
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

CSE Journal Articles Computer Science and Engineering, Department 
of 

2-2002 

Test Case Prioritization: A Family of Empirical Studies Test Case Prioritization: A Family of Empirical Studies 

Sebastian Elbaum 
University of Nebraska-Lincoln, selbaum@virginia.edu 

Alexey G. Malishevsky 
Oregon State University 

Gregg Rothermel 
University of Nebraska-Lincoln, gerother@ncsu.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/csearticles 

 Part of the Computer Sciences Commons 

Elbaum, Sebastian; Malishevsky, Alexey G.; and Rothermel, Gregg, "Test Case Prioritization: A Family of 

Empirical Studies" (2002). CSE Journal Articles. 8. 

https://digitalcommons.unl.edu/csearticles/8 

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an 
authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csearticles
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csearticles/8?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages


Test Case Prioritization:
A Family of Empirical Studies

Sebastian Elbaum, Member, IEEE, Alexey G. Malishevsky, Student Member, IEEE, and

Gregg Rothermel, Member, IEEE

Abstract—To reduce the cost of regression testing, software testers may prioritize their test cases so that those which are more

important, by some measure, are run earlier in the regression testing process. One potential goal of such prioritization is to increase a

test suite’s rate of fault detection. Previous work reported results of studies that showed that prioritization techniques can significantly

improve rate of fault detection. Those studies, however, raised several additional questions: 1) Can prioritization techniques be

effective when targeted at specific modified versions; 2) what trade-offs exist between fine granularity and coarse granularity

prioritization techniques; 3) can the incorporation of measures of fault proneness into prioritization techniques improve their

effectiveness? To address these questions, we have performed several new studies in which we empirically compared prioritization

techniques using both controlled experiments and case studies. The results of these studies show that each of the prioritization

techniques considered can improve the rate of fault detection of test suites overall. Fine-granularity techniques typically outperformed

coarse-granularity techniques, but only by a relatively small margin overall; in other words, the relative imprecision in coarse-

granularity analysis did not dramatically reduce coarse-granularity techniques’ ability to improve rate of fault detection. Incorporation of

fault-proneness techniques produced relatively small improvements over other techniques in terms of rate of fault detection, a result

which ran contrary to our expectations. Our studies also show that the relative effectiveness of various techniques can vary

significantly across target programs. Furthermore, our analysis shows that whether the effectiveness differences observed will result in

savings in practice varies substantially with the cost factors associated with particular testing processes. Further work to understand

the sources of this variance and to incorporate such understanding into prioritization techniques and the choice of techniques would be

beneficial.

Index Terms—Test case prioritization, regression testing, empirical studies.

�

1 INTRODUCTION

REGRESSION testing is an expensive testing process used to
validate modified software and detect whether new

faults have been introduced into previously tested code.
Regression test suites can be expensive to execute in full;
thus, test engineers may prioritize their regression tests
such that those which are more important, by some
measure, are run earlier in the regression testing process.

One potential goal of test case prioritization is that of
increasing a test suite’s rate of fault detection—a measure of
how quickly a test suite detects faults during the testing
process. An improved rate of fault detection can provide
earlier feedback on the system under test, enable earlier
debugging, and increase the likelihood that, if testing is
prematurely halted, those test cases that offer the greatest
fault detection ability in the available testing time will have
been executed.

In previous work [30], Rothermel et al. formally defined
the test case prioritization problem, presented several
techniques for prioritizing test cases, and presented the

results of empirical studies in which those techniques were
applied to various programs. Six prioritization techniques
were studied; all were based on coverage of statements or
branches in the programs. The test suites produced by these
techniques were compared to random, untreated, and
optimal test case orders. The studies showed that the
techniques improved rate of fault detection and that this
improvement occurred even for the least sophisticated (and
least expensive) of those techniques.

Building on that work, this article addresses several
additional questions. First, [30] examined only “general
prioritization,” which attempts to select a test case order
that will be effective on average over a succession of
subsequent versions of the software. In regression testing,
we are concerned with a particular version of the software
and we may wish to prioritize test cases in a manner that
will be most effective for that version. We call this “version-
specific prioritization” and we are interested in its effec-
tiveness. Although, in many cases, the same techniques may
apply to version-specific as to general prioritization, the
cost-effectiveness of such techniques with respect to the two
forms of prioritization could differ. Thus, in this article, we
focus on version-specific prioritization.

Second, the techniques examined in [30] all operated at
relatively fine granularity—performing instrumentation,
analysis, and prioritization at the level of source code
statements. For large software systems, or systems in which
statement-level instrumentation is not feasible, such tech-
niques may be too expensive. An alternative is to operate at

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002 159

. S. Elbaum is with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588-0115.
E-mail: elbaum@cse.unl.edu.

. A.G. Malishevsky and G. Rothermel are with Department of Computer
Science, Oregon State University, Corvallis, OR 97331.
E-mail: {malishal, grother}@cs.orst.edu.

Manuscript received 26 Feb. 2001; accepted 8 Oct. 2001.
Recommended for acceptance by A. Bertolino.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 115155.

0098-5589/02/$17.00 � 2002 IEEE



a coarser granularity—for example, at the function level,
where instrumentation and analysis are more efficient. We
expect, however, that coarse granularity techniques will be
less effective than fine granularity techniques and loss of
effectiveness could offset efficiency gains. We wish to
examine the cost-benefits trade-offs that hold, for test case
prioritization, across granularities. Thus, in this work, we

consider four techniques examined in [30], plus 12 new
techniques that operate at the function level.

Third, the analysis in [30] revealed a sizable performance
gap between the results achieved by the prioritization
techniques that we examined and the optimal results
achievable. We wish to at least partially bridge this gap
and we conjecture that incorporating measures of fault
proneness (e.g., [10], [26]) into our techniques might let us

do so. Thus, this work involves several techniques that
incorporate such measures.

Finally, the empirical studies in [30] considered only

eight relatively small programs. In this work, our initial

studies involve controlled experiments on these same

programs; however, we then extend our focus to include

case studies of three larger programs: two open-source Unix

utilities and an embedded real-time subsystem of a level-5

RAID storage system, each with a sequence of released

versions. Together, this group of varied studies and

programs lets us observe the performance of several

prioritization techniques in different situations and lets us

probe the relative strengths of each technique.
In the next section of this article, we present background

material on the test case prioritization problem. Section 3
describes the test case prioritization techniques that we
study. Section 4 describes our research questions and
overall empirical approach. Section 5 presents our con-
trolled experiments and Section 6 presents our case studies.
Section 7 presents an analysis of the practical significance of

our results. Section 8 reviews related work and Section 9
summarizes our results and discusses future research.

2 BACKGROUND: THE TEST CASE PRIORITIZATION

PROBLEM

Rothermel et al. [30] define the test case prioritization

problem and describe several issues relevant to its solution;
this section reviews the portions of that material that are
necessary to understand this article.

The test case prioritization problem is defined as follows:

The Test Case Prioritization Problem:
Given: T , a test suite; PT , the set of permutations of T ; f ,

a function from PT to the real numbers.
Problem: Find T 0 2 PT such that ð8T 00Þ ðT 00 2 PT Þ ðT 00 6¼
T 0Þ ½fðT 0Þ 	 fðT 00Þ
.

Here, PT represents the set of all possible prioritizations
(orderings) of T and f is a function that, applied to any such
ordering, yields an award value for that ordering.

There are many possible goals for prioritization; [30]

describes several. This article, like [30], focuses on the goal
of increasing the likelihood of revealing faults earlier in the
testing process. This goal can be described, informally, as

one of improving a test suite’s rate of fault detection: A

quantitative measure for this goal is provided in Section 4.1.
Rothermel et al. [30] distinguish two types of test case

prioritization: general and version-specific. In general test
case prioritization, given program P and test suite T , test
cases in T are prioritized with the goal of finding a test case
order that will be useful over a sequence of subsequent
modified versions of P . Thus, general test case prioritiza-
tion can be performed following the release of some version
of the program during off-peak hours and the cost of
performing the prioritization is amortized over the sub-
sequent releases. The expectation is that the resulting
prioritized suite will be more successful than the original
suite at meeting the goal of the prioritization, on average
over those subsequent releases.

In contrast, in version-specific test case prioritization, given

program P and test suite T , test cases in T are prioritized

with the intent of finding an ordering that will be useful on

a specific version P 0 of P . Version-specific prioritization is

performed after a set of changes have been made to P and

prior to regression testing P 0. Because this prioritization is

performed after P 0 is available, care must be taken to

prevent the cost of prioritizing from excessively delaying

the very regression testing activities it is supposed to

facilitate. The prioritized test suite may be more effective at

meeting the goal of the prioritization for P 0 in particular

than would a test suite resulting from general test case

prioritization, but may be less effective on average over a

succession of subsequent releases.
Finally, like [30], this article addresses the problem of

prioritizing test cases for regression testing; however, test

case prioritization can also be employed in the initial testing

of software (see Section 8). An important difference

between these two applications is that, in the case of

regression testing, prioritization techniques can use infor-

mation from previous runs of regression test suites to

prioritize the test cases for subsequent runs; such informa-

tion is not available during initial testing.

3 TEST CASE PRIORITIZATION TECHNIQUES

We consider 18 different test case prioritization techniques,
which we classify into three groups. Table 1 lists these
techniques by group. The first group is the comparator
group, containing two “techniques” that are used in
comparisons. The second group is the statement level group,
containing four fine granularity techniques; these techni-
ques were used in Rothermel et al. [30], but here they are
examined in the context of version-specific prioritization.
The third group is the function level group, containing 12
coarse granularity techniques; four are comparable to
statement level techniques and eight add information on
the probability of fault existence not used by the statement
level techniques. Next, we describe each technique: Because
the first six techniques have been presented algorithmically
and analyzed in detail in [30], our discussion of these is
abbreviated; the reader is referred to that reference for
further details. Following this description, Section 3.4
summarizes and further classifies the techniques.

160 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002



3.1 Comparator Techniques

T1: Random ordering. As an experimental control, one
prioritization “technique” that we consider is the random
ordering of the test cases in the test suite.

T2: Optimal ordering. For further comparison, we also
consider an optimal ordering of the test cases in the test
suite. We can obtain such an ordering in our experiments
because we use programs with known faults and can
determine which faults each test case exposes: this lets us
determine the ordering of test cases that maximizes a test
suite’s rate of fault detection.1 In practice, this is not a viable
technique, but it provides an upper bound on the effective-
ness of the other heuristics that we consider.

3.2 Statement Level Techniques

T3: Total statement coverage prioritization. Using program
instrumentation, we can measure the coverage of state-
ments in a program by its test cases. We can then prioritize
test cases in terms of the total number of statements they
cover by sorting them in order of coverage achieved. (If
multiple test cases cover the same number of statements, we
can order them pseudorandomly.)

Given a test suite of m test cases and a program of
n statements, total statement coverage prioritization re-
quires time Oðm nþm log mÞ. Typically, n is greater than
m, making this equivalent to Oðm nÞ.

T4: Additional statement coverage prioritization. Addi-
tional statement coverage prioritization is like total cover-
age prioritization, but it relies on feedback about coverage
attained so far in testing to focus on statements not yet
covered. To do this, the technique greedily selects a test case
that yields the greatest statement coverage, then adjusts the
coverage data about subsequent test cases to indicate their
coverage of statements not yet covered, and then iterates

until all statements covered by at least one test case have
been covered. When all statements have been covered, the
remaining test cases are covered (recursively) by resetting
all statements to “not covered” and reapplying additional
statement coverage on the remaining test cases.

For a test suite and program containing m test cases and
n statements, respectively, the cost of additional statement
coverage prioritization is Oðm2 nÞ, a factor of m more than
total statement coverage prioritization.

T5: Total FEP prioritization. The ability of a fault to be
exposed by a test case depends not only on whether the test
case executes a faulty component, but also on the prob-
ability that a fault in that statement will cause a failure for
that test case [14], [16], [31], [32]. Any practical determina-
tion of this probability must be an approximation, but we
wish to know whether such an approximation might yield a
prioritization technique superior in terms of rate of fault
detection than techniques based solely on code coverage.

