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TESTS AND ASYMPTOTIC NORMALITY FOR MIXED
BIVARIATE MEASURE

Rachid Sabre

1. INTRODUCTION

Consider a pair of random variables (X,Y) whose joint probability measure is

the sum of an absolutely continuous measure, a discrete measure and a finite
number of absolutely continuous measures on some lines (called jump lines):

q g
dp = f(x,y)dxdy + 214/5(501/,@2/.) + Zl¢z ( )5(”1 PRYSE M
J= i=

The motivation for the choice of such model is illustrated through the concrete
example that we study in the last section. This example concerns the study of struc-
tural fissure of the agricultural soil. On a homogenous soil, measures of the resis-
tance variable X and the humidity variable Y are taken on several locations at a
depth of 30cm. The measurement values are distributed according to a continuous
law, except in certain locations where the experimentalist finds small galleries where
measurement values of resistance and humidity decrease (the presence of jumps).
When the measures are made in places where the passage of tractors is frequent,
the variable Y becomes linear with respect to the variable X and their measures

follow a new distribution noted ¢, (the presence of some measures continuous on
the lines determined by the frequent passages of tractors).

In Sabre 2003, an asymptotically unbiased estimates of the continuous
part density f is constructed from a finite number of observations of two-
dimensional g -distributed random variables (X,Y’). Indeed, in the neighbor-
hood of the jump points and on the jump lines, is chosen the double kernel method
using four windows satisfying same conditions. The same technique is used to
estimate the amplitude of the jump points a"/ and to estimate the densities ¢, of
the jump lines.

For these estimates it is assumed that we know exactly the jump line and
the jump points (@, ;,w,;) are unknown but can be localized in a block
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[, B, %[z, B, ;] The block is assumed sufficiently small to contain only one

Jump point. The last assumption is not easy to satisfy in practice. Indeed, in order
to determine these blocks, several samples must be taken which is impossible in
some cases.

This work aims at finding a resolution to this problem. Its goal is to give a
statistical test in order to check if any pair (x, y) is a jump point (ie. if
(x,9)=(@,,,,,)). For that, we show the /it theorems for the amplitude esti-
mate given in Sabre (2003). To achieve that, we first establish the optimal rates of
the convergence for the variance of the amplitude estimate 4'; and for the vari-

ance of the density estimates on juzp lines ¢; .
This paper is organized as following: the section 2 gives some preliminaries
about estimations of [, ﬂ; and ¢@,. The section 3 is devoted to the study of the

A

rates of convergence for the variances of the estimates &', and ¢, (theorems 3.1,

3.2). The section 4, presents the /wits theorems for these estimates 4'; (theorem 4.1

and corollary 4.1) that we use for studying some tests on the existence of the jump
points. The section 5 is reserved to prove the theorems. In the section 6 we study a
concrete example where we apply the statistical tests proposed in section 4.

2. THE ESTIMATION AND THE OPTIMAL RATES OF CONVERGENCE

Suppose that we have 7 observations (x;, ¥,),(x5, ¥,),...(x,, y,) independ-
ent identically distributed (iid) from the random variables (X,Y") for which the
joint probability measure, g, is defined in (1). The numbers ¢ and ¢' ate as-
sumed nonnegative integers and known. f is the density of the continuous vari-
able which is assumed to be a nonnegative uniformly continuous function. The
real positive number a;- is the amplitude of the jump at (@, ;,, ;) and is assumed
unknown. The densities ¢, are nonnegative uniformly continuous functions as-

sumed unknown. The coefficients of the lines «;, &, are real numbers assumed
unknown. ¢ is the Dirac measure. Suppose that the jump points don’t belong to
the jump lines (ie. w, ; # a;w, ; +b; forall 7 and ;).

2.1. Estimation of the continuons part density

In order to estimate the density f, Sabre (2003) has assumed, that any jump
point (@, ;,, ;) can be localized in a small block [« ;, B, ;1%[a,;, 5, ;] Thus, the
estimate of the density f(x, y) purposed is different according to the position of
(%, )
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~ g, )i (x,0)e A
f(X: )_ . .
L) if (x,9) = A

with
1 X—=x; y—,
X’ = _K —Zi—l
yACN) ;”bnz ( R ]
8= [ 8,0 = )R, (5 =1,) 1,y 0, )y )
RZ
where

A:Ui‘:1([a1jaﬂ1/]XR)U(RX[azj',ﬂz/])UB

with B={(x, y) €R? suchas i €{1,...q }: y=a,x+b,}.

