
Received August 14, 2019, accepted September 3, 2019, date of publication September 10, 2019,
date of current version September 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2940620

Test Case Prioritization Using Firefly
Algorithm for Software Testing

MUHAMMAD KHATIBSYARBINI 1, MOHD ADHAM ISA1, DAYANG N. A. JAWAWI1,
HAZA NUZLY ABDULL HAMED 1, AND MUHAMMAD DHIAUDDIN MOHAMED SUFFIAN 2
1School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
2Business Solution and Services, MIMOS Technology Solutions Sdn. Bhd., Kuala Lumpur 57000, Malaysia

Corresponding author: Muhammad Khatibsyarbini (fkmuhammad4@gmail.com)

This work was supported in part by the Fundamental Research Grant Scheme, vote number 5F069, under the Ministry of Education

Malaysia, and in part by the Research University Grant Scheme, vote number 01M55, under Universiti Teknologi Malaysia.

ABSTRACT Software testing is a vital and complex part of the software development life cycle. Optimization

of software testing is still a major challenge, as prioritization of test cases remains unsatisfactory in terms

of Average Percentage of Faults Detected (APFD) and time execution performance. This is attributed

to a large search space to find an optimal ordering of test cases. In this paper, we have proposed an

approach to prioritize test cases optimally using Firefly Algorithm. To optimize the ordering of test cases,

we applied Firefly Algorithm with fitness function defined using a similarity distance model. Experiments

were carried on three benchmark programs with test suites extracted from Software-artifact Infrastructure

Repository (SIR). Our Test Case Prioritization (TCP) technique using Firefly Algorithm with similarity

distance model demonstrated better if not equal in terms of APFD and time execution performance compared

to existing works. Overall APFD results indicate that Firefly Algorithm is a promising competitor in TCP

applications.

INDEX TERMS Firefly Algorithm, metaheuristic, software engineering, artificial intelligence, search-based

software testing, test case prioritization.

I. INTRODUCTION

In the software development process, software testing has a

long execution time and can be the most expensive phase [1].

Software testing is arguably the least understood part of

the software development process. Even software testing is

executed repeatedly, it is often carried out in haste, due to

time constraints and fixed resources. In light of this, it has

been reported that Test Case Prioritization (TCP) application

appears to enhance test viability in software testing activ-

ity [2]–[5]. Test case prioritization approach was first men-

tioned by [6]. That work however only applied prioritization

on test cases that had gone through test case selection. Two

authors, Rothermel and Harold proposed and evaluated the

approach in a further broad context. Considering a test suite

as described in Table 1 [7]. Note that this study example

depicts an ideal situation in which fault detection information

is known.

The associate editor coordinating the review of this manuscript and
approving it for publication was Muhammad Afzal.

TABLE 1. Test suite example.

TCP aims to order a set of test cases to achieve early

optimization based on preferred properties [2], [8]. The goal

of prioritization is to maximize early fault detection. It is clear

that by ordering the test case as TC5-TC3 is far superior than

any other combination, as TC5-TC3 order detects all of the

faults at an earlier rate as can be seen on Table 1. In real

world problems, it is often difficult to determine which tests

will actually reveal faults. Hence, the test case prioritization

steps depend on several methods, expecting that an early

intensification of a certain chosen method will end in boost-

ing of earlier fault discovery. There are many dimensions of

the test case prioritization approach. As many as eight broad

132360 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 7, 2019

https://orcid.org/0000-0001-6839-1755
https://orcid.org/0000-0001-8619-4149
https://orcid.org/0000-0001-9309-7718


M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

dimensions h described by [9]. Those TCP techniques were

based on their commonalities in selection procedures, input

type, and output type.

TCP can be achieved by utilizing string metrics which are

able to distinguish test cases in terms of character differences,

followed by prioritization meeting a predefined fitness func-

tion. In recent years, existing works appear to have prioritized

test cases using only information related to generated test

cases [5], [10]–[12]. For instance, by relying on available

information such as test case input, software testers may

prioritize test cases prior to the availability of system source

code. This reduces overall testing time. TCP can be initi-

ated right after the design phase. Among the numerous TCP

techniques proposed, there remains room for improvement in

terms of time execution performance [4], [5]. This problem

is not only widespread on non-artificial intelligence appli-

cations in TCP, but also on most Artificial Intelligence (AI)

applications in TCP, necessitating improvements especially

in terms of APFD and execution time, as indicated by recent

studies [3]–[5], [13], [14].

Most AI applications in TCP begin with identifying and

differentiating test cases first before prioritization is carried

out [10], [15], [16]. A strategy which can be used to dif-

ferentiate test cases is calculating character differences via

string metrics. Once character differences among test cases

are established, prioritization can be pursued. String metrics

play an important role in textual similarity research. Applica-

tions in tasks such as information retrieval, text classification,

document clustering, topic detection, topic tracking, ques-

tions generation, question answering, essay scoring, short

answer scoring, machine translation, and text summarization

all utilize string metrics [17]. String metrics can be fur-

ther categorized based on their metric calculation strategies.

In calculating the distance between test cases, specificity and

reliability of string distances in the prevailing prioritization

goal are needed. In existing works in [3], [5], [10] only one

string distance was utilized, which may not resolve redun-

dancy issue where test cases have widespread equidistant

weights. This problem may also lead to lowered measures of

fault detection at the end of the TCP process.

Upon completion of character difference calculation

among test cases using string metrics, an effective prioriti-

zation algorithm is then needed to arrange test cases based

on respective character difference weights among test cases.

Recent works by [3], [18]–[20] indicate that a Swarm Intel-

ligence (SI) algorithm can have a significant effect on TCP

process. Additionally, as indicated by findings in [4], the use

of artificial intelligence algorithms may yield better APFD

results as well as improved execution time performances.

However, the uses of SI algorithm such as Firefly Algo-

rithm was not being explored in TCP context which can

benefit with the utilization of string metrics.

From the recent studies we can see that there were sev-

eral problems that arise which worth exploring. To have an

increment of APFD result as well as the time execution time,

an AI technique is suggested and also recent study shows

SI algorithm could have a significant result. Consequently,

macro research question or problem of this paper is, ‘‘Which

SI algorithm would perform better in TCP context’’. Since,

Firefly Algorithmwas not being explored in TCP, authors has

decided to implement the algorithm.

Work in [19] explains the implementation of Firefly Algo-

rithm in generating test cases. The work manages to outper-

form Ant Colony Optimization (ACO) algorithm. The goal

of test case generation is distinguishable from TCP whereby,

in test case generation, prioritization of test cases is initiated

first, followed by selection of only required test cases. Mean-

while, TCP only involves prioritization of test cases, focusing

on ordering of test cases, according to a predefined goal.

