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Abstract — The virtual probe (VP) technique, based on 
recent breakthroughs in compressed sensing, has 
demonstrated its ability for accurate prediction of spatial 
variations from a small set of measurement data. In this 
paper, we explore its application to cost reduction of 
production testing. For a number of test items, the 
measurement data from a small subset of chips can be used 
to accurately predict the performance of other chips on the 
same wafer without explicit measurement. Depending on 
their statistical characteristics, test items can be classified 
into three categories: highly predictable, predictable, and 
un-predictable. A case study of an industrial RF radio 
transceiver with more than 50 production test items shows 
that a good fraction of these test items (39 out of 51 items) 
are predictable or highly predictable. In this example, the 3σ 
error of VP prediction is less than 12% for predictable or 
highly predictable test items. Applying the VP technique 
can on average replace 59% of test measurement by 
prediction and, consequently, reduce the overall test time by 
57.6%. 
 
1. Introduction 

Testing cost is a significant component of the overall 
product cost for modern integrated circuits. In particular, 
testing mixed-signal and RF components in a system on 
chip (SOC) to examine their conformance to specifications 
[1] could account for up to 70% of the overall test cost of a 
mixed-signal SoC [2]. In addition to random defects and 
systematic failures that could result in defective devices, 
parametric variations in circuit/device/process parameters 
(such as gate length, dopant concentration, and metal 
thickness) cause deviations in device performances (such as 
gain, power, and bandwidth) and, hence, also lead to yield 
loss. As technology continues to scale, yield loss due to 
systematic failures and parametric variations become 
increasingly significant. While such failures are difficult to 
screen, in contrast to random defects, they often present 
strong spatial die-to-die correlations at the wafer level. 
Hence, statistical methods exploring such spatial 
correlations for performance prediction offer a promising 
direction to achieve test cost reduction, since they allow us 
to replace a portion of physical measurements by predicted 
performance values that are derived from the measurement 
data of a small subset of chips on a wafer. 

Several learning-based methods have been proposed to 
characterize the parametric variations for performance 

prediction and to explore the tradeoff between prediction 
accuracy and test cost [3-6]. For example, the alternate test 
framework [5-6] attempts to predict circuit performances 
based on a set of signatures captured from cheaper and 
simpler test setups and measurements on the device-under-
test (DUT). The key assumption behind alternate testing is 
that the DUT’s signature values and performance values are 
strongly correlated, as they both are affected by the same 
parametric variations. Therefore, the DUT’s performance 
values can be predicted from its signature values once the 
correlations between them are accurately learned. 
Estimating such correlations usually requires a model 
training process. Since the correlation models could differ 
from lot to lot, they must be trained separately for different 
manufacturing batches.  

The virtual probe (VP) technique, proposed recently in 
[7-9], can be employed to reduce silicon characterization 
cost. The basic idea is to randomly [9] or iteratively [8] 
select only a small subset of test structures in the silicon 
wafer for physical measurement, and the parametric 
variations at other locations on the same wafer can be 
predicted using a statistical algorithm. In other words, VP 
aims to construct the spatial variations of the entire wafer 
based on as few measurements as possible. In addition, the 
multi-wafer virtual probe (MVP) algorithm developed in [7] 
further improves the prediction accuracy by exploring the 
strong correlations among different wafers within the same 
lot. 

VP demands significantly less effort for test development 
than the learning-based methods, such as alternate testing. 
First, VP does not require any design modification, nor any 
additional design-for-testability (DfT) circuitry. Moreover, 
there is no requirement for developing special test stimuli 
for performance measurements and prediction. In addition, 
VP does not require model training and thus is more 
scalable and applicable to cases where measurement data 
are limited or non-stationary due to low-volume 
manufacturing or using multiple equipment sets.  

In [7-9], the effectiveness of VP was demonstrated 
through the prediction of circuit delay and leakage – 
including flush delay, ring oscillator frequency, leakage 
power, and leakage current – of test structures and digital 
circuits. In this paper, we further investigate the possibility 
of applying VP to production testing of mixed-signal/RF 
circuits. Towards this goal, several key issues must be 
carefully addressed. First, due to the high design complexity 
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and the sophisticated interaction among different building 
blocks in both time and frequency domains, the 
performances of the mixed-signal/RF DUTs could exhibit 
substantially more complex characteristics in performance 
variability than those of test structures and digital circuits. 
Production testing of a typical mixed-signal/RF device often 
consists of dozens of test items, ranging from DC/AC 
parameters to time/frequency-domain specifications. Some 
of these test items carry stronger spatial correlations than 
the others. Those items with strong (weak) spatial 
correlations are expected to have high (low) prediction 
accuracy. Hence, classifying all test items based on their 
degree of predictability is of great importance. 