To approximate the fault-exposing-potential (FEP) of a
test case, we used mutation analysis [7], [15]. Given
program P and test suite T , for each test case t 2 T , for
each statement s in P , we determined the mutation score
msðs; tÞ of t on s to be the ratio of mutants of s exposed by t

to total mutants of s. We then calculated, for each test case tk
in T , an award value for tk, by summing all msðs; tkÞ values.
Total fault-exposing-potential (total FEP) prioritization
orders test cases in terms of these award values.

Given the msðs; tÞ values for a test suite containing
m test cases and a program containing n statements, total
FEP prioritization can be accomplished in time
Oðm nþm log mÞ. In general, n is greater than m, in
which case, the cost of this prioritization is Oðm nÞ, a
worst-case time analogous to that for total statement
coverage prioritization. The cost of calculating msðs; tÞ
values, however, could be quite high, especially if these
values are obtained through mutation analysis. If FEP
prioritization shows promise, however, this would moti-
vate a search for cost-effective approximators of fault-
exposing potential.

ELBAUM ET AL.: TEST CASE PRIORITIZATION: A FAMILY OF EMPIRICAL STUDIES 161

1. As detailed in [30], the problem of calculating an optimal ordering is
itself intractable, thus, we employ a heuristic that calculates an approxima-
tion to optimal. Despite this fact, our heuristic provides a useful benchmark
against which to measure practical techniques because we know that a true
optimal ordering could perform no worse than the ordering that we
calculate.

TABLE 1
Test Case Prioritization Techniques Considered in this Paper



T6: Additional FEP prioritization. Similar to the exten-
sions made to total statement coverage prioritization to
produce additional statement coverage prioritization, we
incorporate feedback into total FEP prioritization to create
additional fault-exposing-potential (FEP) prioritization. In
additional FEP prioritization, after selecting a test case t, we
lower the award values for all other test cases that exercise
statements exercised by t to reflect our increased confidence
in the correctness of those statements; we then select a next
test case, repeating this process until all test cases have been
ordered. This approach lets us account for the fact that
additional executions of a statement may be less valuable
than initial executions.

3.3 Function Level Techniques

T7: Total function coverage prioritization. Analogous to

total statement coverage prioritization, but operating at the

level of functions, total function coverage prioritization

prioritizes test cases by sorting them in order of the total

number of functions they execute. The technique has a

worst-case cost analogous to that of statement coverage:

Oðm nþm log mÞ for a test suite containing m test cases

and a program containing n functions. The number of

functions in a program is typically much smaller, however,

than the number of statements in a program. Moreover, the

process of collecting function-level traces is less expensive

and less intrusive than the process of collecting statement-

level traces. Thus, total function coverage prioritization

promises to be cheaper than total statement coverage

prioritization.

T8: Additional function coverage prioritization. Analo-

gous to additional statement coverage prioritization, but

operating at the level of functions, this technique incorpo-

rates feedback into total function coverage prioritization,

prioritizing test cases (greedily) according to the total

number of additional functions they cover. When all

statements have been covered, we reset coverage vectors

and reapply additional function coverage on the remaining

test cases. The technique has a worst-case cost of Oðm2 nÞ
for test suites of m test cases and programs of n functions.

T9: Total FEP (function level) prioritization. This

technique is analogous to total FEP prioritization at the

statement level. To translate that technique to the function

level, we required a function-level approximation of fault-

exposing potential. We again used mutation analysis,

computing, for each test case t and each function f , the

ratio of mutants in f exposed by t to mutants of f executed

by t. Summing these values, we obtain award values for test

cases. We then apply the same prioritization algorithm as

for total FEP (statement level) prioritization, substituting

functions for statements.

T10: Additional FEP (function level) prioritization. This

technique incorporates feedback into the total FEP (function

level) technique in the same manner used for the total FEP

(statement level) technique.

T11: Total fault index (FI) prioritization. Faults are not

equally likely to exist in each function; rather, certain

functions are more likely to contain faults than others. This

fault proneness can be associated with measurable software

attributes [1], [3], [5], [20], [24]. In the context of regression

testing, we are also interested in the potential influence, on

fault proneness, of our modifications; that is, with the

potential of modifications to lead to regression faults. This

requires that our fault proneness measure account for

attributes of software change [10]. We can account for the

association of changes with fault-proneness by prioritizing

test cases based on this measure.

For this technique, as a metric of fault proneness, we

use a fault index which, in previous studies [10], [26], has

proven effective at providing fault proneness estimates.

The fault index generation process involves the following

steps: First, a set of measurable attributes [9] is obtained

from each function in the program. Second, the metrics are

standardized using the corresponding metrics of a baseline

version (which later facilitates the comparison across

versions). Third, principal components analysis [19] re-

duces the set of standardized metrics to a smaller set of

domain values, simplifying the dimensionality of the

problem and removing the metrics colinearity. Finally,

the domain values weighted by their variance are

combined into a linear function to generate one fault

index per function in the program.

Given program P and subsequent version P 0, generating

(regression) fault indexes for P 0 requires generation of a

fault index for each function in P , generation of a fault

index for each function in P 0, and a function-by-function

comparison of the indexes for P 0 against those calculated

for P . As a result of this process, the regression fault

proneness of each function in P 0 is represented by a

regression fault index based on the complexity of the

changes that were introduced into that function. Further

details on the mechanisms of the method are given in [10],

[13]. From this point forward and to simplify the nomen-

clature, we refer to “regression fault indexes” simply as

“fault indexes.”
Given these fault indexes, total fault index coverage

prioritization is performed in a manner similar to total
function coverage prioritization. For each test case, we
compute the sum of the fault indexes for every function that
test case executes. Then, we sort test cases in decreasing
order of these sums, resolving ties pseudorandomly. Given
the fault index for each of the n functions in the program,
and m test cases, total fault index prioritization can be
accomplished in Oðm nÞ time. The cost of obtaining the
fault indexes for a program is bounded by the number of
functions n and the size of the metric set on which the fault
index is based. Since the generation of fault indexes does
not involve test execution, its computational cost is
significantly smaller than the cost of computing FEP values.

T12: Additional fault-index (FI) prioritization. Addi-
tional fault index coverage prioritization is accomplished in
a manner similar to additional function coverage prioritiza-
tion, by incorporating feedback into total fault index
coverage prioritization. The set of functions that have been
covered by previously executed test cases is maintained. If
this set contains all functions (more precisely, if no test case
adds anything to this coverage), the set is reinitialized to ;.
To find the next best test case, we compute, for each test

162 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002



case, the sum of the fault indexes for each function that test
case executes, except for functions in the set of covered
functions. The test case for which this sum is the greatest
wins. This process is repeated until all test cases have been
prioritized.2

T13: Total FI with FEP coverage prioritization. We

hypothesized that, by utilizing both an estimate of fault

exposing potential and an estimate of fault proneness, we

might be able to achieve a superior rate of fault detection.

There are many ways in which one could combine these

estimates; in this work, for each function, we calculate the

product of the FI and FEP estimates for that function. We

then calculate, for each test case, the sum of these products

across the functions executed by that test case. We order test

cases in descending order of that sum, resolving ties

pseudorandomly.

T14: Additional FI with FEP coverage prioritization. We

incorporate feedback into the previous technique to yield an

“additional” variant. We again calculate, for each function,

the product of its FI and FEP estimates. Next, we repeatedly

calculate, for each test case not yet prioritized, the sum of

these products across the functions executed by that test

case, select the test case with the highest such sum, and

reset the values for functions covered by that test case to

zero, until all values are zero. If test cases remain, we reset

the values for functions and repeat the process on the

remaining test cases.

T15: Total DIFF prioritization. DIFF-based techniques

are a simpler alternative to FI-based techniques for

estimating fault proneness. While FI-based techniques

require the collection of various metrics and the use of

multivariate statistics, DIFF-based techniques require only

the computation of syntactic differences between two

versions of the program. With DIFF-based techniques, for

each function present in both P and P 0, we measure degree

of change by adding the number of lines listed as inserted,

deleted, or changed, in the output of the Unix diff

command applied to P and P 0.
Although this DIFF-based approach does not capture all

of the dimensions of complexity included in FI, the wide

availability of “diff” tools makes this approach easily

accessible to practitioners. Further, comparisons of the

DIFF-based and FI-based approaches in terms of effects on

rate of fault detection, when employed in prioritization,

need to consider immediate practicality.
Total DIFF prioritization, therefore, is performed just like

FI prioritization, with the exception that it relies on
modification data derived from diff.

T16: Additional DIFF prioritization. Additional DIFF
prioritization is analogous to additional FI prioritization,

except that it relies on modification data derived from
diff.

T17: Total DIFF with FEP prioritization. Total DIFF with
FEP prioritization is analogous to total FI with FEP
prioritization, except that it relies on modification data
derived from diff.

T18: Additional DIFF with FEP prioritization. Addi-
tional DIFF with FEP prioritization is analogous to addi-
tional FI with FEP prioritization, except that it relies on
modification data derived from diff.

3.4 Prioritization Techniques Summary

The foregoing test case prioritization techniques represent a
broad spectrum of approaches, varying along several
dimensions. One dimension mentioned already is granu-
larity, considered here in terms of function-level and
statement-level. Granularity affects the relative costs of
techniques in terms of computation and storage, but also,
we suspect, affects the relative effectiveness of those
techniques.

A second dimension involves whether or not a technique
employs feedback and is accounted for in the difference
between “total” and “additional” techniques. “Total”
techniques prioritize test cases based on information
available at the outset of prioritization, whereas “addi-
tional” techniques adjust their efforts based on the effects of
test cases previously positioned in the test case order being
developed.

A third dimension involves whether or not a technique
uses information from the modified program version.
Techniques based solely on coverage information rely
solely on data gathered on the original version of a program
(prior to modifications) in their prioritizations. Techniques
that rely on FEP estimation do not consider the specific
modifications present in the modified version of a program;
however, they attempt to factor in the potential effects of
modifications in general. Techniques that rely on fault
indexes, in contrast, explicitly utilize information about the
modified program version.

Finally, the techniques we have suggested vary in terms
of immediate practicality. Techniques based solely on
coverage, at either the statement or function level, could
be applied today given existing code instrumentation tools.
Techniques utilizing fault index information of the type
provided by diff could also be immediately applied.
Furthermore, the implementation of the non-diff-based
fault indexes described earlier is feasible, given current
technology, and, with relatively little effort, these indexes
could currently be utilized. In contrast, our investigation of
FEP-based techniques is, due to the lack of a demonstrated,
practical method for estimating FEP, purely exploratory.
Such an exploration, however, is easily motivated: If FEP
prioritization shows promise, this would justify a search for
more cost-effective techniques for approximating fault-
exposing potential, such as techniques that use constrained
mutation [27].

In presenting and discussing our results in subsequent
sections, we comment further on each of these dimensions
of variance and the effects they have on test case
prioritization.

ELBAUM ET AL.: TEST CASE PRIORITIZATION: A FAMILY OF EMPIRICAL STUDIES 163

2. Here, a further approach analogous to that used for additional FEP
prioritization also suggests itself. If fault indexes are understood to
represent (in some sense) probabilities that faults exist in particular
functions, then following selection of tests through particular functions,
these fault indexes could be adjusted to indicate the reduced probability of a
fault existing in those functions. This is analogous to the adjustment
performed on reliability estimates when a fault is found in the testing
process [25]. In this approach, functions are not ejected from the set of
functions considered as they are covered. We leave investigation of this
alternative as a topic for future work.



4 EMPIRICAL STUDIES

In the studies that follow, we address the following specific
research questions.

RQ1: Can version-specific test case prioritization improve
the rate of fault detection of test suites?

RQ2: How do fine granularity (statement level) prioritiza-
tion techniques compare to coarse granularity (function
level) techniques in terms of rate of fault detection?

