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Abstract

Test case prioritization techniques schedule test cases for
execution in an order that attempts to maximize some objec-
tive function. A variety of objective functions are applica-
ble; one such function involvesrate of fault detection— a
measure of how quickly faults are detected within the testing
process. An improved rate of fault detection during regres-
sion testing can provide faster feedback on a system under
regression test and let debuggers begin their work earlier
than might otherwise be possible. In this paper, we describe
several techniques for prioritizing test cases and report our
empirical results measuring the effectiveness of these tech-
niques for improving rate of fault detection. The results pro-
vide insights into the tradeoffs among various techniques
for test case prioritization.

1. Introduction

Software developers often save the test suites they de-
velop for their software, so that they can reuse those suites
later as the software evolves. Such test suite reuse, in the
form of regression testing, is pervasive in the software in-
dustry [15] and, together with other regression testing activ-
ities, can account for as much as one-half of the cost of soft-
ware maintenance [3, 13]. Running all test cases in an exist-
ing test suite, however, can consume an inordinate amount
of time. For example, one of our industrial collaborators re-
ports that for one of its products that contains approximately
20,000 lines of code, running the entire test suite requires
seven weeks. In such cases, testers may want to order their
test cases so that those test cases with the highest priority,
according to some criterion, are run first.

Test case prioritization techniques[21] schedule test
cases for regression testing in an order that attempts to max-
imize some objective function. For example, testers might
wish to schedule test cases in an order that achieves code
coverage at the fastest rate possible, exercises features in

order of expected frequency of use, or exercises subsys-
tems in an order that reflects their historical propensity to
fail. When the time required to execute all test cases in a
test suite is short, test case prioritization may not be cost-
effective — it may be most expedient simply to schedule
test cases in any order. When the time required to run all
test cases in the test suite is sufficiently long, however, test
case prioritization may be beneficial.

In this paper, we describe several techniques for priori-
tizing test cases and we empirically evaluate their ability to
improverate of fault detection— a measure of how quickly
faults are detected within the testing process. An improved
rate of fault detection during regression testing can pro-
vide earlier feedback on a system under regression test and
let developers begin debugging and correcting faults earlier
than might otherwise be possible.

Our results indicate that test case prioritization can sig-
nificantly improve the rate of fault detection of test suites.
Furthermore, our results highlight tradeoffs between vari-
ous prioritization techniques. In the next section, we pre-
cisely describe the test case prioritization problem and out-
line several prioritization techniques. Subsequent sections
present our experimental design, analysis, and conclusions.

2. Test Case Prioritization

Test case prioritization techniques schedule test cases in
an execution order according to some criterion. The pur-
pose of this prioritization is to increase the likelihood that
if the test cases are used for regression testing in the given
order, they will more closely meet some objective than they
would if they were executed in some other order.

Test case prioritization can address a wide variety of ob-
jectives, including the following:

1. Testers may wish to increase the rate of fault detection
– that is, the likelihood of revealing faults earlier in a
run of regression tests.



2. Testers may wish to increase the rate of detection of
high-risk faults, locating those faults earlier in the test-
ing process.

3. Testers may wish to increase the likelihood of reveal-
ing regression errors related to specific code changes
earlier in the regression testing process.

4. Testers may wish to increase their coverage of cover-
able code in the system under test at a faster rate.

5. Testers may wish to increase their confidence in the
reliability of the system under test at a faster rate.

In practice, and depending upon the choice of objec-
tive, the test case prioritization problem may be intractable:
for certain objectives, an efficient solution to the problem
would provide an efficient solution to the knapsack prob-
lem [8]. Thus, test case prioritization techniques are typi-
cally heuristics. A goal of this work is to investigate, for a
specific objective function, several such heuristics.

2.1. Prioritization for Rate of Fault Detection

Given a particular objective, various prioritization crite-
ria may be applied to a test suite with the aim of meeting
that objective. For example, to attempt to meet the first ob-
jective stated above, we may prioritize test cases in terms
of the failure rates, measured historically, of the modules
they exercise. Alternatively, we may prioritize test cases in
terms of their increasing cost-per-coverage of code compo-
nents, or in terms of their increasing cost-per-coverage of
features listed in a requirements specification. In any case,
the intent behind the choice of a prioritization criterion is
to increase the likelihood that the prioritized test suite can
better meet the objective than would an ad hoc or random
ordering of test cases.

