
Test-Case Reduction for C Compiler Bugs

John Regehr
University of Utah

regehr@cs.utah.edu

Yang Chen
University of Utah

chenyang@cs.utah.edu

Pascal Cuoq
CEA LIST

pascal.cuoq@cea.fr

Eric Eide
University of Utah

eeide@cs.utah.edu

Chucky Ellison
University of Illinois

celliso2@illinois.edu

Xuejun Yang
University of Utah

jxyang@cs.utah.edu

Abstract
To report a compiler bug, one must often find a small test case
that triggers the bug. The existing approach to automated test-case
reduction, delta debugging, works by removing substrings of the
original input; the result is a concatenation of substrings that delta
cannot remove. We have found this approach less than ideal for
reducing C programs because it typically yields test cases that
are too large or even invalid (relying on undefined behavior). To
obtain small and valid test cases consistently, we designed and
implemented three new, domain-specific test-case reducers. The
best of these is based on a novel framework in which a generic
fixpoint computation invokes modular transformations that perform
reduction operations. This reducer produces outputs that are, on
average, more than 25 times smaller than those produced by our
other reducers or by the existing reducer that is most commonly
used by compiler developers. We conclude that effective program
reduction requires more than straightforward delta debugging.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; D.3.4 [Programming
Languages]: Processors—compilers

Keywords compiler testing, compiler defect, automated testing,
random testing, bug reporting, test-case minimization

1. Introduction
Although many compiler bugs can be demonstrated by small test
cases, bugs in released compilers are more typically discovered
while building large projects. Before a bug can be reported, the
circumstances leading to it must be narrowed down. The most
important part of this process is test-case reduction: the construction
of a small input that triggers the compiler bug.

c© ACM, 2012. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2012 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Beijing,
China, Jun. 2012, http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

The importance of test-case reduction is emphasized in the GCC
documentation,1 which states that:

Our bug reporting instructions ask for the preprocessed
version of the file that triggers the bug. Often this file is
very large; there are several reasons for making it as small as
possible. . .

The instructions for submitting bug reports to the LLVM developers
also highlight the importance of test-case reduction.2 Indeed, LLVM
ships with the Bugpoint tool3 that automates reduction at the level of
LLVM IR. The importance that compiler developers place on small
test cases stems from the simple fact that manual test-case reduction
is both difficult and time consuming. With limited time to spend
fixing bugs, compiler writers require bug reporters to undertake the
effort of reducing large fault-causing inputs to small ones.

Like debugging, distilling a bug-causing compiler input to its
essence is often an exercise in trial and error. One must repeatedly
experiment by removing or simplifying pieces of the input program,
compiling and running the partially reduced program, and backtrack-
ing when a change to the input causes the compiler bug to no longer
be triggered. In some cases—for example, reducing a deterministic
assertion failure in the compiler—manual test-case reduction is te-
dious but tractable. In other cases—e.g., reducing a miscompilation
bug in a large, multi-threaded application—manual test-case reduc-
tion may be so difficult as to be infeasible. Our belief is that many
compiler bugs go unreported due to the high difficulty of isolating
them. When confronted with a compiler bug, a reasonable compiler
user might easily decide that the most economic course is to find a
workaround, and not to be “sidetracked” by the significant time and
effort required to produce a small test case and report the bug.

Our goal in this paper is to automate most or all of the work
required to reduce bug-triggering test cases for C compilers. Our
work is motivated by two problems that we have encountered
in applying state-of-the-art reducers. First, these tools get stuck
at local minima that are too large. This necessitates subsequent
manual reduction, preventing reportable compiler bugs from being
generated in an entirely automated fashion. We have developed
new reducers that use domain-specific knowledge to overcome the
barriers that trap previous tools. Second, existing test-case reducers
often generate test cases that execute undefined behaviors. These
test cases are useless because the C language standard guarantees

1 http://gcc.gnu.org/bugs/minimize.html
http://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
2 http://llvm.org/docs/HowToSubmitABug.html
3 http://llvm.org/docs/Bugpoint.html

1

mailto:regehr@cs.utah.edu
mailto:chenyang@cs.utah.edu
mailto:pascal.cuoq@cea.fr
mailto:eeide@cs.utah.edu
mailto:celliso2@illinois.edu
mailto:jxyang@cs.utah.edu
http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN
http://gcc.gnu.org/bugs/minimize.html
http://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
http://llvm.org/docs/HowToSubmitABug.html
http://llvm.org/docs/Bugpoint.html

int printf (const char *, ...);
union U5 {
short f1;
int f3:13;

};
const union U5 a = { 30155 };
int
main () {
printf ("%d\n", a.f1);
printf ("%d\n", a.f3);
return 0;

}

Listing 1. Test case that demonstrates a bug in GCC 4.4.0

nothing about the behavior of such programs. For example, all C/C++
compiler teams we have interacted with will ignore (in the best case)
any bug report that depends upon the value of an uninitialized local
variable. Our new reducers confront this test-case validity problem
directly: they avoid undefined test-case behaviors during reduction,
thereby ensuring that the final reduced test cases are suitable for bug
reporting.

Our work is also motivated by Csmith, a random test-case
generator that has resulted in more than 400 previously unknown C
compiler bugs being reported [17]. Using randomized differential
testing, Csmith automates the construction of programs that trigger
compiler bugs. These programs are large out of necessity: we found
that bug-finding was most effective when random programs’ average
size was 81 KB [17, §3.3]. In this paper, we use 98 bug-inducing
programs created by Csmith as the inputs to several automated
program reducers, including three written by ourselves. Two of the
new reducers are implemented as Csmith add-ons and can only
reduce Csmith-generated programs. However, the most effective
reducer (in terms of size of output) that we developed is generic: it
can reduce any C program, whether generated by Csmith or not. In
the great majority of cases, one or more of our reducers can distill
the large (37–297 KB) test cases created by Csmith into small test
cases (typically less than 0.5 KB) that preserve the bug-triggering
features of the original inputs. Our reducers do this automatically
and without introducing undefined behavior into the reduced test
cases.

Our contributions are as follows:

1. We identify existing delta-debugging algorithms as point so-
lutions in a more general framework. We present three new,
domain-specific test-case reducers for C code that fit into this
framework.

2. We identify the test-case validity problem as a crucial part of
test-case reduction for compilers of programming languages that
admit undefined and unspecified behaviors. This problem has
not been acknowledged or solved in previous work. We present
various solutions to the test-case validity problem.

3. We show that our best reducer produces output more than 25
times smaller than that produced by a line-based delta debugger,
on average.

2. Reporting Compiler Bugs
An ideal compiler bug report is based on a small, easy-to-read,
self-contained, and well-defined test program. This paper is about
automatically constructing programs that meet these criteria. Other
elements found in a good bug report include:

• the identification of the buggy compiler: its version, its target
machine and OS, how it was built, and so on;

• instructions for reproducing the failure, including a description
of how the compiler was invoked; and

• the expected and actual outputs of the compiled test program
(assuming that the compiler does not fail to compile the test).

For example, the following report is informative enough that it
would likely be acted upon by compiler developers:

On x86-64, the program in Listing 1 should print:
30155
-2613
However, using GCC 4.4.0 (built from scratch) and also GCC
“Ubuntu 4.4.3-4ubuntu5” (the current vendor-supplied compiler
on Ubuntu 10.04.3 LTS as of Nov 6 2011) on x86-64, we get:
$ gcc -O1 small.c
$./a.out
30155
30155

The program in Listing 1 is the verbatim output from one of our
C program reducers. The underlying problem is an actual GCC bug
that affects Ubuntu 10.04, a major and currently supported Linux
distribution.

The program in Listing 1 is free from undefined and unspecified
behaviors,4,5 although it does involve implementation-defined be-
havior regarding the representations of data objects. Implementation-
defined behaviors are allowed in test cases; indeed, in C, such basic
things as the ranges of int and char are implementation-defined.

Although the example at hand may seem to involve the “technical
minutiae” of C, it is important for compilers to get these details
right. Large programs such as operating systems and virtual-machine
monitors depend on subtle behaviors like those executed by Listing 1.
Automated test-case reduction, when successful, allows one to
obtain small test cases that cleanly present the essence of a problem.

3. Background
In this section we distinguish test-case minimization from test-case
reduction. We also summarize delta debugging, an existing approach
to test-case reduction.

3.1 The Test-Case Minimization Problem
Let I be the set of all valid inputs to some system under test (SUT).
For i ∈ I, let |i| be the size of i according to an appropriate metric
such as bytes or tokens. Let B⊆ I be the set of inputs that trigger a
particular failure of interest in the SUT, e.g., a crash at a particular
location in the SUT. The test-case minimization problem for a
SUT and a particular failure is to find iBmin where iBmin ∈ B and
∀i ∈ B, |i| ≥ |iBmin|. Note that iBmin may not be unique; there may
be several minimum-sized inputs that result in the failure of interest.
For the sake of clarity, however, we describe the search for iBmin as
if it were unique.

4 The C99 language standard [7] identifies many program behaviors that are
undefined or unspecified. An example undefined behavior is dereferencing a
null pointer. When a C program executes an undefined behavior, “anything
can happen”: the C standard places no requirements on the C implementation.
Unspecified behaviors, on the other hand, permit the compiler to choose from
a variety of alternatives with no requirement for consistency. An example
unspecified behavior is the order in which the arguments of a function call are
evaluated. Like C programs in general, good test cases for C compilers must
not execute any undefined behaviors and must not depend on a particular
choice for unspecified behaviors.
5 Footnote 82 in the C99 language standard allows a.f3 to be accessed by
the second printf() call [7, §6.5.2.3]. This footnote, introduced in TC3,
supersedes language in Annex J of the previous C99 standard which states
that “the value of a union member other than the last one stored into” is
unspecified. Subtle interactions between different parts of the standard—
and even outright contradictions, as we see here—are not uncommon when
interpreting tricky C programs.