The kernel K is defined by K(#,»)=K,(#)K,(») with K, and K, two con-
tinuous, even, decreasing kernels such that: J.HJJZ“K[-(J/)@/<OO i=1,2. The

. 2 . .
smoothing parameter 4,, converges to zero and #h, convetges to the infinite,

where:
MO o
O LA LGOS VA0
‘S‘n (%) = ]\/;(2) dﬂd Rn (l‘) = If(z)
= MO = [0

The windows functions are defined as follows:

Wa)(f) - M<1>W<1>(2‘M(l>) . W@)(f): M@)W/@(z‘M@)
W@(z‘) — L<1)W(3)(Z‘L(1>) and W(4)(f) — L(Z)W(4>(Z‘L(2>)

where MY, MP TV and 1P are nonnegative real sequences satisfying:

MO 1@

MY > 4oy L —+00; M, —0; Lh, —0; —2=—0and —2-—0
MO 1O
n n

The function ") is a nonnegative, even, integrable function vanishing out-
1 . .
side the interval [—1,1] such that Jlle(x)dx =1, 7=1,2,3,4 . Moreover W)

satistying the following equalities:
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-1 1
@ @ O] My —
WA M0 - (MPe)=0 WE}W’W{ 3)

-1 1
@@ GOy =
W (Lﬂ O —-w (Lﬂ H=0 Voe }F,F{ “4)

b, MW ) b1V

1 —x?
K (x)= T exp > |
@2r)?

1 1 1 1
Assume that /?—Kl[ ] and —K, [—] converge to zero, for example

2.2. The amplitude jump estimate and the density on jump line estimate

The estimator purposed is defined as follows:

~ U S| x> o= : .
an(x,y)= K| ———=,=——=|, the smoothing parameter f, satisfy
S Ko & ( 58 J °F s

B, —0;nf8, > and 2B, —0. It is shown that a, (x,) is an asymptotically

unbiased and consistent estimate of «'(x, y) defined by:

0 if (x, ) Z (@, ;,0,,) forall j=1,..,q
a(x,9)=

dy if (%, )= (@0, 51 jy<q

In order to estimate the density, ¢, , it is given that the following estimator:

~ 1 & 1 —-x; A=, " ,
P, (A, 4,)= Z — K 4 ,Xl, 2~ i where 4, >0; 5, —0;
Ky 0) 5= nh,h, b h

n n

’

/y—’,’,—) 0; b, —>o0; nh, —>o0 and nh b, —> . Then it is shown that &-(ﬂq,ﬂz)

n

is an asymptotically unbiased and consistent estimate of ¢,(4,) if 4, =a,4, +b,.

3. THE OPTIMAL RATES OF CONVERGENCE

In this section we establish that precise asymptotic expressions for the vari-

ances of the amplitude estimate ;',,(x, y) and of the density estimate (Aél.(/'iq,ﬂz).

The following theorems give optimal rates of convergence that we will use in the
sequel.
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Theorem 3.1 Lez (x, y) be an element ofRz.

1) If (x,y) is neither a jump point nor an element of jump lines (ie. if
(2, 9)# (wy;,w, ;) and y#ax+0b; Vi V), then
ﬂZ

Var(a'(x, y)) = 7 e 0.0

f(x,J/)J‘Kz(z‘l,z‘Z)dlldz‘z +0£ﬂ” j

n

2) If (x,9) is ajump point ie. (x,2)=(w,, w,, )3 1< jy <)

y a0 (1
Var(a'(x, y))=—+ o(—).

n n

3) If (x, y) belongs to one jump line (ie. y= a; X+ 171'0 with 1<7, <¢"), then

ﬂﬂ)
- ).

