
J. Software Engineering & Applications, 2010, 3: 477-486
doi:10.4236/jsea.2010.35054 Published Online May 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Test Cost Optimization Using Tabu Search

Anu Sharma*, Arpita Jadhav, Praveen Ranjan Srivastava, Renu Goyal

Computer Science and Information System Group, Birla Institute of Technology and Science, Pilani, India.

Email: {*anu11sharma1123, arpitajadhav, praveenrsrivastava}@gmail.com

Received January 5th, 2010; revised February 21st
, 2010; accepted February 25th

, 2010.

ABSTRACT

In order to deliver a complete reliable software product, testing is performed. As testing phase carries on, cost of testing

process increases and it directly affects the overall project cost. Many a times it happens that the actual cost becomes

more than the estimated cost. Cost is considered as the most important parameter with respect to software testing, in

software industry. In recent year’s researchers have done a variety of work in the area of Cost optimization by using

various concepts like Genetic Algorithm, simulated annealing and Automation in generation of test data etc. This paper

proposes an efficient cost effective approach for optimizing the cost of testing using Tabu Search (TS), which will provide

maximum code coverage along with the concepts of Dijkstra’s Algorithm which will be implemented in Aspiration criteria

of Tabu Search in order to optimize the cost and generate a minimum cost path with maximum coverage.

Keywords: Tabu Search, Test Cost Optimization, Dijikstra’s Algorithm

1. Introduction

Software engineering is not just to develop new software

but also that product should be more reliable and cost

effective so that client can effectively use that. According

to Bezier B [1], Software testing is an important factor in

software development life cycle in which one-third to

one-half of the total cost of the product is consumed only

on the testing process. Software testing is a process to

trace out the errors in software that intended to meet the

desired result of the programmer by satisfying all the pre

condition factors setup by the tester. Since, software

testing is becoming more popular and demanding area in

the software development industry in past few years [2].

Resulting product is very reliable if testing covers

maximum errors. But on the contrary, during testing the

cost can increase more than the expected value due to

inappropriate test cases. These inappropriate test cases

cause wastage of organizational resources as well as time.

There is a need to minimize the cost for getting an ac-

ceptable product.

In order to deal with the above issue and also to provide

good quality software within desired time and least cost

Researchers have applied several techniques on minimi-

zation of cost in testing of product, such as fuzzy logic,

automatically generation of test data [3]. But here we are

using Tabu Search [4]. Tabu Search will choose appro-

priate test paths and concepts of Dijkstra algorithm will be

implemented in Aspiration Criteria to optimize the cost. If

any test case does not provide maximum coverage, pro-

posed algorithm will backtrack and starts with a new path.

This paper is organized as follow:

Section 2 describes the general introduction to software

testing, Section 3 shows historical detail of the tabu search

in testing area, Section 4 describes about the tabu search,

Section 5 shows dijkstra algorithm used in proposed ap-

proach, Section 6 is the proposed technique which uses

tabu search with dijkstra algorithm, Section 7 is showing

experimental illustration of the proposed algorithm Sec-

tion VIII is conclusion and further work.

2. Software Testing

Although crucial to software quality and widely deployed

by programmers and testers, software testing still remains

an art, due to limited understanding of the principles of

software [1,2]. The software testing strategy is an impor-

tant process in case of software development lifecycle

model [2]. Testing is a process which leads delivery of

higher quality products, low cost, more accurate and re-

liable results of developed computer software. The pur-

pose of testing includes quality assurance, verification and

validation, or reliability estimation. If all shortest paths

which can be measured by plotting the control flow graph

[2], with maximum coverage are known to the tester,

estimated cost taken by testing process can be reduced.

3. Related Work

Organizations facing the challenge of solving testing cost

problems. Classical approaches often suggested solution

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

478

to the coverage problem but there is very less number of

solutions that control the cost while providing the rea-

sonable quality to the software. On tabu search research is

going on rapidly but no method exists to control the cost

of testing, Even if we do the automation there should be

some criteria to select the appropriate test cases.

Several attempts have been made over the years to

develop such an algorithm for the Optimization of the cost

to find out an efficient path automatically.