RQ3: Can the use of predictors of fault proneness improve
the rate of fault detection of prioritization techniques?

4.1 Efficacy and APFD Measures

To quantify the goal of increasing a test suite’s rate of fault
detection, in [30] we introduce a metric, APFD, which
measures the weighted average of the percentage of faults

detected over the life of the suite. APFD values range from 0
to 100; higher numbers imply faster (better) fault detection
rates.

Let T be a test suite containing n test cases and let F be a
set of m faults revealed by T . Let TFi be the first test case in
ordering T 0 of T which reveals fault i. The APFD for test
suite T 0 is given by the equation:

APFD ¼ 1
TF1 þ TF2 þ :::þ TFm

nm
þ

1

2n
:

We illustrate this metric using an example. Consider a
program with a test suite of 10 test cases, A through I, such
that the program contains eight faults detected by those test
cases, as shown by the table in Fig. 1a.

Consider two orders of these test cases, order T1: A–B–

C–D–E–F–G–H–I–J and order T2: I–J–E–B–C–D–F–G–H–A.
Figs. 1b and 1c show the percentages of faults detected

164 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

Fig. 1. Example illustrating the APFD measure.



versus the fraction of the test suite used, for these two
orders, respectively. The area inside the inscribed rectangles
(dashed boxes) represents the weighted percentage of faults
detected over the corresponding fraction of the test suite.
The solid lines connecting the corners of the inscribed
rectangles interpolate the gain in the percentage of detected
faults. The area under the curve thus represents the
weighted average of the percentage of faults detected over
the life of the test suite.

On test order T1 (Fig. 1b), the first test case executed (A)
detects no faults, but, after running test case B, two of the
eight faults are detected; thus, 25 percent of the faults have
been detected after 0:2 of test order T1 has been used. After
running test case C, one more fault is detected and, thus,
37.5 percent of the faults have been detected after 0:3 of the
test order has been used. Test order T2 (Fig. 1c), in contrast,
is a much “faster detecting” test order than T1: The first 0:1
of the test order detects 62.5 percent of the faults and the
first 0:3 of the test order detects 100 percent. (T2 is, in fact,
an optimal ordering of the test suite, resulting in the earliest
detection of the most faults.) The resulting APFDs for the
two test case orders are 43.75 percent and 90.0 percent,
respectively.

4.2 Empirical Approaches and Challenges

Two of the major challenges for this research involve
finding adequate objects of study and selecting (and
following) the appropriate empirical approaches to address
the research questions.

Finding adequate objects of study is difficult because the
candidates for empirical studies of prioritization must
include programs, subsequent releases of those programs,
test suites, and fault data. Obtaining such materials is a
nontrivial task. Free software, often in multiple versions, is
readily accessible, but free software is not typically
equipped with test suites. Free software may be equipped
with change logs, but such logs are often not sufficiently
detailed. Commercial software vendors, who are more
likely to maintain established test suites, are often reluctant
to release their source code, test suites, and fault data to
researchers. Even when vendors do make such materials
available, they typically impose restrictions rendering the
sharing of those materials, and their use in replication and
validation of studies, infeasible. Finally, even when suitable
experimental objects are available, prototype testing tools
may not be robust enough to operate on those objects and
the effort required to ensure adequate robustness in
prototype research tools may be prohibitive.

Choosing the appropriate empirical approach is not
simple because each approach presents different advan-
tages and disadvantages and each approach affects and is
affected by the availability of objects. One possible empiri-
cal approach is to perform controlled experiments on
objects drawn partially “from the field” but further
manipulated or created in a controlled environment. The
advantage of such experiments is that the independent
variables of interest (e.g., test suite constitution, modifica-
tion patterns, and fault types) can be manipulated to
determine their impact on dependent variables. This lets
us apply different values to the independent variables in a
controlled fashion so that results are not likely to depend on

unknown or uncontrolled factors. The primary weakness of
this approach, however, is the threat to external validity
posed by the “manufacturing” of test cases, faults, and
modifications.

A second empirical approach is to perform case studies
on existing programs, taken “from the field,” that have
several versions, fault data, and existing test suites. Such
objects have the advantage of being “real” and can reduce
some investigation costs due to the availability of elements
that do not need to be artificially created (e.g., test suites).
Under this approach, however, certain factors that may
influence prioritization are not controlled, which makes
replication much more difficult. For example, test suites
may be created by different or even unknown methodolo-
gies and there may be only one test suite per program or
version. Similarly, modification patterns may differ among
programs: Some programs may be released frequently with
few changes per release, other programs may be released
less frequently with many changes per release. Further, the
type of fault data that is available with programs may differ
among different programs due to the use of different
recording practices. Such differences and their dependency
on individual cases may complicate attempts to draw
general conclusions, while still requiring careful investiga-
tion to avoid misinterpretation.

Thus, each approach—controlled experiments and case
studies—has different advantages and disadvantages and,
ultimately, a fuller understanding of prioritization techni-
ques requires both.

The foregoing issues have shaped the family of empirical
studies presented in this article. We begin by describing a
set of controlled experiments on several relatively small
programs that perform well-defined tasks. We follow with a
set of case studies on two larger programs for which some
components (test suites and faults) were (of necessity and
by processes designed to limit sources of bias) manufac-
tured, while others (modifications to create new releases)
were provided, and on a third program for which all
components were provided. This diversity among objects
studied and empirical approaches lets us explore and
evaluate the performance of various prioritization techni-
ques in different situations. Furthermore, as we expect that
the relative effectiveness of techniques may vary across
programs, this approach lets us probe the relative strengths
of those techniques. Finally, the combination of controlled
experiments and case studies lets us begin to address
concerns for both external and internal validity.

5 CONTROLLED EXPERIMENTS

We present our controlled experiments first.

5.1 Experiment Instrumentation

5.1.1 Programs

We used eight C programs, with faulty versions and a
variety of test cases, as objects of study. Seven of these
programs were assembled by researchers at Siemens
Corporate Research for experiments with control-flow
and data-flow test adequacy criteria [18]; we refer to these
as the Siemens programs. The eighth program, space, was

ELBAUM ET AL.: TEST CASE PRIORITIZATION: A FAMILY OF EMPIRICAL STUDIES 165



developed for the European Space Agency; we refer to
this program as the space program.

Table 2 provides metrics on the programs; we explain the
meaning of these metrics in the following paragraphs. Note
that these programs were also used in the earlier studies
reported in [30]; here, we reuse these materials to
investigate different research questions.

Siemens programs. The Siemens programs perform

various tasks: tcas models an aircraft collision avoidance

algorithm, schedule2 and schedule are priority sche-

dulers, tot_info computes statistics, print_tokens and

print_tokens2 are lexical analyzers, replace performs

pattern matching and substitution. For each program, the

Siemens researchers created a test pool of black-box test

cases using the category partition method [4], [28]. They

then augmented this test pool with manually created white-

box test cases to ensure that each exercisable statement,

edge, and definition-use pair in the base program or its

control flow graph was exercised by at least 30 test cases.

The researchers also created faulty versions of each

program by modifying code in the base version; in most

cases, they modified a single line of code and, in a few

cases, they modified between two and five lines of code.

Their goal was to introduce faults that were as realistic as

possible, based on their experience with real programs. To

obtain meaningful results, the researchers retained only

faults that were detectable by at least three and at most 350

test cases in the test pool.
Space program. The space program is an interpreter

for an array definition language (ADL). The program reads
a file of ADL statements and checks the contents of the file
for adherence to the ADL grammar and specific consis-
tency rules. If the ADL file is correct, space outputs an
array data file containing a list of array elements, positions,
and excitations; otherwise, the program outputs error
messages. The space program has 35 versions, each
containing a single fault: 30 of these were discovered
during the program’s development, five more were
discovered subsequently [30]. The test pool for space

was constructed in two phases. The pool was initialized to
10,000 test cases randomly generated by Vokolos and
Frankl [33]. Then, new test cases were added until each
executable edge in the program’s control flow graph was
exercised by at least 30 test cases. This process produced a
test pool of 13,585 test cases.

Test Suites. Sample test suites for these programs were
constructed using the test pools for the base programs and
test-coverage information about the test cases in those
pools. More precisely, to generate a test suite T for base
program P from test pool Tp, the C pseudo-random-number
generator rand, seeded initially with the output of the
C times system call, was used to obtain integers that were
treated as indexes into Tp (modulo jTpj). These indexes were
used to select test cases from Tp; each test case t was added
to T only if t added to the cumulative branch coverage of P
achieved by the test cases added to T thus far. Test cases
were added to T until T contained at least one test case that
would exercise each executable branch in the base program.
Table 2 lists the average sizes of the 1,000 branch-coverage-
adequate test suites generated by this procedure for each of
the object programs.

For our experimentation, we randomly selected 50 of
these test suites for each program.

Versions. For these experiments, we required program
versions with varying numbers of faults; we generated these
versions in the following way: Each program was initially
provided with a correct base version and a fault base of
versions containing exactly one fault. We call these first-
order versions. We identified, among these first-order
versions, all versions that do not interfere—that is, all faults
that can be merged into the base program and exist
simultaneously. For example, if fault f1 is caused by
changing a single line and fault f2 is caused by deleting
the same line, then these modifications interfere with each
other.

We then created higher-order versions by combining
noninterfering first-order versions. To limit the threats to
our experiment’s validity, we generated the same number
of versions for each of the programs. For each program, we
created 29 versions; each version’s order varied randomly
between 1 and the total number of noninterfering 1st-order
versions available for that program.3 At the end of this
process, each program was associated with 29 multifault
versions, each containing a random number of faults.

5.1.2 Prioritization and Analysis Tools

To perform the experiments, we required several tools.
Our test coverage and control-flow graph information was
provided by the Aristotle program analysis system [17].
We created prioritization tools implementing the techni-
ques outlined in Section 3. To obtain mutation scores for
use in FEP prioritization, we used the Proteum mutation
system [6]. To obtain fault index information, we used
three tools [9], [11]: source code measurement tools for
generating complexity metrics, a fault index generator, and
a comparator for evaluating each version against the
baseline version. To determine the syntactic differences
between two versions, we employed a modified version of
the Unix diff utility. To generate the multiple-fault
versions, scripts were written to implement the strategy
outlined in the previous section.

166 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

3. The number of versions, 29, constitutes the minimum among the
maximum number of versions that could be generated for each program
given the interference constraints.

TABLE 2
Experiment Objects



5.2 Experiment Design, Results, and Analysis

We performed several experiments, each addressing one of
our research questions. Each experiment included five
stages:

1. stating a research question in terms of an hypothesis,
2. formalizing the experiment through a robust design,
3. collecting data,
4. analyzing data to test the hypothesis, and
5. identifying the threats to the experiment’s validity.

In general, each experiment examined the results of
applying certain test case prioritization techniques to each
program and its set of versions and test suites.

To provide an overview of all the collected data,4 we
include Figs. 2 and 3 with box plots.5 Fig. 2 displays a plot
for an “all programs” total and Fig. 3 displays an individual
plot for each of the programs. Each plot contains a box
showing the distribution of APFD scores for each of the
18 techniques.

The following sections describe, for each of our research
questions in turn, the experiment(s) relevant to that
question, presenting their design and the analysis of their
results.

5.2.1 Experiment 1 (RQ1): Version-Specific

Prioritization

Our first research question considers whether version-
specific test case prioritization can improve the fault-
detection abilities of test suites. Since we conjectured that
differences in the granularity at which prioritization is
performed would cause significant differences in APFD
values, we performed two experiments: Experiment 1a
involving statement level techniques st-total, st-addtl,
st-fep-total, and st-fep-addtl, and Experiment 1b involving
function level techniques fn-total, fn-addtl, fn-fep-total, and
fn-fep-addtl. This separation into two experiments gave us
more power to determine differences among the techniques
within each group.

Both experiments followed the same factorial design: All

combinations of all levels of all factors were investigated.

