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Abstract - Testers need the ability to adapt test planning 

on the order of days and weeks.   PATFrame will use its 

reasoning engine to prescribe the most effective strategies 

for the situation at hand.  Strategies in this context include 

methods of experimental designs, test schedules and 

resource allocation.  By facilitating rapid planning and re-

planning, the PATFrame reasoning engine will enable 

users to use information learned during the test process to 

improve the effectiveness of their own testing rather than 

simply follow a preset schedule.  This capability is 

particularly attractive in the domain of Systems of Systems 

testing because the complexity of test planning and 

scheduling make frequent re-planning by hand infeasible.  

Keywords: Test and Evaluation, Scheduling Problem, 

Adaptive Testing. 

1 Introduction 

A battle plan seldom survives first contact with 

the enemy.  This is because a battle plan, like a test 

plan, is predicated on incomplete information and is 

prone to uncertainties and unexpected events.  A well 

planned test schedule for a major system can be 

“overcome by events” (OBE) at any time, and we 

have no way of knowing when or how this will be.  

Sometimes, testers may not even realize they’ve been 

“OBE”.  For example, any time a tester has 

discovered a deficiency in their System Under Test 

(SUT) that will require a system redesign and 

subsequent “regression loop” in our testing process 

but have not yet re-planned, they may be wasting time 

and money executing their original test plan as 

scheduled.   

Testers are, like the majority of their acquisition 

counterparts, constantly asked to do more with less.  

They also face a special challenge as a by-product of 

being a downstream process from design and delivery:  

they are often asked to absorb cost and schedule 

overruns of other phases of acquisition.  Because of 

the subjective nature of test planning, test 

organizations and testers in general are asked to make 

decisions under a great deal of uncertainty.  Testers 

must generate and defend budget and schedule 

estimates months and even years in advance of 

testing.   

These difficulties are compounded when testing 

in a SOS environment.  Decentralized system 

responsibility and the inescapable need to interact 

with legacy systems -- some decades old -- make it 

nearly impossible to find, assign responsibility for, 

and correct SOS defects.   It is prohibitively 

expensive, if even possible, to perform an adequate 

amount of live SOS testing for the massive number of 

permutations of interactions possible between 

weapons systems. Furthermore, aside from RF 

interoperability, there are virtually no formal SOS 

requirements to test against in Developmental 

Testing, meaning we often rely on Stewart-esque "I 

know it when I see it" criteria to define SOS failures.    

Testing Unmanned and Autonomous Systems 

(UASs) with novel requirements complicates matters 

even further.  Test and Evaluation planning is 

burdened with a great deal of uncertainty even when 

testing incremental upgrades to commodity products.  

This uncertainty grows by orders of magnitude when 

testing an entirely new genus of machine.  As 

individual systems approach full autonomy, and are 

inevitably given more sensitive decisions to make, we 

will be forced to test their intelligence using metrics 

and methods not yet envisioned.  

The overwhelming amount of uncertainty 

logically leads to more complex decision making.  

Unfortunately, as humans, we are notoriously poorly 

equipped to deal with this complexity.  We are poor at 

estimating probabilities, and personal and institutional 

factors lead us to be risk-averse or risk-seeking even 

when it's to our detriment.  As humans, we are prone 

to "satisfice" [15], that is we make "adequate" but 

suboptimal decisions.  In a world where tests can cost 



 

 

upwards of a million dollars, "adequate" just won’t 

do.   

Through several interviews and workshops with 

Department of Defense testers, we’ve identified 

several key questions, including: 

 How much testing is enough? 

 How do I prioritize my tests? 

 How do I test effectively in a compressed 

schedule? 

We propose a solution to these challenges: A 

Prescriptive and Adaptive Test Framework 

(PATFrame).  PATFrame’s Decision Support System 

will provide prescriptive advice designed to help users 

address the gaps between the normative models of 

testing, “how they should test”, with their current 

practices, or descriptive models.   

This paper defines a component of PATFrame’s 

Decision Support System that will allow testers to 

rapidly plan and re-plan entire test programs quickly 

and effectively in light of newly learned information.  

When integrated with other techniques, users will be 

able to use this decision support system to track risk 

in their systems, estimate the cost and duration of 

their test programs, and identify critical test events.  

This sheds light on the risk in the test system, not just 

the system under test.   

This component has two main parts, a data 

repository and a set of algorithms.  It will be 

implemented as a computer program.  This paper will 

present PATFrame conceptually.  The implementation 

and validation of this framework is left for future 

work. 