Research has applied many approaches for the same

purpose [5]. The basic algorithm of Tabu Search is ex-

plained in [6]. The concept of Tabu Search has also been

applied to optimize the Cost of the program with maxi-

mum code coverage [6]. Previously the work has been

done on the automation of test cases using Tabu search

algorithm on complex programs under test and large

number of input variables. Using these automation tools

cost can be reduced and saves the time [3,7]. Another

approach suggests the use of tabu search algorithm for

generation of structural software tests [4]. It also com-

bines the use of memory with a backtracking process to

avoid getting stuck in local minima [8]. To explore the

regions and to avoid the revisiting of candidate list a po-

sition guided tabu search based on metric search space has

been covered. To improve the intensification (search the

local optimal solution) and diversification (exploring new

regions)[9] ITS based approach has been used in a re-

search Tabu search implemented to “genetic” methods

and evolutionary method, to deal with the complex path

tabu search have adaptive memory structure so it can also

be applied to the neural networks. Tabu Search has been

also applied to solve the Job Shop Scheduling problem

using Genetic Algorithms [10]. Most of the scheduling

problems require either exponential time or space to

generate an optimal answer. Many researchers have been

done for identifying the infeasible paths of a program [11].

Different algorithms and techniques have been proposed

by the researchers to detect optimized paths

[12,13].Generating test data automatically and identifying

infeasible paths reduces the testing cost, time and effort

[14].

Since cost and code coverage play an important role in

testing. But not much of work has been suggested for cost

optimization with maximum code coverage. This paper

provides the solution for the above problem. Which em-

ploy Tabu Search algorithm with the concept of greedy

approach to provide a minimum cost path by covering

most of the nodes and storing the best path solution into

memory.

4. Tabu Search [6]

Tabu search is a metaheuristic approach which is used to

solve the optimization problems, [6,15]. It is designed to

guide other methods to escape the trap of local optimality,

also called local minima.

Overview of Tabu Search:

Three primary themes form the basis of Tabu search:

1) Flexible attribute-based memory structure: It is de-

signed in such a way so that the evaluation criteria as well

as historical search information can be exploited more

thoroughly than by rigid memory structures (as in branch

bound) or by memory less systems (as in case of simulated

annealing).

2) An associated mechanism of control is embodied for

employing the memory structures, which are based on the

interplay between conditions that constrain the search

process.

3) At different time spans, the incorporation of memory

functions, from short term to long term, as well as to im-

plement strategies for intensifying and diversifying the

search process to give optimal results.

a) Intensification strategies, helps in reinforcing and

moving combinations and solution features historically

that are found good.

b) Diversification strategies, drives the search process

into new regions as to explore every possible area and

region.

Distinguishable Features:

Short-term Memory and Aggressive Search:

Short-term memory constitutes a form for aggressive

exploration and captures the best move possible under

tabu restrictions. Tabu restrictions prevent the reversal

and repetition of certain moves by rendering selected

attributes covered in previous moves (forbidden). Primary

goal of tabu restriction is to permit the method to go be-

yond the points of local optimality during its iterations.

Tabu restrictions help in preventing cycles and induce the

search to follow a new trajectory, in case if cycling occurs.

Tabu Restriction [15]:

These are certain conditions which are imposed on

moves that make some of the moves forbidden. These

forbidden moves, in-turn are listed to a certain size called

as tabu. And this list is considered as “tabu list”. The

reason behind to denote a move as forbidden is to prevent

cycling and avoiding returning to the local optimum that

has been visited. In order to identify a good tabu list size,

simply watch the occurrence of cycling (if it occurs) when

the size of the list is too small and deteriorate the quality

of solution when the size of the list is too large which is

caused by forbidding too many moves. Remember, that

the size of tabu list should grow with the size of the

problem. Also it prevents the added edges from being

dropped as well as it prevents the dropped edges from

being added.

A general approach for the tabu search [3,15] is as shown

in Figure 1 and the basic elements of TS are as follows:

1) Current solution: it comprises a set of the optimized

parameter values for a given iteration. It plays a crucial

role in order to generate the neighbor trial solutions.

2) Moves: These are related to current solution and

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

479

characterize the process of generating the trial solutions.

3) Set of candidate moves: It comprises the set of all

possible moves or may be trial solutions.

4) Aspiration Criterion: It is a rule for overriding the

tabu restrictions, for example if certain move is forbidden

by tabu restriction, aspiration criterion has to be satisfied,

once it is satisfied, it can only make this move allowable.

One we considered here is to override the tabu status of a

move if this particular move yields a solution which has

better objective function (let it be J), than the one that was

obtained earlier within the same move. The phenomenon

behind using aspiration criterion is to add flexibility in the

tabu search by directing it towards better moves.

5) Long Term and Short Term Memory: Tabu incor-

porate two type of memory long term memory and short

term memory. Short term memory stores more recent

moves and long term memory keeps all the related moves.