In this work, we focus on the first objective listed above:
increasing the likelihood of revealing faults earlier in the
testing process. We describe this objective, informally, as
one of improving our test suite’srate of fault detection: we
describe a measure for this in Section 3.2. The motivation
for meeting this objective is clear: an improved rate of fault
detection during regression testing can provide faster feed-
back on the system under test, or early evidence that quality
goals have not been met; it can also let debuggers begin
their work earlier than might otherwise be possible.

We consider nine different test case prioritization tech-
niques. Table 1 lists these techniques; we next discuss them
in an order that facilitates their presentation.T1: No prioritization. To facilitate our empirical study,
one prioritization “technique” that we consider is simply the
application of no technique; this lets us consider “untreated”
test suites. Note, however, that the success of an untreated

Code Mnemonic DescriptionT1 unordered no prioritization (control)T2 random randomized orderingT3 optimal ordered to optimize
rate of fault detectionT4 branch-total prioritize in order of coverage
of branchesT5 branch-addtl prioritize in order of coverage
of branches not yet coveredT6 FEP-total prioritize in order of total probability
of exposing faultsT7 FEP-addtl prioritize in order of total probability
of exposing faults, adjusted to
consider effects of previous testsT8 stmt-total prioritize in order of coverage
of statementsT9 stmt-addtl prioritize in order of coverage
of statements not yet covered

Table 1. A catalog of prioritization techniques.

test suite in meeting an objective may depend upon the man-
ner in which it is initially constructed.T2: Random prioritization. Also to facilitate our empir-
ical study, we apply random prioritization, in which we ran-
domly order the tests in a test suite.T3: Optimal prioritization. As we shall discuss in Sec-
tion 3, to measure the effects of prioritization techniques
on rate of fault detection, our empirical study utilizes pro-
grams that contain known faults. We can determine, for any
test suite, which test cases expose which faults, and thus
we can determine an optimal ordering of test cases in a test
suite for maximizing that suite’s rate of fault detection. In
practice, of course, this is not a practical technique, as it
requires knowledge of which test cases will expose which
faults; however, by using it in our study, we gain insight into
the success of other practical heuristics.T4: Total branch coverage prioritization. By instru-
menting a program, we can determine, for any test case,
the number of decisions (branches) in that program that
were exercised by that test case. We can prioritize these
test cases according to the total number of branches they
cover simply by sorting them in order of total branch cover-
age achieved. This prioritization can thus be accomplished
in timeO(n log n) for programs containingn branches.T5: Additional branch coverage prioritization. Total
branch coverage prioritization schedules test cases in the or-
der of total coverage achieved. However, having executed a
test case and covered certain branches, more may be gained
in subsequent test cases by covering branches that have not
yet been covered. Additional branch coverage prioritization
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iteratively selects a test case that yields the greatest branch
coverage, then adjusts the coverage information on subse-
quent test cases to indicate their coverage of branches not
yet covered, and then repeats this process, until all branches
covered by at least one test case have been covered.

Having scheduled test cases in this fashion, we may be
left with additional test cases that cannot add additional
branch coverage. We could order these next using any pri-
oritization technique; in this work we order the remaining
test cases using total branch coverage prioritization.

Because additional branch coverage prioritization re-
quires recalculation of coverage information for each un-
prioritized test case following selection of each test case, its
cost isO(n2) for programs containingn branches.T8: Total statement coverage prioritization. Total state-
ment coverage prioritization is the same as total branch cov-
erage prioritization, except that test coverage is measured in
terms of program statements rather than decisions.T9: Additional statement coverage prioritization. Ad-
ditional statement coverage prioritization is the same as ad-
ditional branch coverage prioritization, except that test cov-
erage is measured in terms of program statements rather
than decisions. With this technique too, we require a
method for prioritizing the remaining test cases after com-
plete coverage has been achieved, and in this work we do
this using total statement coverage prioritization.T6: Total fault-exposing-potential (FEP) prioritization.
Statement- and branch-coverage-based prioritization con-
sider only whether a statement or branch has been exercised
by a test case. This consideration may mask a fact about
test cases and faults: the ability of a fault to be exposed by a
test case depends not only on whether the test case reaches
(executes) a faulty statement, but also, on the probability
that a fault in that statement will cause a failure for that
test case [19]. Although any practical determination of this
probability must be an approximation, we wished to deter-
mine whether the use of such an approximation could yield
a prioritization technique superior in terms of rate of fault
detection than techniques based on simple code coverage.

