

Test and Evaluation of a SoS using a Prescriptive and

Adaptive Testing Framework

John T. Hess

Massachusetts Institute of Technology

Cambridge, MA, USA
johnhess@mit.edu

Ricardo Valerdi

Massachusetts Institute of Technology

Cambridge, MA, USA

rvalerdi@mit.edu

Abstract - Testers need the ability to adapt test planning

on the order of days and weeks. PATFrame will use its

reasoning engine to prescribe the most effective strategies

for the situation at hand. Strategies in this context include

methods of experimental designs, test schedules and

resource allocation. By facilitating rapid planning and re-

planning, the PATFrame reasoning engine will enable

users to use information learned during the test process to

improve the effectiveness of their own testing rather than

simply follow a preset schedule. This capability is

particularly attractive in the domain of Systems of Systems

testing because the complexity of test planning and

scheduling make frequent re-planning by hand infeasible.

Keywords: Test and Evaluation, Scheduling Problem,

Adaptive Testing.

1 Introduction

A battle plan seldom survives first contact with

the enemy. This is because a battle plan, like a test

plan, is predicated on incomplete information and is

prone to uncertainties and unexpected events. A well

planned test schedule for a major system can be

“overcome by events” (OBE) at any time, and we

have no way of knowing when or how this will be.

Sometimes, testers may not even realize they’ve been

“OBE”. For example, any time a tester has

discovered a deficiency in their System Under Test

(SUT) that will require a system redesign and

subsequent “regression loop” in our testing process

but have not yet re-planned, they may be wasting time

and money executing their original test plan as

scheduled.

Testers are, like the majority of their acquisition

counterparts, constantly asked to do more with less.

They also face a special challenge as a by-product of

being a downstream process from design and delivery:

they are often asked to absorb cost and schedule

overruns of other phases of acquisition. Because of

the subjective nature of test planning, test

organizations and testers in general are asked to make

decisions under a great deal of uncertainty. Testers

must generate and defend budget and schedule

estimates months and even years in advance of

testing.

These difficulties are compounded when testing

in a SOS environment. Decentralized system

responsibility and the inescapable need to interact

with legacy systems -- some decades old -- make it

nearly impossible to find, assign responsibility for,

and correct SOS defects. It is prohibitively

expensive, if even possible, to perform an adequate

amount of live SOS testing for the massive number of

permutations of interactions possible between

weapons systems. Furthermore, aside from RF

interoperability, there are virtually no formal SOS

requirements to test against in Developmental

Testing, meaning we often rely on Stewart-esque "I

know it when I see it" criteria to define SOS failures.

Testing Unmanned and Autonomous Systems

(UASs) with novel requirements complicates matters

even further. Test and Evaluation planning is

burdened with a great deal of uncertainty even when

testing incremental upgrades to commodity products.

This uncertainty grows by orders of magnitude when

testing an entirely new genus of machine. As

individual systems approach full autonomy, and are

inevitably given more sensitive decisions to make, we

will be forced to test their intelligence using metrics

and methods not yet envisioned.

The overwhelming amount of uncertainty

logically leads to more complex decision making.

Unfortunately, as humans, we are notoriously poorly

equipped to deal with this complexity. We are poor at

estimating probabilities, and personal and institutional

factors lead us to be risk-averse or risk-seeking even

when it's to our detriment. As humans, we are prone

to "satisfice" [15], that is we make "adequate" but

suboptimal decisions. In a world where tests can cost

upwards of a million dollars, "adequate" just won’t

do.

Through several interviews and workshops with

Department of Defense testers, we’ve identified

several key questions, including:

 How much testing is enough?

 How do I prioritize my tests?

 How do I test effectively in a compressed

schedule?

We propose a solution to these challenges: A

Prescriptive and Adaptive Test Framework

(PATFrame). PATFrame’s Decision Support System

will provide prescriptive advice designed to help users

address the gaps between the normative models of

testing, “how they should test”, with their current

practices, or descriptive models.

This paper defines a component of PATFrame’s

Decision Support System that will allow testers to

rapidly plan and re-plan entire test programs quickly

and effectively in light of newly learned information.

When integrated with other techniques, users will be

able to use this decision support system to track risk

in their systems, estimate the cost and duration of

their test programs, and identify critical test events.

This sheds light on the risk in the test system, not just

the system under test.