~ B, ¢i0 (x) )
Vara (. ) =" [KER)K, (a) 2)dz + (

Theorem 3.2 Let (x, y) be an element ofR2 .
1) If (x, y) belongs to one jump line: y = a; X+ b”o , then
Varl, () =4 <x>+o[i,]-
0 nh, ° nh,
2 If y#ax+b, and (x, y)= (”/1/0 Lo ), then

A _ 1 5 1
Var(,(x, )= ”b—,zajo K (0)+ 0(”}?—,2)

n n

31 y#ax+b and (x=wlb/.0;)/¢w2/.0), then

!

~ b 2 b;
Var(¢,(x, 3)) = — 75—/ (0, D) |K" (41, 1, )dtydt, + 0| =5 |.
nh, K; (0) b

n

4. LIMIT THEOREMS

Denote the rate of the convergence of the variance of @/ (x, y) by:
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2
%Kz(lo’o)f(x’ﬁ i {(Xaj/)¢(‘”1/’”/z/)aﬂd
x[K? (2,1, )y, JEaxE
B, ¢fo<x>
U (x,9)= n K*(0,0) if y=a, x+h,
XJK12 €2 )K22 (”io 2282143,
a,
— if (0, )= (w1 w5 )

Theorem 4.1 Let (x, y) be an element of R?, then

(o, ) = E(@y(x,0)) N
U, (x, )" e

where N(0,1) is the standard gaussian random variable.

Corollary 4.1 Let (x, y) be an element of R, then.

1) If (5, ) # (w5 ) and y#a,x+0b,, then

1/2
= a'(x,y)=a'(x,) N(0,1
(ﬂf ] (K™(0,0).f (3, ) [K? (1,2, )t ) — NOD

2) If (x, y)= (”/1/0 Mo, ), then

”1/2 ‘;;(X>J/> — ﬂ,(X’J’)
-2 Ar 1/2
(K7(0,0)a'(x, »))

— N(0,1).

4.1. Statistical test

Let (x,7) be an element of R® not belonging to any jump line (ie.
y#ax+b, forall 7). In order to testif (x, y) is a jump point, we consider the
null hypothesis H,: (x, y) is not a jump point (ie. a'(x, y)=0).

The alternative hypothesis H, is: (x, y) is a jump point. Under H,,, we have
(5, 9)# (wy;,,,;) and y # a;x +b;. We calculate
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L=l . a(x,) '
Bl)  (KZ0,0)f (e, ) K (41,8, )dtyd,)

If L. belongs to [—Z,,,;Z,,,] we accept the hypothesis H,, (ie. (x, y) is not
a jump poind). If not, we conclude that (x, y) a jump point.

5. PROOFS

5.1 Proof of the theorem 3.1

With the same arguments used to show the equality (16) in sabre (2003), we
can show that:

Var(a'(x, y))=H, + H, + Hy — H,, where

1 2| X7 J 7R
H, = K R 2, )dz, d"
1 ﬂKZ(O,O)'[ [ ) ) J(Ri>32)8244%,
7 X—W,, X—W, .
H, :+Z“/K2 (_1/_2/]
nK=(0,0) = B, B,

B x—u x—aun—0b,
H, =~ OO)ZJ ( 7 j (1)

H, = 21 EZ{K(X_XZ-,}_%]}
7K~ (0,0) B, B,

Ry z{a fj
| g b _\P P
W = —([K*)K, * h - '
rite H, — o 0)(J’ ) f(x,y) where Kﬁ (4,4,)= J'K (1,7, )dridr,

K*(a,b)

Since the function (a,b)—)z—
[K2 (11,1, dt

is a Parzen kernel, Kﬂ” * fx, )

converges to f(x, y). Thus,

F e, )[R (¢, )dt bt 5)

1

n
Jim — H, =
i i K(O 0)

In order to bounding H,, H; and H, , we study the following cases:
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a) First case: If y= a; X+ bl-o
In this case, we have x #w,; or y#w,, forall y#w, . Therefore, we get

1 1 1 1 ’
o Hﬂ— (z}ﬁ—:Kf (zm | ©

n

On the other hand, the expression of 5 can be written as the following sum:

H, = A+ B, where

_ 1 o x—u) a,-o(x—u)
A‘ﬂKf<o>K§<o>jKl[ s, ]KL s, ]@0(”)4”
q 1 x—y a, x—b, —an—0b,
B= K? K| 0 (1)
Zanm)Kj(mj 1( s, j 2( s, ]W) !

