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TESTS AND ASYMPTOTIC NORMALITY FOR MIXED 
BIVARIATE MEASURE 

Rachid Sabre 

1. INTRODUCTION 

Consider a pair of random variables ( , )X Y  whose joint probability measure is 
the sum of an absolutely continuous measure, a discrete measure and a finite 
number of absolutely continuous measures on some lines (called jump lines): 

( , ) 1 ( , )1 2 1 1
=1 =1

= ( , ) ( ) ,
'q q

'
j i u a u bj j i i

j i

d f x y dxdy a u         (1) 

The motivation for the choice of such model is illustrated through the concrete 
example that we study in the last section. This example concerns the study of struc-
tural fissure of the agricultural soil. On a homogenous soil, measures of the resis-
tance variable X  and the humidity variable Y  are taken on several locations at a 
depth of 30cm. The measurement values are distributed according to a continuous 
law, except in certain locations where the experimentalist finds small galleries where 
measurement values of resistance and humidity decrease (the presence of jumps). 
When the measures are made in places where the passage of tractors is frequent, 
the variable Y  becomes linear with respect to the variable X  and their measures 
follow a new distribution noted i  (the presence of some measures continuous on 
the lines determined by the frequent passages of tractors). 

In Sabre 2003, an asymptotically unbiased estimates of the continuous  
part density f  is constructed from a finite number of observations of two-
dimensional  -distributed random variables ( , ).X Y  Indeed, in the neighbor-
hood of the jump points and on the jump lines, is chosen the double kernel method 
using four windows satisfying same conditions. The same technique is used to 
estimate the amplitude of the jump points ja  and to estimate the densities i  of 

the jump lines. 
For these estimates it is assumed that we know exactly the jump line and  

the jump points 1 2( , )j j   are unknown but can be localized in a block 
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1 1 2 2[ , ] [ , ].j j j j     The block is assumed sufficiently small to contain only one 

jump point. The last assumption is not easy to satisfy in practice. Indeed, in order 
to determine these blocks, several samples must be taken which is impossible in 
some cases. 

This work aims at finding a resolution to this problem. Its goal is to give a  
statistical test in order to check if any pair ( , )x y  is a jump point (ie. if 

1 2( , ) ( , )j jx y   ). For that, we show the limit theorems for the amplitude esti-

mate given in Sabre (2003). To achieve that, we first establish the optimal rates of 
the convergence for the variance of the amplitude estimate '̂ ja  and for the vari-

ance of the density estimates on jump lines ˆ
i . 

This paper is organized as following: the section 2 gives some preliminaries 
about estimations of f , ja  and i . The section 3 is devoted to the study of the 

rates of convergence for the variances of the estimates '̂ ja  and ˆ
i  (theorems 3.1, 

3.2). The section 4, presents the limits theorems for these estimates '̂ ja  (theorem 4.1 

and corollary 4.1) that we use for studying some tests on the existence of the jump 
points. The section 5 is reserved to prove the theorems. In the section 6 we study a 
concrete example where we apply the statistical tests proposed in section 4. 

2. THE ESTIMATION AND THE OPTIMAL RATES OF CONVERGENCE 

Suppose that we have n  observations 1 2 2 2( , ),( , ), ...( , )n nx y x y x y  independ-
ent identically distributed (iid) from the random variables ( , )X Y  for which the 
joint probability measure, ,  is defined in (1). The numbers q  and 'q  are as-
sumed nonnegative integers and known. f  is the density of the continuous vari-
able which is assumed to be a nonnegative uniformly continuous function. The 
real positive number ja  is the amplitude of the jump at 1 2( , )j j   and is assumed 

unknown. The densities i  are nonnegative uniformly continuous functions as-

sumed unknown. The coefficients of the lines ia , ib  are real numbers assumed 
unknown.   is the Dirac measure. Suppose that the jump points don’t belong to 
the jump lines (ie. 2 1j i j iw a w b   for all i  and j ). 