Because VP utilizes spatial correlations among dies for 
performance prediction, random defects that do not exhibit 
spatial correlations cannot be predicted. Screening of 
defective chips resulting from such random failures by 
prediction without any explicit testing will be impossible. 
However, random-defect-induced defective chips often 
violate multiple specs and thus can be screened by explicit 
testing using a carefully selected and low-cost subset of test 
items. Only those chips passing this subset of test items are 
considered for VP-based prediction. One last issue to point 
out is that the prediction accuracy used for product 
screening should be evaluated based on 3σ or even 6σ errors, 
not simply the average prediction errors considered in [7-9]. 

The main contribution of this paper is a unique proposal 
which uses VP to minimize the time and cost for testing 
mixed-signal/RF circuits and a case study based on the real 
test data of an industrial dual-radio RF transceiver. The 
proposed method requires screening of defective chips with 
catastrophic failures prior to applying VP-based prediction. 
Our study provides many useful insights to answering the 
question of how to sample the spatial locations for explicit 
measurement so as to minimize the 3σ/6σ prediction errors 
for those test items without explicit measurement. Because 
each test item has different degrees of spatial correlations, 
we classify all test items, based on the accuracy of VP 
prediction, into three categories: un-predictable, predictable, 
and highly predictable. Based on the silicon measurement 
data, we demonstrate that a good fraction of an industrial 
dual-radio RF transceiver’s test items are highly predictable. 
It, in turn, validates the efficacy of the proposed method for 
test cost reduction. 

The rest of the paper is organized as follows. Section 2 
briefly summarizes the technical background for the VP 
technique. Section 3 describes the details of our proposed 
test methodology, followed by a case study of an industrial 
RF radio chip in Section 4. Section 5 concludes the paper.  
 
2. Background: Virtual Probe 

The key idea of virtual probe (VP) [7-9] is to test a 
subset of chips at selected locations on a wafer and, then, 
using a statistical algorithm, predict the circuit performance 
of other chips, instead of explicitly testing them. Such 
performance prediction is made possible by carefully 

modeling the wafer-level performance variation in the 
(spatial) frequency domain. In this section, we briefly 
review the VP techniques that were proposed in [7-9]. 
 
2.1. Mathematical Formulation 

Consider a performance metric g (e.g., speed, gain, etc.) 
that should be measured for all chips from L different 
wafers. For each wafer, the measured performance g is most 
likely different from chip to chip due to process variations. 
Such a wafer-level spatial variation can be represented as a 
two-dimensional function g(l)(x, y) (l = 1,2,…L), where l 
denotes the l-th wafer and x and y represent the coordinate 
of a chip within the wafer. Without loss of generality, x and 
y can be labeled as integer numbers: x ∈ {1,2,...,P} and y ∈ 
{1,2,...,Q}. 

Mathematically, the spatial variation g(l)(x, y) can be 
mapped to the frequency domain by a two-dimensional 
linear transform such as discrete cosine transform (DCT) [7-
9]: 
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In (1), {G(l)(u, v); u = 1,2,...,P, v = 1,2,...,Q} represents the 
DCT coefficients (i.e., the frequency-domain components of 
the spatial variation). Equivalently, the performance values 
{ g(l)(x, y); x = 1,2,...,P, y = 1,2,...,Q} can be represented as 
the linear combinations of {G(l)(u, v); u = 1,2,...,P, v = 
1,2,...,Q} by inverse discrete cosine transform (IDCT): 
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VP [7-9] aims to measure a small number of chips from 
a wafer and then predict the performance value g(l)(x, y) of 
other chips on the same wafer. As such, the time and cost 
associated with the performance measurement can be 
reduced. Towards this goal, the following linear equations 
are formulated: 
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In (9), the vector B(l) contains the performance values 
measured from M(l) different chips {(x(l),m, y(l),m); m = 
1,2,…,M(l)} of the l-th wafer. Once the linear equations in (5) 
are solved to determine the solution η(l), i.e., the DCT 
coefficients {G(l)(u, v); u = 1,2,...,P, v = 1,2,...,Q}, the 
performance value g(l)(x, y) can be calculated for any spatial 
location (x, y) by the IDCT in (4). 

Solving the linear equations in (5), however, is not 
trivial. Note that the number of equations, i.e., M(l), is 
significantly less than the number of unknowns, i.e., the 
product of P and Q. In other words, the linear equations in 
(5) are profoundly under-determined. In this case, the 
solution η(l) is not unique, unless additional constraints are 
added. 

