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Abstract—The importance of using requirements informa-
tion in the testing phase has been well recognized by the
requirements engineering community, but to date, a vast
majority of regression testing techniques have primarily relied
on software code information. Incorporating requirements in-
formation into the current testing practice could help software
engineers identify the source of defects more easily, validate
the product against requirements, and maintain software prod-
ucts in a holistic way. In this paper, we investigate whether
the requirements-based clustering approach that incorporates
traditional code analysis information can improve the effec-
tiveness of test case prioritization techniques. To investigate
the effectiveness of our approach, we performed an empirical
study using two Java programs with multiple versions and
requirements documents. Our results indicate that the use of
requirements information during the test case prioritization
process can be beneficial.

Keywords-Regression testing, test case prioritization,
requirements-based clustering, empirical study

I. INTRODUCTION

Software systems and their environments change contin-

uously. They are enhanced, corrected, and ported to new

platforms. These changes can affect a system adversely,

thus software engineers perform regression testing to ensure

quality of the modified systems. Because regression testing

is responsible for a significant percentage of the costs for

software maintenance and because the maintenance costs

often dominate total lifecycle costs [1], [2], [3], regression

testing is one of the largest contributors to the overall cost

of software. To improve the cost effectiveness of regression

testing techniques, many researchers have proposed and

empirically studied various regression testing techniques,

such as regression test selection (e.g., [4], [5]), test suite

minimization (e.g., [6], [7]), and test case prioritization

(e.g., [8], [9]).

Test case prioritization techniques schedule test cases

to run more important test cases earlier so that we can

detect faults earlier or provide earlier feedback to testers.

Most of these techniques depend primarily on software code

information, including code coverage or code dependency

relations. However, the software systems are built upon the

product requirements, and certain requirements are more

important (e.g., contain features that are more frequently

utilized by users) or error-prone than others. Often, testers

have limited knowledge for understanding the problems

(errors) with software products. Requirements information

could potentially help identify the source of the problems

in these cases. Further, by building relationships among

requirements, source code, and the faults detected during

regression testing, software engineers can maintain software

products in a holistic way, thus they can eventually build

more reliable products through seamless software develop-

ment and maintenance practice.

While the importance of incorporating requirements infor-

mation during the testing phase has been well understood

by the requirements engineering community [10], only a

few researchers have studied the use of requirements with

software testing (black-box testing) [11], [12], [13]. Their

work has shown that utilizing requirements information

can be useful in improving the effectiveness of test case

prioritization. For instance, Srikanth et al. [12] report that

prioritized test cases based on the importance and fault

proneness of requirements were able to detect severe faults

earlier.

Typically, similar or related requirements are implemented

in the same class or in classes under the same subsystem,

which makes a software product cohesive. This means that

test cases associated with a similar or related set of require-

ments exercise a similar set of classes. As we observed

from our previous study [14], test cases with common

properties tend to have similar fault detection ability. Re-

ordering test cases considering the relationship between tests

and requirements could help improve the regression testing

process. (e.g., Developers could detect more faults earlier

by running test cases with different properties sooner.) Prior

research [11], [12], [13], however, has not attempted this

approach.

Thus, in this research, we investigate whether clustering

test cases based on requirement similarities could improve

the effectiveness of regression testing techniques, partic-

ularly focusing on test case prioritization techniques. In

this work, we implement new prioritization techniques that

utilize requirements information. Our approach uses a text-

mining technique that provides a means to cluster relevant

requirements; incorporates code complexity for test case

prioritization for each cluster; and, finally, creates a set of

reordered test cases using the requirements priority. To inves-



tigate the effectiveness of our approach, we have designed

and performed empirical studies using one open source

and one capstone program written in Java with multiple

versions and requirements documents. Our results show that

prioritized test cases using requirements-based clustering

approaches improve the effectiveness of test case orders in

terms of early fault detection.

The rest of the paper is organized as follows. Section II

describes our new prioritization techniques in detail. Sec-

tions III and IV presents our experiment, including design,

results, and analysis. Section V discusses our results and

their implications. Section VI describes related work relevant

to regression testing and test case prioritization techniques.

Finally, Section VII presents conclusions and discusses

future work.