2

Consider the task of finding iBmin given only an initial failing
test case iseed . Without knowledge of the internals of the SUT, the
only information that iseed provides is that it triggers the failure
of interest and therefore defines a maximum value of |iBmin|. The
reason that iseed causes the failure of interest is unknown, and thus
in principle, any input that is smaller than iseed may also trigger the
failure of interest. The only way to find iBmin, which is the absolute
smallest failure-inducing input, is exhaustive search.

Let I<S be the set of inputs not larger than a size bound S.
For realistic systems under test, one can expect that |I<S| is an
exponential function of S. Finding iBmin requires testing increasingly
large members of I until a failure-inducing input is found. Thus, it
is easy to see that the test-case minimization problem is intractable
unless |iseed | is quite small. Consequently, all test-case minimization
work that we are aware of is heuristic.

An analogy can be made between test-case minimization and
compiler optimization. In both situations, the problem is to find an
element in a large set of programs that has a desired property while
also minimizing a cost function. The major difference is that while
optimization can be phrased as a relatively concise mathematical
problem (“find the cheapest machine program that is semantically
equivalent to the input program”), test-case minimization is con-
ducted in the absence of an effective semantics: the minimizer lacks
a model for predicting which inputs will trigger the failure of interest
in the SUT. The exact program-optimization problem can be solved
for small programs by encoding the meaning of the program mathe-
matically and then passing the problem to a SAT/SMT solver [8]. In
contrast, an analogous solution to the test-case minimization prob-
lem would require either a brute-force search of I<|iseed | or else a
mathematical encoding of the entire SUT.

Heuristic solutions to the test-case minimization problem start
with a failure-inducing input iseed and transform it. Through repeated
transformation and testing, they search for ever-smaller inputs that
cause the failure of interest in the SUT. We refer to this process as
test-case reduction so as to distinguish it from absolute minimization.
The goal of a reducer is to create a small test case from a large one; a
reducer R1 can be said to be better than a reducer R2 if, over a given
set of test cases, R1 consistently produces smaller outputs than R2
does. Our focus in this paper is on high-quality test-case reducers
for C compilers, i.e., reducing C programs.

3.2 Delta Debugging
Although point solutions to the test-case reduction problem have
existed for some time (see Section 8), a generic solution was not
formulated until Zeller and Hildebrandt [18] developed two delta
debugging algorithms. The dd algorithm seeks to minimize the
difference between a failure-inducing test case and a given template;
the ddmin algorithm is a special case of dd where the template
is empty. Thus, ddmin’s goal is to minimize the size of a failure-
inducing test case.

Ddmin heuristically removes contiguous regions (“chunks”) of
the test in order to generate a series of variants. Unsuccessful
variants are those that do not trigger the sought-after behavior; all
unsuccessful variants are discarded. Successful variants, on the other
hand, are those that trigger the desired behavior. Each successful
variant is used as the new basis for producing future variants; in
other words, the search is greedy. When no successful variants can
be generated from the current basis, the chunk size is decreased.
The algorithm terminates when the chunk size cannot be further
decreased and no more successful variants can be produced. The
final result is the last successful variant that was produced; by the
nature of the search, this is the smallest variant that produces the
desired behavior. Ddmin can be fast even for large test cases when
it is successful in removing large chunks early in its execution. If
it cannot remove large input chunks, however, ddmin can take a

long time to terminate—especially if it is expensive to discriminate
between successful and unsuccessful variants.

Delta debugging was generalized to create hierarchical delta
debugging (HDD) [13], in which chunk selection is guided by the
hierarchical structure of the input. For several failure-inducing C and
XSLT programs, HDD was shown to significantly reduce reduction
time and also produce better results, when compared with ddmin.

McPeak and Wilkerson [12] implemented a variant of ddmin—
which we refer to as “Berkeley delta” in this paper—that is both well-
known and commonly used by compiler developers. Berkeley delta
is generic and line-based: all variants are produced by removing
one or more contiguous lines from the test input. With the help
of a separate utility, called topformflat, Berkeley delta can be
used to perform hierarchical delta debugging over program source
code. The topformflat utility preprocesses an input test case and
“flattens languages with balanced delimiters, such as most common
programming languages, so that all nesting below a specified depth
is on one line.”6 This is simple and effective.

4. Generalized Delta Debugging
Our observation is that algorithms such as dd, ddmin, and HDD
are specific instantiations of a simple and powerful framework for
reducing test cases. Most of the hard-coded aspects of these existing
algorithms can be usefully generalized in order to more effectively
reduce failure-inducing inputs, including the following.

Generalized transformations ddmin uses text-oriented chunk re-
moval to create variants, and HDD uses an AST-oriented removal
strategy. The former removes a substring with each search step,
and the latter removes a subtree. However, our experience is that
reducing a failure-triggering C program to a very small size requires
a much richer set of transformations such as removing an argument
from a function and simultaneously all its call sites, performing
inline substitution of a function body, replacing an aggregate type
with its constituent scalars, and so on. These transformations may
operate on many scattered program points in one step, and they
cannot be described as operations that simply delete a substring or
subtree.

Generalized search ddmin’s and HDD’s search strategies are
greedy. This is simple and efficient but ignores a wealth of research
on search that may avoid local minima by being non-greedy or
improve search-termination speed by not looking at alternatives that
are unlikely to be profitable. Additionally, transformations such as
inlining the body of a function or splitting up a complex expression
may increase code size (by adding references to temporary variables)
while ultimately leading to better output. A greedy search rules out
exploration of these variants, and thus tends to become stuck at a
local minimum where no further substring or subtree eliminations
are possible.

Addressing test-case validity ddmin and related algorithms ignore
the test-case validity problem: the fact that in some use cases, some
variants will be incorrect in ways that are not or cannot be detected
by the system under test. This is the case when reducing C programs.
For example, when a C compiler is given a program to compile, the
compiler cannot in general decide if the program will dereference
a null pointer or perform an out-of-bounds array access when the
program is run. Both are undefined behaviors and must not happen
in a valid compiler test case. Thus, for reducing compiler test cases,
a delta-based reducer cannot rely on the compiler (the system under
test) to detect when a variant is invalid. Sophisticated solutions are
required to overcome this issue.

6 http://delta.tigris.org/using_delta.html

3

http://delta.tigris.org/using_delta.html

Generalized fitness functions The goal of ddmin, HDD, and other
delta debugging algorithms is to create a minimum-sized failure-
inducing test. In general, however, any fitness function can be used
to characterize preferable test cases. For example, since the eventual
consumer for a reduced test case is a human being, it is undesirable
to create tiny reduced programs if they are hard to understand.
Consider these simple examples. First, almost any C program can
be made smaller, but harder to read, by eliminating whitespace and
playing preprocessor tricks. Second, our experience is that turning a
union type into a struct can make a test case considerably easier to
understand while also making it (at least) one byte larger.

In summary, generalized delta debugging refers to any iterative
optimization strategy for simplifying the circumstances leading to
program failure. A generalized delta debugger combines a search
algorithm, a transformation operator, a validity-checking function,
and a fitness function.

5. Test-Case Validity
Ensuring that variants are valid C programs was the most serious
problem we faced doing this work. Beyond statically ill-formed C
programs, dynamically invalid programs are those that execute an
operation with undefined behavior or rely on unspecified behavior.

5.1 The Validity Problem
Consider this program:

int main (void) {
int x;
x = 2;
return x + 1;

}

Assume that compiler A emits code that properly returns 3 while
compiler B is buggy and generates code returning a different result.
The goal of a test-case reducer is to create the smallest possible
program triggering the bug in B. During reduction many variants
will be produced, perhaps including this one where the line of code
assigning a value to x has been removed:

int main (void) {
int x;
return x + 1;

}

This variant, however, is not a valid test case. Even if this variant
exhibits the desired behavior—compilers A and B return different
results—the divergence is potentially due to its reliance on undefined
behavior: reading uninitialized storage. In fact, on a common Linux
platform, GCC and Clang emit code returning different results for
this variant, even when optimizations are disabled. Because delta
debugging is an iterative optimization algorithm, once a test-case
reduction goes wrong in this fashion, it is likely to remain stuck there,
abandoning the original sense of the search. Compiler developers are
typically most unhappy to receive a bug report whose test input relies
on undefined or unspecified behavior. This is not a hypothetical
problem—a web page for the Keil C compiler states that “Fewer
than 1% of the bug reports we receive are actually bugs.”7

In this specific case we might redefine the test-case criterion
to be: “Compilers A and B generate code returning divergent
results, and neither compiler warns about using an uninitialized
variable.” In this case, the solution would likely be successful. On
the other hand, compiler warnings about uninitialized storage are
typically unsound in the presence of function calls, arrays, and
pointers. Furthermore, even after we solve this problem, the C99

7 http://www.keil.com/support/bugreport.asp

standard describes 190 more kinds of undefined behavior that must
be addressed to ensure that a test case is valid. As previously noted,
not all of these behaviors are statically detectable by a compiler.
Beyond undefined behavior, there are also many kinds of unspecified
behavior that cause similar problems.

In reducing C programs, we have found the most problematic
behaviors to be:

• use before initialization of function-scoped storage;
• pointer and array errors;
• integer overflow and shift past bitwidth;
• struct and union errors; and
• mismatches between printf’s arguments and format string.

Many languages including C, C++, C# (in unsafe code), and
Scheme have some form of non-determinism or unspecified behav-
ior, meaning the test-case validity problem is generally applicable in
other languages. (There is current work toward cataloging problem-
atic undefined and unspecified behaviors for many languages [14].)
Providing a solution to the test-case validity problem for C, with its
hundreds of undefined and unspecified behaviors, suggests that this
can be done for other languages as well.

5.2 Solutions
There are two ways to avoid accepting variants that rely on undefined
and unspecified behavior. First, the test-case reducer can avoid
generating incorrect variants. We do not know how to implement
such a reducer for general C programs. However, we have created
two reducers that rely on the fact that Csmith already knows how to
create conforming C programs [17]. Through extensions to Csmith,
we can use Csmith to generate smaller versions of programs it has
previously output. The second approach is to blindly generate a
mix of valid and invalid variants and then use an external tool to
detect invalid code. Sound, automatic static analyzers for C code
have been available for some time, but we know of none that can
give a large random program a “clean bill of health.” To reliably
avoid false positives, a semantics-checking C interpreter is needed.
Two of these have recently become available.