To uniquely determine η(l), VP further assumes that η(l) 
is sparse. Namely, a large number of DCT coefficients are 
close to zero, but we do not know the exact locations of 
these zeros. In general, if the performance variation {g(l)(x, 
y); x = 1,2,...,P, y = 1,2,...,Q} presents a spatial pattern, i.e., 
the variation is spatially correlated, the vector η(l) that 
contains the corresponding DCT coefficients is sparse. This 
sparsity has been observed in many image processing tasks. 
As was demonstrated by several industrial examples in [7-9], 
such a sparseness assumption is also valid for some data 
collected from real silicon with advanced VLSI 
technologies. 

Given the aforementioned sparseness assumption, the 
solution η(l) of (5) can be uniquely determined by solving 
the following optimization [9]: 
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where ||η(l)||0 stands for the L0-norm of η(l), i.e., the number 
of non-zeros in η(l). The optimization in (10) attempts to 
minimize the number of non-zeros in η(l), while satisfying 
the linear equation A(l)⋅η(l) = B(l). Hence, it results in a unique 
solution η(l) that is as sparse as possible. 

The optimization problem in (10) is NP hard and, hence, 
is extremely difficult to solve [9]. A more efficient 
technique to find sparse solutions is based on L1-norm 
regularization – a relaxed version of L0-norm [9]: 
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where ||η(l)||1 denotes the L1-norm of η(l), i.e., the summation 
of the absolute value of all elements in η(l). The L1-norm 

problem in (11) can be re-formulated as a linear 
programming problem and solved efficiently [9]. 
 
2.2. Bayesian Virtual Probe 

Bayesian virtual probe (BVP) [8] can be conceptually 
viewed as an extended version of the aforementioned VP 
technique. It identifies the optimal spatial locations where 
silicon chips should be tested to predict the spatial variation 
of the entire wafer with maximum accuracy. Finding the 
optimal sampling locations, however, is not trivial, since 
they strongly depend on the spatial pattern of process 
variations. Namely, the optimal sampling locations are 
different from process to process, from wafer to wafer, and 
from chip to chip. It is impossible to come up with a fixed 
set of sampling locations that are optimal for all cases. 
Instead, the best sampling locations must be adaptively 
“learned” in real time. 

For this reason, BVP starts from a small set of 
measurement data by testing very few chips on a wafer. It 
applies VP to predict the wafer-level spatial variation and 
then estimates the resulting prediction error based on Bayes’ 
theorem. Next, the optimal sampling locations are found by 
information theory to collect additional test data and 
improve prediction accuracy. The aforementioned two steps 
(i.e., error estimation and optimal sampling) are repeatedly 
applied until the prediction accuracy is sufficiently high. 
 
3. VP-based Test Methodology 
3.1. Predictability of Performance Parameters 

One important assumption that VP is rooted upon – the 
DCT coefficients of the spatial distribution are sparse – is 
true for a majority, but not all, of the performance metrics. 
For example, Vth, the threshold voltage of a transistor is 
extremely sensitive to the dopant variations and could have 
large and unpredictable variations across a die, not to 
mention the Vth variations for neighboring dies. Such 
performance metrics/parameters will therefore be 
unpredictable using VP. On the other hand, other 
performance parameters, such as the longest propagation 
delay of the chip, may have strong die-to-die spatial 
correlations across a wafer, and thus would be ideal for 
applying the VP technique. Therefore, depending on the 
strength of its wafer-level spatial correlations, a 
performance parameter may or may not be predictable using 
VP. 

It is, however, impossible to know the spatial 
distribution of the performance parameters a priori. In 
practice, we can fully characterize one wafer and study its 
spatial variations by conducting a pre-test analysis prior to 
applying the actual testing procedure. In this analysis, we 
can determine the predictability of a performance metric 
using a cross-validation technique: we can repeatedly run 
VP using a small randomly-selected subset of the 
measurement data and compare the prediction of another 
sample set with their actual measurement data. This cross-
validation result could reveal the degree of predictability. 
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Based on this validation process, we can classify each test 
item (which tests a specific performance metric) into three 
categories: un-predictable, predictable, and highly-
predictable. The classification could be based on the 
required sample size for VP to achieve a satisfactory level 
of prediction accuracy. For example, an unpredictable 
parameter might require making explicit measurement for 
more than 90% of the chips in order to predict, with 
sufficient accuracy, the performance of the other 10% of the 
chips. On the other hand, a highly-predictable parameter 
may only require explicit measurement of 10% of the chips 
in order to predict the other 90% of the chips with high 
accuracy. For those highly-predictable parameters identified 
and validated in this way, we can then confidently employ 
the VP technique to save test time and cost. 