II. METHODOLOGY

In this section, we describe our technical approach to test

case prioritization using requirements clustering. Figure 1

summarizes our approach’s main activities and how these ac-

tivities are related to each other. The light gray boxes depict

the main activities, and the ovals depict inputs and outputs

associated with the activities. The approach consists of five

main activities: requirements clustering, requirements-tests

mapping, prioritization of test cases for each cluster, cluster

prioritization, and test case selection from the clusters. The

following subsections describe each activity in detail.

A. Requirements Clustering

To cluster the requirements, we use textual similarity

among requirements. Textual similarity has been studied

in the field of text mining for clustering documents and

information retrieval [15], [16]. We group the requirements

into clusters based on the distribution of words that co-occur

in the requirements. This process includes three tasks: term

extraction, term-document matrix construction, and k-means

clustering. We describe these tasks in detail as follows:

• Term extraction: We consider each user requirement

as a bag of words or terms. In this process, words are

extracted from each requirement. The words that add no

meaning the sentence, such as articles and prepositions,

have been eliminated. After eliminating these words, all

distinct terms across all the requirements are identified

and used in the subsequent tasks.

• Term-document matrix: We use the distinct terms ob-

tained from the previous step to create a term-document

matrix. In this matrix, the rows correspond to the

requirements, and the columns correspond to the dis-

tinct terms across all requirements. The matrix can be

built in many ways. For instance, the matrix cells can

list Boolean values indicating whether the terms are

present in the corresponding requirements. The matrix

can list the frequency of the word in the corresponding

requirements or can list the term frequency-inverse

document frequency.

Among these, we used the term frequency-inverse doc-

ument frequency in this work because this approach

is more suitable for text retrieval than others [17],

[18]. The term frequency, tf(t,d), is the number of

occurrences of a term, t, in a document, d. The inverse

document frequency, idf, provides a measure of how

common the term is across all documents. The idf

is calculated by taking the logarithm of the ratio for

the total number of documents and the number of

documents containing the term. We obtain the term

frequency-inverse document frequency by multiplying

the term frequency by the inverse document frequency

(tf*idf). The tf*idf values of all the terms used in

requirement R are utilized in the next step (clustering).

Table I shows an example of the term-document matrix

we just described. Suppose we have six requirements.

After performing term-extraction, we identify a set of

distinct terms, including vital, weight, warning, wait,

etc. We calculate the tf*idf values of every term for each

requirement. For instance, the tf*idf value of “vital”

for Req Id 2, 4, and 5 is 0.210, 0.201, and 0.11,

respectively. From these data, we can say that, Req 2 is

more similar to Req 4 than Req 5 for the term “vital.”

Table I
TERM-DOCUMENT MATRIX

Req Id vital weight warning wait ...

1 0.000 0.112 0.240 0.000 ...
2 0.210 0.000 0.100 0.000 ...
3 0.000 0.000 0.000 0.220 ...
4 0.201 0.132 0.000 0.120 ...
5 0.11 0.140 0.140 0.150 ...
6 0.000 0.102 0.200 0.040 ...

• k-means clustering: Many clustering algorithms exist,

such as agglomerative hierarchical clustering, k-means

clustering,etc. Steinbach et al. [19] show that k-means

clustering is suitable for document clustering, so in

this work, we use k-means clustering. The k-means

clustering approach allows us to specify the number of

clusters. We use the “Hartigan and Wong” algorithm

to implement k-means. In this algorithm, for n number

of requirements and p number of terms, the k-means

technique allocates each requirement to one of the

clusters to minimize the inter-cluster sum of squares

shown in the following equation.

Sum(k) =

n∑

i=0

p∑

j=0

(x(i, j)− x(k, j))2 (1)

where x(k, j) is the mean variable, j, of all elements

in group k.
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Figure 1. Overview of our approach

B. Requirements-Tests Mapping Resolution

Once we obtain the clusters of requirements, we utilize

the requirement-test cases traceability matrix to collect test

cases that are associated with each requirement cluster.

Figure 2 summarizes the process. The two ovals on the left

side represent the clusters of requirements. For instance,

cluster 1 contains requirements 1, 3, and 4. The figure

represents the requirement-tests traceability matrix. There

are two cases (TC1 and TC2) associated with requirement 1.