2.1. Estimation of the continuous part density 

In order to estimate the density f , Sabre (2003) has assumed, that any jump 

point 1 2( , )j j   can be localized in a small block 1 1 2 2[ , ] [ , ].j j j j     Thus, the 

estimate of the density ( , )f x y  purposed is different according to the position of 
( , )x y : 
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( , )= ( ) ( ) ( , )n n n n

R

g x y S x u R y u f u u du du   (2) 

where 

=1 1 1 2 2= ([ , ] ) ( [ , ])q
j j j j jA R R B         

2={( , ) {1,..., }: = }.'
i iwith B x y R such as i q y a x b     

The kernel K  is defined by 1 2( , )= ( ) ( )K u v K u K v  with 1K  and 2K  two con-

tinuous, even, decreasing kernels such that: 2 ( ) < =1,2iy K y dy i . The 

smoothing parameter nh , converges to zero and 2
nnh  converges to the infinite, 

where: 

(2) (2)
(2) (1) (3) (4)

(1) (1)

(2) (2)

(1) (1)

( ) ( ) ( ) ( )

( )= ( )=

1 1

n n
n n n n

n n
n n

n n

n n

M L
W z W z W t W t

M L
S z and R t

M L

M L

 

 
 

The windows functions are defined as follows:  

(1) (1) (1) (1)( )= ( )n n nW t M W tM  ; (2) (2) (2) (2)( )= ( )n n nW t M W tM  
(3) (1) (3) (1)( )= ( )n n nW t L W tL  and (4) (2) (4) (2)( )= ( )n n nW t L W tL  

where (1) (2) (1), ,n n nM M L  and (2)
nL  are nonnegative real sequences satisfying:  

( ) ( ) ( ) ( ); ; 0; 0;r r r r
n n n n n nM L M h L h     

(2) (2)

(1) (1)0 and 0n n

n n

M L

M L
   

The function ( )iW  is a nonnegative, even, integrable function vanishing out-

side the interval [ 1,1]  such that 
1 ( )

1
( ) = 1iW x dx

 , = 1, 2,3,4i . Moreover ( )iW  

satisfying the following equalities: 
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 converge to zero, for example 

2
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2

1
( ) = exp

2
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x
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. 

2.2. The amplitude jump estimate and the density on jump line estimate 

The estimator purposed is defined as follows: 


=1

1
( , )= , ,

(0,0)

n
i i

n

i n n

x x y y
a x y K

nK  

    
 

  the smoothing parameter n  satisfy 

0;n nn    and 2 0nn  . It is shown that  ( , )na x y  is an asymptotically 

unbiased and consistent estimate of ( , )a x y  defined by:  

1 2

1 2 00 0

0          if ( , ) = ( , ) = 1,...,
( , )=

       if ( , )= ( , ); 1
j j

j j j

x y for all j q
a x y

a x y j q

 

 

    
 

In order to estimate the density, i , it is given that the following estimator: 

 1 2
1 2

=12

1 1
( , )= ,

(0)

n
i i

i '' ''
i nn n n

x y
K

K hnh h h

 
  

  
   

  where 0''
nh  ; 0'

nh  ; 

0n
''
n

h

h


 ; nnh  ; ''

nnh   and 2' ''
n nnh h  . Then it is shown that  1 2( , )i    

is an asymptotically unbiased and consistent estimate of 1( )i   if 2 1= i ia b   . 

3. THE OPTIMAL RATES OF CONVERGENCE 

In this section we establish that precise asymptotic expressions for the vari-

ances of the amplitude estimate  ( , )na x y  and of the density estimate  1 2( , )i   . 
The following theorems give optimal rates of convergence that we will use in the 
sequel. 
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Theorem 3.1 Let ( , )x y  be an element of 2R . 

1) If ( , )x y  is neither a jump point nor an element of jump lines (ie. if 

1 2( , ) ( , )j jx y w w  and i iy a x b   i  j ), then 

2 2
2

1 2 1 22

1
ˆ( ( , ))= ( , ) ( , ) .