VP and BVP achieve different degrees of efficiency for 
highly predictable and predictable parameters. For highly 
predictable parameters, VP-based prediction is sufficiently 
accurate and, hence, further applying BVP only achieves 
limited benefit. On the other hand, for parameters in the 
predictable category, BVP can reduce the number of 
required samples while achieving the same prediction 
accuracy as VP. 
 
3.2. Pre-test Analysis Using VP 

The goal of pre-test analysis is to identify a subset of 
locations for each test item to be predicted, instead of 
explicitly measured in testing, to achieve minimum test cost 
without compromising test quality. This goal can be 
achieved by conducting a thorough analysis and cross-
validation on one or several wafers and then applying the 
findings to develop an optimal test strategy for other wafers. 
The aforementioned analysis and cross-validation include: 1) 
classifying each test item into one of the three categories, 
and 2) for each highly-predictable or predictable test item, 
determining the number of required die samples, and their 
locations on the wafer, for explicit test measurement. 

We first use an iterative sampling-and-validation method 
on one wafer to determine the number of samples required 
to achieve a satisfactory level of prediction accuracy using 
VP. For this wafer, we test every die for every test item and 
record their measurement data for analysis. In this iterative 
analysis, we first sample a fraction of the dies, say 10%, at 
randomly selected locations for VP analysis and use another 
independent subset, say 10%, of random samples, to 
evaluate the prediction error. If the 3σ or 6σ of the 
prediction error for the test-item-under-analysis is less than 
a target threshold (could be different for each test item) the 
test item is classified as highly predictable, and the sample 
count as well as the corresponding locations of the selected 
random samples will be used for production testing of other 
wafers for this test item. To reduce the variability of random 
sampling for the proposed iterative sampling-and-validation 
method, we can repeat the aforementioned procedure for 
multiple times, each of which chooses different locations for 
the training and testing sets. For each test item, the sampling 

locations that result in the smallest prediction error will be 
the preferred choices used for production testing. Such an 
approach allows us to identify a set of sampling locations 
that yield less prediction error than simple random sampling 
and, hence, reduce the testing cost. Note that determining 
the globally optimal sampling locations is an extremely 
difficult, if not impossible, task because it requires to 
exhaustively search all possible sampling locations and their 
combinations. However, we can further apply BVP as an 
efficient heuristic algorithm to find “good” sampling 
locations. More details on BVP are described in Section 3.3. 

If the prediction error exceeds the target threshold, the 
sample size is then increased to, say 20%, for VP analysis 
followed by cross-validation. This iterative process 
continues until the prediction error falls below the target 
threshold. Such an iterative process is also repeated for each 
test item. The target threshold for a test item is determined 
based on the trade-offs between the cost of explicitly testing 
(i.e., physically measuring the test item) and the cost of test 
escape (i.e., due to the prediction error of VP). In addition, 
we could use different thresholds for a test item for different 
applications. For example, we might want to set a smaller 
threshold for the linearity spec of analog-to-digital 
converters (ADCs) used in imaging than in audio systems 
because the former requires a higher linearity while the later 
has a more demanding spec on harmonics. 

Test items that can be predicted from a small sample size 
are classified as highly-predictable. For these items, the 
prediction error stays relatively constant even if the sample 
size is increased by 2-4x, implying that the spatial 
correlations have already been captured accurately with a 
small sample size. For these test items, VP with a small 
sample size is sufficient to achieve high prediction accuracy. 
In our experiment, we classify a test item as highly-
predictable, if the required sample size is less than 20% of 
available chips. 

Test items which cannot reach the target prediction error 
(unless using more than 90% samples) are unpredictable and 
will need to be measured for every die on every wafer. Test 
items that are neither un-predictable nor highly predictable 
are classified as predictable. 

For predictable and highly predictable test items, we can 
apply BVP to determine the best sampling locations. More 
details on the topic can be found in Sections 3.3. 

Finally, it is worth mentioning that, from time to time, we 
can sample additional dies for measurement to revalidate the 
prediction accuracy. In the event of observing an increased 
prediction error (e.g., a non-trivial number of dies with a 
prediction error greater than the 3σ bound obtained in the 
pre-test analysis), we will re-run the pre-test analysis to 
update the test item selection. This re-evaluation process 
could be applied to one wafer for each lot on a regular basis 
or when there are changes in the fabrication environment. 
 