5.2.1 KCC
KCC [6] is a semantics-based interpreter and analysis tool for C.
In addition to interpretation, it is capable of debugging, catching
undefined behaviors, state space search, and model checking. All
of these modes are mechanically generated from a single formal
semantics for C. KCC can catch many undefined behaviors by virtue
of the semantics “getting stuck” when a program is not well defined.
While KCC does not detect all undefined behavior, it is capable of
catching the behaviors listed in Section 5.1.

No major changes were needed in KCC to make it useful in test-
case reduction. However, we added English-language error messages
for most of the common undefined behaviors, which made it easier to
understand exactly how variants go wrong. Additionally, we added
detectors for some previously-uncaught undefined behaviors to the
tool because those behaviors were found in variants. Any errors
reported by KCC are guaranteed to be real errors in the program,
under the assumption that the underlying semantics accurately
captures C.

5.2.2 Frama-C
Frama-C [5] is an open-source, extensible, static-analysis framework
for C. It features a value-analysis plug-in [2]: an abstract interpreter
roughly comparable to Polyspace [10] and Astrée [1]. The value
analysis uses non-relational domains adapted to the C language; it
soundly detects and warns about a sizable set of C’s undefined

4

http://www.keil.com/support/bugreport.asp

and unspecified behaviors. At the same time, it is designed to
avoid warning about constructs that are technically undefined,
but that programmers use intentionally, for example in embedded
code. Conflicts between these objectives are resolved according to
the following principle: if a compiler implementer would use the
undefinedness of a construct as a reason to not fix a compiler bug,
then the value analysis warns about the construct.

We were able to leverage the fact that programs generated by
Csmith are closed—they take no external inputs—in order to avoid
pessimism in Frama-C. By indefinitely deferring joins in the value
analysis, Frama-C can effectively be as precise as a C interpreter,
propagating a singleton abstract state all the way to the end of
the program. This greatly increased precision comes at a cost of
extended analysis time and memory consumption. We added an
efficient interpreter mode to the value analysis, so as to diagnose
terminating closed programs without the usual memory and time
overhead caused by indefinitely postponed joins. Additionally, we
fixed [4] several Frama-C bugs that interfered with the correct
interpretation of Csmith-generated programs.

5.2.3 A Hybrid Solution
KCC and Frama-C are capable of detecting subtle dynamic viola-
tions of the C standard. They both assume their inputs to be compil-
able C programs; however, some of the delta debugging algorithms
that we used to reduce C programs (e.g., Berkeley delta) produce
variants are not even syntactically valid. Therefore, in practice we
employ a hybrid solution for detecting invalid code. First, we com-
pile a variant using any convenient C compiler, rapidly rejecting it
if it fails to compile or generates warnings that reliably correspond
to misbehavior. Second, we optionally examine the variant using
Valgrind and/or the Clang static analyzer, again looking for spe-
cific warnings or errors that reliably indicate incorrect code. Finally,
surviving variants are tested using KCC and/or Frama-C.

5.2.4 Validity for Compiler-Crash Inputs
Test cases for compiler-crash bugs—where the compiler process
returns a non-zero status code to the operating system—may have
weaker validity requirements than do the test cases for wrong-code
bugs. As a matter of implementation quality, a compiler vendor will
usually fix a segmentation fault or similar problem even if the crash-
inducing test case, for example, uses a variable without initialization.
Relaxing the correctness criterion permits crash-inducing inputs to
be smaller and to be produced more rapidly. We take advantage of
these facts when reducing C programs that cause compiler-crash
bugs.

6. New Approaches to Test-Case Reduction
We implemented three new reducers for C programs. Two of them
only work for programs generated by Csmith, while the third is
general-purpose and would work in the reduction of any C program.
(In fact, it can also be used to reduce C++ programs, though it has
not yet been tuned for that purpose.)

All three of our reducers adopt Berkeley delta’s convention of
being parameterized by a test that determines whether a variant is
successful or unsuccessful. The test determines if the variant triggers
the compiler bug and also, if necessary, determines whether it is
statically and dynamically valid C code.

6.1 Reduction in Csmith by Altering the Random Number
Sequence

A program generated by Csmith is completely determined by a
sequence of integers that describes a path through Csmith’s decision
tree. Usually this sequence comes from a pseudo-random number
generator (PRNG), but it does not need to. Our Seq-Reduce test-
case reducer bypasses the PRNG in order to generate variants. The

result is guaranteed to be a valid C program, so no external validity-
checking tool is required.

Seq-Reduce’s implementation is split between a driver and two
special-purpose Csmith modes. Together, these components act as a
generalized delta-debugging loop in which Csmith produces variants
and the driver determines whether they are successful or not.

First, the driver launches Csmith with a command telling it to
dump the specification of the failure-inducing input to a file. Next,
the driver repeatedly invokes Csmith using a command that tells
it to load the saved sequence, modify it randomly, and then dump
both the new program and its specification. If the new program
constitutes a successful variant (i.e., it triggers the compiler failure
and it is smaller than the previous smallest variant), this becomes
the new program specification. Otherwise, Seq-Reduce rolls back to
the previous successful variant. Seq-Reduce is the only randomized
test-case reducer that we are aware of.

Seq-Reduce has several advantages. First, it has low implemen-
tation complexity, adding about 750 lines of code to Csmith; only
30 of these are at all entangled with Csmith’s main logic. The driver
is 300 lines of Perl. Second, Seq-Reduce is embarrassingly parallel.
For example, for the experiments in Section 7, we ran it on four
cores.

The main problem with Seq-Reduce is that it does not do a
good job reducing programs in cases where the problematic code
is generated late in Csmith’s execution. Changes that appear near
the start of a Csmith program specification tend to perturb Csmith’s
internal state in ways that prevent it from emitting desirable variants
later on. Additionally, Seq-Reduce has no obvious termination
criterion. In practice we use a timeout to terminate Seq-Reduce.

6.2 AST-Based Reduction in Csmith Using Run-Time
Information

Our next reducer, Fast-Reduce, is also based on Csmith. It explores
the idea that test-case reduction can benefit from run-time infor-
mation. As suggested by its name, Fast-Reduce is intended to give
fairly good results in as little time as possible. It is structured as
an add-on to Csmith that can query not only the static structure
of the generated program, but also its runtime behavior. Dynamic
queries are implemented by instrumenting Csmith’s generated code,
resulting in machine-readable output when the test case is executed.
Fast-Reduce supports a number of transformations; we describe
three representative ones.

Dead-code elimination Programs generated by Csmith tend to
contain a lot of dead code. In many cases, dead code can be removed
without “breaking” a test case; Fast-Reduce attempts to do so early
in its execution because this tends to give good results quickly. First,
Fast-Reduce issues a static query to find which basic blocks are
(conservatively) reachable from main. Next, it issues a dynamic
query to discover which reachable blocks are actually executed. If
removing dead code all at once results in an unsuccessful variant,
Fast-Reduce rolls back the change and attempts to remove dead
code piecewise.

Exploiting path divergence Some wrong-code bugs affect control
flow: the miscompiled executable follows a different execution
path than does a correctly compiled executable. Fast-Reduce uses
differential testing to actively look for this kind of divergence while
reducing programs because it provides a strong clue about the
location of the critical piece of code in the test case that triggers
miscompilation.

Effect inlining Removing the body of a large function is one of
the biggest wins available to a C program reducer. Fast-Reduce can
attempt to remove a function even when call sites to the function
exist; its strategy is to render the function unnecessary by replacing
each call with inline code that has the same dynamic effect as the

5

current = original_test_case
while (!fixpoint) {

foreach t in transformations {
state = t::new ()
while (true) {

variant = current
result = t::transform (variant, state)
if (result == stop)

break
/* variant has behavior of interest

and meets validity criterion? */
if (is_successful (variant))

current = variant
else

state = t::advance (current, state)
}

}
}

Listing 2. The C-Reduce algorithm

function call. First, Fast-Reduce issues a static query to find all call
sites for the target function. Second, it selects a call site and issues
a dynamic query to record the values of global variables before
and after each execution of that site. (This includes the values of
pointer-typed variables.) If the call site is executed multiple times,
an arbitrary final effect is selected. Fast-Reduce then replaces the
call with its effect, generating a variant. This variant, and others
generated by performing the same transformation at other call sites
and other target functions, are all tested. When the body of a function
finally becomes unreferenced, Fast-Reduce attempts to remove it.

The advantages of Fast-Reduce are that it requires no external
validity-checking tool and it is very fast. Its primary disadvantage is
that it does not always provide good results; sometimes it gets stuck
quite early. Out of the 3,000 lines of C++ comprising Fast-Reduce,
about 300 are significantly entangled with Csmith. Fast-Reduce also
includes a driver component that orchestrates the reduction; it is
about 1,700 lines of Perl.

6.3 A Modular Reducer
Our third new reducer, C-Reduce, exploits the insight that the
transformations used to construct variants do not need to be hard-
coded. C-Reduce invokes a collection of pluggable transformations
until a global fixpoint is reached; pseudocode for C-Reduce is shown
in Listing 2.

A transformation that plugs into C-Reduce is simply an iterator
that walks through a test case performing source-to-source alter-
ations. A transformation must implement three functions. The first,
new, takes no parameters and returns a fresh transformation state
object. The second, transform, takes a state object and a path to a
test case; it modifies the test case in place and returns a status code
that is either:

• ok, indicating that a transformation was performed; or
• stop, indicating that the transformation has run out of opportu-

nities for the test case at hand.

The third, advance, takes a state object and a path to a test case; it
advances the iterator to the next transformation opportunity.

As shown in Listing 2, C-Reduce calls advance only upon de-
tecting an unsuccessful variant. A successful variant does not require
advancing the iterator because it is assumed that an opportunity for
transformation has been eliminated from the transformed test case.
This means that for C-Reduce to terminate, it must be the case that
(for any initial test case, and for a fresh transformation state) each
transformation eventually returns stop under non-deterministic
choice between (1) calling advance and leaving the current test

case unchanged, and (2) not calling advance but changing the cur-
rent test case to be the output of the transformation. Meeting this
requirement has been natural for each of the 50+ transformations
we have implemented so far. The order in which a transformation
iterates through a test case is not specified by C-Reduce; in practice,
each transformation uses a convenient ordering such as preorder for
tree-based passes and line-order for line-based passes.