i#i
a; <
1A B ).
is a kernel, we get

Since the function 7 — Kﬁ R)=—
"B [KRIK (0, )

S (K R)KS (0, )% ;
T ok v

Showing now that 1im,HwiB =0. Indeed, we split the integral of the expres-

n

sion of B as follows:

@ x—b. —b. > iy i
7 x=& x+& M— 1 +0
B=)" j + I +I P I Y + I
- 7 — — — —
Ll ) o x—e  dxte aj X bj, b aj X bj, b
l#l0 n +n
al» ‘71‘

q
=2+ 2y + 2+ Z, + Z5),
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Since x—##0 and a; X = b"o —au—b#0 Vue]—oo,x—¢g[, it is obvious that

1 o x—u) o %> by —au—b,
—K; K; L 0 converges to zero. The kernels K, and

an ﬂﬂ ﬁﬂ

. n .
K, are bounded, then we obtain — Z, converging to zero. Same arguments used

n

n n n
to see that — Z, and — Z converge to zero. We can bound —Z, as follows:

n n n

p 1 a, x—b, —art—b,
—7, < sup | K| — 0
B, K?(0,0) ref-s,x+e1 B,

| u
K . (u)dn
7 (ﬂ” j’”)

K, being uniformly continuous on [x—g,x+¢], then there exists

' €[x —¢&,x + &] such that

a, x—b, —art—Db, a; x—b, —cz/'—bl-
SUP, (g re)| Ko | = 2} = K| "ﬂ . Since the

numerator of the last expression is not vanishing, it converges to zero. On the

1
other hand, since J._mﬂ_ Kf [X

n

”j@(ﬁ/)du converges to @, (X)J‘Kf (#)dt , we ob-

n

. n . n
tain —Z, converging to zero. Same arguments used to prove that —Z, con-

n n

verges to zero. Consequently, lim ,HOOiB =0. Thus from (7), we have

Ii . 4, (”>IK (K, (ﬂ,“.‘{)d{

row i, K*(0,0)

From (5) and (6), we obtain iHl—>0 and iH2—>O Since

n n

L =P g L[ 22X 20 e get
IBﬂ K (O’O) ﬂn lBﬂ ﬂﬂ

Var(ax, ) ==+ K; (0)K;(0)

n
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b) Second case: If (x, y)= (wl./o ,wz_/o)

. 2 2
a 4 7., Wy, =Wy Wy, —W,
Hy=oy Pyl L | Do TV L e p B T
n nK (O!O) j;ﬁjo ﬂﬂ ﬂﬂ ﬂn ﬂﬂ

Therefore limnH, = a;.o. )

n—>0

Since (x, y)= (w% o ), then y#ax+b, forall 7.

e ”/1,/0 —au—b,
Hy= K2 (0 0)& ZI K; B, @, (#)dn

. n
Using the same bounds shown to prove lim,_»—B =0, we get that #H, con-

n

a 1
verges to zero. From (8) and (9), we obtain IVar(a(x, y))= NE/C 0(—).
7 n

©) Third case: If y#a,x+0b; and (x, y)# (wy;,w,,) Vi, j

. ” ”
Using the same arguments that show lim, ,.—B =0, we get — H; — 0. From
n n

(6), we obtain

. ” _ . 7 _ 1 2
hm,,%ﬂ—jH2 =0 and hm,,_mﬂ—:H4 00 F e, 0[R2t )t

B, : B,
T 00) TG )[R (¢t )t +0( ;

asymptotic expressions of the variance, follows the result of the theorem.

Thus, Var(a(x, y))=

j. From the

5.2 Proof of the theorem 3.2
Consider the following estimate
z - 2’1 X ﬂ’ —Ji M Ui
b b

b

n n

¢4

a) First case: If y= a; x+ /92.1 , then (x, y) # (w, ,,w, ;) forall;.
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Var(§(x, y))= H]'+ H) + H} + H]/

"_
1=

nh'

n

%

n

where K/, / (%, ) =—¢

1

x —

K3 (0)h

nh!