To obtain an approximation of the fault-exposing-
potential (FEP) of a test case, we use mutation analysis
[6, 9]. Given programP and test suiteT , for each test caset 2 T , for each statements in P , we determine the mutation
scorems(s; t) to be the ratio of mutants ofs exposed byt
to total mutants ofs. We then calculate, for each test casetk in T , anaward valuefor tk, by summing allms(s; tk)
values. Total fault-exposing-potential prioritization orders
the test cases in a test suite in order of these award values.

Such a technique could conceivably be much more ex-
pensive to implement than a code-coverage-based tech-
nique, however if such a technique shows promise, this

might motivate a search for cost-effective methods to ap-
proximate fault-exposing potential.T7: Additional fault-exposing-potential (FEP) prioriti-
zation. Analogous to the extensions made to total branch
(or statement) coverage prioritization to additional branch
(or statement) coverage prioritization, we extend total FEP
prioritization to create additional fault-exposing-potential
(FEP) prioritization. This lets us account for the fact that
additional executions of a statement may be less valuable
than initial executions. In additional FEP prioritization, af-
ter selecting a test caset, we lower the award values for all
other test cases that exercise statements exercised byt.
2.2. Related Work

In [21], Wong, Horgan, London and Agrawal suggest
prioritizing test cases according to the criterion of increas-
ing cost per additional coverage. An implied objective of
this ranking is to reveal faults earlier in the testing process.
The authors restrict their attention, however, to prioritiza-
tion of test cases for execution on a specific modified ver-
sion of a program, and to prioritization of only the subset of
test cases selected by a safe regression test selection tech-
nique (e.g. [2, 4, 18, 20]) from the test suite for the program.
The authors do not specify a mechanism for prioritizing the
remaining test cases after full coverage has been achieved.
The authors describe a case study in which their technique
is applied to a program of 5000 lines of code, and evaluated
against ten faulty versions of that program, and conclude
that the technique was cost-effective in that application.

In this work, we further investigate coverage-based pri-
oritization, but we examine a wide range of prioritization
techniques, and we focus on general, rather than modified-
version-specific, prioritization.

3. The Experiment

3.1. Research Questions

We are interested in the following research questions.

Q1: Can test case prioritization improve the rate of fault
detection of test suites?

Q2: How do the various test case prioritization techniques
presented in Section 2 compare to one another in terms
of effects on rate of fault detection?

3.2. Efficacy and APFD Measures

To address our research questions, we require measures
with which we can assess and compare the effect of using
various prioritization techniques.
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Analogous to measuring an antibiotic’spotencyandav-
erage activity, we can seek to measure a prioritized test
suite’sefficacyandaverage fault detection. An antibiotic’s
potency is a measure of how well the drug can kill bacte-
ria. In much the same way, a test suite’s efficacy is a mea-
sure of its fault detecting ability. Although in general a test
suite’s efficacy cannot be measured directly and is often ap-
proximated by various coverage or adequacy measures, in
our experiment we work with programs that contain known
faults and efficacy is measured by how many of these known
faults a test suite can detect.

An antibiotic’s average activity is a measure of how
quickly the bacteria are killed. Afast actingantibiotic ex-
hibits earlier antibacterial behavior than aslow actingan-
tibiotic. Similarly a fast detectingprioritized test suite ex-
hibits earlier fault detection than aslow actingprioritized
test suite. (It is important to note that changing a test suite’s
detection rate has no effect on its efficacy.)

As a measure of how rapidly a prioritized test suite de-
tects faults, we use a weighted average of the percentage of
faults detected, orAPFD, over the life of the suite. These
values range from 0 to 100; higher APFD numbers mean
faster (better) fault detection rates. Thus, although not a di-
rect measure of the rate of fault detection, the APDF does
allow us to compare the ability of different prioritization
techniques to createfaster detectingtest suites through the
ordering of test cases.

To illustrate this measure, consider some example pro-
gram with 10 faulty versions and a set of 5 test cases,A
throughE. Table 2 shows the fault detecting ability of each
of the 5 test cases.

Test Case Fault
1 2 3 4 5 6 7 8 9 10

A X X
B X X X X
C X X X X X X X
D X
E X X X

Table 2. Test suite and list of faults exposed.