The work suggests the application of Firefly Algorithm on

relevant software testing procedures by means of optimizing

the best possible test sequences. Motivated by the suggestion,

the schematic of firefly schematic algorithm implemented

in the work is possible to be extracted and revised for appli-

cation in TCP context. Therefore, the research objectives of

this paper were.
• To explore prioritizing an optimal ordering of test cases

by using Firefly Algorithm, which has not been reported

in existing TCP literature.

• To apply the Firefly Algorithm to four different bench-

mark programs aided with string metrics.

• To compare performance in terms of APFD and execu-

tion time performance against existing works.

The rest of the paper is structured as follows.

Section 2 describes related works in TCP using artificial

intelligence algorithms with string distances. In Section 3,

an overview of Firefly Algorithm is outlined. In Section 4,

the application of Firefly Algorithm in TCP is presented

and illustrated. In Section 5, an empirical evaluation of the

proposed work in comparison with existing works is, per-

formedwith results and discussion included. Lastly, Section 6

provides a conclusion.

II. RELATED WORK

Regression testing is performed to confirm that alterations

have not impacted previously functioning software [21], [22].

As software evolves, test suites have a tendency to grow in

size, eventually requiring costly resources to execute. Despite

the costs, software testing remains a crucial stage to be exe-

cuted in order to ensure products built are exactly as intended.

Therefore, the principle objective of performing regression

test is to guarantee that any alterations acted upon a software

system will not influence the unaltered components. When

a program has been modified, it is necessary to ensure that

any altered parts do not adversely affect unaltered parts of

the software, such as the functionalities of that particular

software version. In such context, test cases constructed for

that software version may only yield accurate outputs for that

particular version alone. Those test cases may yield incor-

rect outputs for subsequent versions of the software created

through alterations performed on initial software version.

Here, regression testing may prove advantageous.

VOLUME 7, 2019 132361



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

FIGURE 1. Schematic view of firefly algorithm.

During a regression test, changed parts in the software

are checked using a regression test technique, in order to

check if the unchanged parts of the software behave func-

tionally similar with the original version of the software.

Past research indicated that regression testing is an expensive

process which may consume more than 33% of the total

cost of the software [23]. In [24], various approaches are

examined to augment the importance of accumulated test

suites in regression testing. A large and complex software

systemwill typically involve a huge pool of test cases to cover

all functionalities.

Within regression testing, TCP operates by prioritizing test

cases through certain means utilizing only available infor-

mation. Work in [5] tried to maximize diversity among test

cases utilizing test case input information. This is in contrast

with work in [10], in which each test case is assigned a

distance weight in connection to other test cases, utilizing

a string metric such as edit distance, which computes char-

acter difference among test cases. These weighted test cases

are subsequently prioritized using a predefined algorithm.

Regardless of the strategies used, the main goal is fixed to

give higher priorities to test cases that are largely dissimilar

(i.e., invoke different methods and possess large numerical

values of character difference), consequently maximizes test

case diversity, which in turn casts a high possibility in unique

fault detection [25].

The implementation of artificial intelligence in TCP is

not limited to any specific strategy [4]. Within TCP itself,

there several algorithms have been used including Genetic

Algorithm (GA) [26]–[29], [31]–[34], Greedy, [35], [36],

Particle Swarm Optimization [37], [18], and others [5], [13],

[38]–[40]. Recent work by Jiang and Chan [5] has indicated

that a heuristic prioritization algorithm can have a significant

effect on the TCP process. In their finding, the use of artificial

intelligence algorithm may increase the yield of average

percentage of faults detected (APFD) measure. However,

the work did not compare their proposed prioritization algo-

rithm against existing works that have utilized AI algorithms.

A comparison study between the proposed prioritization

algorithm and existing AI algorithms in TCP would be bene-

ficial to researchers and real world applications, as such study

would produce comparative performances in terms of APFD

and execution time. Motivated by this, any efforts directed

toward fulfilling such beneficial insights which in turn may

enhance TCP capabilities are worth exploring.

In [41], nearest neighbor algorithmwas used. The approach

aimed to reduce the distance between neighboring test cases

in the execution order. Distance was quantified as the number

of different instructions executed between two test cases. The

results from the experiment showed that the order of test

case execution instructions is crucial toward yielding a better

APFD result. However, the work reported that prioritization

execution time utilizing nearest neighbor algorithm yielded

the worst performance time. Further, the authors suggest

an exploration of possible existing alternative algorithms in

TCP, which might yield better performance with respect to

program and test suite size.

The Swarm Intelligence (SI) algorithm application in [18]

has been reported to offer an overall performance improve-

ment using PSO in a multi-objective TCP. Further, the work

reports that PSO prioritization was able to minimize total

test cases required to achieve 100% coverage at a shorter

execution time. Meanwhile, in [37], PSO implementation

in TCP indicated an improvement in APFD result as com-

pared to random ordering. Additionally, the study reports

the ability of PSO in TCP process toward improving fault

detection capability in the early stages of testing. However,

the approach provided limited discussions concerning PSO

performance in comparison to other SI algorithms in TCP.

III. OVERVIEW OF FIREFLY ALGORITHM

Light flashes from a firefly draw nearby fireflies. The light

flashes can be formulated through associating them with an

objective function to be optimized, which in turn makes it

possible to formulate a new optimization algorithm. Figure 1

shows a schematic view of the Firefly Algorithm. There are

132362 VOLUME 7, 2019



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

three assumptions in the Firefly Algorithm discussed in [19]

as follows:

a. All fireflies are unisexual. Every firefly either attracts

or gets attracted to each of other fireflies.

• All fireflies will get attracted to any fireflies with-

out any discrimination.

• For example, there are five fireflies and each of

them will get attracted to every single firefly avail-

able as they approach one another.

b. The attractiveness of a firefly is directly proportional to

the brightness of the firefly.

• As fireflies are attracted to others available,

the brightness of the firefly becomes a priority

among them to rank attractiveness.

c. Fireflies move randomly if they do not find a more

attractive firefly in adjacent regions.

• If there are two or more fireflies with same bright-

ness, firefly will random randomly move toward

either one.

FA has been applied in spatial fields consisting of different

dimensions with promising efficiency and superiority over

other algorithms [19], [20]. FA is a metaheuristic algorithm,

which assumes that a solution of an optimization problem

is encoded as the location of an agent/firefly, while the

objective function is encoded as light intensity. Within the

Firefly Algorithm are two crucial considerations: the variant

of light intensity, sometimes stated as brightness, and formu-

lation of the interaction among fireflies. For simplicity, it is

assumed that the spectacle of a firefly is decided by way of its

brightness, which in turn is associated with an encoded goal

characteristic. Simply put, the attractiveness of a firefly in a

search space is directly proportional to the objective function

value of the firefly.