2 Methodologies Leveraged 

We have leveraged three existing methodologies 

in our design for PATFrame: 

2.1 Design of Experiments (DOE) 

Design of Experiments is a set of methods for 

efficiently gathering information.  The simplest 

incarnations of DOE facilitate planning tests of a 

system by taking into account information already 

known about dependent variables and their effects 

(including interactions with one another) on the 

independent variables being measured.  DOE includes 

methods for dealing with variability, unknown 

interactions and a host of problems that face 

experimenters.   

2.2 Defect Modeling 

In a 2008 whitepaper, IBM proposed a method 

for tracking software defects discovered during a test 

program.  They proposed using this information to 

project the number of remaining defects, and the rate 

at which they will be discovered.  This method is used 

to answer the question (and title of the whitepaper) 

“When am I done testing?”  We adopt the underlying 

methodology with the acknowledgment that the exact 

trends of defect discovery in a weapons system (or a 

SoS) will differ from those IBM proposed. 

2.3 Exploratory Testing (ET) 

ET, a strategy used in software testing, leverages 

human judgment to improve a test program “on-the-

fly” [2].  As opposed to scripted testing, ET 

encourages the tester to use information learned from 

their previous tests to select the next test case.  The 

underlying logic of this system, which we co-opt, is 

that information learned during a test program can be 

used to select more effective test cases for the 

remaining tests.  In other words, the more you know, 

the better you can plan your testing, so why plan your 

whole test program before you’ve learned anything? 

2.4 Integration 

The last of these methodologies, exploratory 

testing, was the inspiration for PATFrame’s core re-

planning function.  The other two methodologies, 

DOE and defect modeling, both support sub-functions 

of PATFrame.  Clearly, PATFrame’s functionality 

can be expanded with the application of countless 

other normative methods and best practices.  For the 

sake of simplicity, not all are discussed here.  

3 Core Prescriptive and Adaptive 

Framework (PATFrame) 

PATFrame is composed of a data repository and 

a set of algorithms that are used to plan and, more 

importantly, re-plan a given test program.  The data 

repository is used to specify the testing required and 

the constraints placed on the program, and the 

algorithm executes PATFrame’s underlying 

heuristics, which are described below.   



 

 

The core functionality of PATFrame is to plan a 

test program by matching all the tests to be conducted 

with the times that the resources are available.  This is 

minimally useful, since most test programs have 

neither the money nor the time to fully test all 

requirements.  The valuable feature of PATFrame is 

its ability to apply the methodologies listed above and 

our four heuristics to plan an effective test program, 

even in the face of uncertainty.   

Presented here is a subset of possible elements of 

PATFrame.  Clearly, the amount of information 

expressed in the data repository and the number of 

algorithms and heuristics used to plan the test 

program can be expanded.   

3.1 The PATFrame Data Repository 

The information stored in the repository falls 

into two main categories:  (1) Information used to 

describe the requirements for the SUT and the tests 

needed to verify them and (2) information that 

describes the constraints placed on the test program. 

The requirements section details the Measures of 

Performance (MOP) associated with each 

requirement.  A requirement like “Must out perform 

all current USAF fighters” might include several 

measures of performance such as Maximum Altitude, 

Maximum Speed, and Maximum Acceleration.  

Information like the relative importance and the 

desired statistical confidence for each MOP (i.e. I 

want to know that I met the passing criteria Maximum 

Altitude to a 95% confidence) is included in this 

repository.  Desired confidence is usually set by the 

test center, but may be altered on a project or even 

MOP basis.  This is largely a risk management and 

costing decision, since higher certainty is more time 

consuming and more expensive to achieve.  

Furthermore, the user specifies the current confidence 

that the System Under Test (SUT) will pass each 

MOP. 

Surely, defining the confidence that a SUT will 

pass (or has passed) a given MOP is daunting.  

However, a number of methods for estimating this 

sort of probability exist [8].  No one will know these 

values for sure (if they did, we wouldn’t need to test), 

but we can make educated guesses and use them to 

help plan our test program.   

While it may cause some consternation in the 

DOD test community, it may well be that the SUT’s 

prime contractor can provide the most information 

about the system (indeed, when a new SUT shows up 

for testing, the testers know much less about the 

system than its builders).  Since the prime contractor 

is likely to know “where the bodies are buried”, their 

input in making this estimate is invaluable.  We do 

acknowledge the vast array of political and 

organizational barriers to this sort of information 

sharing, but their resolution is well beyond the scope 

of this paper.   

The repository also contains information about 

the individual tests that can be performed and the 

constraints on those tests.  Constraints include: 

 when a test plan will be completed 

 when a range is available 

 how many test points of any given type can 

be executed in a single mission 

Furthermore, the repository contains information 

about the cost structure of different tests (it is often 

the case that the first test point costs hundreds of 

thousands of dollars, while any further points 

conducted in that mission are “free”).  If it has already 

been set, the test program’s allotted budget and 

schedule are also recorded in this repository.  