(0,0)
n nVar a x y f x y K t t dt dt o
n nK

  
   

 
  

2) If ( , )x y  is a jump point (ie. 1 20 0
( , ) = ( , )j jx y w w ; 01 j q  ) 

0 1
ˆ( ( , ))= .

'
ja

Var a x y o
n n

    
 

 

3) If ( , )x y  belongs to one jump line (ie. 
0 0

= i iy a x b  with 01 i q  ), then 

 20
1 22 0

( )
( ( , )) = ( ) ( ) .

(0,0)

in n
n i

x
Var a x y K z K a z dz o

n nK

     
   

 

Theorem 3.2 Let ( , )x y  be an element of 2R . 

1) If ( , )x y  belongs to one jump line: 
0 0

= i iy a x b , then  


00

1 1
( ( , ))= ( ) .ii

n n

Var x y x o
nh nh

 
 

    
 

2) If i iy a x b   and 1 20 0
( , ) = ( , )j jx y w w , then 

 2
12 20

1 1
( ( , ))= (0) .ji ' '

n n

Var x y a K o
nh nh


 

  
 

 

3) If i iy a x b   and 1 20 0
( = ; )j jx w y w , then  

 2
1 2 1 22

1

( ( , ))= ( , ) ( , ) .
(0)

n n
i '' ''

n n

h h
Var x y f x y K t t dt dt o

nh K nh


  
  

 
  

4. LIMIT THEOREMS 

Denote the rate of the convergence of the variance of ˆ ( , )na x y  by: 
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Theorem 4.1 Let ( , )x y  be an element of 2R , then  

1/2

ˆ ˆ( , ) ( ( , ))
(0,1),

( ( , ))
n n

n

a x y E a x y
N

U x y

 
  

where (0,1)N  is the standard gaussian random variable. 
 

Corollary 4.1 Let ( , )x y  be an element of 2R , then. 

1) If 1 2( , ) ( , )j jx y w w  and i iy a x b  , then 

1/2

2 2 2 1/2
1 2 1 2

ˆ ( , ) ( , )
(0,1)

ˆ( (0,0) ( , ) ( , ) )n

a x y a x yn
N

K f x y K t t dt dt 

   
 

  
 

2) If 1 20 0
( , ) = ( , )j jx y w w , then 

1/2
2 1/2

ˆ ( , ) ( , )
(0,1).

ˆ( (0,0) ( , ))
na x y a x y

n N
K a x y

 



 

4.1. Statistical test 

Let ( , )x y  be an element of 2R  not belonging to any jump line (ie. 

i iy a x b   for all i ). In order to test if ( , )x y  is a jump point, we consider the 

null hypothesis 0H : ( , )x y  is not a jump point (ie. ( , )= 0a x y ). 

The alternative hypothesis 1H  is: ( , )x y  is a jump point. Under 0H , we have 

1 2( , ) ( , )j jx y w w  and .i iy a x b   We calculate 
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1/2

2 2 2 1/2
1 2 1 2

ˆ ( , )
=

ˆ( (0,0) ( , ) ( , ) )n

a x yn
L

K f x y K t t dt dt 

  
 
  

. 

If L  belongs to /2 /2[ ; ]Z Z   we accept the hypothesis 0H  (ie. ( , )x y  is not 

a jump point). If not, we conclude that ( , )x y  a jump point. 