Suppose we place the test cases in orderA–B–C–D–E
to form a prioritized test suiteX . Figure 1 (left) shows the
percentage ofundetectedfaults versus the fraction of the
test suiteX used. After running test caseA, 2 of the 10
faults were detected; thus 80% of the faults remain unde-
tected after15 of test suiteX has been used. After running
test caseB, 2 more faults are detected and thus 60% of the
faults remain undetected after25 of the test suite has been
used. In Figure 1 (left), the area inside the inscribed rect-
angles (dashed boxes) represents the weighted percentage
of faults undetected over the corresponding fraction of the
test suite. The solid lines connecting the corners of the in-

scribed rectangles interpolate the drop in the percentage of
undetected faults. This interpolation is a granularity adjust-
ment when only a small number of test cases comprise a test
suite; the larger the test suite the smaller this adjustment.

Figure 1 (right) corresponds to Figure 1 (left) but shows
the percentage ofdetectedfaults versus the fraction of the
test suite used. The curve represents the cumulative per-
centage of faults detected. The shaded area under the curve
represents the weighted average of the percentage of faults
detected over the life of the test suite. This area is the pri-
oritized test suite’s average percentage faults detected mea-
sure; the APFD is 50% in this example.

Figure 2 reflects what happens when the order of test
cases is changed toE–D–C–B–A. Let us call this prioritized
test suiteY . Figure 2 (left) clearly depicts that no faults
remain undetected after35 of test suiteY has been used.
This increase in the rate of detection is reflected in Figure
2 (right); the APFD over the entire suite has risen to 64%,
indicatingY is “faster detecting” thanX .

Figure 3 shows the effects of using a prioritized test suiteZ whose test case ordering isC–E–B–A–D. By inspection,
it is clear that this ordering results in the earliest detection
of the most faults and illustrates an optimal ordering. From
Figure 3 (right) we see that the APFD of test suiteZ is 84%,
the best of the three.

Thus to compare the effects of the prioritization tech-
niques on test suites, our experiment investigates changes
in APFD.

3.3. Subjects and Methods

3.3.1 Programs.

We used seven C programs as subjects (see Table 3). These
programs perform a variety of tasks:tcas is an aircraft
collision avoidance system,schedule2 andschedule
are priority schedulers,tot info computes statistics
given input data,print tokens andprint tokens2
are lexical analyzers, andreplace performs pattern
matching and substitution. Each program has a variety of
versions, each containing one fault. Each program also has
a large universe of inputs (test pool). These programs, ver-
sions, and inputs were assembled by researchers at Siemens
Corporate Research for a study of the fault-detection capa-
bilities of control-flow and data-flow coverage criteria [11].
We describe the other data in the table in the following para-
graphs.

3.3.2 Faulty versions, test cases, and test suites.

The researchers at Siemens sought to study the fault-
detecting effectiveness of coverage criteria. Therefore, they
created faulty versions of the seven base programs by man-
ually seeding those programs with faults, usually by modi-
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Figure 1. APFD for prioritized test suite X : 50%.
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Figure 2. APFD for prioritized test suite Y: 64%.
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Figure 3. APFD for (optimal) prioritized test suite Z: 84%.
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Lines No. of Test Pool Test Suite
Program of Code Versions Size Avg. Size
tcas 138 41 1608 6
schedule2 297 10 2710 8
schedule 299 9 2650 8
tot info 346 23 1052 7
print tokens 402 7 4130 16
print tokens2 483 10 4115 12
replace 516 32 5542 19

Table 3. Experiment subjects.

fying a single line of code in the program. Their goal was to
introduce faults that were as realistic as possible, based on
their experience with real programs. Ten people performed
the fault seeding, working “mostly without knowledge of
each other’s work” [11, p. 196].

For each base program, the researchers at Siemens cre-
ated a large test pool containing possible test cases for the
program. To populate these test pools, they first created
an initial suite of black-box test cases “according to good
testing practices, based on the tester’s understanding of the
program’s functionality and knowledge of special values
and boundary points that are easily observable in the code”
[11, p. 194], using thecategory partition methodand the
Siemens Test Specification Language tool [1, 16]. They
then augmented this suite with manually-created white-box
test cases to ensure that each executable statement, edge,
and definition-use pair in the base program or its control-
flow graph was exercised by at least 30 test cases. To ob-
tain meaningful results with the seeded versions of the pro-
grams, the researchers retained only faults that were “nei-
ther too easy nor too hard to detect” [11, p. 196], which
they defined as being detectable by at most 350 and at least
3 test cases in the test pool associated with each program.