3.3. Using BVP for Reducing Prediction Errors 
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BVP adaptively selects optimal locations for explicit test 
that helps achieve better prediction accuracy than VP 
without increasing the sample size. For a test item, suppose 
that a random sample set S is chosen by VP to meet a given 
target threshold. BVP chooses a subset of S, for example 
half of S, as the initial number of samples and iteratively 
selects additional samples until the target accuracy is 
reached. We can repeat this iterative process multiple times, 
each with a different initial sample size. The sample size 
and the corresponding locations of the best result among 
these multiple runs are then used in the production test. 

Note that BVP is only applied during the pre-test analysis 
to determine the best sampling locations for each test item. 
In production testing, test measurement will be performed at 
the pre-determined testing locations for each test item, and 
adaptive sampling is not being applied. It is also important 
to note that different dies may be associated with different 
test items for explicit testing. 

 
3.4. Test Application 
    The pre-test analysis yields a list of test items for each die. 
Some dies will be tested with more test items than others. 
Other test items that are not applied/measured for a die will 
be predicted accurately by VP. This die-location-dependent 
test plan is incorporated into the test program for actual test 
application. 

Since the performance values of defective chips with 
catastrophic failures will not follow any spatial correlation, 
they should be screened out prior to applying the VP-based 
test methodology. Because these defective chips usually fail 
multiple performance parameters, we can apply simple, low-
cost tests first to identify them. For example, gain and offset 
errors are good indicators of whether an ADC can perform 
basic conversions. These two test items should be 
performed first to filter out ADCs that have catastrophic 
failures caused by random defects. On the other hand, for 
phase-locked loops (PLLs), a simple frequency 
measurement can be used to determine whether it can 
successfully reach a clock generating state [10]. Any 
random defects that affect one or more building blocks 
within the loop will likely cause fail-to-lock condition. 
Other methods presented in the literature, such as the 
structural-based test approach for RF devices in [11] and the 
defect-oriented test methods for mixed-signal circuits in 
[12], can effectively detect catastrophic failures at a 

relatively low cost. We can apply these simple tests first in 
our test application and terminate the test process once a 
failure is detected. 

The VP-based test methodology can be applied during 
both wafer probing and production test after packaging. In 
both cases, the locations of each die on the wafer are 
recorded so that VP can reconstruct the spatial variations of 
the wafer. 
 
3.5. Summary of the proposed test methodology   

In the pre-test analysis: 
1) For each test item on a single wafer, use sample-and-

validation method to determine the sample size for VP. 
2) Determine the category of each test item based on the 

required sample size to achieve a target level of accuracy. 
3) For predictable and highly predicable items, determine if 

BVP should be applied.  
4) If BVP should be applied, use BVP to select the optimal 

sampling locations. 
 

In the test application: 
1) Apply simple tests to detect defective chips that have 

catastrophic failures. 
2) Based on the pre-test analysis results, apply a die-

location-dependent test plan, collect measurement data 
from one/multiple wafer(s), and run VP to predict the 
performance of those that are not explicitly measured.  

3) If VP is used, for each test item, cross-validate the 
prediction accuracy for one wafer in a lot by comparing 
the predicted values with additional measurements from 
a subset of, say 10%, dies at randomly selected locations. 
If the 3σ error is greater than a target limit, re-run the 
pre-test analysis. Otherwise, conduct Step (2) for the rest 
of the wafers in the same lot. 
 

4. Case Study of a Dual Radio RF Transceiver 
We applied the VP-based test flow to the wafer probe 

measurement data of an industrial RF transceiver chip 
which includes two radios. The dataset consists of 175 
wafers from 9 lots, and each wafer has over 6000 dies. We 
examined 51 test items including bit error rate (BER), 
power, current, and voltage measurements.  

Table 1 lists several representative test items from the 
total of 51. In the table, a short description of each listed 
item is given. For each item, the estimated test time is 

Table 1: σ, test time, and categories of representative test items. 
Test Item 
Number Description Test Time 

Estimation* 
Estimated 3σ Prediction 

Error Requirement  Category 

1 Bit Error Rate 10 6% Un-predictable 
7 Receiver voltage 3 12% Highly Predictable 

11 Receiver current 1 3 12% Highly Predictable 
14 Receiver current 2 3 12% Predictable 
33 Power measurement 1 7 10% Highly Predictable 
37 Power measurement 2 7 10% Predictable 
50 Standby current 3 12% Un-predictable 

* Note: Test time estimation is rated scale 1 to 10, with the 10 being the most time consuming test item. 
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denoted on a scale from 1 to 10, where a value of 10 
corresponds to the most time consuming test item. In 
addition, each test item has a unique requirement for the 3σ 
prediction error. In our experiment, we set a smaller error 
tolerance for those items that have longer test times, which 
reflects their more stringent test precision requirements. The 
category column reports the classification result of the 
corresponding test items after our pre-test analysis. 
 