The requirements-tests mapping resolution process obtains

the clusters of test cases (the ovals on the right side of

the figure) by reading the requirements in the clusters and

identifying their corresponding test cases from the matrix.

For instance, cluster 1 on the right side contains five test

cases (1, 2, 6, 7, and 8) that are associated with requirements

1, 3, and 4.

C. Test Case Prioritization

Having created clusters, now we apply prioritization tech-

niques to them. There are many ways to prioritize test cases

as explained in Section VI. In this work, we consider a code

complexity metric.1

To calculate a code complexity metric, we used three types

of information obtained from source code (Lines of Code,

Nested Block Depth, and McCabe Cyclomatic Complexity)

because they are considered good predictors for finding

1We could not use traditional code coverage-based techniques because
we have mixed test cases (existing and new test cases) to prioritize, and
this means code coverage for new test cases is not available. However,
under different circumstances (e.g., using solely existing test cases or being
able to use real fault-history information), we can apply various test case
prioritization techniques.

error-prone modules [20], [21], [22], and they are defined

as follows:

• Lines of Code (LOC): It measures the total number of

lines in a class. We consider only the executable code;

we ignore the comments and the blank line inside the

code.

• Nested Block Depth (NBD): It measures the number of

nested statements in a method.

• McCabe Cyclomatic Complexity (MCC): It measures

the number of linearly independent paths by analyzing

the decision structure of a method.

Using these three data sets for each class, we calculated

a code metric (cm) using the following equation:

cm =

NBD
Max(NBD) +

MCC
Max(MCC) +

LOC
Max(LOC)

3
(2)

D. Cluster Prioritization

Not all requirements are equally important to clients.

Therefore, certain software components associated with re-

quirements that are more important to clients could be more

frequently utilized by users when software is deployed. It

means that certain requirements need to get more attention

from testers. Thus, we prioritize the requirement clusters

so that we can utilize their priority information when we

select test cases from each cluster to obtain a complete set

of reordered test cases. That is, we can visit the cluster with

the higher priority earlier or select more tests from it.

Often, companies prioritize requirements and implement

them incrementally based on a client’s need and the product

delivery schedule. From one of the projects we used in our

experiment, we observed that, before each iteration of de-
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Figure 2. Requirement-tests mapping resolution

velopment, software developers categorize the requirements

based on importance as follows:

• Commit (C): Developers will implement the given

requirements (High Priority).

• Target (T): Developers will strive to implement the

given requirements, but they will not guarantee to do

so (Medium Priority).

• No-Commit (NC): Developers will implement the given

requirements if they have time (Low Priority).

To prioritize requirement clusters, we use the commitment

level defined above, and we also use code modification

information that can be a good indicator for the presence

of faults [23]. Using these two cluster prioritization levels,

we construct the scale of weights shown in Table II.

Table II
SCALE OF WEIGHTS

Weight Definition of Weight

1 No-Commit and Unmodified

2 Target and Unmodified

3 Commit and Unmodified

4 No-Commit and Modified

5 Target and Modified

6 Commit and Modified

The rank of cluster k is obtained using the following

equation:

R(k) =
1

x(k)

x(k)∑

i=0

w(i, k) (3)

where x(k) is the number of requirements in cluster k and

w(i, k) is the weight of requirement i for cluster k.

E. Test Case Selection

Once we have clusters and prioritized tests for each

cluster, we need to create a complete set of reordered test

cases across clusters. To do so, we visit each cluster to select

test cases using three different selection methods as follows:

• Original order of clusters: This method visits clusters

in the order they were generated by the clustering tool,

picks the first test case in the cluster, moves to the

next cluster, and repeats the same process using a round

robin method until all test cases have been picked.

• Random order of clusters: This method visits clusters

in a random order and applies the same process as the

first method.

• Prioritized order of clusters: This method visits clusters

in the prioritized cluster order described in Section II-D.

When we pick tests from the clusters, unlike the first

two methods, we select more test cases from the higher-

priority clusters. To do so, we calculate the average

number of test cases per cluster, t. Then, we take t test

cases from the highest-ranked cluster, and the number

of selected test cases will go down gradually to 10% of

t for the subsequent clusters. This process is repeated

until all test cases have been picked.