5. PROOFS 

5.1 Proof of the theorem 3.1 

With the same arguments used to show the equality (16) in sabre (2003), we 
can show that:  

1 2 3 4ˆ( ( , ))= ,Var a x y H H H H where     

2 1 2
1 1 2 1 22

1
= , ( , )

(0,0) n n

x z y z
H K f z z dz dz

nK  

  
 
 

  

1 22
2 2

=1

1
= ,

(0,0)

q
j j

j
j n n

x w x w
H a K

nK  

  
 
 

  

2
3 2

=1

1
= , ( )

(0,0)

q
i i

i
j n n

x a u bx u
H K u du

nK


 

   
 
 

  

2
4 2

1
= ,

(0,0)
i i

n n

x x y y
H E K

nK  

   
  
   

 

Write 
2

2
1 2= ( ) * ( , )

(0,0)
'n

n
H K K f x y

nK 


  where 

2 1 2
2

1 2 2
1 2 1 2

1
,

( , ) =
( , )

n nn'

n

t t
K

K t t
K r r dr dr


 

 
 
 


. 

Since the function 
2

2
1 2 1 2

( , )
( , )

( , )

K a b
a b

K t t dt dt



 is a Parzen kernel, * ( , )'

n
K f x y  

converges to ( , )f x y . Thus, 

2
1 1 2 1 22

1
= ( , ) ( , )lim

(0,0)n n

n
H f x y K t t dt dt

K
  (5) 

In order to bounding 2H , 3H  and 4H , we study the following cases: 



 R. Sabre 122 

a) First case: If 
0 0

= i iy a x b  

In this case, we have 1 jx w  or 2 jy w  for all 2 jy w . Therefore, we get  

2

2 2
2 1 24 2 2

1 1 1 1
= sup ; .

n nn n n

n
H O K K

   

     
            

 (6) 

On the other hand, the expression of 3H  can be written as the following sum:  

3 = ,H A B where  

2 2 0
1 22 2 0

1 2

( )1
= ( )

(0) (0)

i

i
n n

a x ux u
A K K u du

nK K


 

  
       

  

2 2 0 0
1 22 2

1 20

1
= ( )

(0) (0)

q
i i i i

i
i i n n

a x b a u bx u
B K K u du
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Since the function 

2 2 0
1 2

2 2
1 2 0

1
( )=

( ) ( )

i
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n i

a zz
K K

z K z
K z K a z dz



 



  
       


 is a kernel, we get 

2 2
1 2 0

2 20
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( ) ( )
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(0) (0)

i

i
n n

K z K a z dzn
A x
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Showing now that = 0lim n
n

n
B


 . Indeed, we split the integral of the expres-

sion of B  as follows: 

0 0
0 0

0 0 0 0
0

=
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2 2 0 0
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Since 0x u   and 
0 0

0 ] , [ ,i i i ia x b a u b u x          it is obvious that 

2 2 0 0
1 2

1 i i i i

n n n

a x b a u bx u
K K

  

    
       

 converges to zero. The kernels 1K  and 

2K  are bounded, then we obtain 1
n

n
Z


 converging to zero. Same arguments used 

to see that 3
n

n
Z


 and 5

n

n
Z


 converge to zero. We can bound 2

n

n
Z


 as follows: 
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t x xn n
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2K  being uniformly continuous on [ , ]x x   , then there exists 

[ , ]t x x     such that 

2 20 0 0 0
2 2[ , ]sup =

i i i i i i i i

t x x
n n

a x b a t b a x b a t b
K K     

         
            

. Since the 

numerator of the last expression is not vanishing, it converges to zero. On the 

other hand, since 2
1

1
( )i

n n

x u
K u du

 





 
 
 

  converges to 2
1( ) ( )i x K t dt  , we ob-

tain 2
n

n
Z


 converging to zero. Same arguments used to prove that 4

n

n
Z
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verges to zero. Consequently, = 0lim n
n

n
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 . Thus from (7), we have 

0 0

2
1 2

3 2

( ) ( ) ( )
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(0,0)

i i

n n

u K z K a z dzn
H
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From (5) and (6), we obtain 1 0
n

n
H


  and 2 0

n

n
H


  Since 

2
4 2 2

1
= , 0

(0,0)
n i i

n n nn
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H E K
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, we get 

2
1 20 0

2 2
1 2

( ) ( ) ( )
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(0) (0)

i in n
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n nK K
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b) Second case: If 1 20 0
( , ) = ( , )j jx y w w  

2 2
4

1 1 2 20 0 0
2 1 22

0

1 1
= .