The main factors were program and prioritization techni-

que. Within programs, there were eight levels (one per

program) with 29 versions and 50 test suites per program.

We employed four prioritization techniques per experi-

ment. Each treatment (prioritization technique) was applied

to every viable6 combination of test suite and version within

each program generating a maximum of 46,400 observa-

tions (each including an APFD value) per experiment.

We then performed an analysis of variance (ANOVA)

on those observations to test the differences between the

techniques’ mean APFD values. We considered the main

effects program and technique and the interaction among

those effects. When the ANOVA F-test showed that the

techniques were significantly different, we proceeded to

determine which techniques contributed the most to that

difference and how the techniques differed from each

other through a Bonferroni multiple comparison method.

This procedure works within the ANOVA setting to

compare the techniques’ means while controlling the

family-wise type of error.
Experiment 1a: Statement Level. Table 3 presents

ANOVA results for Experiment 1a, considering all pro-

grams. The treatments are in the first column and the sum

of squares, degrees of freedom, and mean squares for each

treatment are in the following columns. The F values

constitute the ratio between the treatment and the error

effect (last row). The larger the F statistic, the greater the

probability of rejecting the hypothesis that the techniques’

mean APFD values are equal. The last column presents the

p-values, which represent “the probability of obtaining a

value of the test statistic that is equal to or more extreme

than the one observed” [21]. Since we selected our level of

significance to be 0.05 percent, we reject the hypotheses

when the p-value is less than or equal to that level of

significance. Otherwise, we do not reject the hypothesis.
The results indicate that there is enough statistical

evidence to reject the null hypothesis; that is, the means
for the APFD values generated by different statement level
techniques were different. However, the analysis also
indicates that there is significant interaction between
techniques and programs: The difference in response
between techniques is not the same for all programs. Thus,
individual interpretation is necessary. As a first step in this
interpretation, we performed an ANOVA on each of the
programs. Each of the ANOVAs was significant, indicating
that, within each program, the statement level prioritization
techniques were significantly different. (Results of these
ANOVAs are presented in [8].)

The ANOVAs evaluated whether the techniques dif-
fered, the APFD means ranked the techniques, a multiple
comparison procedure using Bonferroni analysis quantifies
how the techniques differed from each other. Table 4
presents the results of this analysis for all of the programs,
ranking the techniques by mean. Grouping letters indicate

ELBAUM ET AL.: TEST CASE PRIORITIZATION: A FAMILY OF EMPIRICAL STUDIES 167

Fig. 2. APFD boxplots for an “all programs” total. The horizontal axis lists

techniques and the vertical axis lists APFD scores.

4. For simplicity, data belonging to separate experiments are presented
together.

5. Box plots provide a concise display of a data distribution. The small
rectangle embedded in each box marks the mean value. The edges of the
box are bounded by the standard error. The whiskers extend to one
standard deviation.

6. Due to characteristics of the FEP calculations, some combinations of
test suite and version were not employed.



differences: Techniques with the same grouping letter were

not significantly different. For example, st-fep-total has a

larger mean than st-total, but they are grouped together

because they were not significantly different. On the other

hand, the st-fep-addtl technique, which uses FEP informa-

tion and additional coverage, was significantly better than

the other techniques. The last technique ranked is st-addtl,

which was significantly weaker than the others.

168 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

Fig. 3. APFD boxplots for individual programs. The horizontal axes list techniques and the vertical axes list APFD scores.



To consider results on a per-program basis, we per-
formed a Bonferroni analysis on each of the programs. (Full
results of these analyses are presented in [8]; we summarize
those results here.) On replace, st-fep-total, st-fep-addtl,
and st-total ranked at the top, but were not significantly
different from each other. The same scenario held for
schedule2 and tcas. On schedule, the techniques that
use feedback (st-fep-addtl and st-addtl) ranked at the top,
but were not significantly different, while the techniques
that do not use feedback (st-total and st-fep-total) were
significantly inferior. On space, st-fep-addtl was signifi-
cantly better than other techniques, while the rest of the
techniques did not differ from each other. Print_tokens
presented a unique case because the Bonferroni process
could not find differences among any pair of techniques,
even when the ANOVA specified that there was significant
difference when the four of them were considered. On
print_tokens2, st-fep-addtl ranked at the top, followed
by the other techniques among which there was no
significant difference. Finally, tot_info’s ranking
matched the overall ranking for all applications, although
no significant difference was found between techniques
using and not using feedback.

To summarize, although the rankings of techniques did
vary somewhat among programs, similarities did occur
across all or across a large percentage of the programs.
Specifically, st-fep-addtl ranked in the highest Bonferroni
group of techniques independent of the program; st-fep-
total and st-total were in the same group (not significantly
different) on seven of the eight programs; and, finally, st-
addtl ranked significantly worse than all other techniques
on four programs.

Experiment 1b: Function Level. Table 5 presents the
analysis of variance results for Experiment 1b (function
level techniques) considering all programs. The interac-
tion effects between techniques and programs were also
significant for function-level techniques and the results
revealed significant differences among the techniques.
Moreover, the techniques ranked in the same order as
their statement-level equivalents, with fn-fep-addtl first,
fn-fep-total second, fn-total third, and fn-addtl last.

However, as shown by the results of Bonferroni analysis
(Table 6), the top three techniques were not significantly
different from each other.

Following the same steps as in Experiment 1a, we next

performed ANOVAs and Bonferroni analyses on a per

program basis. (Full results of these analyses are presented

in [8]; we summarize those results here.) The results on

replace, schedule, print_tokens, and tot_info

present trends similar to those seen in the Bonferroni

results for all programs. On print_tokens2, the ranking

was identical, but all the techniques produced significantly

different averages. Schedule2, tcas, and space present a

different perspective. On schedule2 and tcas, fn-total

was significantly better than the other techniques. On

space, fn-addtl was the best, fn-total came second, and the

FEP-based techniques followed.
In summary, for the function-level techniques, we

observed great variation in the techniques’ performance
across subjects. The most surprising result was the lack of
significant gains observed, for function-level techniques,
when using FEP estimates. At a minimum, this suggests
that our method for estimating FEP values at the function
level may not be as powerful as our method for
estimating those values at the statement level. Further-
more, at the function level, except for print_tokens2,
the two FEP techniques were not significantly different
from one another. This implies that feedback had no effect
when employing function level FEP techniques. We also
observed that using feedback could have a negative
impact on APFD values. There is a possible explanation
for this. Techniques at the function level employing
feedback give higher priority to tests that execute
uncovered functions, discarding functions already exe-
cuted independently of the section or percentage of code
in those functions that has actually been covered. If those
partially covered functions are faulty, but their faulty
sections have not yet been covered and the tests executing
those functions are given low priority by techniques with
feedback, then APFD values for techniques employing
feedback could be lower.

5.2.2 Experiment 2 (RQ2): Granularity Effects

Our second research question concerns the relationship
between fine and coarse granularity prioritization techni-
ques. Initial observations on the data led us to hypothesize
that granularity has an effect on APFD values. This is
suggested by comparing Table 4 to Table 6: For all cases, the
mean APFD values for function level techniques were
smaller than the mean APFD values for corresponding
statement level techniques (for example, the mean APFD for

ELBAUM ET AL.: TEST CASE PRIORITIZATION: A FAMILY OF EMPIRICAL STUDIES 169

TABLE 3
ANOVA, Statement Level Techniques, All Programs

TABLE 4
Bonferroni Means Separation Tests, Statement Level

Techniques, All Programs



fn-fep-addtl was 77.45, but for st-fep-addtl it was 80.73). The
radar chart in Fig. 4 further illustrates this observation. In
the radar chart, each technique has its own APFD value axis
radiating from the center point. There are two polygons,
representing the granularities at the statement and function
levels, respectively. The radar chart shows that each
function level technique had a smaller APFD than its
counterpart at the statement level and that statement level
techniques as a whole were better (cover a larger surface)
than function level techniques. The chart also shows that
techniques employing feedback were more sensitive to the
shift in granularity.

To formally address this research question, we performed
a pairwise analysis among the following pairs of techniques:
(st-total, fn-total), (st-addtl, fn-addtl), (st-fep-total, fn-fep-
total), and (st-fep-addtl, fn-fep-addtl). The four orthogonal
contrasts were significantly different as shown in Tables 7
and 8.7 That is, for these four pairs of techniques, different
levels of granularity had a major effect on the value of the
fault detection rate. Thus, in spite of the different rankings
obtained in Experiments 1a and 1b, there is enough
statistical evidence to confirm that statement level techni-
ques were more effective than function level techniques.

Analyses on a per-program basis present a similar
picture. Although, in several cases, statement-level techni-
ques are not significantly better than their corresponding
function-level techniques (e.g., on schedule, st-total and
fn-total do not differ significantly), only two cases occur in
which a function-level technique significantly outperforms
its corresponding statement-level technique. (These cases
all involve st-addtl versus fn-addtl and occur on tcas and
space.) (These results are presented in full in [8].)

5.2.3 Experiment 3 (RQ3): Adding Prediction of Fault

Proneness

Our third research question considered whether predictors
of fault proneness can be used to improve the rate of fault-
detection of prioritization techniques. We hypothesized
that incorporation of such predictors would increase
technique effectiveness. We designed an experiment
(Experiment 3) to investigate this hypothesis at the
function level. The experiment design was analogous to
the design used in Experiment 1b except for the addition of
eight new techniques: fn-fi-total, fn-fi-addtl, fn-fi-fep-total,
fn-fi-fep-addtl, fn-diff-total, fn-diff-addtl, fn-diff-fep-total,
and fn-diff-fep-addtl.

The ANOVA of the data collected in this experiment (see
Table 9) indicated that these techniques were significantly
different. We then followed the same procedure used
earlier, employing a Bonferroni analysis to gain insight
into the differences. The results are presented in Table 10.
Three techniques combining FEP and fault proneness
(fn-diff-fep-addtl, fn-diff-fep-total, and fn-fi-fep-total) were
significantly better than the rest. This suggests that some of
the combinations of fault-proneness and FEP estimators we
employed did significantly improve the power of our
prioritization techniques. Fn-fi-fep-addtl and other techni-
ques using either FEP estimates or fault indexes followed.
We could not distinguish significant and consistent gains by
any particular method (DIFF, FI, or FEP) when used
individually. Also, the use of feedback seems to have a
negative effect on the techniques using fault proneness, as
evidenced by the significant superiority of fn-diff-total and
fn-fi-total over fn-diff-addtl and fn-fi-addtl, respectively.

Table 9 shows that the interaction between program and
technique was again, in this experiment, significant. So, to
better understand the APFD variations, we analyzed the
impact of techniques on each program separately. (Full
results of these analyses are presented in [8]; we summar-
ize those results here.) First, we performed univariate
ANOVAs on each program. The results of those individual
ANOVAs were consistent in indicating that all techniques
were significantly different.

We next performed individual Bonferroni analyses
per program. Several programs (print_tokens,
print_tokens2, tot_info, and replace) exhibited
rankings similar to those seen in the overall analysis,
though, in some cases, with fewer significant differences
among the techniques. Results on the other programs
differed more substantially. On tcas, the techniques’
APFD values descended gradually, which created overlap
among the top ranked techniques. Still, there was a group
of significantly best techniques that included fn-total,
fn-fi-total, fn-addtl, and fn-fi-fep-total. The techniques
using DIFF, however, ranked significantly worse than the
others. On schedule, in contrast, fn-diff-total performed
significantly better than the other techniques and the

170 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

TABLE 5
ANOVA, Basic Function Level Techniques, All Programs

TABLE 6
Bonferroni Means Separation Tests, Basic Function

Level Techniques, All Programs

7. We could have performed a series of simple t-tests to compare the
contrasts. However, we decided to take a more conservative approach with
a post hoc Bonferroni analysis, which is also consistent with the other
analyses.



remaining techniques fell into a series of overlapping
groups. A similar picture occurred for schedule2,
except that, here, fn-diff-addtl was significantly worse
than other techniques. Finally, results on space were
unique. On this program, techniques using just fault
proneness were significantly better than the others. The
highest APFD values were generated through fn-fi-addtl,
which was significantly superior to the other techniques.
Combinations of FEP and fault indexes did not work as
well as for other programs. Furthermore, the two
techniques using just FEP estimates were ranked last.