4.1. Pre-Test Analysis Result 

Among the 51 test items, the BER and standby current 
are highly sensitive to independent random variations of a 
number of device and circuit parameters and thus are 
expected to have significant standard deviations and weak 
spatial correlations. Therefore, these types of test items are 
likely un-predictable. Other test items such as voltage, 
power, and current measurements have stronger spatial 
correlations and are likely to be highly predictable or 
predictable. 

During the first step in the pre-test analysis process, we 
thoroughly analyze one of the wafers. For this device, 
among all the dies on the wafer being analyzed, a few die 
are screened, and the remaining dies (more than 6000 in 
total) are included in our pre-test analysis. 

We start with 1,000 random samples, out of the 
remaining 6000+ dies, for our proposed sampling-and-
validation process and increment an additional 500 samples 
for each subsequent iteration. In each iteration, for each die 
and for each predicted test item, we calculate the prediction 
error as: 

 

    ( ) ( ) ( )
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where x, y are the locations of the die on the wafer, and g(x, 
y) and g*(x, y) denote the actual and the predicted 
performance values respectively. For each test item, we 
compute the average, standard deviation (σ), and 3σ values 
of the PredictionError of all predicted dies.  
 Figure 1 shows the 3σ prediction error as a function of 
the number of samples for several test items listed in Table 
1. Test item #1 (BER Test) is not plotted in Figure 1 
because it has a prediction error around 700% that is 
significantly higher than the error of other items. Figure 1 
shows that, as the sample size increases, VP could better 
estimate the spatial correlations, thereby reducing the 
prediction error for all test items. In addition, each test item 
requires different sample sizes to achieve the same 
prediction accuracy. For example, to make the 3σ prediction 
error lower than the target thresholds, test items #7, #11, 
#33 would require 1,000 samples, and test items #14 and 
#37 would need 3,000 and 4,500 samples, respectively. 
Accordingly to our classification, test items #7, #11, and 
#33 are highly predictable whereas test items #14 and #37 
are predictable. On the other hand, test items #1 and #50 are 
unpredictable as they would need a large amount of samples 
to achieve the given target accuracy. 

Figure 2 shows the histogram of sample sizes required for 
the 51 test items. For un-predictable items, we need to 
explicitly test all dies and, thus, the number of samples 
equals the total number of dies on a wafer. Among the 51 
test items studied, our pre-test analysis classifies 32 as 
highly predictable, 7 as predictable, and 12 as un-
predictable, which account for 62%, 14%, and 24% of the 
overall test items reviewed, respectively. 

Figure 3 depicts the 3σ of the measurement values and 
the 3σ of the prediction errors for both the predictable and 
highly-predictable test items. Each circle represents a test 
item and the diagonal line represents the boundary where x 
and y axes have the same values. For this experiment, we 
randomly sampled 3,500 locations and predict the remaining 
2500+ dies. It is clear that all the circles are at the right side 
of the diagonal line – which confirms that VP does capture 
the spatial correlation because it yields a 3σ prediction error 
much lower than the 3σ of the measurement data. In 
addition, for the same sampling size, test items with a 
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Figure 2: Histogram showing sample size for each test item. 
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Figure 1: Sample-and-validation results show that 3σ of the 

prediction error decreases as the number of samples increases. 
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smaller standard deviation of measurement values tend to 
have a smaller prediction error too. 
 The distribution of the measurement data for test item 
#33 (a power measurement), a highly predictable test item, 
is illustrated in Figure 4(a). The 3σ of the measurement data 
is 10.86%. We randomly selected 3,500 dies and used VP to 
replace the measurement of the remaining 2500+ dies. The 
histogram of the prediction error for all the dies on the wafer 
is drawn in Figure 4(b), where the average error is 2.11% 
and the 3σ error is 7.12%. The same experiment is 
conducted for test item #14 (a receiver current), a 
predictable test item. The results are shown in Figures 5(a) 

and (b). The 3σ values of the performance and the 
prediction error are 30.32% and 13.82%, respectively. Both 
results show that, regardless of the data distributions, VP 
can predict a great majority of the performance values with 
high accuracy. 
 Figures 4(c) and 5(c) illustrate the normalized 
measurement values of test items #33 and #14 on the wafer, 
respectively. While both test items have a similar spatial 
distribution, the variation of item #14 is larger. Therefore, 
given the same sample size, item #14 has a greater 
prediction error than item #33. On the other hand, Figure 6 
plots the normalized measurement values of test item #1 (bit 
error rate, an un-predictable item) on the wafer. It shows 
that no spatial correlation exists. Therefore, it is impossible 
to predict its value using VP. 
 