At present, C-Reduce calls five kinds of transformations. The
first includes “peephole optimizations” that operate on a contiguous
segment of the tokens within a test case. These include changing
identifiers and integer constants to 0 or 1, removing type qualifiers,
removing a balanced pair of curly braces and all interior text, and
removing an operator and one of its operands (e.g., changing a+b
into a or b).

The second kind of transformation includes those that make
localized but non-contiguous changes. Examples include removing
balanced parentheses and curly braces without altering the text
inside them, and replacing a ternary operator (C’s ?: construct) with
the code from one of its branches.

The third is a C-Reduce module that closely follows Berkeley
delta: it removes one or more contiguous lines of text from a test
case. The number of lines to remove is initially the number of lines
in the test case, and is successively halved until it reaches one line,
at which point the test case is reformatted using topformflat. This
transformation is 74 lines of Perl whereas Berkeley delta is 383
lines, showing that implementing a transformation is considerably
easier than implementing an entire delta debugging loop.

Fourth, C-Reduce invokes external pretty-printing commands
such as GNU indent. It is important that this kind of tool is called
within the delta debugging loop, as opposed to being part of a pre-
or post-processing step, because it is not unheard of for simple
reformatting to turn a failure-inducing test case into one that does
not trigger a compiler bug.

The final class of transformation was motivated by our observa-
tion that to create reduced failure-inducing C programs nearly as
small as those produced by skilled humans, a collection of compiler-
like transformations is needed. C-Reduce currently has 30 source-
to-source transformations for C code including:

• performing scalar replacement of aggregates;
• removing a level of indirection from a pointer- or array-typed

variable;
• factoring a function call out of a complex expression;
• combining multiple, same-typed variable definitions into a single

compound definition;
• moving a function-scoped variable to global scope;
• removing a parameter from a function and all of its call sites,

while adding a variable of the same name and type at function
scope;

• removing an unused function or variable;
• giving a function, variable, or parameter a new, shorter name;
• changing a function to return void, and deleting all return

statements in it;
• performing inline substitution of small function bodies;
• performing copy propagation; and
• turning unions into structs.

We implemented these using LLVM’s Clang front end.
We have implemented only one performance optimization in

C-Reduce: memoization of the (sometimes quite expensive) test
for discriminating between successful and unsuccessful variants.
Redundant tests occur when two or more peephole transformations

6

produce the same output, and they also occur during the final
iteration of the fixpoint computation—which, by necessity, performs
some redundant tests. Several additional opportunities for speed-up
exist, and we intend to implement speed improvements in future
work. As shown by the results in Section 7, however, automated
test-case reduction with C-Reduce already runs fast enough to be
useful as part of an automated bug-reporting process.

7. Results
This section compares our reducers against each other and against
Berkeley delta.

7.1 Toward a Corpus of C Programs Triggering Diverse
Compiler Bugs

To thoroughly evaluate test-case reducers for C compiler bugs, one
needs a number of test inputs that trigger compiler-crash bugs
and wrong-code bugs. Moreover, these test cases should map to
a diverse collection of underlying defects. We have observed that
some compiler bugs (e.g., a crash while parsing a top-level pragma)
lend themselves to easy reduction, whereas others (e.g., a wrong-
code bug in an interprocedural transformation) are more difficult.

We assembled our test corpus by manufacturing a large number
of bug-triggering programs and then selecting a subset that appear
to map to diverse underlying bugs. To find bug-triggering programs,
we ran Csmith for a few days on a collection of compilers that target
x86-64 on Linux. The compilers we used were: LLVM/Clang 2.6–
2.9, GCC 3.[2–4].0, GCC 4.[0–6].0, Intel CC 12.0.5, Open64 4.2.4,
and Sun CC 5.11. From the set of bug-triggering inputs created
by Csmith, we selected the members of our bug-triggering corpus
by hand. For crash bugs we chose only one test case for each
distinct “symptom”—a specific assertion violation or similar that
a compiler prints while crashing. No obvious heuristic exists for
figuring out which test cases triggering wrong-code bugs map to
which underlying bugs, so we simply gathered no more than five
wrong-code triggers for each compiler that we tested. In the end,
we selected 98 test cases: 57 inputs that each trigger a different
compiler crash, and 41 inputs that trigger incorrect code generation.

7.2 Evaluating Reducers
We ran Berkeley delta and our new reducers on our corpus of bug-
triggering test inputs, using a machine with 16 GB of RAM, based on
an Intel Core i7-2600 processor, running Ubuntu Linux 11.10 in 64-
bit mode. For these experiments we disabled Linux’s address space
layout randomization (ASLR) feature, which is intended to thwart
certain kinds of malware. ASLR has the side effect of causing some
compiler bugs to occur non-deterministically. All test-case reducers
that we are aware of (including our new ones) operate under the
assumption that buggy executions can be detected deterministically.

The inputs to each reducer—Berkeley delta, Seq-Reduce,
Fast-Reduce, and C-Reduce—are the test case that is to be reduced
and a shell script that determines whether a variant is successful.
Berkeley delta additionally requires a “level” parameter that speci-
fies how much syntax-driven flattening of its input to perform. The
web page for this tool suggests running the main delta script twice
at level zero, twice at level one, twice at level two, and finally twice
at level ten. That is what we did.

Tables 1 and 2 summarize the results of our reducer experiments.
For each test case we measured:

• The size of the original test case, as emitted by Csmith.
• The size of the test case after being reduced by Berkeley delta,

and the time taken by reduction. For wrong-code bugs, we
evaluated Berkeley delta using both KCC and Frama-C as
checkers for undefined behavior.

int printf (const char *, ...);
struct {
int f0;
int f1;
int f2;

}
a, b = {
0, 0, 1

};
void
fn1 () {
a = b;
a = a;

}
int
main () {
fn1 ();
printf ("%d\n", a.f2);
return 0;

}

Listing 3. The median-sized reduced test case output by C-Reduce
with Frama-C for wrong-code bugs. GCC 4.3.0 for x86-64 produces
incorrect code with –Os. This is W22 in Table 1.

• The size of the test case after being reduced by Seq-Reduce
with a 20-minute timeout, and the time taken by reduction. (It
occasionally runs for longer than its nominal timeout when
Csmith is slow.) Because Seq-Reduce is embarrassingly parallel,
we ran four independent instances of it on our four-way test
machine, and upon termination chose the best result.

• The size of the test case after being reduced by Fast-Reduce, and
the time taken by reduction.

• The size of the test case after being reduced by C-Reduce and
the time taken by reduction. For wrong-code bugs, again we used
both KCC and Frama-C as checkers for undefined behavior.

Our choice of metrics—the size of the final output and the time
taken to get it—is influenced by our belief that these are the primary
metrics that people reporting compiler bugs care about. Because our
results contain some significant outliers, we report both mean and
median values at the bottom of each table.

7.3 Analysis of Wrong-Code Bug Results
As Table 1 shows, reducing a test case triggering a wrong-code bug
is often fast, but in a few cases takes many hours.

Berkeley delta This tool generally fails to generate test cases
that we would include in a compiler bug report as-is. The median
run time of Berkeley delta when combined with Frama-C is four
minutes; with KCC, the median is a little less than an hour.

Seq-Reduce On average, Seq-Reduce creates reduced output
about twice as large as Berkeley delta’s; more reduction would
need to be performed before including these test cases in a compiler
bug report. The primary value of Seq-Reduce lies in its simplicity.
Also, it serves as a proof of concept for a generalized delta debugger
based on randomized search.

Fast-Reduce Fast-Reduce is by far the fastest reducer. However,
its final output is often too large to be included in compiler bug
reports—its median output size is almost 3 KB—so further reduction
must be performed by hand or by a different automated reducer.

C-Reduce C-Reduce is the only reducer we tested that consistently
produces results that we would directly copy into a bug report.
Listing 3 shows the median-sized reduced test case out of the 41
reduced wrong-code outputs produced by C-Reduce (for C-Reduce
paired with Frama-C). It reasonably approximates the “typical”

7

Berkeley delta Berkeley delta C-Reduce C-Reduce
Original with Frama-C with KCC Seq-Reduce Fast-Reduce with Frama-C with KCC