In summary, on most programs, techniques combining
FEP and FI ranked among the top techniques. However,
certain programs presented unique characteristics that
impacted the effectiveness of those techniques. Still, on
all programs, a subset of the techniques using fault
proneness measures were considered significantly better
than (or not different from) techniques not using that
predictor. It is also interesting that the use of feedback
seemed to have a greater impact on simpler techniques,
while, on techniques combining FEP and fault proneness
measures, the impact of using feedback did not translate
into significant gains (e.g., fn-diff-fep-addtl was not
significantly different from fn-diff-fep-total).

5.2.4 Overall Analysis

Finally, to gain an overall perspective on all techniques, we
performed ANOVAs and Bonferroni analyses on all the
techniques including optimal and random (see Tables 11
and 12). As expected, the ANOVAs revealed significant
differences among the techniques and the Bonferroni
analysis generated groups, which confirmed our previous
observations. The most obvious observation is that the

optimal technique was still significantly better than all other
techniques; this suggests that there is still room for
improvement in prioritization techniques. However, all
techniques significantly outperformed random ordering.
St-fep-addtl remained the best performing technique after
optimal. Yet, the group of techniques ranked next included
function level techniques combining fault proneness mea-
sures and FEP. These function level techniques were
significantly better than st-addtl.

5.3 Threats to Validity

In this section, we present a synthesis of the potential

threats to validity of our study, including: 1) threats to

internal validity (could other effects on our dependent

variables be responsible for our results), 2) threats to

construct validity (are our independent variables appro-

priate), and 3) threats to external validity (to what extent do

our results generalize). We also explain how we tried to

reduce the chances that those threats affect the validity of

our conclusions.

5.3.1 Threats to Internal Validity

The inferences we made about the effectiveness of
prioritization techniques could have been affected by the
following factors: 1) Faults in the prioritization and APFD
measurement tools. To control for this threat, we performed
code reviews on all tools and validated tool outputs on a
small but nontrivial program. 2) Differences in the code to
be tested, the locality of program changes, and the
composition of the test suite. To reduce this threat, we
used a factorial design to apply each prioritization
technique to each test suite and each object program.
3) FEP, FI, and DIFF calculations. FEP values are intended
to capture the probability, for each test case and each
statement, that if the statement contains a fault, the test case
will expose that fault. We used mutation analysis to provide

ELBAUM ET AL.: TEST CASE PRIORITIZATION: A FAMILY OF EMPIRICAL STUDIES 171

TABLE 7
ANOVA, Function vs. Statement Level Techniques, All Programs

TABLE 8
Bonferroni Analysis, Function vs. Statement Level Techniques,

All Programs

Fig. 4. Radar chart.



an estimate of these FEP values; however, other estimates

might be more precise and might increase the effectiveness

of FEP-based techniques. Similar reasoning applies to our

calculations of FI and DIFF.

5.3.2 Threats to Construct Validity

The goal of prioritization is to maximize some predefined

criteria by scheduling test cases in a certain order. In this

article, we focused on maximizing the rate of fault detection

and we defined APFD to represent it. However, APFD is

not the only possible measure of rate of fault detection and

has some limitations.

1. APFD assigns no value to subsequent test cases that
detect a fault already detected; such test cases may,
however, help debuggers isolate the fault and, for
that reason, might be worth accounting for.

2. APFD does not account for the possibility that faults
and test cases may have different costs.

3. APFD only partially captures aspects of the effec-
tiveness of prioritization; we need to consider other
measures for purposes of assessing effectiveness.
One might not even want to measure rate of
detection; one might instead measure the percentage
of the test cases in a prioritized test suite that must
be run before all faults have been detected.

4. We employed a greedy algorithm for obtaining
“optimal” orderings. This algorithm may not always
find the true optimal ordering and this might allow
some heuristic to actually outperform the optimal
and generate outliers. However, a true optimal
ordering can only be better than the greedy optimal
ordering that we utilized; therefore, our approach is

conservative and cannot cause us to claim significant
differences between optimal and any heuristic where
such significance would not exist.

5.3.3 Threats to External Validity

The generalization of our conclusions is constrained by
several threats. 1) Object representativeness. The object
programs are of small and medium size and have simple
fault patterns that we have manipulated to produce
versions with multiple faults. Complex industrial programs
with different characteristics may be subject to different
cost-benefit trade-offs. 2) Testing process representative-
ness. If the testing process we used is not representative of
industrial ones, the results might not generalize. Further-
more, test suite constitution is also likely to differ under
different processes. Control for these two threats can be
achieved only through additional studies using a greater
range and number of software artifacts.

6 CASE STUDIES

In this section, we present three case studies.8 These case
studies offer us the opportunity to scale up our investiga-
tion of prioritization techniques by focusing on larger
objects drawn from the field.

6.1 Objects of Study

We considered three programs, including two open-source
Unix utilities and an embedded real-time subsystem of a
level-5 RAID storage system.

6.1.1 Grep and Flex

Grep and flex are common Unix utility programs; grep
searches input files for a pattern and flex is a lexical
analyzer generator. The source code for both programs is
publicly available. For this study, we obtained five versions
of grep and five of flex. The earliest version of grep that
we used contained 7,451 lines of C code and 133 functions;
the earliest version of flex contained 9,153 lines of C code
and 140 functions. Tables 13 and 14 provide data about the
numbers of functions and lines changed (modified, added,
or deleted) in each of the versions of the two programs,
respectively.

The grep and flex programs possessed the advantage
of being publicly available in multiple versions; however,
neither program was equipped with test suites or fault data.
Therefore, we manufactured these. To do this in as fair and

172 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

TABLE 9
ANOVA, All Function Level Techniques, All Programs

TABLE 10
Bonferroni Analysis, All Function Level Techniques,

All Programs

8. Two of the programs (grep and flex) used in these studies, with
their versions, faults, and test suites, as well as the data collected about
those programs, can be obtained by contacting the authors. The third
program (QTB) cannot be made available, but portions of the data collected
on that program can be obtained by contacting the authors.



unbiased a manner as possible, we adapted processes used

by Hutchins et al. to create the Siemens programs materials

[18] (also outlined in Section 5.1 of this article), as follows:
For each program, we used the category partition

method and an implementation of the TSL tool [4], [28] to

create a suite of black-box tests, based on the program’s

documentation. These test suites were created by graduate

students experienced in testing, but who were not involved

in and were unaware of the details of this study. The

resulting test suites consisted of 613 test cases for grep,

exercising 79 percent of that program’s functions, and

525 test cases for flex, exercising 89 percent of that

program’s functions.
To evaluate the performance of prioritization techniques

with respect to rate of detection of regression faults, we

require such faults—faults created in a program version as a

result of the modifications that produced that version. To

obtain such faults for grep and flex, we asked several

graduate and undergraduate computer science students,

each with at least two years experience programming in C

and each unacquainted with the details of this study, to

become familiar with the code of the programs and to insert

regression faults into the versions of those programs. These

fault seeders were instructed to insert faults that were as

realistic as possible based on their experience with real

programs and that involved code deleted from, inserted

into, or modified in the versions.

To further direct their efforts, the fault seeders were
given the following list of types of faults to consider:

. faults associated with variables, such as with
definitions of variables, redefinitions of variables,
deletions of variables, or changes in values of
variables in assignment statements;

. faults associated with control flow, such as addition
of new blocks of code, deletions of paths, redefini-
tions of execution conditions, removal of blocks,
changes in order of execution, new calls to external
functions, removal of calls to external functions,
addition of functions, or deletions of functions;

. faults associated with memory allocation, such as
not freeing allocated memory, failing to initialize
memory, or creating erroneous pointers.

After at least 20 potential faults had been seeded in
each version of each program,9 we activated these faults
individually, one by one, and executed the test suites for
the programs to determine which faults could be revealed
by test cases in those suites. We selected, for use in this
study, all faults that were exposed by at least one and at
most 20 percent of the test cases in the associated test
suite. (Exclusion of faults not exposed does not affect
APFD results; we chose to exclude faults exposed by
more than 20 percent of the test suites on the grounds
that easily exposed faults are more likely to be detected
and removed during testing by developers and prior to
formal regression testing than faults exposed less easily.)
The numbers of faults remaining, and utilized in the
studies, are reported in Tables 13 and 14.

6.1.2 QTB

QTB
10 is an embedded real-time subsystem that performs

initialization tasks on a level-5 RAID storage system. In
addition, it provides fault tolerance and recovery capabil-
ities. QTB contains over 300K lines of C code combined
with hundreds of in-line assembly-code statements across
2,875 functions. QTB had been under maintenance for
several years.

In this study, we considered six QTB versions, the first of
which we treated as the baseline. Table 15 reports details
about these versions. The versions constituted major system
releases produced over a six month period. For each
version, test engineers employed a regression test suite to
exercise system functionalities. The execution of the test

ELBAUM ET AL.: TEST CASE PRIORITIZATION: A FAMILY OF EMPIRICAL STUDIES 173

TABLE 11
ANOVA, All Techniques, All Programs

TABLE 12
Bonferonni Analysis, All Techniques, All Programs

9. On version four of flex, due to the small number of modifications in
that version, fewer than 20 potential faults were initially seeded.

10. Because our industry partner wishes to remain anonymous, we have
changed the original names of the subsystem and versions that comprise
this object.



suite required, on average, 27 days. The test suite included

135 test cases that exercised 69 percent of the functions in

the baseline version. The coverage information available for

QTB is exclusively at the function level. (Software instru-

mentation tools designed to produce finer granularity

coverage data caused the system to fail due to timing

problems.)
Maintenance activities applied to QTB resulted in the

unintentional incorporation into the system of 22 (discov-

ered) regression faults. Table 15 summarizes the fault data.

Observe that only 17 of the 22 faults were exposed by the

regression test suite across the versions; only these faults

factor into the calculation of APFD values.11 Also, note that

the execution of a faulty function did not guarantee

exposure of faults in that function.

6.2 Design

In each case study, we investigate whether some of our

previous conclusions on prioritization hold. More precisely,

we focus on prioritization techniques at the function level

and their ability to improve rate of fault detection. In

addition, we explore instances (extreme in some cases) of

the techniques’ behavior that were not previously visible,

which provide us with additional information on their
strengths and weaknesses.

Our case studies evaluate prioritization techniques by
adapting the “baseline” comparison method described in
[12], [22]. This method is meant to compare a newly
proposed technique against current practice, which is used
as a baseline. In our case studies, assuming that no
particular form of prioritization constitutes typical practice,
we consider the random technique the baseline against
which other techniques are compared.

There is, however, one aspect in which our studies differ
from a “typical” baseline study. In our study, although we
do not control the evolution of the programs studied, we
can execute multiple techniques on the same version of the
same program. In other words, we are studying programs
that evolve naturally, but we can control (and replicate) the
execution of prioritization techniques and evaluate their
impact based on the data we collected from the evolution of
those programs.12 Still, there are several uncontrolled
factors that constrain these studies and the aspects of the
problem that we can address. We now explain the variables
involved and the level of control we had over them.

To minimize the misinterpretation of the results that
might occur due to specific types or amounts of change in
any particular version, we perform our analysis on several
versions in each case study. Confounding factors associated

174 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

TABLE 13
The grep Object

TABLE 14
The flex Object

TABLE 15
The QTB Object

11. Test case prioritization, in the context in which we consider it, is
concerned only with ordering existing test cases; as such, it cannot improve
detection of faults not detectable by those existing test cases. A well-
rounded regression testing process should include activities aimed at
finding faults not detectable by existing tests—such as faults related to new
functionality not previously tested. We discuss this further in Section 7.