4.2. Evaluation of Test Application 

In the pre-test analysis, for each die, we determine a list 
of test items for explicit testing. We then apply VP-based 
test method to all wafers. Test items without explicit 
measurement are predicted using VP. The maximum of the 
3σ prediction error in each lot for predictable and highly 
predictable items is shown in Table 2. 

The results in Table 2 show that, after pre-test analysis, 
the VP test method can be successfully applied to wafers in 
different lots to achieve a prediction error less than the 
target threshold for most test items. However, for test item 
#14, the maximum of the 3σ prediction errors is larger than 
the target threshold for lots 3, 6, 7 and 8. Such a large 
prediction error can be detected if we explicitly measure all 
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(b) Test Item #33 Prediction Error
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3-sigma error =7.12%
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Figure 4: Histogram of the test item #33 and the prediction error calculated by Eq. (12) for all the chips on the same wafer 
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Figure 3: Comparison of the 3σ of the measurement data and the 

prediction error. The sample size are 3,500 for all test items. 
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Figure 5: Histogram of the test item #14 and the prediction error calculated by Eq. (12) for all the chips on the same wafer. 
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test items for a subset of dies, say 10%, in each lot for cross-
validation. If a large 3σ prediction error is observed (such as 
the case for lots 3, 6, 7 and 8), we should re-run the pre-test 
analysis. On the other hand, we can also re-run the pre-test 
analysis when a much smaller 3σ prediction error is detected. 
This means that further cost reduction may be possible for 
this lot. In either case, we re-run the pre-test analysis if 
inconsistency is observed. 

Without VP, the total number of measurements for all test 
items per wafer would be the number of test items 
multiplied by the number of samples, which is quite large in 
our experiment. With VP, 59% of the measurements could 
be replaced by prediction. We further weight each item with 
their estimated test time to evaluate the savings in test time. 
For each die, the total normalized test time required for 
applying the 51 test items studied is 305 time-units. For the 
number of samples we used, the total test time would be 
approximately 1,900,000 time-units. With VP, the total 
normalized test time is reduced to approximately 82,000 
time-units, yielding 2.36x speedup in test time. 

We further make pass/fail decisions based on the VP-
based test results. To accommodate the prediction errors, we 
add margins to the pass/fail threshold from 5% to 15%. 
Compared to the decisions made using conventional test 
results, we do not observe any test escape or yield loss from 
the 175 wafers in our experiment. However, extra 
measurement data are required to accurately estimate the 
actual escape rate because such results could be parameter 
and data dependent.  
 

4.3. Evaluation of BVP Effectiveness 
We evaluated the effectiveness of BVP for 1,880 dies 

from a single wafer. The initial die locations used for BVP 
were randomly selected. Based on the prediction error from 
the initial samples, BVP iteratively determines the next best 
sampling location. In our experiment, we sampled 700 dies 
initially and iteratively chose additional samples. For the 
rest of the dies that were not sampled, their performance 
values were predicted and the corresponding prediction 
errors were calculated. We evaluated the prediction 
accuracy for sample sizes ranging from 800 to 1500.  

Figure 7 compares the prediction errors of BVP and VP 
for test items #14 (a receiver current) and #33 (a power 
measurement). All the sampling locations for VP are 
randomly selected. The x-axis shows the sample size, and y-
axis is the prediction error. For test item #14, a predictable 
item, BVP reduces the prediction error by up to 39% in 
comparison with VP using the same sample size. For test 
item #33, BVP reduces the prediction error by up to 21%. 
When the sample size becomes relatively large (e.g., 1,500 
samples in this experiment), VP and BVP achieve similar 
prediction accuracy. 

These results demonstrate the importance of selecting 
good sampling locations. For predictable items, BVP helps 
achieve the same prediction accuracy with a significantly 
smaller sample size (i.e., fewer measurements required). On 
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Figure 6: Measured value (normalized with a random number) for 

test item 1 (bit error rate) test. 
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Figure 7: Comparison of the 3 sigma prediction errors  

for VP and BVP methods. 

 
Table2: The maximum 3σ prediction error for applying VP-based test method to wafers in different lots. 