11m—H1

b, K2(0)

n—>0

The second term of the right handside of expression of the variance is

2=

Since x #wy;

The third term of the right handside of expression of the variance is

wAPE al-o(x—ﬂ) p
2 b; @, (u)du

3 =

K2 (0)/9

1

e

H, _[K (O) _[K (1)K (zz)dzldzzj

1
[ )il
Ll “~  Therefore

1

b

b, h

n n

JK (z )Kz (R2)d2,4%,

— Sk

n j=1

S,

J)IK (%1)K (R2)8140%,

X = wlj ] w,;
h

X

n—>0

nK3(0)h

jii|

b!

n

1
2

Zilo

=5+R

Putting

n

1 A

_n_

KR (0) 52

K (0)h,

K (»)K

[k

2 X_'” K2 az.ox+lao”—aﬂ b;
bﬂ ﬁﬂ

2
2

/jflz r
(ﬂj0”7j¢j(x —vh")dy

-
SR Jf (z1,%2)4z19%

*f(x)

or y#w,,,itis easy to obtain limnh, H, =0

J¢ (#)du

=v in the integral of the expression of 5.

(10)

1

12)
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n/y

b’
jK (K> [al.op/y—ﬁj@(x—p/y’)dy. (13)

n

2(0

The functions K, and ¢, are continuous and bounded, we have

lim S = §,(x)[K] ()dv.  From (10), (11) and (13), we obtain
; _9(x) 1
Var(d(x, y) = 7]1@ (£)dt + 0[JJ

b) Second case: if (x, y)= (wl/o , 2/0)

p ”2 a. x—w .\ 1 X =W,
b= ot ¥ S S e 5
K ) 5 b B b

n n

Therefore ﬂb,;zH; —a, K7 (0) . As above, we get that #h H, converges to zero.

' (0) 1
From (10), n/y H converges to zero. Var(¢(x )= Y /?12 +o et
n 7

n n

¢) Third case: If (x, y)# (wl./() ,wz_/o) and y#a,x+0,

nh'
/9,,” H, _)K 20) J(x ,y)IK (%)K (R2)d%,4%,

n

2
nhy o () 1)1 ,(1
~H, < sup| — K —;,—,K —
i K(O)L p(b,f 1[@2}/9/ 5,

nh, A
Thus, lim ;—s0—0 7 z H =0. We show that lim ,—x ;;,,” H, =0. Then,

n n

N /9” /9”
Var(¢;,(x, )) _bK—(O)f( ’])IK (153204143, +0(”b J

5.3 Proof of the theorem 4.1

Denote by Z,= ”(X([J])( E(j 1(/26 ) Z _Z,; where
n X .)}




Tests and asymptotic normality for mixed bivariate measure 127

_ 1 X=X, )i e ! __
Z. = K -—E
y {nK(O, 3 ( ) j . [a, (XJ)]} U o)

2+0
COflVCI‘gCS to zero.

Showing that for some §>0, (Var(Z,))>° )" E|Z

Indeed, due to the fact that the sample is iid, we obtain

_ 1 xxyyl__dx . /2 _
E(Z,) [ﬂK(O’O)EK( ) ) Ea,( J)J(U( ) 0.

Thus, we have

R 1 o X—=x Y=y, 2 A
Var(Z Y=—U (x EK ! L |\—Ea (x
7‘( m) ”2 n ( ,]){KZ(O,O) [ ﬂﬂ > ﬂ” j n( >])J

U 1 1
Var(z,) =2 oD o =Lt o(—).
n " n
On the other hand, since the sample is iid, we have Z;E » 0 e Z, o ,
then
b
1 248 \o4s

E|Z, ") =U;! L k2 o=
(E|Z,[ ") RO SR R

ﬁE(Zﬂ])ZJ”s <8+ S, + 85, where

240 o4s

f(fl ’t2 )dfle‘Z

U, 2 —t y—t 1
| K| 220 2202 1 D E ()
K00 B B ) s

246
1 240
_ x—t J)—h -
= n ; ——Ea,(x, )
2 §+1 Z|K(O O)|2 ) ( ,B” ﬁﬂ j 7
246 246
@, (u x—u y—aun—b .
J ( )z+§ ,] aﬂ(x,y)| du.
|K(0,0)| B, B,
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—7 —7
Putting *h = 2, and Jh %, in the integral of §,, we obtain
25 5
ﬂUﬂ 2 1 R 2+
51: 2+5J‘K(zl’z2)__Eﬂﬂ<X9J)
|nK (0,0)| "