III. EMPIRICAL STUDY

In this study, we address the following research question:

RQ: Does clustering test cases based on requirements im-

prove the effectiveness of test case prioritization?

A. Objects of Analysis

Table III lists, for each of our objects of analysis, data

on its associated “Req.” (the number of requirements in

the latest version of the program), “Ver.” (the number of

versions of the object program), “Classes” (the number

of class files in the latest version of that program), “Size

(KLOCs)” (the number of code lines in the latest version

of the program), and “Test Cases” (the number of test

cases available for the latest version of the program). Our

experiment focuses on regression faults, so we generated

mutation faults that only involve code modified in moving

from one version of a system to a subsequent version using

4



ByteME (Bytecode Mutation Engine) [24]. The rightmost

column, “Mutation Faults,” is the total number of mutation

faults for the program (summed across all versions).

Table III
EXPERIMENT OBJECTS AND ASSOCIATED DATA

Objects Req. Ver. Classes Size Test Mutation
(KLOCs) Cases Faults

Capstone 21 2 67 6.82 42 118

iTrust 107 4 1029 30.30 142 200

The Capstone and iTrust systems were developed by

college students as part of a class project. The Capstone

project was developed by a team of graduate students.

The students collaborated with a local software company

and developed an online testing system which automates

their examination procedure. The iTrust was developed and

maintained by the RealSearch Research Group at North

Carolina State University. iTrust is an open-source medical

application that manages patients’ medical records. For both

programs, the test cases used in this study are functional test

cases associated with requirements and written by software

developers.

B. Variables and Measures

1) Independent Variable: To investigate our research

question, we manipulate one independent variable: test case

prioritization. We consider two control techniques that do

not use clustering and six heuristic techniques as follows:

• Control (prioritization without clustering)

– Original (Torig): Original ordering utilizes the or-

der in which test cases are executed in the original

testing scripts provided with the object programs.

– Code metrics (Tcm): This technique uses a code

metric to prioritize the tests without clustering.

• Heuristics (prioritization with clustering): We consider

two heuristic groups that utilize clustering for each

corresponding control technique. For each heuristic

group, we consider three test selection methods as

described in Section II-E.

– Cluster-based original

∗ Original (Tcl-orig-orig): This technique uses the

original test case order for prioritization and the

original cluster order for selection.

∗ Random (Tcl-orig-rand): This technique uses

the original test case order for prioritization and

the random cluster order for selection.

∗ Priority (Tcl-orig-prior): This technique uses the

original test case order for prioritization and the

prioritized cluster order for selection.

– Cluster-based code metric

∗ Original (Tcl-cm-orig): This technique uses the

code metric for prioritization and the original

cluster order for selection.

∗ Random (Tcl-cm-rand): This technique uses the

code metric for prioritization and the random

cluster order for selection.

∗ Priority (Tcl-cm-prior): This technique uses the

code metric for prioritization and the prioritized

cluster order for selection.

2) Dependent Variable and Measures: Our dependent

variable is Average Percentage of Fault Detection (APFD).

APFD [25] is the average for the percentage of fault detec-

tion during the execution of a test suite. The APFD value

ranges between 0 and 100, and the closer the value is to 100,

the better the prioritization technique is. (See reference [25]

for the formal definition of APFD.)

C. Experiment Setup and Procedure

To perform prioritization, we require several types of

information: requirements-traceability matrix, priorities of

requirements, requirements-modification history, clusters of

test cases, and code metric information.

In the case of iTrust, a traceability matrix was created

by the developers. Two graduate students created prior-

ities for requirements and the requirements-modification

history. In the case of Capstone, the software developers

and clients created requirements priorities and a graduate

student created the traceability matrix and the requirements-

modification history.

To collect the test case clusters, we utilized the k-means

clustering method as explained in Section II. We had a large

number of descriptive requirements for the iTrust program,

so we used five different cluster sizes (10, 15, 20, 25, and 30)

to see whether the cluster size affects the results. We chose

these cluster sizes considering the number of components

in iTrust, which is 28 for the final version. In the case of

Capstone, we only had 21 requirements for 6 components,

so we used one cluster size, 6, for this case.