(0,0)

' q
j j j j j'n

j
j j n n n n

a w w w w
H a K K
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= .lim

'
j

n
nH a


 (9) 

Since 1 20 0
( , ) = ( , )j jx y w w , then i iy a x b   for all i . 

1 12 20 0
3 1 22
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1
= ( )
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j j i i
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w u w a u b
H K K u du
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Using the same bounds shown to prove = 0lim n
n

n
B


 , we get that 3nH  con-

verges to zero. From (8) and (9), we obtain 0 1
ˆ( ( , ))= .

'
ja

Var a x y o
n n

   
 

 

 
c) Third case: If i iy a x b   and 1 2( , ) ( , )j jx y w w  ,i j  

Using the same arguments that show = 0lim n
n

n
B


 , we get 32 0.

n
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22 = 0lim n
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1
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n nVar a x y f x y K t t dt dt o
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  From the 

asymptotic expressions of the variance, follows the result of the theorem. 

5.2 Proof of the theorem 3.2 

Consider the following estimate 

1 2
1 2

=12

ˆ 1 1
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(0)
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i n n n
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a) First case: If 
1 1

= i iy a x b , then 1 2( , ) ( , )j jx y w w  for all j. 
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1 2 3 4
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The second term of the right handside of expression of the variance is  
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Since 1 jx w  or 2 jy w , it is easy to obtain 2
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The third term of the right handside of expression of the variance is 
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2 2
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The functions 2K  and i  are continuous and bounded, we have 
2
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3
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c) Third case: If 1 20 0
( , ) ( , )j jx y w w  and i iy a x b   
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. Then, 
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5.3 Proof of the theorem 4.1 

Denote by 1/2 =1

ˆ ˆ( , ) ( ( , ))
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n nii
n

a x y E a x y
Z Z

U x y

    where 
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1 1 1
ˆ= , [ ( , )]

(0,0) ( , )
i i

ni n
n n n

x x y y
Z K E a x y

nK n U x y 

      
   

 

Showing that for some > 0 , 
2

2
=1

( ( ))
n

n ni i
Var Z E Z





    converges to zero. 

Indeed, due to the fact that the sample is iid, we obtain  

1/21 1
ˆ( )= , ( , ) ( ( , )) = 0.

(0,0)
i i

n n ni
n n

x x y y
E Z EK Ea x y U x y

nK n 
   

     
 

Thus, we have  

1 2 2
2 2

1 1
ˆ( )= ( , ) , ( , )

(0,0)
i i

ni n n
n n

x x y y
Var Z U x y EK E a x y

n K  
    

     
 

1( , ) 1 1
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ni n
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Var Z Var a x y o

n n n

    
 

 

On the other hand, since the sample is iid, we have 
2 2

1=1
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n
ni ni

E Z nE Z
   , 

then  
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Putting 1
1=

n

x t
z




 and 2
2=

n

y t
z




 in the integral of 1S , we obtain 

2
22

1 1 22

1 2 1 2

1
ˆ= ( , ) ( , )

(0,0)

( , ) . ,

n
n
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nU
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nnK

f x z y z dz dz Thus






 

 


 

  

  

2
22

2
1 1 2 1 22 2

( , )
( , ) .