Xf(x_ﬂn%,]_ﬁﬂZZ)d%d{Z. Tbﬂf,

U 2 248 ;
”ﬂﬂz - |Kj;éx0)|JQr§ '“K(%l:%z )|2+5 a4,

a) First case: If y= a; X+ bl-o From the definition of U, , we have

nd

2+0 o 240
2

. U7”2+§_. n? ¢"0(X> 7_
TR |\ o)

b) Second case: If (x, y) # (w;;,w,,) and y#ax+ y;

From the expression of U, , we obtain

1+= 5
U 2ﬂ2+5 : J'KZ o
—A—=( X, t,t,)dtdt

ﬂﬂﬂz (nf3,) K(0,0)f( J) (#1,1,)dndt,
5
HE 248
Since 7, = +©, then —————> +0©.
np,

¢) Third case: If (x, y)= (74/1/0 "”2/‘0)

12 ; 142
U 2ﬂ2+5 , 149 ”6/2 2., 2+6 .
—A——=(a, ) ? . Then, —*————> +o0. Therefore §, =>0. Using
2 Jo 2 > 2 1
”ﬂﬂ ﬂﬂ ”ﬂﬂ
the same arguments, we show that §, and §; converge to zero. Therefore
246 . ' Zn
nE|Zﬂ1| — 0. From Liapounov's theorem, we have — N(0,1).

var(Z,

5.4 Proof of the corollary 4.7

Beginning by the following decomposition:
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a,(x, )= d (%, y) = (a,(x, ) = E(a,(x, ) + (E@,(x, y) = a'(, y)-

The second term of right hand side of the last equality can be written as follows:

1 NN 7|
EK —a(x
K(0,0) ( B, B, ] %)

E(a,(x, y)=d'(x, )=

__ 1 X IR
K(O’O)IK( ) )f(zl,zz)dzldzz

1 9., X =W, — W,
+ Za/.K( L ,J 2/ j—a'(x,)/)
K(03 0) J=1 ﬂﬂ ﬂﬂ

1 & . —aw, —b,
+ ZIK{X a > J A J(Dz(”l)d”l
K(0,0) 73 B, B,

A
=H,+H,+H,

Showing that H,=0(8’), H,=0(f’) and H,=0(f’). Indeed,

r,__ 1 B (Y : ,
—H, = K , ,2,)d2,d%7,. Since K is a kernel,
,3”2 1 ﬂﬂzK(O,O)J. ( B, B, S R1>32)3214%,
1
lim 5 H, = /()
If (o, ) # (wy,w,) , we have
Ly, =0 Lx, HLK{LJ | 4
ﬂﬂ ﬂﬂ ﬂﬂ ﬁﬂ ﬁﬂ

1 1
Since ;K1 (ﬁ_J converges to zero, H, = O(f7).

n n

l q , X =W, — W
If (>, y)=(w,, ,w, . ) , we have HZZ—ZaK 1/,J/ 2.
70 J0 K(0,0) /#»/_0 J ﬂﬂ ﬂ,,

Therefore H, =0(f7).

Let us now show that H,=0(f.). Indeed, as y#a,x+b,, we assume that
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—b. i —b, . .
Sl (same arguments in the case where x > S ) and we split the inte-

a; a;

x <

gral, in the expression of H; as follows:

LH3:L§:J’_:£K1[DC;”1]K (] s bj¢(”1)dy1

1 g x+E - b,
+,,J,—ZZL_SK{X ﬁﬂ“]K (ﬂ i Jqﬁ(mdvl

i=1

1 & e x =, y—ap, —b,
+?ZL:§ K ; K, &; (v, )dry

i=1 IBﬂ
' )’_[71'_‘_
1 & ™ (x—v y—ap, —b,
+ﬁ_ZJK( 2 )K( ‘. j@(md”l

7

ZZJM {/;”1]&()—";1_bf'jmmdvl,
;7 =1 a; n n

where ¢ is a nonnegative real sufficiently small for having x + & <

—b
J L—¢.We

a;

denote the five terms of the last equality: I, I, 1,1, and I,. Since the functions
K, and K, are decreasing and even, we can write