To obtain the Line of Code (LOC), McCabe Cyclomatic

Complexity (MCC) and Nested Block Depth (NBD), we

utilize Eclipse IDE. Eclipse is the most popular integrated

development environment for the Java programming lan-

guage. While calculating the LOC, we ignore the comments

and blank lines in the source code.

To obtain the fault data required to investigate our research

questions, we follow a similar approach to our earlier

studies [26]. We create mutant groups by randomly choosing

n mutation faults (between 1 and 10) from those available

with the particular version of the program. We repeat this

process for each program version and obtain a sequence

of mutant groups for that sequence of versions. Thus, we

construct 12 sequences of mutant groups for each program.

After collecting all the required data, we perform priori-

tization techniques, and calculate the APFD value for each

of the test cases obtained from the techniques.
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D. Threats to Validity

This section describes the threats to the validity of our

study and the approaches we used to limit the effects of

these threats.

Internal Validity: The measures we have utilized to

calculate a code metric in this study have alternatives, and

the choice of the measures could have affected the outcome

of our study. However, we chose those metrics because

they are considered good predictors for finding error-prone

modules according to previous empirical investigations done

by other researchers. The number of clusters chosen could

also have affected the results of our study, but we chose

them considering the number of components for the software

systems and used multiple cluster sizes for iTrust. These

limitations can be addressed through additional studies with

different code metrics and different cluster sizes.

External Validity: We performed our study using two

object programs equipped with requirements documents.

The object programs were small and medium in size. While

the results from our study cannot be interpreted in the

context of industrial applications, we used different types

of applications that came from various sources: one was

an open-source application, and the other was an industrial

application. Again, this limitation can be addressed through

additional studies with a wider population.

IV. DATA AND ANALYSIS

Our research question considers whether requirements-

based test case clustering improves the effectiveness of test

case prioritization. To answer this question, we compare

techniques based on the results shown in Tables IV to IX.

(We discuss further implications of the data and results in

Section V.)

Tables IV, V, and VIII show the experimental results for

the iTrust program. Tables VI, VII, and IX represent the

results for the Capstone project. All values shown in the

tables are average values (APFD values and improvement

rates) for 12 datasets.

In Tables IV and VI, the first column represents the

size of clusters, and the second column shows the heuris-

tic techniques with the cluster-based original. Subsequent

columns show the average APFD values for the heuristics

and their improvement rates (as percentages) over the control

technique (the original order without clustering (Torig))

for each version. Tables V and VII show the results for

the techniques with a cluster-based code metric following

the same structure as Tables IV and VI, respectively. The

heuristics’ improvement rates were measured over the code-

metric-based without clustering (Tcm).

From the results for iTrust (Table IV), we observe that the

heuristics (cluster-based original) outperformed the control

technique (Torig) across all versions and cluster sizes except

for version 1 with a cluster size 10. In particular, for version

1, at a cluster size 20, the heuristics produced the best results.

All three heuristics produced improvement rates ranging

from 55.52% to 65.37%. In the cases of versions 2 and 3,

the heuristics produced the best results at a cluster size of

15.

The results for the techniques that used code metric

(cluster-based code metric (Table V)) show similar trends: all

heuristics outperformed the control technique (Tcm) across

all versions and cluster sizes except for version 1 with the

cluster size of 10. For version 1, at cluster size 20, the

heuristics produced the best results. (The improvement rates

range from 43.29% to 64.84%.) In the case of version 2, the

improvement rates are not very different across the cluster

sizes compared to version 1. For version 3, overall, all

heuristics produced high improvement rates (ranging from

42.20% to 72.95%) compared with other versions.

In the case of Capstone, the heuristics using the original

order (cluster-based original (Table VI)) outperformed the

control technique (Torig), but the heuristics using the code

metric (cluster-based code metric (Table VII)) are not better

than the control technique (Tcm).

When we compare two heuristic groups (cluster-based

original vs. cluster-based code metric), we can see that

results from the two programs show different trends. In the

case of iTrust (Table VIII), we observe that the results vary

with the size of the clusters and version. With version 1,

for the cluster sizes of 10, 15, and 20, the cluster-based

original group is better than the cluster-based code metric

group except for one case. For the cluster sizes of 25 and

30, the results are reversed. For version 2, the cluster-based

code metric group is better than the cluster-based original

group for all but three cases. In the cases of Capstone (Table

IX), the cluster-based code metric group is better than the

cluster-based original group for all cases. For version 3,

the cluster-based code metric group outperforms the cluster-

based original group for all cases.