The schematic view of the Firefly Algorithm to be applied

in TCP, with considerations of assumptions described earlier,

is shown in Figure 1. First, the algorithm starts with an objec-

tive function derivation. Next the calculation of the adjacency

of distance matrix between firefly agent (FA) and its bright-

ness which is encoded to determine the attractiveness of each

firefly. Subsequent movement of a firefly will be based on

brightness value. The movement stops once all fireflies have

been visited. All movements are recorded. Finally, the best

sequence of fireflies is chosen based on shortest distance.

IV. APPLYING FIREFLY IN TCP

In the previous section, a brief overview of the basic Firefly

Algorithm concept, motivation of Firefly Algorithm in soft-

ware testing, and a schematic view of the algorithm in TCP

context were provided. For clarity, in this section, the flow

of Firefly Algorithm application will be described in detail.

Table 2 show a firefly itself represents a test case in TCP. The

objective function that defines a firefly attractiveness repre-

sents a test case similarity weight and uniqueness. All move-

ments of the fireflies are subsequently recorded. The best path

is consequently designated the best test suite sequence.

TABLE 2. Firefly algorithm component mapping.

FIGURE 2. Schematic view of test case distance adjacency.

Based on Table 2, the representation of firefly components

is illustrated in Figure 2 below. Giving there are five test cases

to be prioritized, the probability of having the best prioritized

arrangement is one over five factorials (1/5!). From Figure 2,

for each test case will act as firefly agent while the distance

between each test cases denotes the attractiveness function

among firefly agent. To find the best-prioritized arrangement,

the Firefly Algorithm is used in this experiment with the

string metric as a fitness function.

In this paper, the actual result of distance calculated for

each benchmark program will not be illustrated, as the num-

ber of test cases and their respective contents are too large

and too long to be presented adequately. Instead, to demon-

strate how distance is calculated in this research work, five

dummy test cases were created. Table 3 shows five dummy

test cases created to demonstrate distance calculation and

its weight using ‘‘Term Frequency–Inverse Document Fre-

quency’’ (TD-IDF). For the distance among test cases, Edit

distance metric is used.

Edit distance involves the calculation of string charac-

ters, where, the quantified value represents the least number

of insertions, deletions, and replacements to transform first

string into second string. Edit distance is fixed to involve only

a minimal transformation of first string into second string.

For example, the edit distance between "9555" and "85577"

VOLUME 7, 2019 132363



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

TABLE 3. Five dummy test cases.

TABLE 4. Adjacency matrix for distance between test cases.

is 3, since three edits are needed to transform ‘‘9555’’

into ‘‘85577’’. The following edits illustrate edit distance

calculation:

1) 9555 → 8555 (substitution of ‘‘8’’ for ‘‘9’’);

2) 8555 → 8557 (substitution of ‘‘7’’ for ‘‘5’’);

3) 8557 → 85577 (insertion of ‘‘7’’ at the end).

In TFIDF, term frequency, tf, calculation starts first with

the use of selected term or string frequency in a document.

Simply put, tf refers to the amount of term t occurring within

a document d . Meanwhile, the formula for inverse document

frequency, idf, deals with the significance of a term in a pool

of documents. Subsequently, TFIDF equation is expressed as

follows.

TFIDF(t) = t/T × logN /nt

where: t = term frequency in one document; T = term

frequency in all documents; N = number of term occurrence

throughout document; and nt = number of documents has

term t. These two string metrics were then used to calcu-

late the distance and weight of the dummy test cases in

Table 3 below.

The results of calculated distance for dummy test cases

in Table 3 are shown in Table 4. All string distances were

quantified based on percentage of similarity from scale 0 to 1.

Value 1 denotes the highest differences of two test cases

while, value 0 denotes zero distance of two test cases. For

the test case weight which will represent as the bright-

ness of each test cases, the value of all test cases weight

will be similar among each other using TD-IDF formula-

tion as all have different single string. TF-IDF is a stand-

out scheme amongst most typically utilized term weighing

schemes in data retrieval methods. Attributed to this capa-

bility, TF-IDF has been regularly applied in experimental

investigations [42]. The weight among test cases was used to

assign brightness among firefly agents in Firefly Algorithm.

The value would be calculated as the product of one multiple

by one with log five over one which will have the value

TABLE 5. Test cases movement and update.

of 0.6989. Therefore, to make it easier to demonstrate the cal-

culation within the Firefly Algorithm, we assume the weight

of all test cases which act as the brightness of firefly agent

as 1. Table 5 show the test cases initial point and distance

travelled in every movement.

From Table 5, the selection of the next test cases in

movement update were based on the weight of the test case

which act as the brightness over the distance between the test

cases, where the highest will be selected as the next move.

In mathematical formulation, the brightness of a test cases

over distance calculation can be denoting as:

Weight of current Test Case

Distance to Next Test Case

Since the weight of all dummy test cases were all the same,

shorter distance were the only metric considered. Based on

Table 5, four starting points of movement end up with TC3 as

the last point to visited, and the lowest distanced travelled is

1.80 which tied with three best different sequences. This is

due to the similar weight of all dummy test cases. However,

in a real case study or benchmark program, the similar weight

problem diminishes and distances would be more dynamic.

To summarize the implementation of FireflyAlgorithm in test

case prioritization, Figure 3 illustrates the flowchart of the

Firefly Algorithm used.

Based on Figure 3, the data were parsed from benchmark

programs and test case were extracted from the dataset. Then

calculation of test cases distances was performed by using

edit distance and with using TFIDF string metric. The test

case adjacency was then generating a matrix table as similar

to the dummy adjacency matrix in Table 4. Prioritization then

started with the first movement of an FA toward the brightest

non-visited test case until it reached the last firefly in the

search space. The overall path travelled would represent a

prioritized test case ordering. The shortest distance of full

sequence of the test cases is considered as the best path.

V. EMPIRICAL SETUP

In experiment setup phase, the experiment context, variables,

datasets, and design to validity are defined as follows.

132364 VOLUME 7, 2019



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

FIGURE 3. Flowchart of applied firefly algorithm.