(0,0)
n

n

U n f x y
S K z z dz dz

n K











   

a) First case: If 
0 0

= i iy a x b  From the definition of nU , we have 

22
2 22 2

0
2 1 /2 2

( )
= =lim lim

(0,0)

in

n nn n

xU n n

n K

 






 





 

 
  

 
 

b) Second case: If 1 2( , ) ( , )j jx y w w  and i iy a x y   

From the expression of nU , we obtain  

1 22
22

1 2 1 22

1
= ( ) ( , ) ( , )

(0,0)
n

n
n

U n
n f x y K t t dt dt
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Since nn  , then 

1 22

2
n

n
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  . 

c) Third case: If 1 20 0
( , ) = ( , )j jx y w w   

1 2 /22 1
2

2 20
= ( ) .'n

j
n n

U n n
a

n


 

 

  
 Then, 

1 22

2
n

n

U n

n






 

  . Therefore 1 0S  . Using 

the same arguments, we show that 2S  and 3S  converge to zero. Therefore 

2
1 0nnE Z

  . From Liapounov's theorem, we have (0,1).
( )

n

n

Z
N

var Z
  

5.4 Proof of the corollary 4.1 

Beginning by the following decomposition: 
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ˆ ˆ ˆ ˆ( , ) ( , ) = ( ( , ) ( ( , ))) ( ( ( , )) ( , )).n n n na x y a x y a x y E a x y E a x y a x y      

The second term of right hand side of the last equality can be written as follows:  

1
ˆ( ( , )) ( , )= , ( , )

(0,0)
i i

n
n n

x x y y
E a x y a x y EK a x y
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1 2 1 2
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(0,0) n n
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K f z z dz dz
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                  1 2

=1

1
, ( , )

(0,0)

q
j j'

j
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x w y w
a K a x y

K  

  
  

 
  

                  11
1 1

=1

1
, ( )

(0,0)

'q
i i

i
i n n

y a v bx v
K v dv
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                  1 2 2=H H H


   

Showing that 2
1 = ( )nH O  , 2

2 = ( )nH O   and 2
3 = ( )nH O  . Indeed, 

1 2
1 1 2 1 22 2

1 1
= , ( , )

(0,0) n nn n

x z y z
H K f z z dz dz

K   

  
 
 

 . Since K  is a kernel, 

12

1
= (( , )lim

n n

H f x y


 

If 1 2( , ) ( , )j jx y w w  , we have 

2 1 22

1 1 1 1 1
= .

n n n nn

H O K K
   

    
         

 (14) 

Since 1
1 1

n n

K
 

 
 
 

 converges to zero, 2
2 = ( )nH O  . 

If 1 20 0
( , )= ( , )j jx y w w  , we have 1 2

2

0

1
= , .

(0,0)

q
j j'

j
j j n n

x w y w
H a K

K  

  
 
 

  

Therefore 2
2 = ( )nH O  . 

Let us now show that 2
3 = ( )nH O  . Indeed, as i iy a x b  , we assume that 
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< i
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y b
x

a


 (same arguments in the case where > )i

i

y b
x

a


 and we split the inte-

gral, in the expression of 3H  as follows: 
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where   is a nonnegative real sufficiently small for having < i

i

y b
x

a
 


  . We 

denote the five terms of the last equality: 1, 2, 3, 4I I I I  and 5I . Since the functions 

1K  and 2K  are decreasing and even, we can write 

11
1 1 2 1 12

] , [ ] , [1 1

1
sup sup ( ) .i i

i
v x v xn nn
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as above, it is shown that 

3 1 2 5 1 22 2

1 1 1 1 1 1
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On the other hand for all v belonging to [ , ]x x    we have i iy a v b  . 
Therefore we have  

1
2 2 1 1 12

[ , ]

1
sup ( ) .i i

i
v x x n nn

y a v b x v
I K K v dv

 


 



  

     
    

   
  

Since 1
1

n n

x
x K

 

 
  

 
 is a kernel, we conclude that 2 2

1 1
= .

n n

I O K
 

  
     

  

In the same manner we increase the expression of 4I . Thus we obtain 
2

3 = ( ).nH O    

Then 2ˆ( ( , )) ( , )= ( ).n nE a x y a x y O   From theorem 4.1, we deduce the result of 
this corollary. 