ID Compiler Flags Size Size Time Size Time Size Time Size Time Size Time Size Time
W1 Clang 2.7 –O2 58,753 10,745 3 10,745 40 16,556 20 49,810 0 295 6 295 64
W2 GCC 3.2.0 –O3 54,301 15,153 4 15,153 30 15,717 20 50,200 1 179 5 179 42
W3 GCC 3.2.0 –O3 62,095 6,624 4 6,624 57 13,860 20 1,230 0 214 6 214 62
W4 GCC 3.3.0 –O3 54,301 15,153 4 15,153 31 22,410 20 50,200 0 176 5 176 39
W5 GCC 3.3.0 –O3 60,010 1,379 1 1,902 54 12,948 20 55,908 0 248 5 248 41
W6 GCC 3.3.0 –O3 89,036 2,414 2 2,399 47 9,992 20 85,944 0 248 5 248 46
W7 GCC 3.4.0 –O3 39,489 9,647 2 9,647 23 4,632 20 30,525 0 184 5 184 44
W8 GCC 4.0.0 –O3 42,516 1,995 5 2,550 91 13,953 20 2,247 1 134 11 134 67
W9 GCC 4.1.0 –O1 57,079 1,775 1 1,775 27 41,209 20 586 0 178 6 178 28
W10 GCC 4.1.0 –O1 81,067 5,789 4 4,044 113 47,841 20 5,299 0 242 9 242 215
W11 GCC 4.1.0 –O3 50,081 6,559 3 6,498 44 5,730 20 47,057 0 873 11 745 69
W12 GCC 4.1.0 –O3 57,028 11,658 3 11,658 32 5,911 20 2,124 0 202 27 202 209
W13 GCC 4.1.0 –O3 61,119 10,570 7 10,570 114 20,010 20 12,321 1 221 13 221 132
W14 GCC 4.2.0 –O0 44,078 5,208 2 5,208 21 5,615 20 2,407 0 176 5 176 32
W15 GCC 4.2.0 –O0 53,922 12,418 4 12,418 33 9,636 20 3,661 3 868 22 868 81
W16 GCC 4.2.0 –O0 56,842 15,772 7 13,585 144 7,001 20 52,377 0 971 18 971 343
W17 GCC 4.2.0 –O1 41,262 8,312 3 8,312 75 5,980 20 36,647 0 205 11 205 153
W18 GCC 4.3.0 –O0 45,298 7,816 4 7,816 63 10,652 20 6,094 0 196 7 196 79
W19 GCC 4.3.0 –O0 55,727 5,975 4 5,975 190 17,089 20 903 0 182 9 182 119
W20 GCC 4.3.0 –O2 64,349 10,233 9 10,233 88 30,228 20 2,990 0 205 10 205 72
W21 GCC 4.3.0 –O2 67,227 10,396 6 10,360 209 11,097 20 1,670 0 172 6 172 134
W22 GCC 4.3.0 –Os 96,273 10,689 7 10,814 119 37,327 20 1,961 0 192 12 199 663
W23 GCC 4.4.0 –O0 43,030 859 1 859 14 1,216 20 384 0 179 1 179 11
W24 GCC 4.4.0 –O0 52,278 1,144 1 753 130 1,103 20 393 0 182 1 182 73
W25 GCC 4.4.0 –O0 65,597 1,108 1 1,108 46 1,119 20 397 0 179 1 179 14
W26 GCC 4.4.0 –O2 40,147 4,120 2 4,120 13 6,805 20 36,060 0 755 5 755 30
W27 GCC 4.4.0 –Os 86,103 3,537 2 3,537 60 7,257 20 801 0 245 4 245 53
W28 Intel CC 12.0.5 –O2 42,510 13,983 6 13,983 260 18,181 20 33,530 1 187 81 317 2,312
W29 Intel CC 12.0.5 –Os 38,232 9,756 5 9,756 55 22,635 20 3,007 0 162 12 173 59
W30 Intel CC 12.0.5 –fast 48,803 2,967 4 2,967 28 9,242 20 2,317 0 185 7 196 31
W31 Intel CC 12.0.5 –fast 81,103 6,881 8 6,881 252 56,247 20 7,353 1 119 10 130 268
W32 Open64 4.2.4 –O2 43,176 1,428 2 1,428 28 1,259 20 376 0 218 4 218 28
W33 Open64 4.2.4 –O2 43,384 6,874 3 6,874 82 5,997 20 4,802 0 207 8 207 108
W34 Open64 4.2.4 –O2 65,732 3,976 4 3,948 77 12,189 20 316 0 216 5 216 91
W35 Open64 4.2.4 –O2 79,971 2,512 5 2,687 118 11,165 20 427 0 218 6 218 127
W36 Open64 4.2.4 –O3 96,008 30,239 11 29,956 279 17,091 20 31,320 11 160 102 160 1,129
W37 Sun CC 5.11 –xO2 41,597 1,023 1 1,023 5 1,173 20 241 0 148 4 148 11
W38 Sun CC 5.11 –xO2 43,176 6,391 3 6,391 54 6,109 20 1,767 0 144 8 144 86
W39 Sun CC 5.11 –xO2 43,384 7,090 3 7,090 77 5,744 20 2,046 0 145 7 145 113
W40 Sun CC 5.11 –xO2 69,657 6,025 4 6,025 108 28,710 20 6,340 1 204 13 204 143
W41 Sun CC 5.11 –xO2 70,793 1,322 1 1,322 18 14,302 20 248 0 145 3 145 21

Mean 58,208 7,256 4 7,174 82 14,462 20 15,470 1 258 12 259 182
Median 55,727 6,559 4 6,498 57 11,097 20 2,990 0 192 7 199 72

Table 1. Compiler bugs used in the “wrong code” part of our evaluation. Program sizes are in bytes, and reduction times are in minutes.

C-Reduce output that might be reported to a compiler developer.
The original test case emitted by Csmith was 94 KB—clearly much
too large to be included in any reasonable bug report. C-Reduce’s
median run time when combined with Frama-C is seven minutes;
with KCC it is 72 minutes.

In some cases, Berkeley delta or C-Reduce when combined with
KCC produces different final output than the same tool combined
with Frama-C. This happens when KCC and Frama-C disagree about
the definedness of one or more variants. Often, the disagreement is
due to a tool timing out; we killed either tool whenever it took more
than three seconds longer to analyze a variant than it took to analyze
the original, unreduced version of the program being reduced.
However, there are also real differences between the sets of programs
that these tools consider to be well-defined. We investigated these
issues and found three classes of root causes. First, differential
testing of KCC and Frama-C revealed a small number of bugs in the
tools. (These bugs did not affect the numbers that we report, because
we fixed them before running our experiments.) Second, C is a
language with many extensions and dialects, and sometimes these
tools’ differing goals caused them to differently accept non-standard
inputs. For example, Frama-C aims for pragmatic compatibility
with existing C code, and so it accepts GCC’s extended ternary
operator which permits the second operand to be omitted: e.g., x?:y.
On the other hand, KCC aims for strict standards compliance and
rejects this construct. The third class of differences we found results

from genuine corner cases in the standard; we were not always able
to resolve these issues even after talking to experts. For example,
the C99 standard is not entirely clear about the definedness of the
expression (s.f1=0) + (s.f2=0) when f1 and f2 are bitfields
that may occupy the same byte of storage.

7.4 Analysis of Compiler-Crash Bug Results
The general relationships between the reducers for wrong-code bugs
(Table 1) also hold for compiler-crash bugs (Table 2). In terms of size
of final output, Seq-Reduce and Fast-Reduce are worst, Berkeley
delta is better, and C-Reduce is best.

Relative to the reducers’ performance on test cases that trigger
wrong-code bugs, test-case reduction for compiler-crash bugs is
faster (C-Reduce, for example, always finished in less than 20 min-
utes) and the reduced test cases are generally smaller. The speed-up
is partly due to not having to run the expensive validity checkers for
undefined behavior (Section 5.2.4). Also, when the requirement to
have a complete test case (including main) is relaxed, test cases can
be made smaller, reducing the size of the search space.

For our corpus of test cases that trigger compiler-crash bugs,
Listing 4 shows the median-sized reduced test case output by
C-Reduce. The reduced test case is reportable as-is, whereas the
corresponding original test case (C28) was 72 KB.

8

O
ri

gi
na

l
B

er
ke

le
y

de
lta

Se
q-

R
ed

uc
e

Fa
st

-R
ed

uc
e

C
-R

ed
uc

e
ID

C
om

pi
le

r
Fl

ag
s

Si
ze

Si
ze

Ti
m

e
Si

ze
Ti

m
e

Si
ze

Ti
m

e
Si

ze
Ti

m
e

C
ra

sh
St

ri
ng

C
1

C
la

ng
2.

6
–O

0
10

2,
01

2
69

6
0

1,
32

0
20

98
,5

43
0

10
1

1
As

se
rt

io
n

‘R
D-

>h
as

Fl
ex

ib
le

Ar
ra

yM
em

be
r(

)
&&

"M
us

t
ha

ve
fl

ex
ib

le
ar

ra
..

.
C

2
C

la
ng

2.
6

–O
2

13
0,

93
1

8,
33

4
7

40
,0

62
20

12
3,

29
3

0
10

3
4

As
se

rt
io

n
‘i

sa
<X

>(
Va

l)
&&

"c
as

t<
Ty

>(
)

ar
gu

me
nt

of
in

co
mp

at
ib

le
ty

pe
..

.
C

3
C

la
ng

2.
6

–O
2

21
1,

18
7

14
,1

68
3

16
6,

72
9

20
21

3,
71

8
0

12
3

3
As

se
rt

io
n

‘S
<

E
&&

"C
an

no
t

cr
ea

te
em

pt
y

or
ba

ck
wa

rd
s

ra
ng

e"
’

fa
il

ed
.

C
4

C
la

ng
2.

6
–O

3
30

3,
86

9
14

,4
60

23
67

,6
78

20
30

7,
93

1
10

31
4

18
As

se
rt

io
n

‘C
on

st
an

tV
al

==
V

&&
"M

ar
ki

ng
co

ns
ta

nt
wi

th
di

ff
er

en
t

va
l.

..
C

5
C

la
ng

2.
6

–O
2

41
,0

49
41

,1
89

0
11

,5
48

20
35

,5
05

0
81

0
3

As
se

rt
io

n
‘g

et
Ty

pe
Si

ze
In

Bi
ts

(O
p-

>g
et

Ty
pe

()
)

>
ge

tT
yp

eS
iz

eI
nB

it
s(

Ty
).

..
C

6
C

la
ng

2.
6

–O
0

43
,2

67
72

5
0

1,
79

2
20

34
,6

69
0

14
2

0
As

se
rt

io
n

‘w
id

th
>

Bi
tW

id
th

&&
"I

nv
al

id
AP

In
t

Ze
ro

Ex
te

nd
re

qu
es

t"
’

..
.

C
7

C
la

ng
2.

6
–O

1
43

,3
96

3,
46

5
1

20
,0

91
20

33
,6

75
0

17
8

1
As

se
rt

io
n

‘(
is

a<
PH

IN
od

e>
(G

lo
ba

lU
se

r)
||

is
a<

Se
le

ct
In

st
>(

Gl
ob

al
Us

er
).

..
C

8
C

la
ng

2.
6

–O
1

65
,6

57
95

4
0

1,
56

5
20

62
,8

04
0

10
4

1
As

se
rt

io
n

‘N
ex

tF
ie

ld
Of

fs
et

In
By

te
s

<=
Fi

el
dO

ff
se

tI
nB

yt
es

&&
"F

ie
ld

o.
..

C
9

C
la

ng
2.