A. EXPERIMENT CONTEXT

The experiment was performed in a controlled laboratory

setting. Two machines were used to run their experiment,

the first one is a Linux-basedmachine, run on a computer with

4GB RAM and Core i5 Intel processor. This first machine

was used to extract and execute test cases from each of

the three benchmark Siemens TCAS benchmark dataset on

a Linux environment. The second machine, equipped with

Intel i7 and 16 GB RAM, is used to run permutation of

test cases using four string metrics, implemented in Java

NetBeans 8.0.2 and measure experiment prioritization timing

performance, which required higher processing power as the

test case dimensionality matrix is large, with the test suite size

standing at 1052 × 1052 cells.

B. EXPERIMENT VARIABLES

The experiment variables comprise of dependent variable and

controlled variable. The dependent variable is an observed

element which is affected by changes made to the controlled

variables. Controlled variable refers to elements that the

authors alter to induce behaviors that are observable. The two

sets of variables are as follows:

Controlled variables:

• String metrics: Edit Distance and TFIDF

• Siemens TCAS Benchmark Program

• Real-world UNIX Benchmarks Programs

TABLE 6. Benchmark suite.

Dependent Variables:

• Average Percentage of Faults Detected (APFD)

• Time Execution

For benchmark applications, three real-world UNIX

benchmarks programs and three SIEMENs benchmarks

programs were used as test suites (downloaded from

http://sir.unl.edu) [43]. These benchmark programs are

popular among researchers [5] in search-based software

testing, especially in TCP. In order to assess the overall

performance and consistency of the proposed applied algo-

rithm in TCP process, we ran the prioritization process

of each algorithm with 30 iterations for every benchmark

program. The 30 iterations were intentionally being chosen

to the consistency of each algorithm since every single iter-

ation were made might resulted in slightly different results.

Table 6 shows the details of benchmark applications chosen

for this study.

From Table 6, the dataset used is TCAS which is originally

a C program of an aircraft collision avoidance system. It takes

12 integer inputs and produces one output. The program

comes with one base version and 41 faulty versions with

1608 test cases. The fault matrix is produced by executing all

test cases on all 41 faulty versions and compared against their

base version. Simple example of fault matrix can be referred

from Table 1. For TCAS program, the test cases do not lie

in any folder. The test case was written in a test script itself.

Figure 4 shows themain function for TCASC program, while

Figure 5 shows the extracted test case from the test script.

As can be seen in figure 4, there were 12 variables declared

which gain its value from retrieved argument from the inputs.

Therefore, in Figure 5, there were also 12 columns where

each column contains the value input for each variable in

TCAS main function. The TCAS program were then used

for the experiment process design. Each of our benchmark

program accepts a file as an input and a string of inputs

entered from a command line terminal. Input data from

each file along with its respective command line content

was mined, converted it into strings, and calculated for its

similarity distance and uniqueness by using an edit dis-

tance. Based on the distance calculated, the test case finally

will be prioritized. Table 7 lists existing algorithms which

VOLUME 7, 2019 132365



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

FIGURE 4. Main function of TCAS C Program.

FIGURE 5. Example inputs for each test cases for TCAS C program.

TABLE 7. Prioritization techniques.

were used to compare their prioritization performances

against our proposed Firefly Algorithm.

From Table 7, Particle Swarm Optimization (PSO) is cho-

sen as one of comparable algorithm because, it is a quite sim-

ilar swarm intelligence algorithm. Apart from that, PSO also

has been widely used in TCP area. Local Beam Search (LBS)

on the other hand is one of latest algorithm implemented

in TCP and has quite convincing result. While for Genetic

Algorithm (GA) and Greedy, both of them were chosen as

they were the common technique used in TCP apart from ran-

dom. Table 8, summarize the reasoning behind the selection

of selected algorithm for this experiment.

C. EXPERIMENT FLOW

Figure 6 illustrates an overview of TCP experiment flow.

The flow is divided into four phases; (1) Information Extrac-

tion phase, (2) String Distance and TFIDF calculation for

TABLE 8. Selected algorithm comparative analysis.

FIGURE 6. Overview of experiment flow.

fireflies’ distances and brightness, (3) Prioritization phase,

and (4) Evaluation phase.

In phase 1, test cases were extracted from repository with

their input contents collected. Extracted input content for

each test case was placed on a separate text document to

ease calculation process in the next phase. Then, the orig-

inal program and versioning programs were compiled and

executed. Outputs produced from the original program were

compared against versioning programs. Test cases which

revealed faults, indicated by test cases which yielded different

outputs when ran on the original program and when ran on

versioning programs, were recorded. The record was kept in

the form of a fault matrix sheet.

In phase 2, character difference between test cases was

calculated based on extracted input contents. Computed

weights were subsequently populated into a test case distance

matrix. Thematrix placed similarity and dissimilarity weights

and uniqueness of test cases in their respective positions.

132366 VOLUME 7, 2019



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

TABLE 9. Fault matrix for distance between test cases.

The weights and uniqueness are represented the firefly attrac-

tiveness values in the proposed Firefly Algorithm.

In phase 3, the proposed Firefly Algorithmwas executed to

prioritize test suites, where the shortest possible cumulative

test case distance was selected as the best test case ordering,

which reflects the best efficiency in terms of execution time.

A complete flow of the proposed Firefly Algorithm applica-

tion in TCP is illustrated in Figure 3. The flowchart covers

extraction phase until prioritization phase. The best path trav-

elled by fireflies represents the best sequence of prioritized

test cases. Finally, in phase 4, prioritized test suites were

evaluated by calculating their APFD measures based on fault

matrix of their respective programs, obtained in phase 1. Time

execution for each prioritization technique was also recorded

to evaluate time execution efficiency.

D. EVALUATION METRIC

Average percentage fault detection rate (APFD) metric mea-

surement was used to quantify the rate of fault detection [8].

APFD has been widely used in numerous TCP experiments.

APFD is a metric used to quantify how rapid an optimized

ordering of test cases can discover faults [2], [7]. The results

of APFD values in this study ranged between zero to 100,

where a greater value indicates a better fault revealing rate.

The equation for calculating APFD value is shown as follows:

APFD = 1 −
TF1 + TF2 + . . . + TFn

n× m
+

1

2n

where T is a test suite containing n test cases and F is a set

of m faults revealed by T . TF1 is the first test case in T ′

ordering of T which reveals fault i. The APFD value of T ′

is calculated by using the APFD equation. To demonstrate

the calculation of APFD, one of the best sequences from

dummyTest Cases in Table 5 is used. The sequence selected is

TC2 – TC5 – TC1 – TC4 – TC3. Giving that the fault matrix

from extracted output as in Table 9 below.