6. NUMERICAL APPLICATION 

In this section, we study a concrete example which validates theoretical results. 
It is to study the structural fissure of the agricultural soil. We observe two de-
pendent variables X  and Y . The variable X  presents the resistance of soil 
measured by using “penetration” method at several locations at same depth of 
30cm. The variable Y  is the humidity of soil measured in the laboratory on sam-
ples taken at same locations. Observing ( , )X Y  at 1000 locations, we have 1000 

observations: 1 1 2 2 1000 1000(( , ),( , ), ...( , )x y x y x y , of the pair ( , )X Y . Knowledge 
of the conjoint density ( , )f x y  of the pair ( , )X Y  permits, for example, to cal-
culate the probability that the resistance and the humidity be between respectively 
two critical values ( 1r , 2r ) and ( 1h , 2h ). These critical values determine whether 
to drain the ground or leave without drainage. So it is interesting to estimate the 
conjoint density f . Then, we calculate the kernel density: 

2
=1

1
( , )= ,

n
i i

n
i n nn

x x y y
f x y K

h hnh

  
 
 

  

where the kernels are chosen 1 2( , )= ( ) ( )K x y K x K y  with 
2

1 2
1

( ) = ( )= exp
22

x
K x K x



 
 
 

, =1000n  and 3/5=nh n . The kernel estimate 

function is presented by figure 1 in the annexe. 
From this figure, we note that there are a jump point localized in the block 

[1, 2] [3.5,4.5]  and a jump line passing through points (0,7)  and (1,6) . Then we 
propose for its joint probability measure the following model: 
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1 ( , ) ( , )11 21
= ( , ) ( ) .u au bd f x y dxdy a u        

The jump point: 11 21( , )w w  is localized in the block [1, 2] [3.5,4.5] . From the 
fact that (0,7)  and (1,6)  are belonging to the jump line, it is easy to see that the 
equation of the jump line is: = 7y x  . In order to calculate the estimators 
ˆ( , )f x y , ˆ ( , )na x y  and ˆ( , )x y , defined in the section 2, we must choose the 

spectral windows.This amounts to choose (1)W , (2)W , (3)W  and (4)W  satisfying:  

(1) (1) (2) (2)
(1) (1)

1 1
( )= ( ) ,n n

n n

W M x W M x x
M M

 
   

 
 

(3) (1) (4) (2)
(1) (1)

1 1
( ) = ( ) ,n n

n n

W L x W L x x
L L

 
   

 
 

To simplify, we take (1) (3)=W W  and (2) (4)=W W  with (1) (1)=n nM L  and 
(2) (2)=n nM L . Choosing (1) = p

nM n  and (2) = q
nM n  with 0 < < < 3/5q p , 

3/5=n n  . These parameters satisfy the hypothesis given in § 2.1 and § 2.2. 

First, choosing (1)W  as a nonnegative, even and integrable function. We pro-
pose: 

(1)

64 64
          if [ 1, 1/8[

63 63
8/9                    if [ 1/8,1/8]

( )=
64 64

        if ]1/8,1]
63 63

0                        otherwise

t t

t
W t

t t

    


 

  




 

It is easy to show that (1)( ) =1W t dt . 

Choosing now a nonnegative, even and integrable function (2)W  such that 
(1)W  and (2)W  satisfying (3). We propose:  

(1)
(1)

(2)

(2)
(2)

(1)

            if [ 1/8,1/8]

( )= 4/7 1           if [ 1, 1/8[ ]1/8,1]

0                              otherwise

n

n

n

M
W t t

M

M
W t t

M
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1/8 1/8 1(2) (2) (2) (2)

1 1/8 1/8
( ) = ( ) ( ) ( ).W t dt W t dt W t dt W t dt



 
      

(2)
1/8(2) (2)

(1) 1/8
( ) = 1 ( )nM

W t dt W t dt
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  . From the definition of (2)W , we  

have 
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  . Putting 
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M
u t

M
, we have 
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Since 
(1)

(2)
n

n

M

M
 , for n  large enough we have 

(1)

(2) >1n

n

M

M
. Thus, we obtain  

(2)
1/8 1(2) (1)

(1)1/8 0
( ) = 2 ( ) .n

n

M
W t dt W u du

M

 
 
 

   (1)W  being even and (1)( ) =1W t dt , we 

deduce 
(2)

1/8 (2)
(1)1/8

( ) = .n

n

M
W t dt

M

 
 
 

  Thus, (2)( ) =1W t dt . 