6) Stopping Criterion: When best solution already

reached, maximum iterations have been performed and

when certain conditions are not meet.

5. Dijkstra Algorithm

Dijkstra’s algorithm [16] is a graph search algorithm, that

traverses all the nodes and it helps in providing minimum

cost path from source to destination node. It is also known

as greedy approach and it finds the shortest path between

single source to all other nodes.

That’s why sometime it is also called as single source

shortest path problem. It can also be used for finding costs

of shortest paths from a single source node to a single

destination node by stopping the algorithm once the

shortest path to the destination has been determined. For

example: in case of city problem, in which the vertices of

the graph represent cities and edge represents the distance

between the cities.

6. Proposed Solution (Tabu Search with

Dijkstra Algorithm)

Since cost and coverage are two important factors in case

of testing. Here in our proposed algorithm we are using

the Tabu Search concept to resolve both of the issues.

The algorithm as shown in the Figure 3. Which we

have developed uses tabu search [3,6,15] with the con-

cepts of Dijkstra’s Algorithm [16] which will be imple-

mented in Aspiration criteria of Tabu Search in order to

optimize the cost and generate a minimum cost path with

maximum coverage.

For fulfilling the desired purpose we are require to

inspect the program thoroughly to check the aspiration

criteria. For this our software will generates the control

flow graph of the statement automatically. Where node

represents the statement and link represents the flow of

control between the statements.

Our algorithm states that in case of fulfilment of all the

begin

 Initialise some current solution

 Calculate the cost of current solution and store it as best cost

 Store current solution as new solution

 Add new solution to tabu list

 do

 Calculate neighbourhood candidates

 Calculate the cost of candidates

 Store the best candidate as new solution

 Add new solution to tabu list

 if (the cost of new solution<best cost) then

 Store new solution as best solution

 Store the cost of new solution as best cost

 endif

 Store new solution as current solution

 while NOT Stop Criteria

end

Figure 1. Basic tabu search algorithm [3]

three conditions given in aspiration criteria will move

further to next iteration otherwise system goes in

backtracking stage. The flow of all related activities is as

depicted in Figure 2.

7. General Illustration of Proposed

Algorithm

In this section we have presented a simple program for the

calculation of the ship charge that depends on amount, tax

and rush charge. And then we have made its correspond-

ing control flow graph. This control graph is taken as input

for the software. In the graph, the nodes represent the

statements and the edges represent the flow between the

statements. The cost for several edges can be calculated

by using Halsted’s Software Science [2] or with the prior

experience of developer for the application.

Case Study: To test the proposed approach we have

applied that to the program given in Figure 4, and we will

check the solution iteration by iteration. At the end tabu

List store the best optimized path in its memory.

1) Figure 5. represents the intial control flow graph.

Here node ‘a’, represents the starting node and n repre-

sents ending node. Any graph can be provided as input.

This algorithm will provide minimum cost and maximum

code coverage.

2) Once the algorithm starts, here node ‘b’ is selected to

be the next node as its cost is minimum.Same criteria will

be used with respect to all other nodes.

3) Here the next node will be chosen as ‘c’ as c is the

other node with minimum cost.

4) Here the next node will be chosen as ‘d’.

5) Here the next node will be chosen as ‘n’.

6) In this step the algorithm will backtrack since the

path through ‘d’ did not give the least cost path. The next

node will be chosen as ‘e’.

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

480

Start

Initialize Tabu list

Make candidate list

Apply Aspiration Criteria

Put recent moves (Short term memory), Put Rest all

moves (long term memory)

Does it give max

coverage in min

cost?

Back track (stopping criteria)

Does it satisfy any

two conditions of

AC?

Enters into

Tabu list

Enters into Tabu

list

Figure 2. Flow graph

7) Here the next node will be chosen as ‘f’.

8) Here the next node will be chosen as ‘n’. In this step

this algorithm will backtrack since the path through ‘f’ did

not give the least cost path. The next node will be chosen

as ‘g’.

9) Here the next node will be chosen as ‘h’.