12. From that perspective, our studies have elements of the software
engineering validation models classified as “dynamic analysis and legacy
systems” in [35].



with the testing process are not fully controlled. First, we do
not control (and do not know) the test generation process
employed for QTB. In addition, we have only one test suite
in each case study, which may limit our ability to determine
whether differences in APFD are due to the techniques or to
test suite composition. A similar situation is presented by
the faults in the software. Faults were seeded in grep and
flex by students not extensively familiar with the
application domains, but QTB was used with its original
faults. Finally, all the case studies assume that the software
development and testing processes remained constant
throughout the program evolution.

We investigated eight techniques over each of the units
of study. The techniques employed were: random, optimal,
fn-total, fn-addtl, fn-fi-total, fn-fi-addtl, fn-diff-total, and
fn-diff-addtl. (In other words, we used all techniques not
involving statement level instrumentation or FEP estima-
tion. We excluded the former because we did not have
statement-level coverage information for QTB and excluded
the latter because performing the mutation analysis
necessary to estimate FEP for these programs was not
feasible.) However, there were two differences involving
these techniques due to characteristics of the program data.

First, we obtained the APFD for random by averaging
the APFD of 20 random orderings. This differs from the
controlled study in which only one ordering per cell was
generated. However, in a case study with a much smaller
set of observations, we required an “average” random case
to avoid extreme instances that could bias our evaluation.
Second, the prioritization techniques based on fault prone-
ness that we applied to QTB differed slightly from those
used in our controlled experiments and our studies on
flex and grep. The DIFF-based technique utilized
produced just a binary value indicating whether a function
changed or not between versions. The FI technique utilized
on QTB used a subset of the metrics incorporated into the
FI metric used in previous experiments. These differences
might cause the resulting techniques to be less sensitive to
modifications in the versions. Nevertheless, for simplicity
and despite these differences, in this study, we continue to
use the nomenclature used to denote these techniques in
earlier studies.

6.3 Evidence Analysis

Fig. 5 provides an overview of the data for the three case
studies. We include two graphs for each of the programs
studied; these graphs provide complementary information.
The box plots on the left present the overall distribution of
APFD data per technique, summarized across all versions.
This depiction illustrates each techniques’ mean and
variation, allowing comparisons of overall performance
across all versions. The graphs on the right present the
APFD values achieved by each of the techniques across each
of the versions, allowing comparisons on a per version
basis.13

We consider overall results (box plots) first. On both
grep and flex, in terms of mean APFD, optimal ranks

first, fn-addtl ranks second, and fn-fi-addtl ranks third. On
both programs, techniques using feedback (addtl) produce
APFDs closer to optimal than do techniques not using
feedback (total). On QTB, in contrast, the average APFD for
techniques using feedback exceeds the average APFD for
techniques not using feedback. Further, on grep and flex,
techniques using feedback exhibited less variance in APFD
than those not using feedback, whereas, on QTB, this
relationship was reversed. Another surprise was the high
mean APFD value exhibited by the random technique on
grep and flex. On QTB, the random technique outper-
forms the other techniques in some cases (evident in the
extents of the tails of the distributions), but, in terms of
mean APFD, it is the worst performing technique overall.

The data presented in the graphs of per version results
(Fig. 5) also contains several surprises. It seems that the
primary constant across different programs is the high
degree of change in APFD values across versions. Further-
more, from the figures, it is difficult to understand the
“contradictions” that are present in the data. However,
when each specific scenario is analyzed in detail, a clearer
picture emerges.

We conjecture that the variability in the results observed
in these case studies can be attributed, at least in part, to
the location of faults in the program and the likelihood that
those faults are executed by the test cases in the test suite.
(This conjecture is based, in part, on results presented in
[32].) We observe that fault location and test coverage
patterns varied widely across our programs and versions
and this may have contributed to the variability in our
results. To investigate this conjecture, we need to under-
stand those factors within each unit of study. Table 16
summarizes relations between faults, fault exposure, and
test coverage for each of the programs and versions
studied, listing data on the percentage of functions
executed by test cases, the percentage of functions executed
by fault exposing test cases, the percentage of test cases
executing faulty functions, and the percentage of test cases
exposing faults.

First, we consider why techniques using feedback did
not perform (overall) as well on QTB as on the other two
programs. Observe, on the per version graph for QTB, that
techniques using feedback performed better than those not
using feedback on versions 1, 3, and 4, slightly worse on
version 5, and considerably worse on version 2. With only
five versions, the influence of one poor performance
(version 2) is sufficient to affect the overall rankings of
means exhibited across all versions of the program.

To suggest why version 2 exhibited such results, we turn
to the data in Table 16. As the table shows, on version 2 of
QTB, 98 percent of the test cases for the system execute the
faulty function, but only one of those test cases exposes the
fault. Also, consider version 4 of grep. Here, as on version 2
of QTB, most of the program’s test cases (99.02 percent)
execute the faulty function and few of these test cases (only
two, or 0.33 percent of the test suite) expose the fault.
Despite this similarity, however, these two cases result in
different relationships between techniques using and not
using feedback.

This difference may be attributed to differences in test
case execution patterns. On version 2 of QTB, the test cases

ELBAUM ET AL.: TEST CASE PRIORITIZATION: A FAMILY OF EMPIRICAL STUDIES 175

13. Each technique has one value for each version within each program.
These values have been connected with lines to facilitate the visualization of
patterns.



exposing the fault execute a larger percentage of functions

(37.57 percent) than the average test case (22.91 percent).

On version 4 of grep, in contrast, the test cases exposing

the fault execute a smaller percentage of functions

(39.38 percent) than the average test case (46.8 percent).
When test cases that expose faults execute a relatively

small percentage of functions, they are likely to be

scheduled near the end of test execution by techniques

not using feedback (e.g., fn-total). When test cases that

expose faults execute a larger percentage of functions, they

are likely to be scheduled near the end of test execution by

techniques using feedback (e.g., fn-addtl). For faults ex-

posed by a small percentage of the test cases that reach

them, the postponing of such test cases further postpones

176 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

Fig. 5. Overview of case study data. Vertical axes depict APFD values. At left, box plots present the overall distribution of APFD data per technique,

summarized across all program versions. At right, graphs show the APFD values obtained by each technique on each version.



the exposure of those faults, exacerbating the differences in
APFD values achieved by the prioritization techniques.

Summarizing, characteristics involving the coverage
achieved by the test suite and the location of the faults
affect the results of prioritization techniques using and not
using feedback. In our case studies, where each version has
significantly different types and locations of faults and test
execution patterns with relationship to those faults differ
widely, the tests exposing faults change and so does the
effectiveness of the techniques across versions.

Next, we consider the situations in which random
performs better than some of our prioritization heuristics,
by considering differences in the relationship between
random and fn-total on versions 1 and 4 of flex. (On
version 1, random outperforms fn-total; on version 4, the
two are nearly equivalent.)

Intuitively, random could be expected to perform well
when the chances of exposing a fault with an arbitrary test
case are high. Versions 1 and 4 of flex reflect this
expectation. On both of these versions (for which over
13.29 percent and 17.52 percent of the test cases, respec-
tively, expose faults), random prioritization produces
APFD values relatively close to the optimal values. On
version 4, this means that it is likely that one of the first six
test cases randomly selected will expose the fault in that
version. On version 4, however, a relatively large percen-
tage of functions (72.83 percent) are executed by fault
exposing test cases and most test cases (98.48 percent)
execute faulty functions, rendering it probable that fn-total
will also perform well. On version 1, in contrast, a smaller
percentage of functions (59.76 percent) are executed by fault
exposing test cases and fewer test cases (73.33 percent)
execute faulty functions. In this case, the probability that
fn-total will postpone execution of fault exposing functions
is increased; a random rule thus performs better.

Similar cases can be seen on versions 2 and 3 of grep.
On the other hand, when faulty functions are not likely to
be executed and faults are not likely to be exposed by
arbitrary test cases, the random technique performs
poorly. For example, on version 1 of grep, the likelihood
of exposing a fault is very small (0.25 percent), so random

performed poorly. A similar situation can be found on
version 3 of flex, where some faults have a very small
probability of being exposed (as suggested by the high
standard deviation).

Finally, we were surprised that techniques using fault
proneness estimates did not provide more substantial
improvements. Although, in many specific instances,
incorporation of fault proneness estimates added significant
improvements to techniques, the mean APFDs of these
techniques across versions is not favorable. A previous
study [11] of the FI fault index supported our expectations
for techniques using fault proneness estimates; however,
that previous study evaluated the predictive abilities of
fault proneness indexes, whereas the study reported here
evaluates techniques that employ those indexes to schedule
test cases. In addition, there are other factors, such as test
exposure capability, program domain, particular processes,
and technique scalability, that may have not been relevant
in the earlier studies, but could have had a significant
impact on the fault prediction procedure [23] and on the FI-
based prioritization techniques’ effectiveness. These limita-
tions might be contributing to some of the differences that
we observe across the case studies.14

This said, FI-based techniques were observed to result in
improved APFD values in our controlled experiments; thus,
the difference in results exhibited in these case studies is of
interest. We can suggest at least three things that may
explain these differences. First, in our controlled experi-
ments, the ratio between the amount of code changed and
the number of faults in the program versions utilized was
much smaller than in these case studies. The number of
lines of code changed in the controlled experiments
numbered in the tens, while the average number of changes
in the case studies numbered in the hundreds. Since
“regression” fault proneness metrics associate evolutionary
changes with fault likelihood, they are likely to be more
effective when fewer changes are made. Second, the test

ELBAUM ET AL.: TEST CASE PRIORITIZATION: A FAMILY OF EMPIRICAL STUDIES 177

TABLE 16
Fault Exposure and Test Activity Data

14. Repeatability problems such as this, where different studies yield
different results, are not unique to testing. For example, Lanubile et al. [23]
report that even successful fault proneness prediction models might not
work on every data set and that there is a need to take into consideration the
context in which they are used.



suites used in the case studies had different characteristics
than those used in the controlled experiments. We have
suggested ways in which test suite characteristics can
impact techniques using and not using feedback differently
and the same suggestions apply to techniques employing
measures of fault proneness. Third, the fault seeding
process used on some objects (small Siemens programs,
grep, and flex) could have played a role in the variance
we observed among the techniques’ performance, especially
on the techniques based on fault proneness. Although we
attempted to perform this process as consistently as
possible, we recognize that it constitutes an artificial
procedure that might not provide an accurate reflection of
reality.

It is important to note that the previous interpretations
are not always as transparent as presented. For example, in
the presence of multiple faults, some of which are exposed
by a large number of test cases and some of which are
infrequently exposed, interpretation becomes more difficult
and results less predictable. Nevertheless, these general
patterns can be observed repeatedly. It can also be observed
that version specific prioritization can (and most often does)
yield considerable gains over random test case orderings
and, if we select the proper prioritization technique, those
gains can be maximized.

7 COST-BENEFITS ANALYSIS

Our results show that there can be statistically significant
differences in the rates of fault detection produced by
various test case prioritization techniques. But, what
practical significance, if any, might attach to statistically
significant differences in APFD values such as those we
have measured, particularly when those differences are
small? In this section, we investigate the practical implica-
tions of differences in APFD values and the trade-offs that
need to be considered when comparing or selecting from
prioritization techniques.

In general, where improving the rate of fault detection is
the goal, the decision to use a certain prioritization
technique depends on the benefits of discovering faults
sooner versus the cost of the technique itself. If the cost of
prioritizing with a given technique surpasses the savings
generated by the higher rate of fault detection, then the
technique is not worth employing.

Further, from a cost-benefits perspective, a technique A
is superior to a technique B only if the additional gains
achieved by A with respect to the gains achieved by B are
greater than the additional costs of using A with respect to
the costs of using B. To evaluate the relative cost-benefits of
one technique compared with another, we must quantify
both the savings generated by increases in the rate of fault
detection and the costs of both techniques.