This component has two main parts, a data

repository and a set of algorithms. It will be

implemented as a computer program. This paper will

present PATFrame conceptually. The implementation

and validation of this framework is left for future

work.

2 Methodologies Leveraged

We have leveraged three existing methodologies

in our design for PATFrame:

2.1 Design of Experiments (DOE)

Design of Experiments is a set of methods for

efficiently gathering information. The simplest

incarnations of DOE facilitate planning tests of a

system by taking into account information already

known about dependent variables and their effects

(including interactions with one another) on the

independent variables being measured. DOE includes

methods for dealing with variability, unknown

interactions and a host of problems that face

experimenters.

2.2 Defect Modeling

In a 2008 whitepaper, IBM proposed a method

for tracking software defects discovered during a test

program. They proposed using this information to

project the number of remaining defects, and the rate

at which they will be discovered. This method is used

to answer the question (and title of the whitepaper)

“When am I done testing?” We adopt the underlying

methodology with the acknowledgment that the exact

trends of defect discovery in a weapons system (or a

SoS) will differ from those IBM proposed.

2.3 Exploratory Testing (ET)

ET, a strategy used in software testing, leverages

human judgment to improve a test program “on-the-

fly” [2]. As opposed to scripted testing, ET

encourages the tester to use information learned from

their previous tests to select the next test case. The

underlying logic of this system, which we co-opt, is

that information learned during a test program can be

used to select more effective test cases for the

remaining tests. In other words, the more you know,

the better you can plan your testing, so why plan your

whole test program before you’ve learned anything?

2.4 Integration

The last of these methodologies, exploratory

testing, was the inspiration for PATFrame’s core re-

planning function. The other two methodologies,

DOE and defect modeling, both support sub-functions

of PATFrame. Clearly, PATFrame’s functionality

can be expanded with the application of countless

other normative methods and best practices. For the

sake of simplicity, not all are discussed here.

3 Core Prescriptive and Adaptive

Framework (PATFrame)

PATFrame is composed of a data repository and

a set of algorithms that are used to plan and, more

importantly, re-plan a given test program. The data

repository is used to specify the testing required and

the constraints placed on the program, and the

algorithm executes PATFrame’s underlying

heuristics, which are described below.

The core functionality of PATFrame is to plan a

test program by matching all the tests to be conducted

with the times that the resources are available. This is

minimally useful, since most test programs have

neither the money nor the time to fully test all

requirements. The valuable feature of PATFrame is

its ability to apply the methodologies listed above and

our four heuristics to plan an effective test program,

even in the face of uncertainty.

Presented here is a subset of possible elements of

PATFrame. Clearly, the amount of information

expressed in the data repository and the number of

algorithms and heuristics used to plan the test

program can be expanded.

3.1 The PATFrame Data Repository

The information stored in the repository falls

into two main categories: (1) Information used to

describe the requirements for the SUT and the tests

needed to verify them and (2) information that

describes the constraints placed on the test program.

The requirements section details the Measures of

Performance (MOP) associated with each

requirement. A requirement like “Must out perform

all current USAF fighters” might include several

measures of performance such as Maximum Altitude,

Maximum Speed, and Maximum Acceleration.

Information like the relative importance and the

desired statistical confidence for each MOP (i.e. I

want to know that I met the passing criteria Maximum

Altitude to a 95% confidence) is included in this

repository. Desired confidence is usually set by the

test center, but may be altered on a project or even

MOP basis. This is largely a risk management and

costing decision, since higher certainty is more time

consuming and more expensive to achieve.

Furthermore, the user specifies the current confidence

that the System Under Test (SUT) will pass each

MOP.

Surely, defining the confidence that a SUT will

pass (or has passed) a given MOP is daunting.

However, a number of methods for estimating this

sort of probability exist [8]. No one will know these

values for sure (if they did, we wouldn’t need to test),

but we can make educated guesses and use them to

help plan our test program.

While it may cause some consternation in the

DOD test community, it may well be that the SUT’s

prime contractor can provide the most information

about the system (indeed, when a new SUT shows up

for testing, the testers know much less about the

system than its builders). Since the prime contractor

is likely to know “where the bodies are buried”, their

input in making this estimate is invaluable. We do

acknowledge the vast array of political and

organizational barriers to this sort of information

sharing, but their resolution is well beyond the scope

of this paper.