To obtain sample test suites for these programs, we used
the test pools for the base programs and test-coverage in-
formation about the test cases in those pools to generate
1000 branch-coverage-adequate test suites for each pro-
gram. More precisely, to generate a test suiteT for base pro-
gramP from test poolTp, we used the C pseudo-random-
number generatorrand, seeded initially with the output of
the Ctimes system call, to obtain integers that we treated
as indexes intoTp (modulo jTpj). We used these indexes
to select test cases fromTp; we added each test caset toT only if t added to the cumulative branch coverage ofP
achieved by the test cases added toT thus far. We con-
tinued to add test cases toT until T contained at least one
test case that would exercise each executable branch in the
base program. Table 3 lists the average sizes of the branch-
coverage-adequate test suites generated by this procedure
for the subject programs.

3.3.3 Prioritization and analysis tools.

To perform the experiment, we required several tools. Our
test coverage and control-flow graph information was pro-
vided by the Aristotle program analysis system [10]. We
created prioritization tools that implement the techniques
outlined in Section 2. To obtain mutation scores for use in
the FEP prioritizations we used the Proteum mutation sys-
tem [5].

3.4. Experiment design

The experiment was run using a7 � 9 factorial design
with 1000 APFD measures per cell; the two categorical fac-
tors were:� The subject program (7 programs, each with a variety

of modified versions).� The prioritization technique (unordered, random, opti-
mal, branch-total, branch-addtl, FEP-total, FEP-addtl,
stmt-total, stmt-addtl).

For each subject programP , the prioritization tech-
niquesT2 throughT9 were applied to each of the 1000 sam-
ple test suites, yielding 8000 prioritized test suites. The
original test suite (not reordered) was retained as a control;
for analysis this was considered “prioritized” by techniqueT1. The APFD values of these 63000 prioritized test suites
were calculated and used as the statistical data set.

3.5. Results

An initial indication of how each prioritization technique
affected a test suite’s rate of detection can be determined
from Figure 4, which presents boxplots of the APFD val-
ues of the 9 categories of prioritized test suites for each
program and an all-program total.1 (Refer to Table 1 for
a legend of the techniques.)T1 is the control group.T2 is
the random prioritization group.T3 is the optimal prioriti-
zation group. Examining the boxplots ofT3 with those ofT1 andT2, it is readily apparent that optimal prioritization
greatly improved the rate of fault detection (i.e., increased
APFD values) of the test suites. Examining the boxplots of
the other prioritization techniques,T3 throughT9, it seems
that all produce some improvement. However the overlap
in APFD values mandates formal statistical analysis.1A boxplot is a standard statistical device for representingdata sets
[12]. In these plots, each data set’s distribution is represented by a box
and a pair of “whiskers”. The box’s height spans the central 50% of the
data and its upper and lower ends mark the upper and lower quartiles. The
middle of the three horizontal lines within the box represents the median.
The “whiskers” are the vertical lines attached to the box; they extend to the
smallest and largest data points that are within the outliercutoffs. These
outlier cutoffs are defined to lie at 1.5 times the width of theinner quartile
range (the span of the box) from the upper and lower points in that range.

6



Figure 4. APFD boxplots (vertical axis is APFD score): By program, by technique.
(See Table 1 for a legend of the techniques.)
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Using the SAS statistical package [7] to perform an
ANOVA analysis, we were able to reject the null hypoth-
esis that the APFD means for the various techniques were
equal (�=:05), confirming our boxplot observations. How-
ever the ANOVA analysis indicated statistically significant
cross-factor interactions: programshavean effect on APFD
values. Thus general statements about technique effects
must be qualified.

While rejection of the null hypothesis tells us that some
techniques produce statistically different APFD means, to
determine which techniques differ from each other requires
running a multiple-comparison procedure [17]. Of the com-
monly used means separation tests, we elected to use the
Bonferroni method — for its conservatism and generality.

Using Bonferroni, the minimum statistically significant
difference between APFD means was calculated for each
program. These are given in Table 4. The techniques are
listed within each program sub-table by their APFD mean
values, from higher (better) to lower (worse). Grouping let-
ters partition the techniques; techniques that are not signifi-
cantly different share the same grouping letter.

