: Consider an SOC having jCj cores, and:

1. Let Ri be the set of rectangles for core i, 1 � i � jCj;
2. Let precedence constraints between tests be defined,

e.g., i < j (test i must complete before test j is
begun);

3. Let concurrency constraints between tests be de-
fined, e.g., i <> j (test i must not be applied at the
same time as test j);

4. Let the test for Core i have a power consumption ofPi;
5. Let Core i be assigned a maximum number of

allowed preemptions max preemptsðiÞ.

PGRP2 Select one rectangle Rij from each set Ri and pack
the selected rectangles into a bin of fixed height and
unbounded width such that the bin width is minimized.
Each rectangle selected is allowed to be split vertically
into several nonadjacent pieces, with each piece having
the same coordinates on the horizontal axis, such that the
core test can occupy noncontiguous TAM wires. In

addition, to introduce preemption of tests, each rectangle
can be partitioned into several nonadjacent rectangles
along the horizontal (time) axis. The number of these
horizontal splits for a rectangle must not exceed the
maximum number of preemptions allowed for the test.
For each precedence constraint i < j, the rectangle for
Core j can be packed only after all partitions of the
rectangle for Core i are packed. Furthermore, the
rectangle representing test i must not overlap (in time)
the rectangle for test j, if there is a specified concurrency
constraint i <> j. Finally, at any moment of time, the
sum of the Pi values for the rectangles selected must not
exceed the maximum specified value Pmax.

Problem PGRP2 is a generalized version of PGRP1 and can
therefore be shown to be NP-hard by a restriction
argument.

The value of Pi is supplied by the core vendor for each
Core i, while the value of max preemptsðiÞ for each core is
decided by the system integrator, allowing extra flexibility.
For example, the system integrator may decide not to
preempt BIST tests or sequential circuit tests to avoid
having to store the states of core flip-flops and LFSRs. Thus,
max preemptsðiÞ can be set to 0 for such cores.

Next, we describe the algorithm that we use to solve
Problem PGRP2, and demonstrate how the relationship
between TAM width and testing time is exploited to
maximize TAM wire utilization during constraint-driven
test scheduling. For each Core i, our algorithm first
identifies a “preferred TAM width,” widthpðiÞ, such that,
at widthpðiÞ, the core’s testing time is close to its lowest
value achievable at the maximum allowable TAM width
Wmax. (In this paper, Wmax is chosen to be 64.) A group of
tests is selected to be scheduled such that precedence and
power constraints are met and test conflicts are avoided.
The algorithm uses heuristics that seek to insert tests into
the available time on TAM wires. If idle time is inevitable,
the algorithm waits until the first currently running test
completes and then repeats the scheduling process for the
remaining tests. Tests may be preempted and resumed
again such that the number of preemptions for any Core i
does not exceed max preemptsðiÞ. Next, we explain the
rationale behind the heuristic decision-making in our
algorithm and show how these decisions minimize system
testing time.

Data structure. The data structure in which we store the
TAM width and testing time values for the cores of the SOC
is presented in Fig. 5. This data structure is updated with
the assigned TAM width, begin and end times, and
preemption count for each core as the test schedule is
developed.

The pseudocode for our TAM optimization and test
scheduling algorithm is presented in Fig. 6. The inputs to
our algorithm are the set C of cores, total TAM width W , set
PC of precedence constraints, set CC of concurrency
constraints, power constraint Pmax, and user-input para-
meters p and d (explained later).