One procedure for savings quantification is to translate
each APFD percentage point to a meaningful value scale
(e.g., dollars) based on the assessment of the benefits (e.g.,
faster feedback to developers, earlier evidence that quality
goals were not met, value of ensuring that test cases that
offer the greatest fault detection ability will have been
executed if testing is halted) that the new test prioritization
scheme brings to the organization. Then, the comparison of

the techniques’ performances could be expressed not only
in terms of APFD, but also in terms of their economic
impact to the testing organization.

We do not possess data for our objects of study that
would allow us to provide meaningful value scales for
those objects. For example, we do not have execution times
for QTB tests and, although we could gather execution time
for tests of grep and flex, these do not include validation
time. Moreover, our techniques are prototypes, not im-
plemented for efficiency, so measurements of their runtime
would not be indicative of the potential runtimes of such
techniques in practice. Finally, even if we possessed
appropriate cost-benefits data, analyses based on that data
would be specific to that data and, though interesting, such
analyses would allow us to examine only a limited range of
trade-offs.

However, we can still investigate cost-benefits trade-offs
and, in fact, do so more generally than the use of specific
data would allow. To do this, we first simulate different
savings factors that establish relationships between an
APFD percentage point and a savings scale. A savings
factor (SF) is a weight that translates an APFD percentage
point into a measure of benefit. The greater the SF, the
greater the benefits generated by an increased rate of fault
detection. For example, if we choose to use dollars as our
metric (under the assumption that savings in time are
associated with savings in dollars through engineer salaries,
accelerated business opportunities, etc.), then, under SF 5, a
savings of 1 percent in APFD results in a savings of five
dollars and, under SF 1000, a savings of 1 percent in APFD
results in a savings of 1,000 dollars. (This is just an example;
we could instead let our SF units represent person-months,
or hundreds-of-dollars, or various other measures relevant
to our costs and benefits.)

An SF is, in part, determined by the cost of executing a
test suite: As that cost increases, the potential savings
yielded by an increase in APFD also increase. Cost is partly
a function of time; however, an SF may also take into
account environmental factors, such as the availability of
developers to take advantage of earlier feedback, the
capability of the managers to use quality information, or
the reliability expectations for the system. Thus, one
situation that may produce a small SF is when test suite
execution is fully automated and requires only a few hours
of machine time. A second situation is when test suite
duration is measured in days and potential gains of early
fault detection are in days, but the developers are not able
to employ feedback information because they are perform-
ing enhancements. On the other hand, if test suite duration
is measured in days and managers are able to use test
execution information to reset shipping dates before going
public and suffering penalties, this may result in large SFs.

The use of savings factors and the following analysis
provide further understanding of the circumstances under
which a given prioritization technique could make, or fail to
make, a practical difference.

In Fig. 6, we use seven savings factors (1, 5, 10, 50, 100,
500, 1,000) to associate differences in APFD values (x-axis)
between one and 50 with the savings that can result from
those differences under those savings factors (y-axis). It can

178 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002



be observed from this figure that, under small SFs, even

large differences in APFD values may not translate into

practical savings. For example, if SF is measuring savings in

dollars, then, at SF 1, a difference of 50 percent in APFD

amounts to a savings of only 50 dollars and the same

difference at SF 5 amounts to a savings of only 250 dollars.

Such savings are so limited that even an optimal prioritiza-

tion scheme is not likely to have a practical impact. On the

other hand, under large SFs, even small APFD gains can be

practically significant.
Let SF be the savings factor for a given environment, let A

and B be prioritization techniques with costs C(A) and C(B),

respectively, and let the APFDs of A and B be APFD(A) and

APFD(B), respectively. The decision to use technique A

rather than B can be framed as one of determining whether

CðAÞ  CðBÞ < SF � ðAPFDðAÞ APFDðBÞÞ. (Note that,

by treating technique B in the foregoing as “current

practice,” we can frame the decision to use technique A

rather than current practice.)
We now use the foregoing discussion to illustrate the

potential practical significance, or lack thereof, of differ-

ences in APFD values such as those we observed in our

studies. Columns 2 through 4 of Table 17 present the

average APFD values for techniques fn-total and fn-fi-total

and the differences between those average APFD values, for

each of the eleven objects considered in our studies.15 These

two techniques exhibited different behavior across these

objects and, although their exact costs are dependent on the

implementation of the algorithms described in Section 3, it

is certain that a careful implementation of fn-fi-total would

be more expensive than a careful implementation of fn-total

because the former technique requires all computations

performed by the latter, plus additional work to compute
and utilize fault index data.

Using these data, we would like to respond to two
questions: 1) When would fn-fi-total be of greater benefit
than fn-total and 2) when would those benefits matter to
an organization? The first question can be answered by
inserting values from Table 17 into the equation C(fn-fi-total)
- C(fn-total) < SF � (APFD(fn-fi-total) - APFD(fn-total)) for
each of the objects. Even though we do not have specific cost
values for the techniques (lefthand side),we can complete the
righthand side to compute potential savings; this figure
constitutes anupper boundon thedifferences in cost between
both techniques. Table 17 shows the values that result, for
each object, for each of the seven SFs shown in Fig. 6.

In the first six rows in Table 17, fn-total is greater than or
equal to fn-fi-total and this results in negative potential
savings for all SFs. Since the cost of fn-total is less than that
of fn-fi-total, the superiority of fn-total holds trivially in
these cases. In other cases, however, where fn-fi-total is
greater than fn-total, we need to determine whether the
difference in rate of fault detection can translate into
savings that are greater than the additional cost incurred
by fn-fi-total. Mapping the differences from Table 17 onto
Fig. 6, we observe that, for grep and for a fixed SF, fn-fi-
total is likely to provide greater gains than for any other
program (13,000 with an SF of 1,000). In fact, for sufficiently
large SF, fn-fi-total may be appropriate, even for subjects
like print_tokens, which exhibit minimal differences in
APFD (a 0.6 difference in APFD translates into 600 when
SF is 1,000). If SF is small, however, even large
APFD differences such as that observed with grep may
not translate into savings (13 with an SF of 1).

Our second question, whether the benefits of using
fn-fi-total rather than fn-total would matter to an organiza-
tion, requires a somewhat subjective answer. Given that we
can estimate the savings that result from a difference in

ELBAUM ET AL.: TEST CASE PRIORITIZATION: A FAMILY OF EMPIRICAL STUDIES 179

Fig. 6. Simulation of savings factors.

15. A similar comparison can be performed between any pair of
techniques.



APFD, we would like to know what would trigger a
company to invest in a new prioritization technique (or any
prioritization technique at all)? Assume, for the sake of
illustration, that the cost of fn-fi-total is effectively equal to
the cost of fn-total. Again considering grep, if a company’s
estimated SF is 1,000, where SF is a measure in dollars, then
a savings of 13,000 dolars could result from using fn-fi-total
on grep. Whether such a savings would be considered
worthwhile or trivial would depend on the organization.
Considering the situation in a different way, given
print_tokens, an SF of 1,000 would be required to
achieve a savings of 600 dollars, whereas an SF of 50 would
be sufficient to yield approximately the same savings on
grep.

Note that there are additional cost-benefits trade-offs not
accounted for by the foregoing analysis. For example, our
cost-benefits model does not account for the fact that
regression testing is performed repeatedly and that savings
achieved through the use of a technique can be com-
pounded over the lifetime of a system. Our model also
assumes that a savings factor is linear; in reality, other
functions (e.g., step functions, logarithmic functions) might
be more appropriate. Such factors would need to be
considered in adapting the model for use in specific
application domains.

8 RELATED WORK

Our conversations with practitioners suggest that, in
practice, test engineers—faced with deadlines and exces-
sively expensive test processes—have long applied mea-
sures of “relative value” to test cases. To date, however,
there has been little mention in the research literature of test
case prioritization.

Previous work by Rothermel et al. on prioritization,
presented in [30], has been discussed in Section 1 of this
article, where its relation to this work has been described, so
we do not discuss it further here.16

In [2], Avritzer and Weyuker present techniques for
generating test cases that apply to software that can be
modeled by Markov chains, provided that operational

profile data is available. Although the authors do not use
the term “prioritization,” their techniques generate test
cases in an order that can cover a larger proportion of the
software states most likely to be reached in the field earlier
in testing, essentially, prioritizing the test cases in an order
that increases the likelihood that faults more likely to be
encountered in the field will be uncovered earlier in testing.
The approach provides an example of the application of
prioritization to the initial testing of software when test
suites are not yet available.

In [34], Wong et al. suggest prioritizing test cases
according to the criterion of “increasing cost per additional
coverage.” Although not explicitly stated by the authors,
one possible goal of this prioritization is to reveal faults
earlier in the testing process. The authors restrict their
attention to “version-specific prioritization” and to prior-
itization of only the subset of test cases selected by a safe
regression test selection technique from the test suite for the
program. The authors do not specify a mechanism for
prioritizing remaining test cases after full coverage has been
achieved. The authors describe a case study in which they
applied their technique to the space program that we used
in the controlled experiments reported in this paper and
evaluated the resulting test suites against 10 faulty versions
of that program. They conclude that the technique was cost-
effective in that application.

9 SUMMARY AND CONCLUSIONS

In this article, we have focused on the use of test case
prioritization techniques in regression testing. Building on
results presented in [30] and focusing on the goal of
improving rate of fault detection, we have addressed several
additional questions raised by that work: 1) Can prioritiza-
tion techniques be effective when targeted at specific
modified versions; 2) what trade-offs exist between fine
granularity and coarse granularity prioritization techniques;
3) can the incorporation of measures of fault proneness into
prioritization techniques improve their effectiveness? To
address these questions, we have performed several new
controlled experiments and case studies.

As we have discussed, these experiments and case
studies, like any other, have several limitations to their
validity. Keeping these limitations in mind, we draw

180 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

TABLE 17
Comparison of fn-total and fn-fi-total Techniques across All Subjects

16. An additional paper, [29], is an earlier conference paper containing
results subsumed by those in [30].



several observations from this work, with implications both
for practitioners and for researchers.

First, our data and analysis indicate that version-specific
test case prioritization can produce statistically significant
improvements in the rate of fault detection of test suites. In
our controlled studies on the Siemens programs and the
larger space program, the heuristics that we examined
always produced such improvements overall. In only a few
cases did test suites produced by any heuristic not outper-
form randomly ordered test suites. Our case studies on
flex, grep, and QTB, while admitting the possibility for
greater variance in such results, illustrate the possibility for
similar improvements.

The fact that similar results were observed for both
function-level and statement-level techniques is important.
The coarser analysis used by function-level techniques
renders them less costly and less intrusive than statement
level techniques. However, this same coarser level of
analysis could also have caused a substantial loss in the
effectiveness of these techniques, offsetting efficiency gains.
Our results indicate, however, that, on average, function-
level techniques were more similar in effectiveness to
statement-level techniques than to random ordering and,
thus, there could be benefits in using them.

Our investigation of incorporation of measures of fault
proneness into prioritization showed that they, too, can
(statistically significantly) improve the effectiveness of
prioritization, but this improvement was comparatively
(and in relation to our expectations, surprisingly) small and
did not occur as consistently across our objects of study as
did improvements associated with other techniques. This
suggests that the benefits of incorporating such information
may not be so obvious as intuition and previous successes
with fault proneness estimates in other application areas,
might lead us to believe.

Statistical significance, however, does not necessarily
presage practical significance. As our cost-benefits analysis
illustrates, neither the (numerically large) 32 percent
difference in average APFD values observed for optimal
and random in our controlled experiments nor the
(numerically small) 1.25 percent difference in APFD values
observed for fn-total and st-total in those experiments is
a priori practically significant or insignificant. The practical
impact of differences in APFD values depends on the many
cost factors related to the expense of regression testing and
prioritization processes. Certainly, smaller APFD differ-
ences require larger testing costs in order to produce
practical differences, but, in practice, testing costs occur
across a wide range and we believe that there exist testing
processes (e.g., in relation to high-integrity software) in
which expenses could justify even relatively small differ-
ences in APFD values.