Based on the Table 9 andAPFD equation, themathematical

calculation for the APFD would be as follow:

APFD = 1 −
1 + 1 + 1 + 2 + 2

5 × 5
+

1

2(5)

Therefore, the value of APFD for the prioritized sequence

for dummy dataset is 0.82.

VI. RESULT AND DISCUSSION

The experiments began with calculation of string distances

using Edit distance for all three benchmark applications.

FIGURE 7. APFD for FLEX program.

TABLE 10. Overall APFD assessments for GZIP.

Upon completion of string distance calculation, Firefly Algo-

rithmwas applied. Prioritization performance of the proposed

Firefly Algorithm was subsequently compared with PSO,

GA, Local Beam Search (LBS) and Greedy.

A. THE APFD RESULTS

In this section, APFD results for each benchmark program is

illustrated using boxplots as shown in Figure 7. Overall APFD

assessment for each benchmark program is also tabulated as

presented in Table 9. All five benchmark programs are char-

acteristically distinguishable in terms of input data despite

stark differences in terms of program sizes. The discussion

of Firefly Algorithm in comparison to other algorithms are

provided at the end of this section.

Figure 7 shows a boxplot for APFD results while

Table 10 shows overall APFD assessment for FLEX bench-

mark program. Cross-referring the table and boxplot, it can

be concluded that Firefly Algorithm shows a better APFD

result in FLEX test application. The result shows Firefly

Algorithm is slightly better compared to other compared

algorithms, it still shows superior mean, median, and standard

deviation values. However, for max values, LBS somehow

manage to get the highest values with 0.9629. Even so, all

other values already indicate that the FireflyAlgorithm is able

to produce consistently higher APFD signifying its applica-

bility in FLEX benchmark program context.

Figure 8 shows a boxplot for APFD results while

Table 11 shows the overall APFD assessment for GREP

benchmark program. Quite similar to the previous dataset,

VOLUME 7, 2019 132367



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

FIGURE 8. APFD for GREP program.

TABLE 11. Overall APFD assessments for GREP.

FIGURE 9. APFD for GZIP program.

TABLE 12. Overall APFD assessments for GZIP.

by cross-referring the table and boxplot, it can be concluded

that Firefly offers a better APFD result in GREP application.

Figure 9 shows a boxplot for APFD results, while

Table 12 shows the overall APFD assessment for GZIP

benchmark program. Again, similar to the previous dataset,

by cross-referring the table and boxplot, it can be con-

cluded that Firefly offers a better APFD result in GZIP

application. Overall Firefly performed better in all UNIX

FIGURE 10. APFD for TCAS program.

TABLE 13. Overall APFD assessments for TCAS.

TABLE 14. Overall APFD assessments for CS-TCAS.

Benchmarks Programs over 30 iterations. As for Siemens

program, Figure 10 and Table 13 articulate the results

obtained.

From Figure 10 and Table 13, once again a similar con-

vincing result from Firefly Algorithm is obtained. However,

in TCAS program, it is quite interesting to see that almost all

algorithms tend to have a nearly consistent value for each

iteration. Even so, by cross-referring the table and boxplot,

it can be concluded that Firefly shows a better APFD result

in TCAS application.

From Figure 11 and Table 14, once again a similar

convincing result from Firefly Algorithm is obtained. How-

ever, CS-TCAS starts to show inconsistent results while GA

has more consistency based on the std-dev value. Even so,

by cross-referring the table and boxplot, it can be con-

cluded that Firefly shows a better APFD result in CS-TCAS

application.

As for final J-TCAS, Figure 12 and Table 15, once again

show a quite similar result for the Firefly Algorithm over-

coming the other algorithms. However, similar to CS-TCAS,

J-TCAS which is the largest program, the std-dev values

show an increment also since both of them are large dataset.

132368 VOLUME 7, 2019



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

FIGURE 11. APFD for CS-TCAS program.

TABLE 15. Overall APFD assessments for J-TCAS.

FIGURE 12. APFD for J-TCAS program.

Even so, it is still acceptable, and Firefly shows a better APFD

result in J-TCAS application. In order to see the consistency of

APFD values, Figures 13 -18 show the graphs of all iteration

values of APFD for each dataset.

From Figure 13-18, Firefly Algorithm indicates a higher

consistency and suitability to be applied in TCP domain as

APFDs value obtained at each iteration, across three pro-

grams, did not show any sharp fluctuation. Any sharp fluc-

tuation is unfavorable as this may indicate a ‘‘by chance

occurrence’’. Firefly strategy has the best overall APFD result

as the selection of subsequent firefly path is solely driven

by next brightest firefly agent. In cases of more than one

agent with equal brightness, firefly path will randomly select

a firefly agent. LBS on the other hand looks promising but the

algorithm hardly depends on a constant width value where

different constant value set will have a significant impact

FIGURE 13. APFD graph for FLEX benchmark program.

FIGURE 14. APFD graph for GZIP benchmark program.

FIGURE 15. APFD Graph for GREP benchmark program.

on APFD results. Meanwhile, GA exhibits a unique behav-

ior attributed to its adaptive search, which may vary prior-

itization APFD score, as the performance highly depends

on its mutation fitness function. For Greedy algorithm, the

VOLUME 7, 2019 132369



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

FIGURE 16. APFD graph for TCAS benchmark program.

FIGURE 17. APFD graph for CSTCAS benchmark program.

FIGURE 18. APFD graph for JTCAS benchmark program.

algorithm searches for next agent which covers the furthest

distance which sometimes produces a sub-optimal solution

path. Overall, firefly strategy has the best overall APFD result

as the selection of the next path is solely driven by next

TABLE 16. Average execution time for benchmark programs.

brightest agent. The strategy also optimizes ordering of test

cases, by promoting test case diversity, as test cases with least

similarity are chosen first, which in turn may provide a higher

probability in detecting faults earlier.

B. THE EXECUTION TIME RESULTS

In terms of algorithm efficiency, Table 16 show the aver-

age time taken for all prioritization algorithms to complete

searching for solution paths in all five benchmark programs.

Firefly Algorithm, if not equal, outperforms LBS in terms

of average time taken to prioritize test cases in flex bench-

mark program, while greedy comes as second best. In gzip

benchmark, LBS strategy outperforms other algorithmswhile

firefly comes as the second fastest prioritizing algorithm.

In grep, firefly outperforms all prioritization algorithms, with

execution time 220 seconds, outperforming LBS by eight

seconds. For J-tcas the biggest benchmark programwhich the

biggest program among all four program used, Firefly have

the fastest time execution with 650, 100 seconds faster than

LBS. This result may be attributed to firefly strategy, which

solely focuses on next brightest firefly agent in searching,

resulting in a reduced search time. In addition, the number

of iterations were also fixed based on the sizes of benchmark

programs.