The repository also contains information about

the individual tests that can be performed and the

constraints on those tests. Constraints include:

 when a test plan will be completed

 when a range is available

 how many test points of any given type can

be executed in a single mission

Furthermore, the repository contains information

about the cost structure of different tests (it is often

the case that the first test point costs hundreds of

thousands of dollars, while any further points

conducted in that mission are “free”). If it has already

been set, the test program’s allotted budget and

schedule are also recorded in this repository.

3.2 The PATFrame Algorithm

Given the unpredictable nature of testing,

attempting to create a definitive plan for a multi-year

test effort is foolish. Even if we could examine all

possible permutations for a test schedule to find the

“best” according to a given set of criteria, it would be

likely to be OBE in just a few weeks or months. Our

algorithm addresses the scheduling aspect of a test

plan. Accordingly, we make our first two

assumptions:

A1.) Schedule is our dominant constraint.

Cost of individual tests is not considered in this

model since we assume we are more likely to run

out of time than money.

A2.) A solution that defines an optimal start

(on the order of weeks) to our test schedule is

sufficient.

This is fortunate from the standpoint of

simplicity. Solving scheduling problems is a well

characterized as NP-Hard, and this model is no

exception. NP-Hard problems are those for which the

computational load scales in proportion to the

factorial of a given input variable. The most common

example of an NP-Hard problem is the “Traveling

Salesman Problem” in which a salesman must

determine which path through N cities is the most

efficient. When brute-forcing a solution, we need to

consider the possibility of starting with any of the N

cities. For each of these possible starts, we must

consider visiting the N-1 remaining cities next, then

for each of these, the N-2 which remain and so on.

For N=4, we need only consider 24 possible paths, for

10 cities, the number of paths exceeds 3.6 million,

and for 30 cities, there are several quintillion paths

(over 10
32

).

Considering only a moderate amount of MOPs,

possible tests and resources over a span of only days

to weeks creates a staggeringly large problem space.

Those familiar with the “nurse rostering

problem” (NRP) and “Resource-Constrained Project

Scheduling Problems” (RCPSP) will note a

resemblance between the constraints and solution

space of those problems and ours [4], [18].

In order to find an optimal solution to a

scheduling problem, a number of methods can be

employed. Brute force is an option, albeit an

infeasible one, for an NP-Hard problem unless we are

working in a very simple problem space. There are,

however, a number of mathematical programming,

heuristic, meta-heuristic, and artificial intelligence

methods that have been successfully applied to similar

problems like NRP and RCPSP [1], [11]. While many

of these methods of optimization may not work as

efficiently or even at all in our scenario, we believe

that at least some may be sufficient to find an optimal

(or near optimal) solution in a feasible computation

period. Selecting a suitable scheduling method is left

for our future work.

In order for any of the aforementioned methods

to look for a “best” schedule, we must decide how we

will value each test. This leads to our third

assumption:

A3.) The sole purpose of testing is to

determine whether a SUT has passed or failed

each MOP. The value of a test or test point is

wholly determined by its ability to reduce

uncertainty to this end.

As our work progresses, we will likely work

beyond the narrow scope of this assumption. In light

of A2, we present four heuristics for valuing

individual tests. These heuristics are a product of

experience in T&E and interviews with testers from

different organizations across the DOD [12], [13].

H1.) Regardless of “estimated” certainty of

passing any given MOP, all MOPs should be

demonstrated if at all possible. This means that

even if our estimate is a 99% chance of passing a

MOP, we must conduct some minimal testing

during our program (which may extend beyond

our “local” window) to verify our estimate is not

wildly invalid.

H2.) Reduction in uncertainty is valuable

until the threshold value is reached, and not

beyond (once we reach our desired level of

confidence, we should stop).

H3.) Test A is always more valuable than test

B if: (1) both test A and B are for unverified

MOPs or both are for verified MOPs and (2) A is

expected to reduce its MOP’s uncertainty by a

larger numerical value and (3) test A’s MOP is

equally as or more important than test B’s MOP.

H4.) If presented with a choice between the

two, a MOP that is unverified (not tested at all)

should be verified before increasing confidence

on a verified MOP of the same (or lesser)

importance.

Our strategy can be succinctly described as “tests

most likely to reveal important deficiencies should

have a higher priority.” A keen observer will note

that the heuristics above allow us to create a cardinal

ordering of the value of independent tests, but not a

discrete value. A discrete value will be required to

implement the models described above. We have not

yet defined a method for calculating the discrete value

of a test, and leave this for our future work.