1 - g, —b, ) e
L S£—  sup K{X ”1j sup K{%jr #.(v,)dv,. The two
i zle] 00,x—&| e

" vy €l=o0,x—¢| ﬂ”

“sup” reach values respectively different from x and from

- hence

a;

Ilzo(im HK{L)J, a5
b, B, B,

as above, it is shown that

1 1 1 1 1 1
I;= O(ﬂ_nzKl (;ﬂ] K, (ﬁ_ﬂ)J and I = O[,B—le (ﬁ—”) K, [ﬁ—”J]
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On the other hand for all » belonging to [x —é&,x +¢&] we have y#awv—b;.

Therefore we have

Izﬁiz sup Kz(%y_bijxj‘jmkl(xﬂ_w)(ﬂz(”l)dyl-

vE|x—&,x+&| ' n

1 1 1
Since x > —K| (i) is a kernel, we conclude that I, = 0| —K, (—J .
B, \F .\,

In the same manner we increase the expression of I,. Thus we obtain
H, =0(8)).
Then E(a,(x, y)—d'(x, y)= O(ﬂ”2 ). From theorem 4.1, we deduce the result of
this corollary.

n n 7

6. NUMERICAL APPLICATION

In this section, we study a concrete example which validates theoretical results.
It is to study the structural fissure of the agricultural soil. We observe two de-
pendent variables X and Y . The variable X presents the resistance of soil
measured by using “penetration” method at several locations at same depth of
30cm. The variable Y is the humidity of soil measured in the laboratory on sam-
ples taken at same locations. Observing (X,Y") at 1000 locations, we have 1000

observations: (5, J1),(555 92 )5 (X1000> V1000 ) » Of the pair (X,Y). Knowledge
of the conjoint density f(x, y) of the pair (X,Y) permits, for example, to cal-
culate the probability that the resistance and the humidity be between respectively
two critical values (7, 7,) and (4, 5,). These critical values determine whether

to drain the ground or leave without drainage. So it is interesting to estimate the
conjoint density /. Then, we calculate the kernel density:

| xX=x, y—,
X, = _K —Z’—Z
JACHY) ;”/?5 ( . . j

where the kernels are chosen K(x, y)=K,(x)K,(y) with

2
K (x)=K,(x)= %exp[—%) , 7=1000 and 5, = n~% . The kernel estimate
function is presented by figure 1 in the annexe.

From this figure, we note that there are a jump point localized in the block
[1,2]x[3.5,4.5] and a jump line passing through points (0,7) and (1,6). Then we
propose for its joint probability measure the following model:
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d:u = f(X’ j/)dX{j)/ + 41,6 w“,(uzl) + ¢(”)§(h,au+/7)'

The jump point: (wy,,w,,) is localized in the block [1,2]x[3.5,4.5]. From the
fact that (0,7) and (1,6) are belonging to the jump line, it is easy to see that the

equation of the jump line is: y=-x+7. In order to calculate the estimators
f(x,]), a,(x,y) and &(X,J) , defined in the section 2, we must choose the
spectral windows. This amounts to choose W, W@ |17 and W satisfying:

1 1
PO A0 = 17 (M) vXe}——Mm ,—MQ{

1 1
OO N=7@ 7@
W (Lﬂ X)—W (Lﬂ X) VX€:|_F’F|:
To simplify, we take W =W and WO =W with MP =1 and
MP =12, Choosing M =n" and MP=4" with 0<g<p<3/5,
B, = n"  These parameters satisfy the hypothesis given in § 2.1 and § 2.2.

First, choosing 77" as a nonnegative, even and integrable function. We pro-
pose:

64 64

— i+ — if re[-1,-1/8]
63 63
8/9 if 1e[—1/8,1/8]
W= 64 64
——t+— if r€]1/8,1]
63 63
0 otherwise

It is easy to show that IWm (H)dt=1.