C. THE OVERALL RESULTS AND DISCUSSION

Table 17 summarizes overall results of prioritizing algorithms

across three benchmark programs. From Table 13, for grep

benchmark program, firefly outperforms other search strate-

gies, yielding the highest mean of APFD value (0.9517). LBS

comes as second best strategy while PSO comes at third.

APFD values among these three search strategies exhibit

slight differences, as all of them are inspired from one com-

mon search strategy, which is best first search strategy. Fire-

fly strategy for selecting next path solely depends on next

brightest agent. When there is one or more agents with equal

brightness, an agent will be randomly selected, resulting in

distinguishable best path in every iteration. Meanwhile, LBS

algorithm hardly depends on a fixed constant width value,

where different constant values set subsequently produce

different results. Highest APFD mean values for gzip and

flex programs in the experiments were also yielded by Firefly

Algorithmwith values, 0.9501 and 0.9553, respectively while

for tcas benchmark program is 0.9298.

132370 VOLUME 7, 2019



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

TABLE 17. Summary OF APFD and time performance.

For overall time results, size of test cases does affect the

execution efficiency of prioritization process. The greater is

the number of test cases, the longer is the time taken to

complete an entire prioritization process. For tcas benchmark

program, which has the largest number of test cases, Firefly

strategy scored the best prioritization execution time, 390 sec-

onds in average, while LBS recorded 400 seconds, which

is the second fastest. In flex benchmark program, Firefly

and LBS recorded an equal execution time, 210 seconds.

However, in gzip program, LBS outperforms other algorithms

(180 seconds), five seconds much faster than Firefly in priori-

tizing test cases. This result could be attributed to the behavior

of LBS algorithm inspired by best search first concept which

possesses a superior execution time. Refined attractiveness

function that was used to determine firefly brightness has

managed to reduce the count of agents with equal brightness.

In turn, this has reduced the number of random selection of

agents when there are more agents with equal brightness.

Consequently, this reduced overall execution time for the

Firefly in prioritizing test cases. For LBS, the difference

in brightness values does have an influence on execution

time. LBS algorithm hardly depends on a constant value

for beam width, which inevitably has affected the overall

time execution. GA on the other hand, exhibited a unique

behavior with its adaptive search, where each solution path

produced is distinct attributed to its mutation fitness func-

tion at a considerably longer execution time. For Greedy

algorithm, the algorithm searches for agents which possess

highest brightness first, which may yield a sub-optimal solu-

tion path. Overall, Firefly Algorithm performs better in pri-

oritizing small to medium size test suites. FA performance

across three benchmark programs did not indicate stark

differences in terms of average execution time, indicating

its capability in yielding approximately acceptable solution

paths with a certain extent of consistency. In addition, FA also

produces better APFD measures indicating its suitability

to be used as a competitive prioritizing algorithm in TCP

research area.

VII. THREAT OF VALIDITY

This paper has some limitation acknowledged which may

possibly threaten its legitimacy. The potential threat of this

applied soft computing paper is associated with less diversity

in selection of benchmark program and incomplete data

extraction.

A. SELECTION OF DATASET

In benchmark program selected in this paper were only

four where three are from Real-world UNIX Benchmarks

Programs and three from Siemens Suites where all can be

obtained from http://sir.unl.edu [43]. From Table 5, the lim-

itation of Real-world UNIX Benchmarks Programs is, all of

them have small test cases pool. Possible issues may arise if

the proposed technique applied bigger sizer of test cases pool.

To reduce this problem, TCAS program were used as it has

large test cases pool. Other than selection of benchmark pro-

gram, authors does not apply the algorithm into the real cases

study which might have different kind of test cases structure

which may have significant affect towards the results.

B. INCOMPLETE DATA EXTRACTION

In this experiment, the data extracted from the test cases

were only the input data and also the output data. The value

for distances and weight of a test cases were solely based

on input data of each test cases while the output is used as

the fault matrix for APFD calculation. There are a lot of

other data were not fully utilized in this experiment such

as the system coding itself, the instruction within the test

cases, the steps and others. This incomplete data extraction

could be the next potential threat to this paper. To reduce this

problem, instead of using one calculationmetric, authors used

two type of string metric which is string distance metric and

weight metric to assign the attractiveness to each firefly agent

accurately.

C. INCOMPLETE DATA EXTRACTION

In this paper, the experiment was solely focused on test-case

based TCP technique. Other techniques which have quite

similar strategies with this technique were not included in our

validation. It would be unfair if we compared different base of

TCP technique to assess which algorithm is better. To reduce

this problem, we had run the experiment for 30 times for each

algorithm to see the consistency of the result obtained. How-

ever, it might not be enough to see which algorithm actually

fits better in which TCP techniques. This is an opportunity

for future work to explore.

VIII. CONCLUSION

This paper used a Firefly strategy in prioritizing test cases

to achieve higher APFD results. Three benchmark programs

were used to validate the efficiency and effectiveness of

Firefly Algorithm in prioritizing test suites, in comparison

with other prioritization algorithms. The experimental results

showed that Firefly obtained the highest APFD scores com-

pared to other prioritization algorithms. The experiment also

showed that Firefly Algorithm slightly outperformed LBS in

terms of execution time. Overall, the APFD results showed

VOLUME 7, 2019 132371



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

that Firefly Algorithm may become a strong competitor in

the TCP area. The APFD results indicate that Firefly Algo-

rithm could be effective in discovering fault proneness issues,

which is strongly required in safety critical systems. In future

work, it would be interesting to explore possible enhancement

on this particular swarm intelligence algorithm focusing on

coverage efficiency.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude

to members of Embedded & Real- Time Software

Engineering Laboratory (EReTSEL), Software Engineer-

ing Research Group (SERG), Faculty of Engineering,

UTM and MIMOS for their feedback and continuous

support.

REFERENCES

[1] G. J. Myers, T. M. Thomas, and C. Sandler, The Art of Software Testing,

vol. 1. Hoboken, NJ, USA: Wiley, 2004.

[2] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, ‘‘Test case prioriti-

zation: An empirical study,’’ in Proc. IEEE Int. Conf. Softw. Maintenance

(ICSM), Aug./Sep. 1999, pp. 179–188.

[3] M. Khatibsyarbini, M. A. Isa, and D. N. A. Jawawi, ‘‘A hybrid weight-

based and string distances using particle swarm optimization for prioritiz-

ing test cases,’’ J. Theor. Appl. Inf. Technol., vol. 95, no. 12, pp. 2723–2732,

2017.