6
–O

2
76

,9
60

14
,3

97
3

52
,6

27
20

70
,4

16
0

26
1

6
As

se
rt

io
n

‘S
or

te
dP

os
==

Al
lN

od
es

.e
nd

()
&&

"T
op

ol
og

ic
al

so
rt

in
co

mp
l.

..
C

10
C

la
ng

2.
6

–O
1

84
,3

45
11

,1
52

4
20

,7
41

20
74

,0
56

0
30

1
3

As
se

rt
io

n
‘N

->
ge

tO
pc

od
e(

)
!=

IS
D:

:D
EL

ET
ED

_N
OD

E
&&

RV
.g

et
No

de
()

->
ge

t.
..

C
11

C
la

ng
2.

7
–O

1
43

,3
96

3,
46

5
1

17
,4

10
20

33
,6

75
0

17
8

1
As

se
rt

io
n

‘(
is

a<
PH

IN
od

e>
(G

lo
ba

lU
se

r)
||

is
a<

Se
le

ct
In

st
>(

Gl
ob

al
Us

er
).

..
C

12
C

la
ng

2.
7

–O
0

55
,2

34
5,

47
9

0
14

,1
29

20
46

,1
45

0
65

1
As

se
rt

io
n

‘u
ns

ig
ne

dR
an

ge
.N

on
Ne

ga
ti

ve
&&

"u
ns

ig
ne

d
ra

ng
e

in
cl

ud
es

ne
..

.
C

13
C

la
ng

2.
7

–O
2

82
,6

90
12

,6
82

3
38

,0
30

20
73

,0
32

0
11

9
4

As
se

rt
io

n
‘(

!F
ro

m-
>h

as
An

yU
se

Of
Va

lu
e(

i)
||

Fr
om

->
ge

tV
al

ue
Ty

pe
(i

)
==

..
.

C
14

G
C

C
3.

2.
0

–O
1

10
5,

19
7

8,
94

2
3

13
,3

82
20

9,
75

7
1

10
1

2
In

te
rn

al
co

mp
il

er
er

ro
r

in
fi

xu
p_

va
r_

re
fs

_1
,

at
fu

nc
ti

on
.c

:1
96

4
C

15
G

C
C

3.
2.

0
–O

3
11

8,
28

9
11

,0
63

2
16

,6
22

20
11

,0
36

0
33

9
4

un
ab

le
to

fi
nd

a
re

gi
st

er
to

sp
il

l
in

cl
as

s
‘D

RE
G’

C
16

G
C

C
3.

2.
0

–O
3

14
1,

19
8

17
,4

09
3

19
,2

11
20

26
,8

18
11

14
6

4
un

ab
le

to
fi

nd
a

re
gi

st
er

to
sp

il
l

in
cl

as
s

‘A
RE

G’
C

17
G

C
C

3.
2.

0
–O

2
44

,0
47

7,
37

1
1

6,
77

9
20

6,
58

4
0

97
1

In
te

rn
al

co
mp

il
er

er
ro

r
in

ex
tr

ac
t_

in
sn

,
at

re
co

g.
c:

21
48

C
18

G
C

C
3.

2.
0

–O
1

53
,9

48
5,

82
8

1
6,

62
9

20
2,

50
1

0
55

1
In

te
rn

al
co

mp
il

er
er

ro
r

in
do

_S
UB

ST
,

at
co

mb
in

e.
c:

43
9

C
19

G
C

C
3.

2.
0

–O
3

60
,8

78
10

,5
39

2
11

,9
53

20
58

,4
79

0
17

7
2

In
te

rn
al

co
mp

il
er

er
ro

r
in

pr
in

t_
re

g,
at

co
nf

ig
/i

38
6/

i3
86

.c
:5

64
0

C
20

G
C

C
3.

3.
0

–O
3

66
,5

80
7,

93
0

1
26

,2
82

20
6,

65
9

1
23

3
3

in
te

rn
al

co
mp

il
er

er
ro

r:
in

pr
in

t_
re

g,
at

co
nf

ig
/i

38
6/

i3
86

.c
:6

55
8

C
21

G
C

C
3.

4.
0

–O
3

14
8,

88
6

28
,5

54
3

30
,8

83
20

14
7,

89
5

1
12

5
11

in
te

rn
al

co
mp

il
er

er
ro

r:
in

ou
tp

ut
_2

11
,

at
in

sn
-o

ut
pu

t.
c:

19
95

C
22

G
C

C
3.

4.
0

–O
3

66
,5

80
8,

13
1

2
26

,0
28

20
6,

19
8

1
21

0
3

in
te

rn
al

co
mp

il
er

er
ro

r:
in

pr
in

t_
re

g,
at

co
nf

ig
/i

38
6/

i3
86

.c
:7

05
2

C
23

G
C

C
4.

0.
0

–O
2

10
5,

84
3

2,
96

5
4

85
,2

45
20

94
9

0
74

2
in

te
rn

al
co

mp
il

er
er

ro
r:

in
ge

t_
in

di
re

ct
_r

ef
_o

pe
ra

nd
s,

at
tr

ee
-s

sa
-.

..
C

24
G

C
C

4.
0.

0
–O

2
11

8,
30

5
5,

02
4

4
36

,4
78

20
6,

87
9

0
65

3
in

te
rn

al
co

mp
il

er
er

ro
r:

in
ma

ke
_d

ec
l_

rt
l,

at
va

ra
sm

.c
:8

68
C

25
G

C
C

4.
0.

0
–O

0
19

4,
52

9
5,

62
9

1
17

,1
82

20
23

,2
91

10
71

1
in

te
rn

al
co

mp
il

er
er

ro
r:

in
c_

co
mm

on
_t

yp
e,

at
c-

ty
pe

ck
.c

:5
29

C
26

G
C

C
4.

0.
0

–O
1

25
3,

15
2

28
,2

22
10

33
,4

43
20

25
4,

37
3

1
12

4
10

in
te

rn
al

co
mp

il
er

er
ro

r:
in

ex
pa

nd
_s

hi
ft

,
at

ex
pm

ed
.c

:2
29

7
C

27
G

C
C

4.
0.

0
–O

0
66

,1
95

6,
19

6
1

5,
42

3
20

5,
93

3
10

66
1

in
te

rn
al

co
mp

il
er

er
ro

r:
in

c_
co

mm
on

_t
yp

e,
at

c-
ty

pe
ck

.c
:5

31
C

28
G

C
C

4.
0.

0
–O

2
73

,9
13

11
,0

12
2

24
,7

29
20

13
,9

33
0

12
4

3
in

te
rn

al
co

mp
il

er
er

ro
r:

in
va

r_
an

n,
at

tr
ee

-f
lo

w-
in

li
ne

.h
:3

4
C

29
G

C
C

4.
1.

0
–O

1
10

5,
84

3
7,

95
1

4
58

,9
47

20
94

9
0

83
2

in
te

rn
al

co
mp

il
er

er
ro

r:
in

ge
t_

in
di

re
ct

_r
ef

_o
pe

ra
nd

s,
at

tr
ee

-s
sa

-.
..

C
30

G
C

C
4.

1.
0

–O
1

13
7,

61
5

18
,0

96
7

29
,0

13
21

14
1,

42
3

1
13

3
4

in
te

rn
al

co
mp

il
er

er
ro

r:
Se

gm
en

ta
ti

on
fa

ul
t

C
31

G
C

C
4.

1.
0

–O
2

19
0,

61
3

16
,1

78
6

47
,2

55
20

18
6,

77
7

0
89

5
in

te
rn

al
co

mp
il

er
er

ro
r:

in
co

mp
ar

e_
na

me
_w

it
h_

va
lu

e,
at

tr
ee

-v
rp

.c
:.

..
C

32
G

C
C

4.
1.

0
–O

1
60

,7
56

8,
75

8
2

31
,5

82
20

3,
81

1
0

95
2

in
te

rn
al

co
mp

il
er

er
ro

r:
in

si
mp

li
fy

_c
on

d_
an

d_
lo

ok
up

_a
va

il
_e

xp
r,

at
..

.
C

33
G

C
C

4.
1.

0
–O

1
63

,4
26

45
5

0
1,

04
0

20
51

8
0

68
0

in
te

rn
al

co
mp

il
er

er
ro

r:
in

re
g_

or
_s

ub
re

gn
o,

at
ju

mp
.c

:2
01

1
C

34
G

C
C

4.
1.

0
–O

3
70

,4
38

6,
91

3
3

24
,7

80
20

10
,7

37
0

15
4

3
fa

ta
l

er
ro

r:
in

te
rn

al
co

ns
is

te
nc

y
fa

il
ur

e
C

35
G

C
C

4.
2.

0
–O

1
10

5,
84

3
7,

98
3

4
85

,2
70

20
94

9
0

83
2

in
te

rn
al

co
mp

il
er

er
ro

r:
in

ge
t_

in
di

re
ct

_r
ef

_o
pe

ra
nd

s,
at

tr
ee

-s
sa

-.
..

C
36

G
C

C
4.

2.
0

–O
1

14
9,

66
4

58
6

1
1,

49
7

20
45

0
3

10
7

1
in

te
rn

al
co

mp
il

er
er

ro
r:

in
re

g_
or

_s
ub

re
gn

o,
at

ju
mp

.c
:2

01
0

C
37

G
C

C
4.

3.
0

–O
1

13
8,

79
8

8,
84

3
8

10
3,

92
8

20
4,

46
0

2
16

4
6

in
te

rn
al

co
mp

il
er

er
ro

r:
in

se
t_

la
tt

ic
e_

va
lu

e,
at

tr
ee

-s
sa

-c
cp

.c
:4

86
C

38
G

C
C

4.
3.

0
–O

2
14

9,
66

4
58

6
1

1,
58

9
21

45
0

2
10

7
2

in
te

rn
al

co
mp

il
er

er
ro

r:
in

re
g_

or
_s

ub
re

gn
o,

at
ju

mp
.c

:1
72

8
C

39
G

C
C

4.
3.