Preferred TAM widths. In Procedure Initialize (Line 1),
we calculate the collection R of Pareto-optimal rectangles,
and the preferred TAM width values for each core from the
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input percent value p. Recall that the core testing time varies

with TAM width w as a staircase function that drops

rapidly at first for small values of w and less rapidly after

that. For example, for Core 6 in p93791 (Fig. 1b), at w ¼ 10,

the testing time reaches within 10 percent of its value at

w ¼ 64, and, at w ¼ 15, the testing time is within 5 percent

of its value at w ¼ 64. However, the highest Pareto-optimal

value of TAM width is w ¼ 47. Hence, instead of attempting

to assign the highest Pareto-optimal width to a core, a

considerable savings in system TAM width can be realized

by assigning a precalculated preferred value of width such

that the testing time of the core reaches within a small

percent value p of its testing time at w ¼ Wmax. The value of

p is usually between 1 and 10. While we will attempt to

pack only the rectangle representing the preferred TAM

width for each core, the other rectangles in the set remain

candidates for packing. This is because, in the event that a

preferred rectangle introduces empty space in the bin, a
nonpreferred rectangle from the set can be packed instead.

In subroutine Initialize (Fig. 7), we initialize widthpðiÞ to
the Pareto-optimal TAM width that provides the closest
testing time to the calculated value of time Tip within
p percent from TiðWmaxÞ. (We use TiðwÞ to denote the testing
time of Core i when provided with a TAM width of w.) In
Lines 5 and 6 of Initialize, we make an allowance for
widthpðiÞ to be set to the highest Pareto-optimal TAM width
wh if the difference between the value of widthpðiÞ from
Line 3 and the value of wh is less than the input difference
value d. This heuristic aids significantly in minimizing
system testing time, especially when it is beneficial to assign
a few (� d) extra TAM wires to a bottleneck core in the
system. For example, when using p ¼ 2 for benchmark SOC
p34392 [21] (presented in Section 7), we noticed that Core 18
was assigned widthpð18Þ ¼ 9 bits, leading to a testing time
of T18ð9Þ ¼ 622; 163 cycles. The testing time for the SOC was
also found to be 622,163 cycles, from which we noted that
Core 18 is a bottleneck core for p34392. A further study of
the testing time-TAM width characteristics of Core 18
revealed that its highest Pareto-optimal TAM width is
10 bits, at which the testing time for Core 18 reaches its
minimum value of 544,579 cycles. Hence, providing an
extra TAM wire to Core 18 reduced its testing time as well
as the overall SOC testing time to T18ð10Þ ¼ 544; 579 cycles.
Thus, the minimum testing time for SOC p34392 could be
achieved using the heuristic in Lines 5 and 6 of Initialize
with d ¼ 1.

TAM width assignment and test scheduling. Line 2 of
TAM_schedule_optimizer initializes the main rectangle pack-
ing loop. While executing the main While loop (Line 3), if
there are w avail (1 � w avail � W ) TAM wires available
for assignment, cores are assigned to the TAM using a
three-priority selection mechanism:

Priority 1: Line 5 searches for a Core i whose test has
already been preempted the maximum allowable number of
times (max preemptsðiÞ), but has not completed. If such a
core is found, it is scheduled using the Assign subroutine
shown in Fig. 8. After Assign completes, control is returned
to Line 4 of TAM_schedule_optimizer and the process of
selecting a core begins again. Thus, only if no core is found
by Priority 1 does Priority 2 come into play.

Priority 2: If a core is found whose test has begun earlier
whose assigned TAM width is less than or equal to w avail

and whose remaining testing time is largest among all such
cores, then it is scheduled using Assign in Lines 7 to 10.
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Fig. 5. Data structure for the test schedule.

Fig. 6. Algorithm for solving PrmGRP2.

Fig. 7. Preferred widths initialization subroutine.



Priority 3: If a core is foundwhose test has not begun earlier
whose preferred TAM width is less than or equal to w avail
and whose remaining testing time is largest among all such
cores, then it is scheduled using Assign in Lines 11 to 12.

Priority 1 is motivated by the need to complete the test
for cores that cannot be preempted further, while Priorities 2
and 3 seek to assign the preferred TAM width to each core.

Precedence, concurrency and power constraints. During
selection of a core to be scheduled in Lines 7, 11, and 13 of
TAM_schedule_optimizer, the Conflict subroutine (Fig. 9) is
invoked to ensure that 1) precedence conflicts, 2) concur-
rency conflicts, and 3) power constraint conflicts are
avoided.