4 Extensibility of PATFrame

Certainly, the core of PATFrame doesn’t address

all of the questions posed in the introduction.

Improving on this core, however, can increase the

utility of PATFrame. Once we reach a more mature

design for the core, we see the potential for even more

valuable improvements through extending the model.

A number of possible enhancements are proposed

below.

4.1 IBM Defect Model

The aforementioned IBM whitepaper proposes

tracking defects found in a software test program and

using this data to measure testing progress. The

failure discovery rate described in the IBM

whitepaper decays over time and is typical of

software. Understandably, failures in different

domains will have different patterns. Therefore,

merging all deficiency reports from all disciplines and

all tests into one unit for analysis will be less than

helpful. By tracking each deficiency report (including

associated discipline, and the sortie during which it

was found) as it is generated, test managers can track

the progress of particular disciplines and determine

which may be in need of more attention.

This information can be used not only to

determine whether or not the user is “done testing”

but as the program matures, it can be used to make an

educated and defensible estimate of the “right”

amount of testing for each domain. That is, the

amount of testing which will find n failures where the

cost of finding the (n+1)
th
 failure is greater than the

benefit of finding that failure.

4.2 Design of Experiments and Adaptive Statistical

Methods

Design of Experiments (DOE) has recently made

its way into the DOD test community. We propose

including it in PATFrame for two reasons. First, the

re-planning enabled by PATFrame will allow testers

to better utilize adaptive techniques, like sequential

analysis, which are virtually unheard of among DOD

testers. Second, in order to re-plan quickly and

without excessive operator input, PATFrame will

need to be able to conduct some of the computational

work to determine how many (and which) test points

are expected to generate the most value.

PATFrame may implement any or all of the

following capabilities. (1) The ability to determine

how many test points should be scheduled for each

MOP or even per sortie (setting n). This is part of

basic DOE, but will speed the planning process. (2) A

feature to select appropriate DOE strategies for

highlighting the relevant failure modes of a particular

system. Possible DOE strategies include:

 Adaptive Random Testing (ART) – ART is best

suited to finding clusters of failures [5].

 Latin Hypercube Sampling (LHS) – LHS is a

method for sampling each dependent variable

state exactly once [10]. It only covers a very

small portion of a complex problem space.

 Adaptive One-Factor-at-a-Time (OFAT) [7] –

Adaptive OFAT is well suited for determining a

“local maximum” with respect to a number of

dependent variables, and is particularly useful

when there are no interaction effects between

variables.

 Sequential Analysis may be used in situations

where the number of trials n that will be

required is highly uncertain, such as when the

independent variable has an unknown

variability. This will permit testers to use

fewer test points in some cases [6], [14].

4.3 Test Plan Simulation

Testing is an uncertain endeavor, and evaluating

every possible contingency is impossible for a human.

The use of computer simulations to model thousands

of possible outcomes could be very useful. User input

and even historical data from similar test programs

can inform PATFrame and help evaluate the effects of

discovering critical deficiencies which lead to

regression testing, failure to complete certain tests on

time, unavailability of resources, and other possible

contingencies.

This has three readily apparent uses. First, it can

be used to estimate the likelihood that a particular

resource will be used on a particular date. Testers can

use this information to determine whether or not it is

worth it to book expensive time on DOD test ranges

months in advance. Second, testers can use these

simulations to determine the likelihood that a test

program can accomplish its objectives within

particular budget and schedule constraints. Third,

simulations can serve as a sensitivity analysis,

informing the user of the most critical events and

resources.

By simulating different outcomes, PATFrame

can recommend opportunities for more robust test

planning.

5 Future Work and Implications

Our framework is by no means complete. While

there are myriad extensions that could be developed

to PATFrame, our primary focus now is on the core

functionality. Finding and developing a suitable

scheduling function for a scenario with so many

complicated constraints will be a primary focus.

Our other focus will be evaluating, and if

necessary, improving our heuristics for valuing

individual tests. Humans can naturally rank the

importance of competing MOPs and requirements, but

have trouble consistently assigning a discrete value to

these items. “Translating” user intent from cardinal

or other input methods to a discrete value will be

important to PATFrame’s functionality.