Examining these sub-tables affirm what the boxplots in-
dicated: that all the heuristic techniques provided some sig-
nificant improvement in rate of fault detection. Although
the relative improvement provided by each technique is de-
pendent on the program, theAll Programssub-table does
suggest that the FEP-based heuristics (additional FEP pri-
oritization and total FEP prioritization) may perform some-
what better than the others.

4. Discussion

This experiment, like any other, has several limits to its
validity, the primary ones being threats to external validity
that limit our ability to generalize our results. Our primary
concern involves the representativeness of the artifacts uti-
lized. The subject programs, though nontrivial, are small
and larger programs may be subject to different cost-benefit
tradeoffs. Also, there is exactly one seeded fault in every
subject program; in practice, programs have much more
complex error patterns. Finally, the test suites we utilized
represent only one type of test suite that could appear in
practice. These threats can only be addressed by additional
studies utilizing a greater range of artifacts.

Keeping this in mind, our data and analysis nevertheless
provide insights into the effectiveness of test case priori-
tization generally and into the relative effectiveness of the
prioritization techniques that we examined. We now dis-
cuss these insights and their possible implications for the
practical application of test case prioritization.

Perhaps of greatest practical significance, our data and
analysis indicate that test case prioritization can substan-
tially improve the rate of fault detection of test suites. All

of the heuristics that we examined produced such improve-
ments overall and in only one case, onschedule, did any
heuristic not outperform the untreated or randomly priori-
tized test suites.

Overall in our study, additional FEP prioritization out-
performed all prioritization techniques based on cover-
age. Furthermore, total FEP prioritization outperformed all
coverage-based techniques other than total branch coverage
prioritization. However, these results did vary across indi-
vidual programs and, where FEP-based techniques did out-
perform coverage-based techniques, the total gain in APFD
was not great. These results run contrary to our initial intu-
itions and suggest that given their expense, FEP-based pri-
oritization may not be as cost-effective as coverage-based
techniques.

Again considering overall results, it is interesting that
total branch coverage prioritization outperforms additional
branch coverage prioritization and that total statement cov-
erage prioritization outperforms additional statement cov-
erage prioritization. These effects, too, vary across the in-
dividual programs. Nevertheless, the worst-case costs of
total branch and statement coverage prioritization are much
less than the worst-case costs of additional branch and state-
ment coverage prioritization; this suggests that the less ex-
pensive total-coverage prioritization schemes may be more
cost-effective than additional-coverage schemes.

Another effect worth noting is that generally (on five of
the seven programs) randomly prioritized test suites outper-
formed untreated test suites. We conjecture that this differ-
ence is due to the type of test suites and faults used in the
study. As described in Section 3.3, our test suites were gen-
erated for coverage by greedily selecting test cases from test
pools; the order in which test cases were added to suites dur-
ing this process constitutes their untreated order. We sus-
pect that this process caused test cases added to the “ends”
of the test suites to cover (on average) harder to reach state-
ments than test cases added to the “beginnings” of the test
suites. The faults embedded in the Siemens programs are
relatively hard to detect; a disproportionate number reside
in harder-to-reach statements and are detected (on average)
by test cases that are added later to the test suites. Random
prioritization essentially redistributes test cases that reach
and expose these faults throughout the test suites, causing
the faults to be detected more quickly.

5. Conclusions and Future Work

In this paper, we have described several techniques for
test case prioritization and empirically examined their rela-
tive abilities to improve how quickly faults can be detected
by those suites. Our results suggest that these techniques
can improve the rate of fault detection of test suites and that
this result occurs even for the least sophisticated (and hence
least expensive) techniques.
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print tokens
Grouping Mean Technique

A 92.5461 optimal
B 80.8842 branch-addtl
C 78.2727 FEP-addtl

D C 76.8573 branch-total
D E 76.4770 FEP-total
D E 76.4647 stmt-total

E 74.8199 stmt-addtl
F 57.2829 random
G 42.6163 untreated

df= 8991 MSE= 155.0369 Critical Value of T= 3.20
Minimum Significant Difference= 1.7808 (�=:05)

print tokens2
Grouping Mean Technique

A 90.5152 optimal
B 78.3211 FEP-addtl
C 76.1678 branch-addtl
C 75.8848 stmt-total
C 75.7985 FEP-total
C 75.5995 stmt-addtl
C 74.8830 branch-total
D 55.9729 random
E 49.3272 untreated

df= 8991 MSE= 124.203 Critical Value of T= 3.20
Minimum Significant Difference= 1.5939 (�=:05)