Rectangle insertion in idle time. If there is no core
found in Lines 5 to 12, rather than let the w avail TAMwires
remain idle, TAM_schedule_optimizer attempts to insert the
rectangle for some unscheduled core into the available time.
In Line 13, we find a core that has not been scheduled and
whose preferred TAM width is less than or equal to
w availþ 3. This core is then scheduled using Assign. The
3-bit limit was found to be the most effective after extensive
experimentation. We have observed that, as long as the
difference between the width of the chosen rectangle and
the preferred width is less than 3, rectangle insertion leads
to substantial reduction in testing time. However, if a value
different from 3 is found to be more useful for a different set
of SOCs, the new value can be readily provided as an input
by the system integrator during test automation.

Increasing TAM widths to fill idle time. If no rectangle
is available to fill in the idle time, then the heuristic in
Lines 15 to 16 is used to determine which of the cores
currently scheduled to begin at current timewill benefit the
most, in terms of testing time decrease, from an extra
w avail TAM wire. If such a core can be found, then its
currently assigned widthðiÞ TAM wires are increased to the

highest Pareto-optimal width less than widthðiÞ þ w avail.
This heuristic is illustrated in Fig. 10. In Fig. 10, after Cores 2
and 3 have been assigned their preferred widths, no other
core’s preferred width is small enough to fit in the idle time
above the rectangle for Core 3. Furthermore, there is no core
available for which a rectangle can be made to fit in the idle
time. Therefore, Core 2 is selected to have its width
increased to widthð2Þ þ w avail. Note from Fig. 10 that the
width of a core (e.g., Core 1) whose begin time lies before
this time cannot be increased at this time because its test
has already begun with widthðiÞ TAM wires. This require-
ment for Core i is ensured by the first argument to the AND
condition in Line 15.

Finally, if the heuristics in Lines 4 to 16 fail to find a core
to assign, the value of w avail is set to 0 and the loop
beginning at Line 4 is repeated. When w avail is found to be
0 in Line 4, the execution proceeds to Line 17, where the
process of updating current time and w avail is begun. This
is presented in subroutine Update in Fig. 11. Once
current time is incremented, the widths assigned to packed
rectangles (or parts of rectangles) are fixed and cannot be
changed later on in the schedule. The resulting test schedule
is output in Line 18.

Test preemption. Tests can be selectively preempted
each time Update is executed. At each execution of Update,
the value of w avail is reset toW and all the incomplete tests
contend for the available TAM width in Lines 4 to 16 of
TAM_schedule_optimizer. If the maximum limit on preemp-
tions for a certain Core i is reached in Line 5, then Core i is
continuously scheduled until it completes. On the other hand
if the limit on preemptions is not reached and Core i is
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Fig. 8. The core assign algorithm.

Fig. 9. Precedence, concurrency, and power constraints.

Fig. 10. Increasing TAM width to fill idle time.



preempted (Line 9), then time leftðiÞ is incremented by
minfsi; sog in Line 5 ofAssign. Here, si (so) is the length of the
longest wrapper scan in (out) chain [19]. This increment in
testing time is because each time a preemption occurs, an
extra scan in or scan outmust be performed. This is explained
as follows: Let T ¼ ðmaxfsi; sog þ 1Þ � pþminfsi; sog be the
testing time for a core [20], where p is the number of test
patterns. Let the test for the core be preempted t times.
Therefore, let p ¼ p1 þ p2 þ . . .þ ptþ1. We have

T ¼ ðmaxfsi; sog þ 1Þ � p1 þminfsi; sog

þ . . . ðmaxfsi; sog þ 1Þ � ptþ1 þminfsi; sog:

This yields T ¼ ðmaxfsi; sog þ 1Þ � pþ ðtþ 1Þ �minfsi; sog.
The increase in testing time is therefore t �minfsi; sog cycles.