Let us show that (3) is satisfied. Indeed, let t  a real number belonging  

to (1) (1)

1 1
,

n nM M

 
 
 

, since 
(2)

(1)
n

n

M

M
 converges to zero, for n  large enough, we  

have 
(2) (2)

(2)
(1) (1)1/8 < < 1/8n n

n
n n

M M
M t

M M
    . Therefore, from (16), we have: 

(1)
(2) (2) (1) (2) (1) (1)

(2)( )= = ( ).n
n n n

n

M
W M t W M t W M t

M

 
 
 

 

The graphic (fig 2) of the estimate ˆ( , )f x y  defined in the section 2 is given in the 
annexe. 

6.1 Statistical Tests 

After several attempts testing points in the block [1, 2] [3.5,4.5] , we found a 
jump at the point: ( , )= (1.5,4)x y . Indeed, we calculate L  defined in § 4.1, we 
obtain: 

1/2

2 2 2 1/2
1 2 1 2

ˆ ( , )
= = 3.954

ˆ( (0,0) ( , ) ( , ) )n

a x yn
L

K f x y K t t dt dt 

  
 
  

 

From the table of the standard gaussian with à level of signification = 0.05 , we 
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read the value: /2 =1.96.Z  Since /2 /2[ , ]L Z Z   , we conclude that (1.5,4) is 

a jump point. 
For any other point the test concludes that it is not significantly a jump point. 

To illustrate this, taking, for example, ( , )= (2,4)x y . Calculation of L  at 

( , )= (2,4)x y  gives = 0.012L . Since /2 /2[ , ]L Z Z   , we conclude that (2,4) 

is not a jump point. 

7. CONCLUSIONS 

We have presented in this paper some results about limits theorems of density 
estimate when the measure has certain mixture. A statistical test for detecting the 
jump point is given and applied to study the humidity and resistance of agricul-
tural soil. this work could be applied to other cases when the distribution contains 
points of discontinuity that risks being badly treated by sharing interval distribu-
tion or by using Monte Carlo method. The proposed methods can be extended to 
other applications in several sectors. Indeed, the control of the quality for a prod-
uct manufactured in the auto industry use the measure of two variables: the con-
sumption of diesel and the pollution. Their joint distribution can follow a con-
tinuous law except some observations which are taken when there is fog and 
reached the constant value (point of the jump). One example in economics, it is 
the observation of the variables: taxes on income and purchasing power can have 
a joint distribution contains some point of jumps due to exemption (disabled, 
former soldier, ...). In oceanography when we observe, by using a camera placed 
at a certain depth in water, two variables: the length of the fishes and their 
movement speed. The joint distribution may represent some jumps due to the 
acceleration of movement during the passage of a predator. In Astronomy the 
repeated passage of an object preventing the vision of stars (cloud, bird, ...) can 
create a jump of data. This work could be supplemented by the study of optimal 
smoothing parameters using cross validation techniques that have proven in this 
field. 
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Figure 1 – The kernel density of bivariate random variable (X,Y ). 
 

 
Figure 2 – The density estimate ˆ( , )f x y . 
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SUMMARY 

Test and asymptotic normality for mixed bivariate measure 

Consider a pair of random variables whose joint probability measure is the sum of an 
absolutely continuous measure, a discrete measure and a finite number of absolutely con-
tinuous measures on some lines called jum lines. The central limit theorem of the densi-
ties estimates is studied and its rate of convergence is given. A statistical test is developed 
to locate the jump points. An application on real data was conducted. 


