
Test Case Classification using Category-Partition
Finite State Machine

Penpicha Suphapala, Umaporn Leelanuntakul,

Nuchakorn Ngamsaowaros, Peraphon Sophatsathit

Advanced Virtual and Intelligent Computing (AVIC) Center
Department of Mathematics, Faculty of Science, Chulalongkorn University

Email: xuixui5@hotmail.com, amp_le@hotmail.com

ABSTRACT

Testing is an essential activity in software
development process. Testers and developers alike are
facing a formidable expectation of delivery bug-free
software. Certifying bug-free with exhaustive test is
commonly known to be impossible. Numerous efforts
have been attempted to arrive at a plausible test scenario
wherein thorough coverage can be attained.
Conventional approaches usually require large amount of
test data (or input domain) to generate necessary test
cases at premium expenses which, in many cases, end up
to be a recalcitrant test process. This paper proposes a
straightforward, yet practical algorithmic method to
reduce all relevant test cases. The central idea rests upon
identifying the relationships among category partition of
input specifications and program constraints that
subsequently are employed to construct a finite state
machine. As such, all paths connecting the start and end
states represent the required test cases. Reduction on the
number of generated test frames based on the proposed
method in comparison with conventional approaches
proves to be quite significant.

Keywords: Black-box testing, Category-Partition,
Pairwise Testing, Software Component, Test Case
Generation

1. INTRODUCTION
Software development, or in a simpler term---

programming, often cannot avoid a formidable obstacle,
that is, error. One way software developers can uncover
those programming errors is through testing, with the
help of suitable test cases. As programs grow more
complex and size to become programming systems and
software, test cases follow suit. Numerous research
endeavors have been attempted to devise large scale
software testing procedures via statistical testing
approach [4] using random inputs. In so doing, a test
profile and test size of the test data can be determined
from structural functionality or black-box technique of
the designated software. The criteria are usually derived
from the specification of the corresponding behavioral
model.

No matter how hard software developers have tried,

such errors seem to be inherent to software. Some forms
of test measures have been devised to assess the
effectiveness of the selected test procedure so that the
software product under test meets the required quality
prior to acceptance. As a consequence, the need to create
full test coverage based on dependability theory [3], test
data selection from large data pool, and automatic test
case generation calls for various attributes, stopping rules,
and test indicator selection guidelines. These guidelines
will be applied to adequately generate test statements,
paths, and branch coverage [6]. In practice, testing often
carries out under tight schedule and financial constraints.
Hence, careful planning and selection of test cases are
prerequisite to arrive at minimal test cases, yet effective
enough to detect many errors.

This paper proposes an approach to reduce the

number of test cases using Category-Partition Method,
working in conjunction with Pairwise Method. The paper
encompasses the followings. Section 2 describes test
case generation process using Category-Partition Method.
The governing test frame is established by means of
Pairwise Method in Section 3. The resulting test frames
are then used to create test cases which are demonstrated
by a concise yet thorough example in Section 4. An
inference on the applicability of the proposed test case
generation algorithm for software testing and future
enhancement are given in the conclusion.

2. TEST CASE GENERATION PROCEDURES
Early black-box testing employed random test data

generation technique to create test cases. This approach
required enormous test data to guarantee complete
coverage of all possible combinations. The use of
Pairwise Method [7] helped reduce the number of test
cases required, yet at the expense of additional parameter
independence stipulation.

Partitioning test data to generate appropriate test

cases is an alternative approach that helps reduce the
number of test cases generated from representative test

data. This paper proposes an effective test case
generation algorithm based on the above idea by using
Pairwise Method and Category Partition Method [1, 2].
The proposed algorithm utilizes program specifications to
classify relevant relationships among input test data,
whereby adequate coverage can be attained. As such, the
number of test cases obtaining from representative input
data partitions or categories is reduced, yet equally test
coverage in comparison with other methods is still
maintained owing to non-redundant data selection.

Data relationship analysis is imperative to classify

input data category for complete test coverage without
sacrificing extraneous verification and speed. The basic
idea rests on the scope of potential input data, in
conjunction with environmental conditions that are
pertinent to the test process. The analysis dichotomizes
input data and their corresponding environment domains
into partitions or classes called "parameter." Each
parameter is further divided into "choice" according to
program execution conditions. The relationship is then
formed based on the attributes of each choice and its
access conditions to construct a finite state machine
(hereafter referred to as FSM or state machine). The state
machine will be subsequently used to determine possible
paths emanating from start state to final state. Each path
represents a test frame of the test data necessary for test
case generation process described below.