The complexity of the rectangle packing algorithm can be
estimated as follows. The While loop in Line 3 of Fig. 6 is
executed jCj times, where jCj is the number of cores of the
SOC. In each such execution, the set of unassigned cores is
searched using a linear search, i.e., OðjCj cores are
examined as potentially schedulable (Lines 5, 7, 11, 13, 15
of Fig. 6). During these linear searches, for each unassigned
core examined, all currently scheduled cores (OðjCjÞ are
also examined using the Conflict subroutine to determine
whether there are any precedence or power conflicts. From
this, it follows that the complexity of scheduling is OðjCj3Þ.
Note that we do not include the complexity of generating
the rectangles here. The complexity of rectangle generation
using Design_wrapper is Oðsc log scþ sc � kÞ, where sc is the
number of internal scan chains in the cores of the SOC and k
is the TAM width [13].

6 TESTER DATA VOLUME REDUCTION

In the previous sections, we presented the first two parts
of our framework: wrapper/TAM cooptimization and test
scheduling to minimize testing time, given a total TAM
width value W for the SOC. In this section, we present
the third part of our framework—the identification of a
value of W (W � Wmax) that minimizes a weighted cost
function involving both the testing time and the tester
data volume, where Wmax is the maximum allowed TAM
width for the SOC.

We first motivate the need for identifying such a TAM
width. The cost of testing SOCs is closely related to the
testing time and the volume of test data. While the time
required to apply digital patterns to the SOC is a relatively

small fraction of the total test time, the time required to
transfer several Gigabytes of data from a workstation to the
tester memory is significant if performed frequently [2].
Techniques to ensure that the test data required per pin is
contained to a single tester buffer are therefore vital. The
motivation for trading off TAM width with testing time and
data volume lies in multisite testing in which several ICs are
tested in parallel by a single tester. Reduced TAMwidths that
donot increase testdataperpinbeyondbuffer sizeswill allow
a larger number of ICs to be tested concurrently, thereby
decreasing testing time for the entire production batch.
ReducingTAMwidths also leads to lower routing complexity
on-chip. It is therefore important to develop techniques that
can identify a low number of TAM wires (scan data buffers)
and to trade off testing time and data volume.

We begin by plotting the variation of testing time T with
W . This is shown for benchmark SOC p21241 [21] in
Fig. 12a. Note the decrease in T with increasing W . Next,
we plot the variation of tester data volume M with W
(Fig. 12b). M varies as a nonmonotonic function in W ,
achieving local minima at the Pareto-optimal W values of
the T curve of Fig. 12a. The global minimum (marked in
Fig. 12b) is achieved at W ¼ 44. However, W ¼ 44 does not
provide the lowest testing time for the SOC. Testing time T
can be decreased by increasing W from 44 to 48 (at which
point there is an increase in M). Therefore, by varying W ,
the system integrator can trade off testing time with tester
data volume.

We incorporate this feature in our framework by
defining the normalized cost function

C ¼ �
T

T min
þ ð1� �Þ

M

Mmin
;

where T min (Mmin) is the minimum value of T (M) and
0 � � � 1 is a user-input parameter to control the trade off.
As � is varied from 0 to 1, the shape of the C-curve changes
from the M-curve to the T -curve. The C-curve is “U” shaped
in general, having a single minima, illustrated for � ¼ 0:5 in
Fig. 13a and for � ¼ 0:75 in Fig. 13b. These values of W that
minimize C for various values of � provide the system
integrator with effective choices of TAM width for tester
data volume reduction.

7 EXPERIMENTAL RESULTS

In this section, we present experimental results for four ITC
2002 SOC test benchmarks [21]. The experimental results
were obtained using a Sun Ultra 10 workstation with a
333 MHz processor and 256 MB memory.

Table 1 presents results of integrated wrapper/TAM
cooptimization and test scheduling for SOCs d695 and
p22810. No precedence or power constraints were included
in this set of experiments. We considered all possible integer
values of the parameters p and d in the range 1 � p � 10,
0 � d � 4, and tabulated thebest results. The symbolsT andE
are used to represent the SOC testing time (expressed in clock
cycles) and the computation time (expressed in seconds),
respectively, of the ILP/enumeration-based algorithm [13].
The symbol T new represents the SOC testing time (expressed
in clock cycles) of the new rectangle packing algorithm. The
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percentage change in testing time using the new method is

calculated using the formula �T (percent) ¼ T new�T
T � 100.