[4] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, and R. Tumeng, ‘‘Test

case prioritization approaches in regression testing: A systematic literature

review,’’ Inf. Softw. Technol., vol. 93, pp. 74–93, Jan. 2018.

[5] B. Jiang and W. K. Chan, ‘‘Input-based adaptive randomized test case

prioritization: A local beam search approach,’’ J. Syst. Softw., vol. 105,

pp. 91–106, Jul. 2015.

[6] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, ‘‘A study of

effective regression testing in practice,’’ in Proc. 8th Int. Symp. Softw. Rel.

Eng., Nov. 1997, pp. 264–274.

[7] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, ‘‘Prioritizing test

cases for regression testing,’’ IEEE Trans. Softw. Eng., vol. 27, no. 10,

pp. 929–948, Oct. 2001.

[8] S. Elbaum, A. G.Malishevsky, andG. Rothermel, ‘‘Test case prioritization:

A family of empirical studies,’’ IEEE Trans. Softw. Eng., vol. 28, no. 2,

pp. 159–182, Feb. 2002.

[9] Y. Singh, ‘‘Systematic literature review on regression test prioritization

techniques,’’ Informatica, vol. 36, pp. 379–408, Dec. 2012.

[10] Y. Ledru, A. Petrenko, S. Boroday, andN.Mandran, ‘‘Prioritizing test cases

with string distances,’’ Autom. Softw. Eng., vol. 19, no. 1, pp. 65–95, 2012.

[11] L. Mei, W. K. Chan, T. H. Tse, B. Jiang, and K. Zhai, ‘‘Preemptive

regression testingof workflow-based Web services,’’ IEEE Trans. Services

Comput., vol. 8, no. 5, pp. 740–754, Sep./Oct. 2015.

[12] S. W. Thomas, H. Hemmati, A. Hassan, and D. Blostein, ‘‘Static test case

prioritization using topic models,’’ Softw. Eng., vol. 19, no. 1, pp. 182–212,

2014.

[13] D. Gao, X. Guo, and L. Zhao, ‘‘Test case prioritization for regression

testing based on ant colony optimization,’’ in Proc. IEEE Int. Conf. Softw.

Eng. Service Sci., Sep. 2015, pp. 275–279.

[14] R. M. Parizi, A. Kasem, and A. Abdullah, ‘‘Towards gamification in soft-

ware traceability: Between test and code artifacts,’’ in Proc. 10th ICSOFT,

Jul. 2015, pp. 1–8.

[15] A. Shahbazi and J. Miller, ‘‘Black-box string test case generation through

a multi-objective optimization,’’ IEEE Trans. Softw. Eng., vol. 42, no. 4,

pp. 361–378, Apr. 2016.

[16] C. Catal and D. Mishra, ‘‘Test case prioritization: A systematic mapping

study,’’ Softw. Qual. J., vol. 21, no. 3, pp. 445–478, 2013.

[17] W. H. Gomaa and A. A. Fahmy, ‘‘A survey of text similarity approaches,’’

Int. J. Comput., vol. 68, no. 13, pp. 13–18, 2013.

[18] M. Tyagi and S. Malhotra, ‘‘Test case prioritization using multi objective

particle swarm optimizer,’’ in Proc. Int. Conf. Signal Propag. Comput.

Technol. (ICSPCT), Jul. 2014, pp. 390–395.

[19] P. R. Srivatsava, B. Mallikarjun, and X. S. Yang, ‘‘Optimal test sequence

generation using firefly algorithm,’’ Swarm Evol. Comput., vol. 8,

pp. 44–53, Feb. 2013.

[20] N. Iqbal, K. Zafar, and W. Zyad, ‘‘Multi-objective optimization of test

sequence generation using multi-objective firefly algorithm (MOFA),’’ in

Proc. Int. Conf. Robot. Emerg. Allied Technol. Eng. (iCREATE), Apr. 2014,

pp. 214–220.

[21] H. K. N. Leung and L. White, ‘‘Insights into regression testing,’’ in Proc.

Int. Conf. Softw. Maintenance, Oct. 1989, pp. 60–69.

[22] S. Elbaum, G. Rothermel, and J. Penix, ‘‘Techniques for improving

regression testing in continuous integration development environments,’’

in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng. (FSE), 2014,

pp. 235–245.

[23] P. K. Chittimalli and M. J. Harrold, ‘‘Recomputing coverage information

to assist regression testing,’’ IEEE Trans. Softw. Eng., vol. 35, no. 4,

pp. 452–469, Jul. 2009.

[24] S. Yoo and M. Harman, ‘‘Regression testing minimization, selection and

prioritization: A survey,’’ Softw., Test. Verification Rel., vol. 22, no. 2,

pp. 67–120, 2012.

[25] H. Hemmati, A. Arcuri, and L. Briand, ‘‘Empirical investigation of the

effects of test suite properties on similarity-based test case selection,’’ in

Proc. 4th IEEE Int. Conf. Softw. Test., Verification Validation, Mar. 2011,

pp. 327–336.

[26] R. Maheswari and D. Mala, ‘‘Combined genetic and simulated annealing

approach for test case prioritization,’’ Indian J. Sci. Technol., vol. 8, no. 35,

pp. 1–5, 2015.

[27] Y. Lou, D. Hao, and L. Zhang, ‘‘Mutation-based test-case prioritization

in software evolution,’’ in Proc. IEEE 26th Int. Symp. Softw. Rel. Eng.

(ISSRE), Nov. 2015, pp. 46–57.

[28] F. Yuan, Y. Bian, Z. Li, and R. Zhao, ‘‘Epistatic genetic algorithm for test

case prioritization,’’ in Proc. Int. Symp. Search Based Softw. Eng., 2015,

pp. 109–124.

[29] C. Catal, ‘‘On the application of genetic algorithms for test case prioritiza-

tion: A systematic literature review,’’ in Proc. 2nd Int. Workshop Evidential

Assessment Softw. Technol., 2012, pp. 9–14.

[30] A. Kaur and S. Goyal, ‘‘A genetic algorithm for fault based regression test

case prioritization,’’ Int. J. Comput. Appl., vol. 32, no. 8, pp. 975–8887,

2011.

[31] W. Jun, Z. Yan, and J. Chen, ‘‘Test case prioritization technique based

on genetic algorithm,’’ in Proc. Int. Conf. Internet Comput. Inf. Services,

Sep. 2011, pp. 173–175.

[32] S. Sabharwal, R. Sibal, and C. Sharma, ‘‘Prioritization of test case scenar-

ios derived from activity diagram using genetic algorithm,’’ in Proc. Int.