0
–O

3
15

5,
05

1
20

,0
84

7
18

,0
71

20
16

,7
32

1
12

8
5

in
te

rn
al

co
mp

il
er

er
ro

r:
in

ve
ct

_u
pd

at
e_

iv
s_

af
te

r_
ve

ct
or

iz
er

,
at

tr
..

.
C

40
G

C
C

4.
3.

0
–O

1
16

1,
83

4
7,

03
1

9
15

,0
47

20
7,

11
5

1
66

8
in

te
rn

al
co

mp
il

er
er

ro
r:

in
ge

t_
ad

dr
_d

er
ef

er
en

ce
_o

pe
ra

nd
s,

at
tr

ee
-.

..
C

41
G

C
C

4.
3.

0
–O

3
21

8,
11

4
38

,9
41

22
52

,3
61

20
21

9,
87

2
0

20
3

19
Se

gm
en

ta
ti

on
fa

ul
t

(p
ro

gr
am

cc
1)

C
42

In
te

lC
C

12
.0

.5
–O

1
74

,3
96

4,
98

0
2

97
5

20
1,

59
7

1
98

3
in

te
rn

al
er

ro
r:

ba
ck

en
d

si
gn

al
s

C
43

O
pe

n6
4

4.
2.

4
–O

3
13

1,
52

6
8,

50
9

3
12

,0
88

20
17

,5
84

1
12

9
4

As
se

rt
io

n
fa

il
ur

e
at

li
ne

22
79

of
ln

ou
ti

ls
.c

xx
:

C
44

O
pe

n6
4

4.
2.

4
–O

3
20

2,
96

6
26

,5
31

18
44

,4
03

20
24

,1
16

10
64

13
As

se
rt

io
n

fa
il

ur
e

at
li

ne
20

88
of

cg
em

it
.c

xx
:

C
45

O
pe

n6
4

4.
2.

4
–O

3
26

2,
00

5
11

,5
13

7
68

,5
41

28
17

,4
17

2
57

5
As

se
rt

io
n

fa
il

ur
e

at
li

ne
54

50
of

wh
ir

l2
op

s.
cx

x:
C

46
O

pe
n6

4
4.

2.
4

–O
2

52
,4

97
8,

54
1

2
8,

58
5

20
48

,1
85

0
23

3
4

Si
gn

al
:

Se
gm

en
ta

ti
on

fa
ul

t
in

Gl
ob

al
Op

ti
mi

za
ti

on
--

De
ad

Co
de

El
im

..
.

C
47

O
pe

n6
4

4.
2.

4
–O

3
57

,4
27

9,
80

9
2

6,
66

1
20

53
,3

27
0

14
2

2
Si

gn
al

:
Se

gm
en

ta
ti

on
fa

ul
t

in
Gl

ob
al

Op
ti

mi
za

ti
on

--
Cr

ea
te

AU
X

Sy
m.

..
C

48
O

pe
n6

4
4.

2.
4

–O
3

66
,8

90
3,

72
1

1
9,

99
4

20
2,

87
3

0
16

1
2

Si
gn

al
:

Se
gm

en
ta

ti
on

fa
ul

t
in

CG
LO

OP
ph

as
e.

C
49

O
pe

n6
4

4.
2.

4
–O

3
73

,8
92

8,
14

4
3

13
,1

27
20

5,
36

1
0

18
5

3
As

se
rt

io
n

fa
il

ur
e

at
li

ne
22

95
of

ln
ou

ti
ls

.c
xx

:
C

50
Su

n
C

C
5.

11
–x

O
4

10
9,

44
0

10
,5

06
3

10
,3

22
20

13
,9

86
11

15
8

3
Fa

ta
l

er
ro

r
in

/h
om

e/
re

ge
hr

/z
/S

ol
ar

is
St

ud
io

12
.2

-l
in

ux
-x

86
-t

ar
-M

L/
so

..
.

C
51

Su
n

C
C

5.
11

–f
as

t
11

4,
92

8
11

,9
06

3
37

,9
86

20
11

1,
11

1
0

11
6

6
(i

ro
pt

)
er

ro
r:

IR
_O

P
is

no
t

a
re

du
ct

io
n

op
!

C
52

Su
n

C
C

5.
11

–x
O

4
13

0,
69

1
8,

55
4

2
80

,1
98

20
12

5,
55

2
0

15
2

2
(i

ro
pt

)
er

ro
r:

le
af

_l
oo

ku
p_

ex
pr

:
ba

d
le

af
(t

ag
=0

)
C

53
Su

n
C

C
5.

11
–f

as
t

41
,1

83
3,

67
9

1
17

,0
02

20
31

,8
87

0
13

1
1

as
se

rt
io

n
fa

il
ed

in
fu

nc
ti

on
no

de
_a

pp
ro

x(
)

@
fo

rw
ar

d.
c:

29
1

C
54

Su
n

C
C

5.
11

–x
O

0
51

,0
49

27
2

0
1,

57
9

20
1,

22
6

0
65

0
in

te
rn

al
co

mp
il

er
er

ro
r:

co
nf

us
ed

cg
_i

nf
lu

sh
()

C
55

Su
n

C
C

5.
11

–x
O

3
68

,3
96

19
,0

01
4

39
,9

25
20

63
,3

64
0

16
1

3
as

se
rt

io
n

fa
il

ed
in

fu
nc

ti
on

cf
g_

pr
oc

es
s_

lo
op

s(
)

@
cf

g.
c:

71
46

C
56

Su
n

C
C

5.
11

–x
O

4
71

,9
41

13
,2

04
2

2,
34

0
20

6,
36

2
0

12
2

2
As

se
rt

io
n

‘n
ew

_c
hi

ld
Ad

dr
.o

ff
se

t
>=

0
&&

ne
w_

ch
il

dA
dd

r.
of

fs
et

<
ne

w_
..

.
C

57
Su

n
C

C
5.

11
–f

as
t

72
,2

49
5,

93
5

2
44

,5
07

20
67

,5
69

0
32

5
3

as
se

rt
io

n
fa

il
ed

in
fu

nc
ti

on
gr

a_
bi

as
ed

_s
el

ec
t(

)
@

gr
a.

c:
10

41
8

M
ea

n
10

8,
60

8
10

,4
07

4
29

,5
19

20
52

,1
84

2
15

1
4

M
ed

ia
n

84
,3

45
8,

50
9

2
19

,2
11

20
23

,2
91

0
12

4
3

Ta
bl

e
2.

C
om

pi
le

rb
ug

s
us

ed
in

th
e

“c
ra

sh
”

pa
rt

of
ou

re
va

lu
at

io
n.

Pr
og

ra
m

si
ze

s
ar

e
in

by
te

s,
an

d
re

du
ct

io
n

tim
es

ar
e

in
m

in
ut

es
.

9

int **a[][0];
static int ***const b = &a[0][1];
void fn1 ();
int
fn2 () {
return ***b;
fn1 ();

}
void
fn1 () {
**b;

}

Listing 4. The median-sized reduced test case output by C-Reduce
for compiler-crash bugs. GCC 4.0.0 for x86-64 crashes at –O2. This
is C28 in Table 2.

Orig. Size Reduced Test-Case Size (Tokens)
File (Tokens) HDD* Berkeley delta C-Reduce
bug.c 277 51 61 41
boom7.c 420 19 256 20
cache.c 25,011 58 124 42

Table 3. Comparing HDD*, Berkeley delta, and C-Reduce

7.5 Detecting Invalid Variants
Our claim is that naïve reducers tend to introduce problematic unde-
fined and unspecified behaviors. In the experiments we performed
with our corpus, during every wrong-code reduction run using Berke-
ley delta and C-Reduce, the reducers encountered variants with
undefined behavior that could not be detected using compiler warn-
ings, LLVM/Clang’s static analyzer, or Valgrind. However, these
undefined variants were detected by KCC and Frama-C.

We performed another experiment in which we reduced the
wrong-code test cases utilizing compiler warnings, the LLVM/Clang
static analyzer, and Valgrind to detect invalid variants, but not using
KCC or Frama-C. In this experiment, 12 of the 41 reduced test cases
(29%) dynamically executed an undefined behavior that would have
rendered the test case inappropriate for use in a bug report. This ratio
is unacceptably high. In our experience with compiler-bug reporting,
we believe that a compiler team would learn to mistrust and ignore
a bug submitter after fewer than 12 invalid bug reports.

7.6 Comparison with Hierarchical Delta Debugging
Although source code for HDD is available, we were not able to
obtain code for its C front end. Therefore we were not able to include
HDD in our experiments that compare reducers over our corpus of
inputs that trigger compiler-crash bugs and wrong-code bugs. We
did, however, perform a small experiment to compare C-Reduce
with previously reported HDD results.

We compared Berkeley delta and C-Reduce with the results
reported by Misherghi and Su [13] for reducing three test cases
that cause GCC 2.95.2 to crash. (We could not find source code for
a fourth test case used in their paper.) In particular, we compared
Berkeley delta and C-Reduce with the results reported for HDD*,
which is the particular algorithm by Misherghi and Su that yields the
best results for the three test cases. As in our previous experiments
with crash bugs, we did not use KCC or Frama-C to check for
undefined behavior in reduced test cases. This configuration also
creates a fair comparison, since HDD* itself does not check for
undefined behavior in test cases.

Table 3 shows the results. For two of the cases, C-Reduce
produces smaller output. For boom7.c, C-Reduce’s output is one
token larger. A previous version of C-Reduce produced an 18-token
output for this case, two smaller than the current version. Our
experience is that incidental phase-ordering issues in the reducer

(not unlike similar issues seen in compilers) can easily cause the
final reduced output to be a few tokens larger or smaller. We did not
compare the execution times of C-Reduce and HDD, but it is safe
to assume that the brute-force C-Reduce is considerably slower.

7.7 When Does Reduction Fail?
Non-deterministic execution of the system under test can cause
test-case reduction to fail. In our experience, the most common
sources of non-determinism are memory-safety bugs interacting
with ASLR and resource-exhaustion conditions such as timeouts and
memory limits. However, even deterministic bugs can be resistant to
reduction, particularly when these bugs stem from internal resource
limits in a compiler. For example, a bug in register-spilling logic
may simply require a large amount of code before it is triggered.