To show our results visually, we present them in boxplots.

(Due to space limitations, we show the boxplots for iTrust

only.) Figure 3 presents the boxplots that show APFD values

for the control techniques and heuristics for all versions of

iTrust. The figure contains 15 subfigures. The three columns

of subfigures present the results for three versions. The five

rows present results for five different sizes of clusters: C-10,

C-15, C-20, C-25, and C-30, respectively.

Each subfigure contains boxplots for eight prioritization

techniques, showing the distribution of APFD values for

those techniques. The two leftmost boxplots (Torig and Tcm)

present data for the control techniques (without clustering),

and the rest present data for the six heuristics. (Due to

space limitations, we abbreviate names for the heuristics,

and Table X presents a legend for the heuristics.) The

horizontal axis corresponds to techniques, and the vertical

axis corresponds to APFD values. Because we measure

results across 12 sequences of mutant groups, the number

of data points in each boxplot is 12.
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Table IV
APFD COMPARISON CHART (ITRUST): IMPROVEMENT OVER TORIG

Cluster Technique iTrust − v1 iTrust − v2 iTrust − v3
APFD Improvement APFD Improvement APFD Improvement

over Torig (%) over Torig (%) over Torig (%)

10 Tcl-orig-orig 42.96 -1.83 62.38 30.47 60.81 27.19

Tcl-orig-rand 43.35 -0.95 62.42 30.55 60.10 25.70

Tcl-orig-prior 43.59 -0.38 57.28 19.81 70.60 47.67

15 Tcl-orig-orig 48.13 9.98 62.54 30.82 69.77 45.92

Tcl-orig-rand 48.69 11.27 62.71 31.17 69.17 44.68

Tcl-orig-prior 51.68 18.11 64.12 34.11 76.49 59.98

20 Tcl-orig-orig 68.06 55.52 61.59 28.82 63.60 33.03

Tcl-orig-rand 68.66 56.90 62.16 30.02 64.54 35.00

Tcl-orig-prior 72.37 65.37 63.42 32.64 72.06 50.72

25 Tcl-orig-orig 59.45 35.86 57.03 19.28 61.71 29.07

Tcl-orig-rand 60.40 38.03 57.82 20.93 63.49 32.80

Tcl-orig-prior 63.76 45.69 58.50 22.37 68.50 43.28

30 Tcl-orig-orig 54.58 24.73 59.78 25.04 64.70 66.88

Tcl-orig-rand 54.71 25.02 61.07 27.74 64.36 25.70

Tcl-orig-prior 56.61 29.36 62.54 30.80 70.54 47.54

Table V
APFD COMPARISON CHART (ITRUST): IMPROVEMENT OVER TCM

Cluster Technique iTrust − v1 iTrust − v2 iTrust − v3
APFD Improvement APFD Improvement APFD Improvement

over Tcm (%) over Tcm (%) over Tcm (%)

10 Tcl-cm-orig 38.46 -15.98 68.26 39.87 68.48 52.73

Tcl-cm-rand 38.88 -15.06 68.30 39.95 64.54 43.92

Tcl-cm-prior 39.51 -13.68 57.78 18.40 75.31 67.94

15 Tcl-cm-orig 47.67 4.15 59.58 22.10 72.34 61.33

Tcl-cm-rand 48.18 5.27 59.93 22.80 71.73 59.98

Tcl-cm-prior 49.71 8.62 57.56 17.94 77.55 72.95

20 Tcl-cm-orig 65.58 43.29 62.67 28.41 66.69 48.73

Tcl-cm-rand 66.22 44.69 63.65 30.43 67.68 50.94

Tcl-cm-prior 75.45 64.84 65.33 33.87 72.41 61.48

25 Tcl-cm-orig 61.47 34.29 57.67 18.18 63.76 42.20

Tcl-cm-rand 61.31 33.95 58.94 20.78 65.71 46.54

Tcl-cm-prior 66.10 44.41 58.81 20.51 70.56 57.36

30 Tcl-cm-orig 56.81 24.13 65.00 33.20 67.49 50.51

Tcl-cm-rand 57.03 24.60 66.80 36.88 67.06 49.55

Tcl-cm-prior 60.10 31.31 63.63 30.38 72.35 61.34

Table VI
APFD COMPARISON CHART (CAPSTONE): IMPROVEMENT OVER TORIG

Cluster Technique capstone − v1
APFD Improvement over Torig (%)