Step A: Analysis of test program execution
stipulations
Analyze the scope of input data and their possible

environment conditions necessary for test program
execution. Classify the data into separate groups called
"parameters." Each parameter is further split into choices
according to the test program conditions. Parameter
grouping is carried out as follows:

 - input data scope
 -determine the associated attributes of program's

parameters
 -determine the required parameter specifications

from the test program
 - environmental conditions
 -determine various relevant conditions of the

parameters
 -determine the characteristic of parameters that

effect program execution
Consolidate all possible parameters and designate

each choice corresponding to the parameter's
characteristics.

Step B: Establishment of relationship of choices
-Determine the relationships among the parameters

obtained from step A by assigning basic attributes to the
choices of each environmental parameter group, as well
as viable access conditions that reflect the relationship
among those choices. Determine the choice(s) that
causes program defects (hereafter denoted by [error]).

Annotate the causes of defect for the choice and arrange
them by priority of individual choice.

Step C: State machine construction from each choice
-Construct a state machine from the above sets of

relationships beginning with the first data node as the
start state and the leaf data node as the final state. The
remaining data nodes represent possible states.
Accessibility of each choice designates the relationship
among the choices. State change denotes possible paths
among categories. The first state points to data nodes of
the choice in the first category, whereas all leaf nodes
point to the final state.

-Determine the direction from one node to the next
according to selection conditions for each choice. The
attributes corresponding to the selected node are then
forwarded to the next (or destination) node. These
attributes are compared with those of the destination node
to see if any conflicts exist. If it is the case, the
destination node is partitioned in accordance with the
number of conflicting cases.

-Apply conditioned direction from one node to its
successors for state transition.

Step D: Derivation of test frame construction from
test paths
-Determine test paths using Pairwise technique by

considering the parameters between participating
categories one pair at a time. The path so obtained will
be unique and independent.

-Denote each test path as the characteristic of input
domain for test case generation.

Step E: Test case generation procedures
Create one test case based on every test frame

derived above since each test frame designates the
conditions required to construct the necessary test cases.
A test case consists of the following components:

 -test ID
 -description which narrates the test procedures

and input description for each test condition, including
the preconditions of the test case

 -expected output which exhibits the results to be
obtained from each test case

 -actual output which is recorded after the test is
run. If a test passes, the actual output will indicate
“Pass.” If a test fails, it is helpful to record “Fail” and a
description of the failure.

3. SAMPLE TEST FRAME CONSTRUCTION
The experiment demonstrates the procedures on

generating test cases for a bookstore search utility. The
program searches for books with less than or equal to the
given price. The output displays all titles and prices from
search results. Some specific program characteristics are
given below.

Command: search
Syntax: search <title> <price>

Function:
 search command looks for book titles based on

the input keyword of which their respective price is less
than or equal to the given price.

 <title> denotes the keyword used as search
criteria, where <title> must begin and end with double-
quotes ("). If the <title> contains a double-quote("),
simply denote it by two consecutive double-quotes ("").

 <price> represents the maximum price to be
searched for, all of which must be greater than zero. If
this search item is omitted, all books matching <title>
keyword will be retrieved, regardless of their price.

Example:
-search "computer" 1000
 display all book titles having computer as their

subject, along with selling price less than or equal to 1000
-search "computer network" 1000
 display all book titles having computer network

as their subject, along with selling price less than or equal
to 1000

-search "computer "" network"
 display all book titles having computer "

network computer as their subject, along with their
selling price

Step A: analysis of various relevant stipulations for
execution of the search program
Based on the scope of input data and working

environment of the program, the first task is to analyze
the impact on program execution by considering the
syntax and function specifications. The above book title
search example encompasses two parameters, namely,
<title> and <price> which can be further examined their
syntax and function as follows:

Syntax parameter
 -the format of <title> open/close double-quotes
 -the length of each keyword used in search

process
 -existence of embedded double-quotes in the

keyword
 -existence of embedded blanks in the keyword
 -the value of <price>
 The output environment of the function

parameter consists of
 -title search display
At which point, analysis of all possible parameters'

specific characteristics constitutes the following
individual parameters’ choices

Parameters of input domains

<title> pattern:
choice1<A1>: correctly quoted
choice2<A2>: improperly quoted
choice3<A3>: not quoted
<title> size:
choice1<B1>: non-empty
choice2<B2>: empty

embedded quotes:
choice1<C1>: no embedded quote
choice2<C2>: one embedded quote
choice3<C3>: several embedded quotes
embedded blanks:
choice1<D1>: no embedded blank
choice2<D2>: one embedded blank
choice3<D3>: several embedded blanks
boundary <price>:
choice1<E1>: more than or equal to zero
choice2<E2>: omitted
choice3<E3>: less than zero

Parameters of environment
display <title> and <price> search results
choice1<F1>: exactly one
choice2<F2>: more than one
choice3<F3>: none