1. Start algorithm

For(N:=1; N<=candidate list C1; N++)

If

2. Aspiration criteria(Ac)(max. coverage && min. cost &&

reach to subgoal)

3. Calculate cost

4. Enter in the tabu list

Else

5. Backtracking beginning

Stopping Criteria (SC)[(max coverage && min. cost)!! (Max.

coverage && reach to subgoal)

6. Calculate cost

7. Enter in the tabu list

End

Figure 3. Proposed algorithm

Public double calculate(int amount)

{

Double rushcharge=0;

If(nextday.equals(“yes”)){

Rushcharge=14.50; }

Double tax=amount*.0725;

If(amount>=1000){

Shipcharge=amount*.06+rushcharge; }

Elseif(amount>=200) {

Shipcharge=amount*.08+rushcharge; }

Elseif(amount>=100) {

Shipcharge=13.25+rushcharge; }

Elseif(amount>=50) {

Shipcharge=9.95+rushcharge; }

Elseif(amount>=25) {

Shipcharge=7.25+rushcharge; }

Else {

Shipcharge=5.25+rushcharge; }

Total=amount+tax+shipcharge;

Return total;

End calculate

Figure 4. Sample program

10) Here the next node will be chosen as ‘n’. In this step

the algorithm will backtrack since the path through ‘h’did

not give the least cost path. The next node will be chosen

as ‘i’.

11) Here the next node will be chosen as ‘j’.

12) Here the next node will be chosen as ‘n’.In this step

the algorithm will backtrack since the path through ‘j’ did

not give the least cost path. The next node will be chosen

as ‘k’.

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

481

Figure 5. Initial control flow graph

Figure 6. Cost at node b

Figure 7. Cost at node c

Figure 8. Cost at node d

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

482

Figure 9. Cost at node n

Figure 10. Cost at node e

Figure 11. Cost at node e

Figure 12. Cost at node f

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

483

Figure13. Cost at node g

Figure14. Cost at node h

Figure15. Cost at node i

Figure16. Cost at node j

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

484

Figure17. Cost at node k

Figure18. Cost at node l

Figure19. Cost at node m

13) Here the next node will be chosen as ‘l’.

14) Here the next node will be chosen as ‘n’. In this step
the algorithm will backtrack since the path through ‘l’ did
not give the least cost path. The next node will be chosen
as ‘m’.

15) Here the next node will be chosen as ‘n’.
Hence in accordance, with the above illustration we

conclude that proposed algorithm gives maximum code
coverage along with least cost.

Hence from the table we can see that in the long term
memory all paths have been tested. Tabu list will provide
least cost path with maximum coverage in the future if the
similar type of module comes for the development then
only tabu path can be tested.

8. Conclusions and Further Work

This paper presents a meta-heuristic search technique that

depends upon the neighborhood solution. There are a lot

of real world problems that have been solved by tabu

search. Many authors have published their work on tabu

search in area of software testing. But this is unique kind

of work what we have proposed in this paper solves the

problem of cost optimization in software testing. This

paper presents use of tabu search with dijksra algorithm (a

greedy approach) to provide an efficient path with maxi-

mum code coverage and minimum cost.

The structure of the paper shows that tabu search de-

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

485

Table 1. Table for calculation of tabu path

Iteration
Long Term

Memory

Short Term

 Memory

Tabu

List
Cost

1.
a-b (2)

a-c (26)
a-b (2) Nil 2

2.
a-b-c(12)

a-c (26)
a-b- (12) Nil 12

3.
a-b-c-d (18)

a-b-c-e (19)
a-b-c-d (18) Nil 18

4.
a-d-c-d-n (82)

a-b-c-e (19)
a-b-c-e (19) Nil 19

5.
a-b-c-e-g(28)

a-b-c-e-f (26)
a-b-c-e-f (26) Nil 26

6.

a-b-c-e-f-n

(82)

a-b-c-e-g (28)

a-b-c-e-g(28) Nil 28

7.

a-b-c-e-g-h

(40)

a-b-c-e-g-i

(42)

a-b-c-e-g-h

(40)
Nil 40

8.

a-b-c-e-g-h-n

(77)

a-b-c-e-g-i

(42)

a-b-c-e-g-i

(42)
Nil 42

9.

a-b-c-e-g-i-j

(52)

a-b-c-e-g-i-k

(58)

a-b-c-e-g-i-j

(52)
Nil 52

10.

a-b-c-e-g-i-j-n

(97)

a-b-c-e-g-i-k

(58)

a-b-c-e-g-i-k

(58)
Nil 58

11.

a-b-c-e-g-i-k-l

(71)

a-b-c-e-g-i-k-

m (72)

a-b-c-e-g-i-k-

l (71)
Nil 71

12.

a-b-c-e-g-i-k-l

-n (121)

a-b-c-e-g-i-k-

m (72)

a-b-c-e-g-i-k-

m (72)
Nil 72

13.

a-b-c-e-g-i-k-

m-n (82)

a-b-c-e-g-h-n

(77)

a-b-c-e-g-h-n

(77)

Path is

a-b-c-e-

g-h-n

(77)

77

pends upon searching the neighboring nodes and memo-

rizing the best solution in its short term memory. All other

related solutions are memorized in long term memory of

the system which makes tabu search simple to apply in the

problem, that is maximizing code coverage with minimum

cost.