Conf. Comput. Commun. Technol. (ICCCT), Sep. 2010, pp. 481–485.

[33] K. Deb, S. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist

multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,

vol. 6, no. 2, pp. 182–197, Apr. 2002.

[34] H. Do and G. Rothermel, ‘‘On the use of mutation faults in empirical

assessments of test case prioritization techniques,’’ IEEE Trans. Softw.

Eng., vol. 32, no. 9, pp. 733–752, Sep. 2006.

[35] Z. Li, M. Harman, and R. M. Hierons, ‘‘Search algorithms for regres-

sion test case prioritization,’’ IEEE Trans. Softw. Eng., vol. 33, no. 4,

pp. 225–237, Apr. 2007.

[36] S. Li, N. Bian, Z. Chen, D. You, and Y. He, ‘‘A simulation study on some

search algorithms for regression test case prioritization,’’ in Proc. 10th Int.

Conf. Qual. Softw., Jul. 2010, pp. 72–81.

[37] A. K. Joseph, G. Radhamani, and V. Kallimani, ‘‘ Improving test efficiency

through multiple criteria coverage based test case prioritization using

Modified heuristic algorithm,’’ in Proc. 3rd Int. Conf. Comput. Inf. Sci.

(ICCOINS), Aug. 2016, pp. 430–435.

[38] S. Eghbali and L. Tahvildari, ‘‘Test case prioritization using lexicograph-

ical ordering,’’ IEEE Trans. Softw. Eng., vol. 42, no. 12, pp. 1178–1195,

Dec. 2016.

[39] K. Solanki, Y. Singh, S. Dalal, and P. R. Srivastava, ‘‘Test case pri-

oritization: An approach based on modified ant colony optimization,’’

in Emerging Research in Computing, Information, Communication and

Applications. 2016.

[40] T. Noguchi, H. Washizaki, Y. Fukazawa, A. Sato, and K. Ota, ‘‘History-

based test case prioritization for black box testing using ant colony opti-

mization,’’ in Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation

(ICST), Apr. 2015, pp. 1–2.

[41] P. Stratis andA. Rajan, ‘‘Test case permutation to improve execution time,’’

in Proc. 31st IEEE/ACM Int. Conf. Automat. Softw. Eng. (ASE), 2016,

pp. 45–50.

132372 VOLUME 7, 2019



M. Khatibsyarbini et al.: Test Case Prioritization Using Firefly Algorithm for Software Testing

[42] A. Aizawa, ‘‘An information-theoretic perspective of tf–idf measures,’’ Inf.

Process. Manage., vol. 39, no. 1, pp. 45–65, Jan. 2003.

[43] Software-Artifact Infrastructure Repository: Home. [Online]. Available:

http://sir.unl.edu/portal/index.php

[44] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, ‘‘Bridging the

gap between the total and additional test-case prioritization strategies,’’ in

Proc. Int. Conf. Softw. Eng., 2013, pp. 192–201.

MUHAMMAD KHATIBSYARBINI was born in

Selama, Perak, Malaysia. He received the B.S.

degree in software engineering from the Universiti

Teknologi Malaysia, Johor, Malaysia, in 2016, and

the M.S. degree in master of philosophy from the

Universiti Teknologi Malaysia, in 2018. During

his study, he was a Research Assistant (2016–

2018) with the Embedded and Real-Time Software

Engineering Laboratory (EReTSEL) and Software

Engineering Research Group (SERG). Also, dur-

ing those two years, he has been working as a contract Software Engineer

with two different companies: Mechabotic Enterprise and Effron Sdn Bhd.

His research interests include software engineering, search-based software

testing, and artificial intelligence.

MOHD ADHAM ISA received the bachelor’s

degree in computer science from Universiti

Teknologi Malaysia, the master’s degree in com-

puter science, and the Ph.D. degree in software

engineering from Universiti Teknologi Malaysia

(UTM), Malaysia, where he is currently the Head

of the Software Engineering Research Group

(SERG). His main research interests include soft-

ware engineering, software quality, software test-

ing, requirement engineering, and software project

management. A major part of his research projects focuses on software

quality assurance, real-time embedded systems, as well as the Internet of

Things (IoT).

DAYANG N. A. JAWAWI received the bachelor’s

degree in software engineering fromSheffieldHal-

lam University, U.K., and the master’s degree in

computer science and the Ph.D. degree in software

engineering from Universiti Teknologi Malaysia

(UTM), Malaysia, where she is currently an Asso-

ciate Professor with the School of Computing, Fac-

ulty of Engineering. Her main research interests

include software engineering, software reuse, soft-

ware quality, software testing, requirement engi-

neering, and computing education. A major part of her research projects

focuses on rehabilitation and mobile robotics, real-time embedded systems,

as well as precision farming applications.

HAZA NUZLY ABDULL HAMED received the

first degree in information technology, majoring

in artificial intelligence, from Universiti Utara

Malaysia, the master’s degree in computer science

fromUniversiti Teknologi Malaysia, and the Ph.D.

degree from the Auckland University of Technol-

ogy, New Zealand. He is currently a Senior Lec-

turer with the School of Computing and a found-

ing member of the Applied Industrial Analytics

Research Group (ALIAS), Faculty of Engineering,

Universiti Teknologi Malaysia (UTM). Before joining UTM, he worked as

a Web Programmer and System Analyst. His research interests are compu-

tational intelligence, evolutionary computation, deep learning, optimization,

spatiotemporal data processing, and information system development.

MUHAMMAD DHIAUDDIN MOHAMED SUF-
FIAN received the B.Tech. (Hons.) degree in busi-

ness information systems and the M.Sc. degree in

computer science – real-time software engineer-

ing from Universiti Teknologi PETRONAS and

Universiti Teknologi Malaysia, respectively. He is

currently the Senior Staff Engineer with the Busi-

ness Solutions and Services Division, MIMOS

Technology Solutions Sdn. Bhd, a subsidiary of

MIMOS Berhad, the National Applied R&D Cen-

tre. He is a certified Six Sigma Green Belt, a Certified Tester Advanced

Level-Test Manager (CTAL-TM), and a Certified Tester Foundation Level

(CTFL). His experiences encompass various spectrums of ICT across various

sectors, including government, automotive, banking, and education. Cur-

rently, he assumes the role of Lead Business SystemAnalyst for an ICTCourt

Transformation Project. His research interests focus on software require-

ment, software testing, software quality, and software process. He holds two

patents filed under his name, of which one as main inventor and another one

as co-inventor.

VOLUME 7, 2019 132373