3.2 The PATFrame Algorithm 

Given the unpredictable nature of testing, 

attempting to create a definitive plan for a multi-year 

test effort is foolish.  Even if we could examine all 

possible permutations for a test schedule to find the 

“best” according to a given set of criteria, it would be 

likely to be OBE in just a few weeks or months.  Our 

algorithm addresses the scheduling aspect of a test 

plan.  Accordingly, we make our first two 

assumptions:  

A1.) Schedule is our dominant constraint.  

Cost of individual tests is not considered in this 

model since we assume we are more likely to run 

out of time than money. 

A2.) A solution that defines an optimal start 

(on the order of weeks) to our test schedule is 

sufficient. 

This is fortunate from the standpoint of 

simplicity.  Solving scheduling problems is a well 

characterized as NP-Hard, and this model is no 



 

 

exception.  NP-Hard problems are those for which the 

computational load scales in proportion to the 

factorial of a given input variable.  The most common 

example of an NP-Hard problem is the “Traveling 

Salesman Problem” in which a salesman must 

determine which path through N cities is the most 

efficient.  When brute-forcing a solution, we need to 

consider the possibility of starting with any of the N 

cities.  For each of these possible starts, we must 

consider visiting the N-1 remaining cities next, then 

for each of these, the N-2 which remain and so on.  

For N=4, we need only consider 24 possible paths, for 

10 cities, the number of paths exceeds 3.6 million, 

and for 30 cities, there are several quintillion paths 

(over 10
32

). 

Considering only a moderate amount of MOPs, 

possible tests and resources over a span of only days 

to weeks creates a staggeringly large problem space. 

Those familiar with the “nurse rostering 

problem” (NRP) and “Resource-Constrained Project 

Scheduling Problems” (RCPSP) will note a 

resemblance between the constraints and solution 

space of those problems and ours [4], [18].   

In order to find an optimal solution to a 

scheduling problem, a number of methods can be 

employed.   Brute force is an option, albeit an 

infeasible one, for an NP-Hard problem unless we are 

working in a very simple problem space.  There are, 

however, a number of mathematical programming, 

heuristic, meta-heuristic, and artificial intelligence 

methods that have been successfully applied to similar 

problems like NRP and RCPSP [1], [11].  While many 

of these methods of optimization may not work as 

efficiently or even at all in our scenario, we believe 

that at least some may be sufficient to find an optimal 

(or near optimal) solution in a feasible computation 

period.  Selecting a suitable scheduling method is left 

for our future work. 

In order for any of the aforementioned methods 

to look for a “best” schedule, we must decide how we 

will value each test.  This leads to our third 

assumption: 

A3.) The sole purpose of testing is to 

determine whether a SUT has passed or failed 

each MOP.  The value of a test or test point is 

wholly determined by its ability to reduce 

uncertainty to this end. 

As our work progresses, we will likely work 

beyond the narrow scope of this assumption.  In light 

of A2, we present four heuristics for valuing 

individual tests.  These heuristics are a product of 

experience in T&E and interviews with testers from 

different organizations across the DOD [12], [13].   

H1.) Regardless of “estimated” certainty of 

passing any given MOP, all MOPs should be 

demonstrated if at all possible.  This means that 

even if our estimate is a 99% chance of passing a 

MOP, we must conduct some minimal testing 

during our program (which may extend beyond 

our “local” window) to verify our estimate is not 

wildly invalid.   

H2.) Reduction in uncertainty is valuable 

until the threshold value is reached, and not 

beyond (once we reach our desired level of 

confidence, we should stop).  

H3.) Test A is always more valuable than test 

B if: (1) both test A and B are for unverified 

MOPs or both are for verified MOPs and (2) A is 

expected to reduce its MOP’s uncertainty by a 

larger numerical value and (3) test A’s MOP is 

equally as or more important than test B’s MOP. 

H4.) If presented with a choice between the 

two, a MOP that is unverified (not tested at all) 

should be verified before increasing confidence 

on a verified MOP of the same (or lesser) 

importance. 

Our strategy can be succinctly described as “tests 

most likely to reveal important deficiencies should 

have a higher priority.”  A keen observer will note 

that the heuristics above allow us to create a cardinal 

ordering of the value of independent tests, but not a 

discrete value.  A discrete value will be required to 

implement the models described above.  We have not 

yet defined a method for calculating the discrete value 

of a test, and leave this for our future work. 

4 Extensibility of PATFrame 

Certainly, the core of PATFrame doesn’t address 

all of the questions posed in the introduction.  