replace
Grouping Mean Technique

A 91.6901 optimal
B 80.0171 FEP-total
B 79.6959 FEP-addtl
C 77.1355 stmt-total
C 76.8482 branch-total
D 66.5639 branch-addtl
E 62.3795 stmt-addtl
F 54.4460 untreated
F 54.0668 random

df= 8991 MSE= 110.782 Critical Value of T= 3.20
Minimum Significant Difference= 1.5053 (�=:05)

schedule
Grouping Mean Technique

A 85.7074 optimal
B 60.6765 branch-addtl
B 59.8694 stmt-total
B 59.8484 FEP-addtl
B 59.6161 branch-total
B 59.4430 FEP-total
C 51.4087 random
C 50.4418 stmt-addtl
D 41.9670 untreated

df= 8991 MSE= 222.3662 Critical Value of T= 3.20
Minimum Significant Difference= 2.1327 (�=:05)

Table 4. Bonferroni means separation tests.

schedule2
Grouping Mean Technique

A 90.1794 optimal
B 72.0518 FEP-addtl
B 70.6432 branch-total

C B 70.2513 branch-addtl
C D 68.0438 FEP-total

D 67.5409 stmt-total
E 63.7391 stmt-addtl
F 51.3077 random
G 47.0302 untreated

df= 8127 MSE= 280.635 Critical Value of T= 3.20
Minimum Significant Difference= 2.5199 (�=:05)

tcas
Grouping Mean Technique

A 83.8845 optimal
B 78.9253 stmt-total
B 78.7998 FEP-total
B 78.5781 branch-total
C 75.1880 FEP-addtl
D 73.3552 branch-addtl
E 68.5357 stmt-addtl
F 50.1038 random
F 49.4311 untreated

df= 8973 MSE= 148.5302 Critical Value of T= 3.20
Minimum Significant Difference= 1.7447 (�=:05)

tot info
Grouping Mean Technique

A 85.4258 optimal
B 77.5442 FEP-addtl

C B 76.8218 FEP-total
C D 75.8798 branch-addtl
E D 74.8807 branch-total
E 73.9979 stmt-total

F 71.4503 stmt-addtl
G 60.0587 random
H 53.1124 untreated

df= 8991 MSE= 110.4918 Critical Value of T= 3.20
Minimum Significant Difference= 1.5033 (�=:05)

All Programs
Grouping Mean Technique

A 88.5430 optimal
B 74.4501 FEP-addtl
C 73.7049 FEP-total

D C 73.2205 branch-total
D 72.9030 stmt-total

E 71.9919 branch-addtl
F 66.7502 stmt-addtl
G 54.3575 random
H 48.2927 untreated

df= 62055 MSE= 162.9666 Critical Value of T= 3.20
Minimum Significant Difference= 0.6948 (�=:05)

          Means with the same grouping letter
                are not significantly different. 
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The results of our study suggest several avenues for fu-
ture work. First, we are performing additional studies utiliz-
ing other programs and types of test suites. To investigate
a wider range and distribution of faults, we are also gath-
ering data in which the success of prioritization techniques
is measured against the set of mutations of the subject pro-
grams. Finally, we are investigating alternative measures of
prioritization effectiveness.

Second, because our analysis revealed a sizeable per-
formance gap between prioritization heuristics and optimal
prioritization, and our FEP-based techniques did not bridge
this gap, we are investigating alternative techniques based
on sensitivity analysis [19] that may provide a more suit-
able approach. Techniques that incorporate static measures
of fault-proneness [14] may also be of interest.

Finally, the test case prioritization problem, in general,
has many more facets than we have here considered. For ex-
ample, we have considered only one possible prioritization
objective; other objectives, such as those listed in Section
2, are also of interest. Furthermore, the test case prioriti-
zation techniques that we have examined can be described
as “general prioritization techniques” in the sense that they
are applied to a base version of a program, with no knowl-
edge of the location (or probable location) of modifications
to the software, in the hopes of producing a test case order-
ing that will be effective over subsequent (and as yet un-
known) versions of the software. Such general techniques
could also incorporate information on probabilities of mod-
ification. Alternative techniques could utilize knowledge of
the location of modifications to prioritize test cases for a
particular modified version.

Through the results reported in this paper, and this future
work, we hope to provide software practitioners with useful,
cost-effective techniques for improving regression testing
processes through prioritization of test cases.
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