The computation time of the new algorithm is less than 1

second in each case; hence, these times are not mentioned in

Table 1. (Note that theCPU time for the ILP solver used in [13]

does not increase monotonically withW .)
The testing times for d695 obtained using the proposed

method are comparable to the testing times obtained using

the ILP/enumeration-based method in [13]. For p22810,

however, the new method yields a significantly lower SOC

testing time.This isbecause theprobleminstance size is larger

and SOC p22810 has a larger number of cores; thus, our

rectangle packing heuristics have more room for rectangle

manipulation andheight-width optimization. The values of E
shown forp22810 inTable 1 are for twoTAMs.This is because

the ILP models for p22810 were particularly intractable and

the ILP method [13] did not run to completion for three or

more TAMs, even after two days of execution. The CPU time

of our new algorithm is several orders of magnitude lower

than the CPU times required by the method in [13]; the

execution speed-up factor can, in fact, be estimated from the

values of E in Table 1 since the newalgorithm takes less than 1

second to execute in each case.
Table 2 presents results for SOCs p34392 and p93791. The

values of T shown for p34392 are for three TAMs. (For four

TAMs, the ILP method of [13] did not provide a solution,

even after two days of CPU time.) For p34392, we reach the

optimum (lower bound) testing time of 544,579 cycles at

W ¼ 32. This lower bound corresponds to the time taken to

test the bottleneck core, Core 18, when it is supplied with a

TAM width equal to its highest Pareto-optimal point. An

expression for this lower bound on the system testing time

for an SOC was derived in [4]. The ILP/enumeration-based

method requires a total TAM width of 40 to reach this lower

bound. Note that the values of E do not increase mono-

tonically with W because the time taken by the ILP tool to

solve the NP-hard problems in [13] varies significantly with

the problem instance; different width partitions for the

same W value result in widely varying CPU times. In

Fig. 14, we present the test schedules obtained for p34392
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Fig. 13. The normalized cost function C for (a) � ¼ 0:5 and (b) � ¼ 0:75 for SOC p21241.

Fig. 12. Relationship between (a) T and W and (b) M and W for SOC p21241.



for W ¼ 32 to further illustrate the difference between the
way TAM width is allocated to cores by the method of [13]
and by the new algorithm. The numbers between 1 and 19
in the rectangles of Fig. 14 denote cores.

The new testing times for p93791 (the largest example

SOC having the most cores) are on average 8 percent higher

than the testing times obtained using the method in [13]. A

careful study of the test schedules of Table 2 and the

number of I/Os, test patterns, and scan chain lengths of the

cores in p93791 reveals that the vast differences between the

test data requirements of the cores make it difficult for the

proposed algorithm to optimize the system testing time

using only a single value of p for all cores. We therefore

added an additional heuristic to our algorithm to better

allocate TAM resources to cores based on their test data

volume. Rectangles for cores that have higher test data

volumearepackedusing a lower value of p. Significantly, this

newheuristic resulted in a further decrease in testing time for

W ¼ 32. The new values of T new and �T for W ¼ 32 are as

follows: W ¼ 32: T new ¼ 940; 916, �T ¼ þ5:99%. The new

decreased testing time for W ¼ 32 motivates further inves-

tigation into how the value of p affects testing time for each

core and how it should be tailored to the test data needs of

each individual core for larger SOCs such as p93791.
Next, Table 3 presents results on integrated wrapper/

TAM cooptimization and constrained test scheduling for the

four example SOCs. We considered all possible integer

values of the parameters p and d in the range 1 � p � 10,

0 � d � 4, and tabulated the best results. We first present a

lower bound on the testing time for an SOC, given the test

data for its cores.

Lower bound. A lower bound on the testing time for an

SOC for total TAM width W is given by
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Results for d695 and p22810

TABLE 2
Results for p34392 and p93791

Fig. 14. Test schedules for p34392 using [13] and the new method

(figures not drawn to scale).



max max
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TiðWmaxÞ;
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N

i¼1

Tið1Þ

 !