Furthermore, we have also introduced the concept of

backtracking to distinguish those solutions that trapped us

towards local minima. We tried to cover the uncovered

nodes and the conditions in the program .The system have

been tested for several examples. Furthermore the ex-

perimental results for one of them are detailed above what

we have obtained with the proposed algorithm making it

an effective technique in coverage area (branch, path,

condition). There is further scope for future work because

this strategy is applicable at low level and the moderate

level of testing. More work in this area can be carried out

to use this technique for projects dealing with complex

level testing issues.

REFERENCES

[1] B. Beizer, “Software Testing Techniques,” 2nd Edition,

van Nostrand Reinhold, New York, 1990.

[2] I. Sommerville, “Software Engineering, Pearson Educa-

tion,” 7th Edition, Tata Mc-Graw Hill, India, 2005.

[3] E. Diaz, J. Tuya and R. blanco “Automatic Software

Testing Using a Metaheuristic Technique Based on Tabu

Search,” Proceedings 18th IEEE International Conference

on Automated Software Engineering, Montreal, 2003, pp.

301-313.

[4] E. Díaz, J. Tuya, R. Blanco and J. J. Dolado, “A Tabu

Search Algorithms for Structural Software Testing,” ACM

proceeding, Vol. 35, No. 10, October 2008, pp. 3052-

3072.

[5] P. McMinn, “Search-based Software Test Data Generation:

A Survey”, Software Testing, Verification and Reliability,

ACM library, Vol. 14, No. 2, 2004, pp 105-106.

[6] F. Glover, “Tabu Search Part I,” ORSA Journal on

Computing, Vol. 1, No. 3, 1989, pp. 190-206.

[7] E. Díaz, J. Tuya, R. Blanco. “A Modular Tool for

Automated Coverage in Software Testing,” Proceedings

of the 7th Annual International Workshop on Software

Technology and Engineering Practice, Amsterdam, 2003,

pp. 241-246.

[8] R. Blanco, J. Tuya and B. A. Diaz, “Automated Test Data

Generation Using a Scatter Search Approach,” Infor-

mation and Software Technology, Vol. 51, No. 4, 2009, pp.

708-720.

[9] A. Misevičius, “Using Iterated Tabu Search for the

Travelling Salesman Problem,” Information Technology

and Control, Vol. 32, No. 3, 2004, pp.29-40.

[10] R. Thamilselvan, D. P. Balasubramanie, “Integrating

Genetic Algorithm, Tabu Search Approach for Job Shop

Scheduling,” IJCSIS Transactions on Software Enginee-

ring, Vol. 2, No. 1, 2009, pp. 134-139.

[11] J. Gustafsson, A. Ermedahl, and B. Lisper, “Algorithms

for Infeasible Path Calculation,” 6th International

Conference on Worst-Case Execution Time, Dresden,

Euromicro Conference on Real-Time Systems, 2006.

[12] R. Jasper, M. Brennan, K. Williamson and B. Currier,

“Test Data Generation and Feasible Path Analysis,” Pro-

Test Cost Optimization Using Tabu Search

Copyright © 2010 SciRes. JSEA

486

ceeding of the International Symposium on Software

Testing and Analysis, Seattle, ACM, 1994, pp.95-107.

[13] J. Carlos, M. Alberto and Francisco, “A strategy for

Evaluating Feasible and Unfeasible Test Cases for The

Evolutionary Testing of Object-oriented Software,” 30th

International Conference on Software Engineering, Leip-

zig, 2008, pp. 85-92.

[14] J. C. Lin and P. L. Yeh, “Automatic Test Data Generation

for Path Testing Using GAs,” Information Sciences, Vol.

131, No. 1-4, 2006, pp. 2380-2401.

[15] F. Glover and M. Laguna, “Tabu Search,” Kluwer Aca-

demic Publishers, 1997.

[16] “Dijkstra’s Algorithm,” Wikipedia. http://en.wikipedia.

org/wiki/Dijkstra’s_algorithm