6 Tcl-orig-orig 50.71 15.96

Tcl-orig-rand 51.62 18.05

Tcl-orig-prior 50.25 14.90

Table VII
APFD COMPARISON CHART (CAPSTONE): IMPROVEMENT OVER TCM

Cluster Technique capstone − v1
APFD Improvement over Tcm (%)

6 Tcl-cm-orig 61.19 -9.83

Tcl-cm-rand 61.47 -9.41

Tcl-cm-prior 67.86 0.00

Examining the boxplots for each cluster in the first column

(version 1) of Figure 3, we see that the trends observed

from the tables (average values) are similar to those of the

boxplots. Overall, the results for version 1 show a wider

distribution of data points than the other two versions. In

particular, for all three cluster-based original techniques

(Tcoo, Tcor, and Tcop), the differences between the best

and worst APFD values are noticeable. In the cases of

versions 2 and 3, except for a couple cases, the results for

all techniques show similar data-distribution patterns. For

version 3, across all cluster sizes, the heuristics consistently

show great benefits over the control techniques.

V. DISCUSSION AND IMPLICATIONS

The results of our study indicate that clustering test cases

based on requirements can improve the effectiveness of test

case prioritization. Thus, test cases associated with a similar

set of requirements could have similar fault-detection ability.

By examining the results, we drew the following obser-

vations. First, overall, the clustering approach was effective

regardless of the selection method we utilized, although the

results varied slightly across selection methods.

Second, our results varied across object programs, and

in the case of iTrust, the results varied across the cluster

sizes and versions. For Capstone, which is a relatively small

program with a small number of tests and requirements,

the improvement rates for the heuristics were low compared

to the results for iTrust. One possible explanation for this

result is that there version 1 underwent a major refactoring

process and the requirements that are associated with the

old code components have not been updated to reflect the
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Table VIII
APFD COMPARISON CHART (ITRUST): HEURISTICS BASED ON CODE METRICS VS ORIGINAL ORDER

Version Cluster Tcl-cm-orig Tcl-orig-orig Tcl-cm-rand Tcl-orig-rand Tcl-cm-prior Tcl-orig-prior

v1 10 38.46 42.96 38.88 43.35 39.51 43.59

15 47.67 48.13 48.18 48.69 49.71 51.68

20 65.58 68.06 66.22 68.66 75.45 72.37

25 61.47 59.45 61.31 60.40 66.10 63.76

30 56.81 54.58 57.03 54.71 60.10 56.61

v2 10 68.26 62.38 68.30 62.42 57.78 57.28

15 59.58 62.54 59.93 62.71 57.56 64.12

20 62.67 61.59 63.65 62.16 65.33 63.42

25 57.67 57.03 58.94 57.82 58.81 58.50

30 65.00 59.78 66.80 61.07 63.63 62.54

v3 10 68.48 60.81 64.54 60.10 75.31 70.60

15 72.34 69.77 71.73 69.17 77.55 76.49

20 66.69 63.60 67.68 64.54 72.41 72.06

25 63.76 61.71 65.71 63.49 70.56 68.50

30 67.49 64.70 67.06 64.36 72.35 70.54

Table IX
APFD COMPARISON CHART (CAPSTONE): HEURISTICS BASED ON CODE METRICS VS ORIGINAL ORDER

Version Cluster Tcl-cm-orig Tcl-orig-orig Tcl-cm-rand Tcl-orig-rand Tcl-cm-prior Tcl-orig-prior

v1 6 61.19 50.71 61.47 51.62 67.86 50.25

Table X
PRIORITIZATION TECHNIQUES

Label Technique

Tcoo Tcl-orig-orig

Tcor Tcl-orig-rand

Tcop Tcl-orig-prior

Tcco Tcl-cm-orig

Tccr Tcl-cm-rand

Tccp Tcl-cm-prior

changes. In the case of iTrust, except for the results of

cluster size 10, all heuristics produced high improvement

rates compared with those of Capstone. In particular, for

version 3, the improvement rates were the best among other

versions. When we examined the software artifacts for iTrust

version 3, we observed that a large portion of the source code

associated with new requirements had been modified and

that only three old requirements were relevant to version 3.