Choosing now a nonnegative, even and integrable function W such that
W and W® satisfying (3). We propose:

o [—i] if 1e[-1/8,1/8]

@/ — ( Mf)j .
WOW=14/71- 1k if 7 e[~1,~1/8[\U]1/8,1]

0 otherwise
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@@= [""wowd+[" WO+ [ WO ()dr

M2 v
J.W(Z)(i)df:(l—M—’Zl) +I,11;38W<2)(f)df' From the definition of W(Z), we

1/8 1/8 M(l) M(D
have j W (#)dt = 2_[ o ( “-t|dt. Putting #=—%5r¢, we have
-1/8 0 M M

@

n
YY)
@\ V8
_/ Mﬂ
® ©)

*~ —> o0, for # large enough we have —~

2 M2
n

n

[ ey = 2[
-1/8

n

Since > 1. Thus, we obtain

M@
MO
n

J-[;W<1)(ﬂ)du. WY being even and J.W(D(f)dt:l, we

/ M@
deduce | 1 ZW@(f)dt:(M’ng. Thus, [W®(2)dr =1.

Let us show that (3) is satisfied. Indeed, let # a real number belonging

11 MP
M n

to |-, | » since —7&- converges to zero, for n large enough, we
n n n

M® M®
have —1/8<-—2-<MPy<—2_<1/8. Therefore, from (16), we have:
M(1) M(l)

n
n n

M

WM =w" (Aﬂi = Mff%‘] =W (MDOs),

The graphic (fig 2) of the estimate f (x, y) defined in the section 2 is given in the

annexe.

6.1 Statistical Tests

After several attempts testing points in the block [1,2]x[3.5,4.5], we found a
jump at the point: (x, y)=(1.5,4). Indeed, we calculate L. defined in § 4.1, we
obtain:

1/2 o
L=~ _a()) =3.954
(ﬂfj (K(0,0) F (e, K (21,2, )t )

From the table of the standard gaussian with a level of signification a =0.05, we
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read the value: Z,, =1.96. Since L ¢[-Z,,,,Z,,,], we conclude that (1.5,4) is
a jump point.

For any other point the test concludes that it is not significantly a jump point.
To illustrate this, taking, for example, (x,y)=(2,4). Calculation of L at

(x,9)=(2,4) gives .=0.012. Since L.€[-Z,,,,Z,,,], we conclude that (2,4)

is not a jump point.

7. CONCLUSIONS

We have presented in this paper some results about limits theorems of density
estimate when the measure has certain mixture. A statistical test for detecting the
jump point is given and applied to study the humidity and resistance of agricul-
tural soil. this work could be applied to other cases when the distribution contains
points of discontinuity that risks being badly treated by sharing interval distribu-
tion or by using Monte Carlo method. The proposed methods can be extended to
other applications in several sectors. Indeed, the control of the quality for a prod-
uct manufactured in the auto industry use the measure of two variables: the con-
sumption of diesel and the pollution. Their joint distribution can follow a con-
tinuous law except some observations which are taken when there is fog and
reached the constant value (point of the jump). One example in economics, it is
the observation of the variables: taxes on income and purchasing power can have
a joint distribution contains some point of jumps due to exemption (disabled,
former soldier, ...). In oceanography when we observe, by using a camera placed
at a certain depth in water, two variables: the length of the fishes and their
movement speed. The joint distribution may represent some jumps due to the
acceleration of movement during the passage of a predator. In Astronomy the
repeated passage of an object preventing the vision of stars (cloud, bird, ...) can
create a jump of data. This work could be supplemented by the study of optimal
smoothing parameters using cross validation techniques that have proven in this

tield.
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Annexe

01 g
density oidjil

0.05

Figure 1 — The kernel density of bivariate random variable (X,Y").

Figure 2 — The density estimate f(x, ).
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SUMMARY

Test and asymptotic normality for mixed bivariate measure

Consider a pair of random variables whose joint probability measure is the sum of an
absolutely continuous measure, a discrete measure and a finite number of absolutely con-
tinuous measures on some lines called jum lines. The central limit theorem of the densi-
ties estimates is studied and its rate of convergence is given. A statistical test is developed
to locate the jump points. An application on real data was conducted.