Improving on this core, however, can increase the 

utility of PATFrame.  Once we reach a more mature 

design for the core, we see the potential for even more 

valuable improvements through extending the model.  



 

 

A number of possible enhancements are proposed 

below. 

4.1 IBM Defect Model 

The aforementioned IBM whitepaper proposes 

tracking defects found in a software test program and 

using this data to measure testing progress.  The 

failure discovery rate described in the IBM 

whitepaper decays over time and is typical of 

software.  Understandably, failures in different 

domains will have different patterns.  Therefore, 

merging all deficiency reports from all disciplines and 

all tests into one unit for analysis will be less than 

helpful.  By tracking each deficiency report (including 

associated discipline, and the sortie during which it 

was found) as it is generated, test managers can track 

the progress of particular disciplines and determine 

which may be in need of more attention.   

This information can be used not only to 

determine whether or not the user is “done testing” 

but as the program matures, it can be used to make an 

educated and defensible estimate of the “right” 

amount of testing for each domain.  That is, the 

amount of testing which will find n failures where the 

cost of finding the (n+1)
th
 failure is greater than the 

benefit of finding that failure.   

4.2 Design of Experiments and Adaptive Statistical 

Methods 

Design of Experiments (DOE) has recently made 

its way into the DOD test community.  We propose 

including it in PATFrame for two reasons.  First, the 

re-planning enabled by PATFrame will allow testers 

to better utilize adaptive techniques, like sequential 

analysis, which are virtually unheard of among DOD 

testers.  Second, in order to re-plan quickly and 

without excessive operator input, PATFrame will 

need to be able to conduct some of the computational 

work to determine how many (and which) test points 

are expected to generate the most value.   

PATFrame may implement any or all of the 

following capabilities. (1) The ability to determine 

how many test points should be scheduled for each 

MOP or even per sortie (setting n).  This is part of 

basic DOE, but will speed the planning process. (2) A 

feature to select appropriate DOE strategies for 

highlighting the relevant failure modes of a particular 

system.  Possible DOE strategies include: 

 Adaptive Random Testing (ART) – ART is best 

suited to finding clusters of failures [5].   

 Latin Hypercube Sampling (LHS) – LHS is a 

method for sampling each dependent variable 

state exactly once [10].  It only covers a very 

small portion of a complex problem space. 

 Adaptive One-Factor-at-a-Time (OFAT) [7] – 

Adaptive OFAT is well suited for determining a 

“local maximum” with respect to a number of 

dependent variables, and is particularly useful 

when there are no interaction effects between 

variables. 

 Sequential Analysis may be used in situations 

where the number of trials n that will be 

required is highly uncertain, such as when the 

independent variable has an unknown 

variability.  This will permit testers to use 

fewer test points in some cases [6], [14]. 

4.3 Test Plan Simulation 

Testing is an uncertain endeavor, and evaluating 

every possible contingency is impossible for a human.  

The use of computer simulations to model thousands 

of possible outcomes could be very useful.  User input 

and even historical data from similar test programs 

can inform PATFrame and help evaluate the effects of 

discovering critical deficiencies which lead to 

regression testing, failure to complete certain tests on 

time, unavailability of resources, and other possible 

contingencies.   

This has three readily apparent uses.  First, it can 

be used to estimate the likelihood that a particular 

resource will be used on a particular date.  Testers can 

use this information to determine whether or not it is 

worth it to book expensive time on DOD test ranges 

months in advance.  Second, testers can use these 

simulations to determine the likelihood that a test 

program can accomplish its objectives within 

particular budget and schedule constraints. Third, 

simulations can serve as a sensitivity analysis, 

informing the user of the most critical events and 

resources.   

By simulating different outcomes, PATFrame 

can recommend opportunities for more robust test 

planning.  



 

 

5 Future Work and Implications 

Our framework is by no means complete.  While 

there are myriad extensions that could be developed 

to PATFrame, our primary focus now is on the core 

functionality.  Finding and developing a suitable 

scheduling function for a scenario with so many 

complicated constraints will be a primary focus.   

Our other focus will be evaluating, and if 

necessary, improving our heuristics for valuing 

individual tests.  Humans can naturally rank the 

importance of competing MOPs and requirements, but 

have trouble consistently assigning a discrete value to 

these items.  “Translating” user intent from cardinal 

or other input methods to a discrete value will be 

important to PATFrame’s functionality. 

6 Conclusion 

Our proposed method addresses a number of 

important SoS testing challenges by enabling users to 

adapt their test plans in light of newly learned 

information.  The ability to re-plan test programs has 

already shown benefits through exploratory testing, 

and we believe that our algorithm-driven method for 

adaptation may provide similar results.   
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