6 Conclusion

Our proposed method addresses a number of

important SoS testing challenges by enabling users to

adapt their test plans in light of newly learned

information. The ability to re-plan test programs has

already shown benefits through exploratory testing,

and we believe that our algorithm-driven method for

adaptation may provide similar results.

7 Acknowledgement

This material is based upon work supported by

the Department of Defense, United States Army,

White Sands Missile Range, NM Under Contract No.

W9124Q-09-P-0230. Any opinions, findings and

conclusions or recommendations, expressed in this

material are those of the authors(s) and do not

necessarily reflect the views of the Department of

Defense, United States Army, While Sands Missile

Range, NM.

References

[1] Aickelin, Uwe, and Kathryn A. Dowsland. "An Indirect

Genetic Algorithm for a Nurse Scheduling Problem."

Computers and Operations Research 31.5 (2004): 761-

78. Print.

[2] Bach, James. Exploratory Testing Explained. 16 Apr.

2003. Web. 7 Oct. 2009.

<http://www.reference.com/go/http://www.satisfice.co

m/articles/et-article.pdf>.

[3] Bell, David E, Howard Raiffa, and Amos Tversky.

Decision Making: Descriptive, Normative, and

Prescriptive Interactions. Cambridge: Cambridge

University Press, 1988.

[4] Cheang, B., H. Li, A. Lim, and B. Rodrigues. "Nurse

Rostering Problems - A Bibliographic Survey."

European Journal of Operational Research 151

(2003): 447-60. Print.

[5] Chen, Tsong Y., Fie-Ching Kuo, Robert G. Merkel, and

T. H. Tse. "Adaptive Random Testing: The ART of

Test Case Diversity." The Journal of Systems and

Software 83 (2009): 60-66. Print.

[6] Chernoff, Herman. "Sequential Design of

Experiments." The Annals of Mathematical Statistics

30.3 (1959): 755-70. Print.

[7] Frey, Daniel D., and Hungjen Wang. "Adaptive One-

Factor-at-a-Time Experimentation and Expected Value

of Improvement." Technometrics 48.3 (2006): 418-31.

Print.

[8] Hubbard, Douglas W. How to Measure Anything:

Finding the Value of "intangibles" in Business.

Hoboken, N.J.: John Wiley & Sons, 2007. Print.

[9] Macias, Fil. 2008. The Test and Evaluation of

Unmanned and Autonomous Systems. ITEA Journal

29: 388-395.

[10] McKay, M. D., R. J. Beckman, and W. J. Conover. "A

Comparison of Three Methods for Selecting Values of

Input Variables in the Analysis of Output from a

Computer Code." Technometrics 21.2 (1979): 239-45.

Print.

[11] Merkle, Daniel, Martin Middendorf, and Hartmut

Schmeck. "Ant Colony Optimization for Resource-

Constrained Project Scheduling." IEEE Transactions

on Evolutionary Computation 6.4 (2002): 333-46.

Print.

[12] PATFrame El Paso ITEA Conference Trip Report.

Rep. 8 March 2010. Web. <http://mit.edu/patframe>.

[13] PATFrame Ft. Hood Trip Report. Rep. 1 Sept. 2009.

Web. <http://mit.edu/patframe>.

[14] Robbins, Herbert. "Some Aspects of the Sequential

Design of Experiments." Bull. American Math Society

58.5 (1952): 527-35. Print.

[15] Simon, Herbert A. Models of Man: Social and

Rational; Mathematical Essays on Rational Human

Behavior in Society Setting. New York: Wiley, 1957.

Print.

[16] Singer, P. W. Wired for War: the Robotics Revolution

and Conflict in the Twenty-first Century. New York:

Penguin, 2009. Print.

[17] Streilein, James J. "Test and Evaluation of Highly

Complex Systems." ITEA Journal 30.1 (2009). Print.

[18] Yang, Bibo, Joseph Geunes, and William J. O'Brien.

Resource-Constrained Project Scheduling: Past Work

and New Directions. NSF. Web. 6 Mar. 2010.

[19] Valerdi, R., Ross, A.M., and Rhodes, D.H. 2007. A

Framework for Evolving System of Systems

Engineering. Crosstalk. October 2007, pp. 28-30.

[20] von Winterfeldt, D. A Re-examination of the

Normative-Descriptive Distinction in Decision

Analysis. Annals of Operations Research 19, 499-502,

1989.