Step B: establish the relationships among the choices
In order to prevent impossible combinations, some

preliminary specifications of the choices, access criteria,
and error notes of each choice are described for all
parameters. These relationships are then arranged,
including their respective choice within the relationship
as follows:
Parameters of input domains

<title> pattern:
choice1<A1>: correctly quoted [attribute Quote]
choice2<A2>: improperly quoted [error]
choice3<A3>: not quoted [error]
<title> size:
choice1<B1>: non-empty [if Quote] [attribute

NonEmpty]
choice2<B2>: empty [if Quote] [attribute Empty]
embedded quotes:
choice1<C1>: no embedded quote
choice2<C2>: one embedded quote [if NonEmpty]
choice3<C3>: several embedded quotes [if

NonEmpty]
embedded blanks:
choice1<D1>: no embedded blank
choice2<D2>: one embedded blank [if NonEmpty]
choice3<D3>: several embedded blanks [if

NonEmpty]
boundary <price>:
choice1<E1>: more than or equal to zero
choice2<E2>: omitted
choice3<E3>: less than zero [error]

Parameters of environment
display <title> and <price> search results
choice1<F1>: exactly one
choice2<F2>: more than one
choice3<F3>: none

It is apparent that the choices with no associating

specification for access conditions are those which can be
accessed by any attributes of the given specification.

Fig.1: State machine of total Test Frames

Step C: construct state machine from the choices'
relationship
Given the first node as start node and the leaf nodes

as end nodes, construct new nodes to represent each
choice of the parameters along with their attributes.
Connect a node to other nodes based on access conditions
to form a path. The resultant state machine is depicted in
Figure 1.

Step D: derive test frames from test paths of the state
machine
Every path of the state machine denotes the

specification of input test data. If a path is visited in the
state machine, that path is considered tested and will not
be revisited. Bearing this principle in mind, the total
number of paths created from step C within the test frame
is 15 as follows:

1. {A1, B1, C1/1, D1/1, E1/1, F1}
2. {A1, B2, C1/2, D1/2, E1/2, F1}
3. {A1, B1, C2, D1/1, E2/1, F1}
4. {A1, B1, C3, D1/1, E1/1, F2}
5. {A1, B1, C1/1, D2, E1/1, F3}
6. {A1, B1, C1/1, D3, E1/1, F2}
7. {A1, B1, C2, D2, E2/1, F2}
8. {A1, B1, C2, D3, E2/1, F3}
9. {A1, B1, C3, D2, E2/1, F3}
10. {A1, B1, C3, D3, E1/1, F1}
11. {A1, B2, C1/2, D1/2, E2/2, F1}
12. {A1, B2, C1/2, D1/2, E1/2, F2}
13. {A1, B2, C1/2, D1/2, E1/2, F3}
14. {A1, B2, C1/2, D1/2, E2/2, F2}
15. {A1, B2, C1/2, D1/2, E2/2, F3}

Step E: Test case generation procedures
According to the test frames from previous step, each

test frame can generate one test case. A sample test
frame from #6, i.e., {A1, B1, C1/1, D3, E1/1, F2} is
given below.

<title> pattern: correctly quoted
<title> size: non-empty
Embedded quotes: no embedded quote
Embedded blank: several embedded blanks
Boundary <price>: more than or equals to zero
Environment Display <title> and <price> search
results: more than one

And the corresponding sample test case is as follows:

Test ID: 6
Description: the database may contain more than one
book records having“life and love” as the title and price
over 200.
<title>: “ life and love ”
<price>: 200
Expected results: Database search may result in more
than one match, wherein the corresponding title will be
displayed according to the above conditions.
Actual results: Pass / Fail

Based on all combinations obtained from the

aforementioned search utility, there are 1*2*3*3*2*3 or
108 cases of input data to be tested. Using Category-
Partition Method, on the contrary, and assigning
appropriate attributes to the parameters and environment
variables, the yield of the state machine so constructed to
derive all possible input test cases is 15, which is an
astounding 86.11% reduction.

4. EXPERIMENTAL RESULTS
This study conducted 3 test programs to assess the

validity of the proposed approach. The first program was
a book title keyword search utility that output a list of
titles and its corresponding price. The second program
was a boat reservation utility. The last program was a
time-table search for any given train departing from Hua
Lum Phong Railway Station to destination.

The experiment was carried out using the four
techniques, excluding [error] condition when last test case
generation was performed. Comparative statistics with
all-combination approach are given in Table 1.

Table 1: number of test case in each method

Table 2 compares the percentage of test case

reduction obtained from all four techniques with all-
combination approach. A visual comparative graph is
illustrated in Figure 2.