To further complicate matters, both our controlled
studies and our case studies suggest that the relative
effectiveness of prioritization techniques can vary across
programs. Our case studies illustrate that, for specific
programs and modification patterns, it is possible for
some techniques not to outperform random and the
techniques that outperform random may vary. Moreover,

our controlled and case studies show that the “best”
technique to use may vary across programs.

The implication of these results is that test engineers
should not assume that APFD gains will be practically

significant nor should they assume that they will not. In the
absence of measurement, practitioners who currently
employ prioritization heuristics may be doing so to no

avail and those who do not may be missing significant
opportunities for savings. Then, the process of selecting the
appropriate prioritization technique becomes of major

interest as a topic for future research.
Our results suggest several avenues for future work.

First, to address questions of whether these results general-
ize, further studies are necessary. Differences in the

performance of the various prioritization techniques we
have considered, however, also mandate further study of
the factors that underlie the relative effectiveness of various

techniques. To address these needs, we are gathering
additional programs and constructing test suites for use in
such studies. One additional desirable outcome of such
studies would be techniques for predicting, for particular

programs, types of test suites, and classes of modifications,
which prioritization techniques would be most effective.
We are also investigating alternative prioritization goals

and alternative measures of prioritization effectiveness.
Further, because a sizable performance gap remains
between prioritization heuristics and optimal prioritization,

we are investigating alternative prioritization techniques,
including different methods for incorporating feedback in
the use of fault-index-based techniques. Finally, we are
working with our industrial collaborators to better quantify

potential savings that can result from increases in rate of
fault detection.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation (NSF) Information Technology Research pro-

gram under Awards CCR-0080898 and CCR-0080900 to the
University of Nebraska, Lincoln, and Oregon State Uni-
versity, respectively. The work was also supported in part

by NSF Awards CCR-9703108 and CCR-9707792 to Oregon
State University and by a NASA-Epscor Space Grant Award
to the University of Nebraska, Lincoln. Tom Ostrand shared

the Siemens programs, faulty versions, and test cases.
Alberto Pasquini, Phyllis Frankl, and Filip Vokolos shared
the space program and test cases. Roland Untch, Mary
Jean Harrold, and Chengyun Chu contributed to earlier

stages of the work. David Gable revised the techniques
based on fault proneness and provided the tools used in
DIFF-based prioritization. Adam Ashenfelter, Sean Callan,

Dan Chirica, Hyunsook Do, Desiree Dunn, David Gable,
Dalai Jin, Praveen Kallakuri, and Joe Ruthruff devoted
weeks of often tedious time preparing materials for

experimentation. Finally, we thank the anonymous re-
viewers for comments that substantially improved this
paper. A preliminary version of this paper appeared in the
Proceedings of the ACM International Symposium on Software

Testing and Analysis, pages 201-212, August, 2000.

ELBAUM ET AL.: TEST CASE PRIORITIZATION: A FAMILY OF EMPIRICAL STUDIES 181



REFERENCES

[1] IEEE Standards Association, Software Engineering Standards, vol. 3
of Std. 1061: Standard for Software Quality Methodology, IEEE,
1999 ed., 1999.

[2] A. Avritzer and E.J. Weyuker, “The Automatic Generation of Load
Test Suites and the Assessment of the Resulting Software,” IEEE
Trans. Software Eng., vol. 21, no. 9, pp. 705–716, Sept. 1995.

[3] A.L. Baker, J.M. Bieman, N. Fenton, D.A. Gustafson, A. Melton,
and R. Whitty, “Philosophy for Software Measurement,” J. System
Software, vol. 12, no. 3, pp. 277–281, 1990.

[4] M. Balcer, W. Hasling, and T. Ostrand, “Automatic Generation of
Test Scripts from Formal Test Specifications,” Proc. Third Symp.
Software Testing, Analysis, and Verification, pp. 210–218, Dec. 1989.

[5] L.C. Briand, J. Wust, S.V. Ikonomovski, and H. Lounis, “Investi-
gating Quality Factors in Object Oriented Designs: An Industrial
Case Study,” Proc. Int’l. Conf. Software Eng., pp. 345–354, May 1999.

[6] M.E. Delamaro and J.C. Maldonado, “Proteum—A Tool for the
Assessment of Test Adequacy for C Programs,” Proc. Conf.
Performability in Computing Systems (PCS ’96), pp. 79–95, July 1996.

[7] R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on Test Data
Selection: Help for the Practicing Programmer,” Computer, vol. 11,
no. 4, pp. 34–41, Apr. 1978.

[8] S. Elbaum, A. Malishevsky, and G. Rothermel, “Test Case
Prioritization: A Family of Empirical Studies,” Technical Report
01-60-08, Oregon State Univ., May 2001.

[9] S.G. Elbaum and J.C. Munson, “A Standard for the Measurement
of C Complexity Attributes,” Technical Report TR-CS-98-02, Univ.
of Idaho, Feb. 1998.

[10] S.G. Elbaum and J.C. Munson, “Code Churn: A Measure for
Estimating the Impact of Code Change,” Proc. Int’l Conf. Software
Maintenence, pp. 24–31, Nov. 1998.

[11] S.G. Elbaum and J.C. Munson, “Software Evolution and the Code
Fault Introduction Process,” Empirical Software Eng. J., vol. 4, no. 3,
pp. 241–262, Sept. 1999.

[12] N. Fenton and L. Pfleeger, Software Metrics–A Rigorous and Practical
Approach, second ed. Boston, PWS-Publishing, 1997.

[13] D. Gable and S. Elbaum, “Extension of Fault Proneness Techni-
ques,” Technical Report TRW-SW-2001-2, Univ. of Nebraska,
Lincoln, Feb. 2001.

[14] T. Goradia, “Dynamic Impact Analysis: A Cost-Effective Techni-
que to Enforce Error-Propagation,” Proc. ACM Int’l Symp. Software
Testing and Analysis, pp. 171–181, June 1993.

[15] R.G. Hamlet, “Testing Programs with the Aid of a Compiler,”
IEEE Trans. Software Eng., vol. 3, no. 4, pp. 279–290, July 1977.

[16] R.G. Hamlet, “Probable Correctness Theory,” Information Proces-
sing Letters, vol. 25, pp. 17–25, Apr. 1987.

[17] M.J. Harrold and G. Rothermel, “Aristotle: A System for Research
on and Development of Program Analysis Based Tools,”
Technical Report OSU-CISRC- 3/97-TR17, Ohio State Univ.,
Mar. 1997.

[18] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
on the Effectiveness of Dataflow- and Controlflow-Based Test
Adequacy Criteria,” Proc. Int’l Conf. Software Eng., pp. 191–200,
May 1994.

[19] R.A. Johnson and D.W. Wichorn, Applied Multivariate Analysis,
third ed. Englewood Cliffs, N.J.: Prentice Hall, 1992.

[20] T.M. Khoshgoftaar and J.C. Munson, “Predicting Software
Development Errors Using Complexity Metrics,” J. Selected Areas
Comm., vol. 8, no. 2, pp. 253–261, Feb. 1990.

[21] R.E. Kirk, Experimental Design: Procedures for the Behavioral Sciences,
third ed. Pacific Grove, Calif.: Brooks/Cole, 1995.

[22] B. Kitchenham, L. Pickard, and S. Pfleeger, “Case Studies for
Method and Tool Evaluation,” IEEE Software, vol. 11, no. 4, pp. 52–
62, July 1995.

[23] F. Lanubile, A. Lonigro, and G. Visaggio, “Comparing Models for
Identifying Fault-Prone Software Components,” Proc. Seventh Int’l
Conf. Software Eng. and Knowledge Eng., pp. 312–319, June 1995.

[24] J.C. Munson, “Software Measurement: Problems and Practice,”
Annals of Software Eng., vol. 1, no. 1, pp. 255–285, 1995.

[25] J. Musa, Software Reliability Engineering. New York: McGraw-Hill,
1998.

[26] A.P. Nikora and J.C. Munson, “Software Evolution and the Fault
Process,” Proc. 23rd Ann. Software Eng. Workshop, 1998.

[27] A.J. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf, “An
Experimental Determination of Sufficient Mutation Operators,”
ACMTrans.SoftwareEng.Methods,vol. 5,no. 2,pp. 99–118,Apr.1996.

[28] T.J. Ostrand and M.J. Balcer, “The Category-Partition Method for
Specifying and Generating Functional Tests,” Comm. ACM, vol. 31,
no. 6, June 1988.

[29] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold, “Test Case
Prioritization: An Empirical Study,” Proc. Int’l Conf. Software
Maintenence, pp. 179–188, Aug. 1999.

[30] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold, “Prioritizing
Test Cases for Regression Testing,” IEEE Trans. Software Eng., vol.
27, no. 10, pp. 929-948, Oct. 2001.

[31] M.C. Thompson, D.J. Richardson, and L.A. Clarke, “An Informa-
tion Flow Model of Fault Detection,” Proc. ACM Int’l Symp.
Software Testing and Analysis, pp. 182–192, June 1993.

[32] J. Voas, “PIE: A Dynamic Failure-Based Technique,” IEEE Trans.
Software Eng., vol. 18, no. 8, pp. 717–727, Aug. 1992.

[33] F.I. Vokolos and P.G. Frankl, “Empirical Evaluation of the Textual
Differencing Regression Testing Technique,” Proc. Int’l Conf.
Software Maintenence, pp. 44–53, Nov. 1998.

[34] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal, “A Study of
Effective Regression Testing in Practice,” Proc. Eighth Int’l Symp.
Software Reliability Eng., pp. 230–238 Nov. 1997.

[35] M.Zelkowitz andD.Wallace, “ExperimentalModels for Validating
Technology,” Computer, vol. 31, no. 5, pp. 23–31, May 1998.

Sebastian Elbaum received the PhD and MS
degrees in computer science from the University
of Idaho and a degree in systems engineering
from the Universidad Catolica de Cordoba,
Argentina. He is an assistant professor in the
Department of Computer Science and Engineer-
ing at the University of Nebraska, Lincoln. He
has served on the program committees for the
2000 IEEE International Symposium on Soft-
ware Reliability Engineering and the 2001 Work-

shop on Empirical Studies of Software Maintenance. His research
interests include software measurement, testing, maintenance, and
reliability. He is a member of the IEEE, IEEE Computer Society, IEEE
Reliability Society, ACM, and ACM SIGSOFT.

Alexey G. Malishevsky is a PhD student and
research assistant in the Department of Compu-
ter Science at Oregon State University where he
received the MS and BS degrees. His research
interests include regression testing and, in
particular, prioritization of test suites and testa-
bility. He is a student member of the IEEE.

Gregg Rothermel received the PhD degree in
computer science from Clemson University, the
MS degree in computer science from the State
University of New York, Albany, and the BA
degree in philosophy from Reed College. He is
currently an associate professor in the Computer
Science Department at Oregon State University.
His research interests include software engi-
neering and program analysis, with emphases
on the application of program analysis techni-

ques to problems in software maintenance and testing and on empirical
studies. His previous positions include vice president, quality assurance
and quality control, Palette Systems, Inc. Dr. Rothermel is a recipient of
the US National Science Foundation’s Faculty Early Career Develop-
ment Award and of the Oregon State University College of Engineering’s
Engelbrecht Young Faculty Award. He has served on the program
committees for the 2000 ACM SIGSOFT International Symposium on
Software Testing and Analysis, the 2000 International Conference on
Software Engineering, the 2001 International Conference on Software
Engineering, the SIGSOFT 2000 Eighth International Symposium on the
Foundations of Software Engineering, and the 2000 International
Conference in Software Maintenance. He is a member of the IEEE,
IEEE Computer Society, ACM, ACM SIGSOFT, and ACM SIGPLAN.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

182 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002


	Test Case Prioritization: A Family of Empirical Studies
	

	Test case prioritization: A family of empirical studies - Software Engineering, IEEE Transactions on