=W
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:

Intuitively, this lower bound is derived by taking the
greater of 1) the lower bound on testing time for the largest
core and 2) the sum of the testing times of all the cores
connected toaTAMofwidth1bitdividedbyW .Expression2)
assumes that no idle time is lost in the wrapper scan chains
and that rectangle packing is perfect (no idle time on TAM
wires). Lower bound values on the testing time for each SOC
for several values ofW are presented in Table 3.We compare
the testing times obtained using nonpreemptive and pre-
emptive scheduling. Note that the testing times obtained for
nonpreemptive scheduling are slightly different from the
testing timeshown inTables 1and2.This is becauseweuseda
simpler initial version of TAM_schedule_optimizer to obtain
the test schedules presented in Tables 1 and 2. In this simpler
version of the algorithm, rectangle insertion in idle-time was
not performed. For preemptive testing, the value of
max preemptsðiÞ (see Line 11 of Fig. 5) was set to 2 for the
larger cores. Preemptive scheduling obtains lower or equal

testing times in most cases. However, in a few cases,
nonpreemptive schedules are shorter. This is because each
preemption adds minfsi; sog cycles to the length of a test,
which can increase the overall SOC testing time for SOCs
having a large number of short tests that are preempted
several times. A careful investigation of the effects of
preemption and the use of the max preemptsðiÞ parameter
considering test lengths is therefore warranted. For p34392,
we present testing time results only for W � 32. At W ¼ 32,
the testing time for p34392 reaches the lower bound of
544,579 cycles.

In Table 3, we also present the testing times obtained
with power-constraints. We assigned a hypothetical power
value Pi to the test for each Core i based on the number of
test data bits per test pattern for Core i. The value of Pmax

was set to maxifPig for test scheduling. Intuitively, this
results in a test schedule in which the test with the
maximum power consumption is not scheduled concur-
rently with any other test. The increases in testing times for
power-constrained scheduling reflect this concurrency
constraint. The CPU time of our new algorithm is several
orders of magnitude lower than the CPU times required by
the method in [13] since the new algorithm takes less than
1 second to execute in all cases.

Next, Table 4 presents results on identification of TAM
widths for tester data volume reduction. We present the
minimum values of T andM obtained for the four SOCs, as
well as the values ofW at which they occur. To illustrate the
process of identifying TAM widths, we then present the
values of Cmin and the resulting effective TAM widths We

obtained for several different values of �. Finally, the
corresponding values of T and M obtained for these values
of We are shown. It is clear from Table 4 that the system
integrator can trade off testing time with tester data volume
by varying � between 0 and 1. For example, for SOC p22810,
the minimum value of T (140,222 cycles) is achieved at
W ¼ 63. However, theminimumvalues ofM (7,377,480 bits)
is actually achieved at W ¼ 44. By setting � ¼ 0:3, the
system integrator obtains a TAM width of 48 bits, at which
T ¼ 164; 420 cycles and M ¼ 7; 892; 160 bits.
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Wrapper/TAM Cooptimization and Test Scheduling

TABLE 4
TAM Widths for Test Data Volume Reduction



8 CONCLUSIONS

In this paper, we have presented a new technique based on
rectangle packing for test wrapper and TAM cooptimiza-
tion, test scheduling, and tester data volume reduction for
SOCs. TAMs have been tailored to the test data needs of
cores through the exclusive use of Pareto-optimal widths.
We have also presented several novel heuristics that
minimize the idle time on TAM wires, thereby leading to
a fast and efficient algorithm for TAM width allocation and
test scheduling. The new rectangle packing algorithm is
scalable for large industrial SOCs and completes in less than
1 second of CPU time. This represents several orders of
magnitude improvement over the exact methods for TAM
optimization presented in earlier work. Finally, the pro-
posed approach allows the system integrator to determine
an SOC-level TAM width to trade off testing time with
tester data volume.
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