We speculated that these factors contributed to the outcome

of version 3 because we used code-modification information

when we prioritized the requirement clusters.

The findings of the study provide significant implications

for software companies. By prioritizing test cases based

on the requirements information, companies can improve

their regression testing process, and also by understanding

the relationships among the test cases, requirements, and

source code, software engineers can identify the source of

the errors more easily. Further, our approach provides a way

to maintain the clear relationship between the test cases and

software artifact, so software companies can manage their

products in a holistic way. Therefore, they can build more

reliable and dependable products.

VI. RELATED WORK

There are different types of regression testing techniques,

such as regression test selection, test case prioritization, and

test suite minimization, but in this section, we discuss test

case prioritization, the main focus of our work.

Test case prioritization techniques (e.g., [9], [27]) reorder

test cases to increase the chance of early fault detection.

The techniques help software engineers reveal faults early

in testing, thus allow them to begin debugging earlier. A

wide range of prioritization techniques have been proposed

and empirically studied, and a recent survey by Yoo and

Harman [28] provides an overview of these techniques.

Depending on the types of information available, various test

case prioritization techniques can be utilized, but most test

case prioritization research has used source code information

to implement prioritization techniques.

For instance, many researchers utilized code coverage

information to implement prioritization techniques [9], [8],

[29], and recent prioritization techniques used other types of

code information, such as slices [30], change history [31],

or code modification information and fault proneness of

code [32]. Further, numerous empirical studies showed that

prioritization techniques that use source code information

can improve the effectiveness of regression testing [25], [26],

[33].

As addressed in Section I, the software systems are built

upon the product requirements, thus utilizing requirements

could potentially help testing and maintenance activities.

However, to date, only a few researchers have studied the

use of requirements during software testing [11], [12], [13].

Srikanth et al. [12] present an approach to prioritizing test

cases at the system level using system requirements, and they

report that prioritized test cases based on the importance

and fault proneness of requirements were able to detect

severe faults earlier. Similar to work done by Srikanth et

al. [11], [12], Srivastva et al. [13] utilize requirements infor-

mation and consider risk factors involving the requirements

to improve test case prioritization. Unlike these studies,
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Figure 3. APFD Boxplots for all versions of iTrust

in this work, we present a requirements-based clustering

approach that incorporates code information to improve the

effectiveness of test case prioritization.

Another class of related work is clustering techniques.

Leon and Podgurski [34] present a clustering technique

that applies to test case prioritization. They use a test

execution profile to cluster test cases and then randomly

select test cases from clusters. Yoo et al. [35] cluster test

cases using expert knowledge and then perform pairwise

comparisons of the test cases in each cluster. They use

expert knowledge for the pairwise comparison. Carlson et

al. [14] also present clustering-based test case prioritization

techniques that utilize code coverage information. Unlike

these studies, in our work, we cluster test cases based on

the requirements using a document-clustering approach that

has been utilized in text-mining areas [15], [19].

VII. CONCLUSIONS AND FUTURE WORK

We presented an empirical study that assesses

requirement-based clustering technique in test case

prioritization using one open-source and one Capstone

project. Although numerous studies of test case prioritization

have been conducted previously, most studies focused on

utilizing source code information. Our study, in contrast,

used requirements to group test cases in order to improve

test case prioritization techniques.

The results show that the requirements-based clustering

approach which incorporates traditional code analysis infor-

mation can improve the effectiveness of test case prioriti-

zation techniques, but the results vary by the cluster sizes.

The results suggest that, by grouping test cases associated

with a similar or related set of requirements, we can manage

regression testing processes more effectively.

We discussed the limitations of our study in Section III-D.

To address those limitations, we intend to conduct addi-

tional empirical studies that consider different types of code

metrics (e.g., inter-method communication and depth of

inheritance) as well as various clustering and test case priori-

tization approaches, with a wider population of applications.
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