Reduction can fail in a different sense if the original and reduced
test cases trigger different bugs. For crash bugs, we robustly avoid
this problem by looking for the specific error string that characterizes
the compiler crash. Examining the crash string is part of the
process of disambiguating successful and unsuccessful variants. In
contrast to compiler-crash bugs, wrong-code bugs have no obvious
fingerprint. A pragmatic approach is to fix whatever bug happens
to be triggered by the reduced test case, and then to check if the
original test case still triggers a miscompilation.

8. Related Work
Previous work has sought to reduce C programs in order to track
down compiler defects. Caron and Darnell [3] developed Bugfind, a
tool that narrows wrong-code bug triggers down to a single C file
and finds the lowest optimization level that triggers miscompilation.
Whalley’s tool, vpoiso [15], is primarily concerned with isolating
the transformation that generates wrong code. However, it also
includes functionality to narrow miscompilations down to a single
function in the source program. McKeeman presented a random C
program generator for testing C compilers [11], including a test-
case reduction tool that operates at a finer granularity than Bugfind
or vpoiso. McKeeman’s tool appears to be similar to C-Reduce’s
peephole passes. An important difference between previous program
reducers and ours is that our reducers address the test-case validity
problem. To the best of our knowledge, the problem of maintaining
the semantic validity of test cases during reduction has not been
previously identified or solved.

Our new C program reducers are instances of generalized delta
debugging algorithms. Zeller and Hildebrandt [18] developed delta
debugging in 2002 and instantiated it in the dd and ddmin algorithms.
Their main contribution was to abstract the test-case minimization
problem away from any specific domain. McPeak and Wilkerson’s
version of ddmin, “Berkeley delta” [12], reduces test cases at line
granularity. For appropriately structured inputs, this technique can
be more efficient than character-based ddmin. By allowing only
whole-line deletions, Berkeley delta reduces the size of the search
space; if most lines are semantically independent from each other,
variants are also likely to be valid test cases. Subsequently, Mish-
erghi and Su [13] developed Hierarchical Delta Debugging (HDD),
which reduces tree-structured test cases. Berkeley delta can also
reduce tree-structured inputs with the help of its topformflat utility,
which reformats block-structured text to match Berkeley delta’s
line-oriented strategy for producing variants. Permitting a delta de-
bugger to exploit the natural hierarchical structure found in some
domains leads to much faster reduction times and also to better
results. Our new program reducers embody new techniques for
generating variants, including random perturbation of a program
generator’s state (Seq-Reduce), run-time feedback (Fast-Reduce),
and pluggable, non-localized program transformations (C-Reduce).
In contrast to previous delta-debugging algorithms, Fast-Reduce
and C-Reduce implement transformations that may increase the tex-

10

tual size of a test case (e.g., inlining), toward the goal of enabling
subsequent reductions.

Our Fast-Reduce reducer utilizes run-time feedback, whereas
our Seq-Reduce and C-Reduce implement “brute-force” techniques
to generate variants. A third approach to program reduction is
static analysis. Leitner et al. [9] combined static backward program
slicing with delta debugging to reduce test cases that were randomly
generated for unit testing Eiffel classes. Program slicing is used as
the first step to narrow down instructions that are responsible for
reaching the failure state. This greatly improves the scalability and
efficiency of subsequent delta debugging.

9. Conclusion
Our goal was to take large C programs that trigger compiler bugs
and automatically reduce them to test cases that are small enough
to be directly inserted into compiler bug reports. Previous program
reducers based on delta debugging failed to produce sufficiently
small test cases. Moreover, they frequently produced invalid test
cases that rely on undefined or unspecified behavior. We developed
three new reducers based on a generalized notion of delta debugging,
and we evaluated them on a corpus of 98 randomly generated
C programs that trigger bugs in production compilers. Over this
corpus, our best reduction algorithm achieves the goal of producing
reportable and valid test cases automatically.

Our future plans include the automatic production of additional
elements of a compiler bug report. Besides the information described
in Section 2, it would be useful to automatically determine the
first broken revision of the compiler and a minimized collection of
compiler flags triggering the problem. Better yet, fault-localization
techniques could be used to give compiler developers an idea about
where in the compiler the bug is likely to be found.

Beyond the evaluation of new reduction techniques for C, our
work provides insights into the nature of test-case reduction. First,
we observed that highly structured inputs make reduction difficult;
we claim that navigating complex input spaces requires rich and
domain-specific transformations that are beyond the capabilities of
basic delta-debugging searches. Second, we showed that it can be
useful to structure a test-case reducer as a collection of modular
reduction transformations whose execution is orchestrated by a
fixpoint computation. Finally, we identified the test-case validity
problem, which must be addressed in testing any system that admits
undefined or unspecified behaviors.

Software Our new reducers are open-source software, available
for download at http://embed.cs.utah.edu/creduce/.

Acknowledgments
We thank Alastair Reid and the anonymous PLDI ’12 reviewers for
their comments on drafts of this paper. Some of our experiments
were run on machines provided by the Utah Emulab testbed [16].
This research was supported, in part, by an award from DARPA’s
Computer Science Study Group. Pascal Cuoq was supported in part
by the ANR-funded U3CAT project. Chucky Ellison was supported
in part by NSA contract H98230–10–C–0294.

References
[1] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent

Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A
static analyzer for large safety-critical software. In Proc. of the
ACM SIGPLAN 2003 Conf. on Programming Language Design and
Implementation (PLDI), pages 196–207, San Diego, CA, June 2003.

[2] Géraud Canet, Pascal Cuoq, and Benjamin Monate. A value analysis
for C programs. In Proc. of the 9th IEEE Intl. Working Conf. on Source
Code Analysis and Manipulation, pages 123–124, Edmonton, Alberta,
Canada, September 2009.

[3] Jacqueline M. Caron and Peter A. Darnell. Bugfind: A tool for
debugging optimizing compilers. SIGPLAN Notices, 25(1):17–22,
January 1990.

[4] Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John
Regehr, Boris Yakobowski, and Xuejun Yang. Testing static analyzers
with randomly generated programs. In Proc. of the 4th NASA Formal
Methods Symposium (NFM 2012), Norfolk, VA, April 2012.

[5] Pascal Cuoq, Julien Signoles, Patrick Baudin, Richard Bonichon,
Géraud Canet, Loïc Correnson, Benjamin Monate, Virgile Prevosto,
and Armand Puccetti. Experience report: OCaml for an industrial-
strength static analysis framework. In Proc. of the 14th ACM SIG-
PLAN Intl. Conf. on Functional Programming (ICFP), pages 281–286,
Edinburgh, Scotland, 2009.

[6] Chucky Ellison and Grigore Roşu. An executable formal semantics
of C with applications. In Proc. of the 39th Symp. on Principles of
Programming Languages (POPL), pages 533–544, Philadelphia, PA,
January 2012.

[7] International Organization for Standardization. ISO/IEC 9899:TC3:
Programming Languages—C, 2007. http://www.open-std.org/
jtc1/sc22/wg14/www/docs/n1256.pdf.

[8] Rajeev Joshi, Greg Nelson, and Yunhong Zhou. Denali: A practical
algorithm for generating optimal code. ACM Transactions on Pro-
gramming Languages and Systems, 28(6):967–989, November 2006.

[9] Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa, and
Bertrand Meyer. Efficient unit test case minimization. In Proc. of
the 22nd Intl. Conf. on Automated Software Engineering (ASE), pages
417–420, Atlanta, GA, November 2007.

[10] MathWorks. Polyspace server 8.1 for C/C++, product brochure,
2010. http://www.mathworks.com/products/datasheets/
pdf/polyspace-server-for-c-c++.pdf.

[11] William M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100–107, December 1998.

[12] Scott McPeak and Daniel S. Wilkerson. Delta, 2003. http://delta.
tigris.org/.

[13] Ghassan Misherghi and Zhendong Su. HDD: Hierarchical delta
debugging. In Proc. of the 28th Intl. Conf. on Software Engineering
(ICSE), pages 142–151, Shanghai, China, May 2006.

[14] James W. Moore. ISO/IEC JTC 1/SC 22/WG 23: Programming
language vulnerabilities. http://grouper.ieee.org/groups/
plv/.

[15] David B. Whalley. Automatic isolation of compiler errors. ACM
Transactions on Programming Languages and Systems, 16(5):1648–
1659, September 1994.

[16] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet
Joglekar. An integrated experimental environment for distributed
systems and networks. In Proc. of the 5th Symp. on Operating Sys-
tems Design and Implementation (OSDI), pages 255–270, Boston, MA,
December 2002.

[17] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in C compilers. In Proc. of the ACM SIGPLAN
2011 Conf. on Programming Language Design and Implementation
(PLDI), pages 283–294, San Jose, CA, June 2011.

[18] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software Engineering,
28(2):183–200, February 2002.

11

http://embed.cs.utah.edu/creduce/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.mathworks.com/products/datasheets/pdf/polyspace-server-for-c-c++.pdf
http://www.mathworks.com/products/datasheets/pdf/polyspace-server-for-c-c++.pdf
http://delta.tigris.org/
http://delta.tigris.org/
http://grouper.ieee.org/groups/plv/
http://grouper.ieee.org/groups/plv/

	Abstract
	Introduction
	Reporting Compiler Bugs
	Background
	The Test-Case Minimization Problem
	Delta Debugging

	Generalized Delta Debugging
	Test-Case Validity
	The Validity Problem
	Solutions
	KCC
	Frama-C
	A Hybrid Solution
	Validity for Compiler-Crash Inputs

	New Approaches to Test-Case Reduction
	Reduction in Csmith by Altering the Random Number Sequence
	AST-Based Reduction in Csmith Using Run-Time Information
	A Modular Reducer

	Results
	Toward a Corpus of C Programs Triggering Diverse Compiler Bugs
	Evaluating Reducers
	Analysis of Wrong-Code Bug Results
	Analysis of Compiler-Crash Bug Results
	Detecting Invalid Variants
	Comparison with Hierarchical Delta Debugging
	When Does Reduction Fail?

	Related Work
	Conclusion
	Acknowledgments
	References