Table 2: Percent reduction as compared with all-
combination techniques

0

20

40

60

80

100

set 1 set 2 set 3

Pairwise Base case
Category partition state machine

Fig.2: Graph of reduction rate of representative test

cases

Table 3 depicts the reduction rate of number of test
cases in comparison with all-combination technique.

Table 3: the reduction rate of number of test cases

5. CONCLUSION AND FUTURE WORK
Test case classification using Category-Partition state

machine to separate input test data based on their
specifications yields competitive results in comparison
with existing techniques such as Base Case, Category-
Partition Method, Pairwise, and all-combination. Base
Case approach is suitable for single normal case program,
leaving multiple normal cases open. This was the case as
in the first and second test programs where some test
coverage were missing, despite apparent low number of
test cases. The proposed approach, albeit slightly higher
yield, furnishes more coverage.

Method Pair
wise

Base
case

Category
partition

FSM Combi-
nation

Test 1 16 9 30 15 108
Test 2 14 9 22 16 108
Test 3 9 5 7 3 9

The benefits from the proposed approach are three
folds. First and foremost, test coverage is as complete as
Category-Partition since the same classification technique
is employed. The use of Pairwise method to create test
frame eliminates duplicate cases, whereby fewer test
cases are resulted. Next, Pairwise and all-combination
techniques eliminate all examined cases, disregarding
their inter-relationship. As such, certain needed test cases
would not be taken into account, while others are
contrived cases. The proposed approach incorporates
input data relationship into consideration, whereby
thorough inter-relationship coverage is attained. Lastly,
the proposed technique is adaptable to matrix form, hence
highly suitable for machine learning applications.

Method

Pair
Wise
(%)

Base
case
(%)

Category
partition
(%)

FSM
(%)

Combi-
nation
(%)

Test 1 85.19 91.67 72.22 86.11 0
Test 2 87.04 91.67 79.63 85.19 0
Test 3 0 44.44 22.22 66.67 0

Due to the small size of data set, test path analysis

was straightforward without any singularity. What
remains to be considered is how to apply the proposed
technique to large software with overlapping input
domains. The positive precipitation from this approach is
the use of state machine to construct test cases as long as
those complex inputs can be categorically classified
(there are myriad of researches on data
clustering/classification). A concern from the theoretical
stand point is to prove data adequacy [5] that represents
the smallest set of input domain. This is to ensure a
stopping criterion in deriving a state machine for all test
cases.

Such incorporation of predicate and measurement

theory calls for white-box analysis technique to aid the
state machine construction. The processing time and cost
incurred by white-box analysis is unfavorably justified
from business point of view, and prolonging the software
product to market. Thus, tradeoffs between a compelling
challenge for in-depth study and development are to reach
the ultimatum of "Software Engineering" philosophy.

6. REFERENCES
[1] P. Ammnann and J. Offutt. “Using Formal Methods

To Derive Test Frames In Category-Partition
Testing”, Proceedings of the Ninth Annual Conference
on Computer Assurance, 1994--COMPASS '94',
Safety, Reliability, Fault Tolerance, Concurrency and
Real Time, Security, June 27-July 1, 1994, pp. 69-79.

Method

Pair
Wise
(%)

Base
case
(%)

Category
partition
(%)

FSM
(%)

Combi-
nation
(%)

Percent 57.41 75.93 58.02 79.32 57.41

[2] Thomas J. Ostrand and Marc J. Balcer. “The
Category-Partition Method for Specifying and
Generating Functional Tests”, Communications of the
ACM, Volume 31, Issue 6, June 1988, pp. 676-686.

[3] D. Hamlet. “Foundations of Software Testing:
Dependability Theory”, ACM SIGSOFT Software
Engineering Notes, Proceedings of the 2nd ACM
SIGSOFT Symposium on Foundations of Software
Engineering SIGSOFT '94, December 1994, Volume
19 Issue 5, pp. 128-139.

[4] P. Thevenod-Fosse and H. Waeselynck.
“STATEMATE Applied to Statistical Software
Testing”, ACM SIGSOFT Software Engineering
Notes, Proceedings of the 1993 ACM SIGSOFT
International Symposium on Software Testing and
Analysis ISSTA '93, Volume 18 Issue 3, pp. 99-109.

[5] E.J. Weyuker. “The Evaluation of Program-based
Software Test Data Adequacy Criteria”,
Communications of the ACM, June 1988, Vol. 31, No.
6, pp. 668-675.

[6] H. Zhu, P.A.V. Hall, and J.H.R. May. “Software Unit
Test Coverage and Adequacy” ACM Computing
Surveys, Vol. 29, No. 4, December 1997, pp. 366-427.

[7] Kuo-Chung Tai and Yu Lei, “A Test Generation
Strategy for Pairwise Testing”, IEEE Transactions on
Software Engineering, Vol. 28, No. 1, January 2002,
pp. 1-2.