Test Item 
Number 

Sample 
Size Lot1 Lot2 Lot3 Lot4 Lot5 Lot6 Lot7 Lot8 Lot9 

Number of Wafers 8 25 23 25 2 17 25 25 25 
7 1,000 4.26% 4.70% 4.02% 4.77% 3.57% 3.74% 4.00% 4.25% 5.70% 
11 1,000 6.03% 6.18% 6.04% 6.23% 5.34% 5.77% 5.80% 5.98% 6.62% 
14 4,000 9.46% 10.72% 12.75% 10.00% 10.51% 16.71% 15.34% 16.62% 9.08% 
33 1,000 8.38% 8.45% 8.51% 9.65% 7.50% 10.52% 8.75% 9.10% 9.27% 
37 4,500 11.20% 11.48% 11.51% 11.43% 11.72% 11.05% 11.21% 11.69% 11.39% 

1.7x 
1.4x 

1.3x 

1.3x 
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the other hand, because the spatial variations of highly-
predictable items are strongly correlated, random sampling 
used by VP is sufficiently good and BVP has little 
additional benefit. For both predictable and highly 
predictable items, we can employ BVP during the pre-test 
analysis to fully characterize one wafer and then determine 
the sampling locations that best capture spatial correlations 
with minimum prediction error. 

 
5. Conclusion 

In this paper, we explore the application of VP to replace 
a large number of test measurement by prediction for 
mixed-signal/RF circuits. We first analyze the predictability 
of each test item using an iterative sampling-and-validation 
approach and determine the sample size for each wafer. A 
case study on an industrial RF transceiver demonstrates that 
more than 75% of the test items can be predicted using VP 
and the estimated speedup of overall test time is about 2.36x. 
 
Acknowledgments 

This work is partially supported by the Gigascale Systems 
Research Center (GSRC) and the Center for Circuits and 
System Solutions (C2S2), two of six research centers 
funded under the Focus Center Research Program, a 
Semiconductor Research Corporation program. This work is 
also supported in part by the National Science Foundation 
under contract CCF–0915912. 
 

References 
[1] K.-T. Cheng and H.-M. Chang, "Recent Advances in Analog, 

Mixed-Signal, and RF Testing," IPSJ Transactions on System 
LSI Design Methodology (TSLDM), vol. 3, pp. 19-46, Feb. 2010.  

[2] K. Arabi, “Mixed-signal test impact to SoC 
commercialization,” in Proc. of  28th VLSI Test Symposium 
(VTS), 2010. 

[3] H.-G. D. Stratigopoulos and Y. Makris, “Error moderation in 
low-cost machine learning-based analog/RF testing,” IEEE 
Transactions on Computer-Aided Design of Integrated Circuits 
and Systems, vol. 27, no. 2, pp. 339–351, 2008. 

[4] H.-G. D. Stratigopoulos, P. Drineas, M. Slamani, and Y. 
Makris, 

“Non-RF to RF test correlation using learning machines: A case 
study,” in Proc. of  25th VLSI Test Symposium (VTS), 2007. 

[5] P. N. Variyam, S. Cherubal, and A. Chatterjee, “Prediction of 
analog performance parameters using fast transient testing,” 
IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems, vol. 21, no. 3, pp. 349–361, 2002. 

[6] R. Voorakaranam, S. S. Akbay, S. Bhattacharya, S. Cherubal, 
and A.Chatterjee, “Signature testing of analog and RF circuits: 
algorithms and methodology,” IEEE Trans. Circuits and 
Systems – I: Regular Papers, vol. 54, no. 5, pp. 1018-1031, May 
2007. 

[7] W. Zhang, X. Li, E. Acar, F. Liu and R. Rutenbar, "Multi-
wafer virtual probe: minimum-cost variation characterization by 
exploring wafer-to-wafer correlation," in Proc. of IEEE/ACM 
International Conference on Computer-Aided Design (ICCAD), 
pp. 47-54, 2010. 

[8] W. Zhang, X. Li and R. Rutenbar, "Bayesian virtual probe: 
minimizing variation characterization cost for nanoscale IC 

technologies via Bayesian inference," in Proc. of IEEE/ACM 
Design Automation Conference (DAC), pp. 262-267, 2010.  

[9] X. Li, R. Rutenbar, and R. Blanton, "Virtual probe: a 
statistically optimal framework for minimum-cost silicon 
characterization of nanoscale integrated circuits," in Proc. of 
IEEE/ACM International Conference on Computer-Aided 
Design (ICCAD), pp. 433-440, 2009. 

[10] S. Sunter and A. Roy, “BIST for phase-locked loops in digital 
applications,” in Proc. of International Test Conference (ITC), 
1999. 

[11] D. Mannath, D. Webster, V. Montano-Martinez, D. Cohen, S. 
Kush, T. Ganesan, and A. Sontakke, “Structural approach for 
built-in tests in RF devices,” in Proc. of International Test 
Conference (ITC), 2010.  

[12] Y. Xing, "Defect-Oriented Testing of Mixed-Signal ICs: 
Some Industrial Experience," in Proc. of International Test 
Conference (ITC), 1998.  

 


