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Abstract — The virtual probe (VP) technique, based onprediction and to explore the tradeoff between jotexh

recent breakthroughs in compressed sensing,

demonstrated its ability for accurate prediction spitial
variations from a small set of measurement datathis
paper, we explore its application to cost reductioi

haccuracy and test cost [3-6]. For example,ahernate test

framework [5-6] attempts to predict circuit perfantes
based on a set of signatures captured from cheaper
simpler test setups and measurements on the denber-

production testing. For a number of test items, thdest (DUT). The key assumption behind alternaténgss

measurement data from a small subset of chips eamséd
to accurately predict the performance of other €hip the
same wafer without explicit measurement. Depending
their statistical characteristics, test items canclassified
into three categories: highly predictable, predikta and
un-predictable. A case study of an industrial REiga
transceiver with more than 50 production test iteshews
that a good fraction of these test items (39 oubbitems)
are predictable or highly predictable. In this eptenthe &
error of VP prediction is less than 12% for prealde or
highly predictable test items. Applying the VP teicjue
can on average replace 59% of test measurement
prediction and, consequently, reduce the oversllttme by
57.6%.

1. Introduction

Testing cost is a significant component of the aller
product cost for modern integrated circuits. Intigatar,
testing mixed-signal and RF components in a sysbem
chip (SOC) to examine their conformance to speatitns
[1] could account for up to 70% of the overall tesst of a
mixed-signal SoC [2]. In addition to random defeatd
systematic failures that could result in defectdevices,
parametric variations in circuit/device/process apaeters

that the DUT’s signature values and performancaeshbre
strongly correlated, as they both are affected Hey ame
parametric variations. Therefore, the DUT's perfante
values can be predicted from its signature values dhe
correlations between them are accurately learned.
Estimating such correlations usually requires a ehod
training process. Since the correlation models califfer
from lot to lot, they must be trained separately ddferent
manufacturing batches.

The virtual probe (VP) technique, proposed recently in
[7-9], can be employed to reduce silicon charazéion
lopst. The basic idea is to randomly [9] or iteralyv[8]
select only a small subset of test structures & diticon
wafer for physical measurement, and the parametric
variations at other locations on the same wafer ban
predicted using a statistical algorithm. In othesrds, VP
aims to construct the spatial variations of tharenwafer
based on as few measurements as possible. Inagditie
multi-wafer virtual probe (MVP) algorithm developed[7]
further improves the prediction accuracy by expigrthe
strong correlations among different wafers withie same
lot.

VP demands significantly less effort for test depehent
than the learning-based methods, such as altetestiag.

(such as gate length, dopant concentration, andalmetFirst, VP does not require any design modificatioor, any

thickness) cause deviations in device performafmash as
gain, power, and bandwidth) and, hence, also leagetd
loss. As technology continues to scale, yield Idsg to

additional design-for-testability (DfT) circuitryMoreover,
there is no requirement for developing special stishuli
for performance measurements and prediction. Irtiadd

systematic failures and parametric variations bexomVP does not require model training and thus is more

increasingly significant. While such failures aiifficult to

screen, in contrast to random defects, they oftersegmt
strong spatial die-to-die correlations at the walevel.
Hence, statistical methods exploring such
correlations for performance prediction offer a mpiging
direction to achieve test cost reduction, since thitbow us
to replace a portion of physical measurements begipted
performance values that are derived from the measemnt
data of a small subset of chips on a wafer.

spatial

scalable and applicable to cases where measuredadat
are limited or non-stationary due to low-volume
manufacturing or using multiple equipment sets.

In [7-9], the effectiveness of VP was demonstrated
through the prediction of circuit delay and leakage
including flush delay, ring oscillator frequencyakage
power, and leakage current — of test structures cagidal
circuits. In this paper, we further investigate passibility

of applying VP to production testing of mixed-sifRd

Several learning-based methods have been proposed @ircuits. Towards this goal, several key issues tnhes

characterize the parametric variations for perforoea
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carefully addressed. First, due to the high destgnplexity
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and the sophisticated interaction among differemtding
blocks in both time and frequency domains,

substantially more complex characteristics in prenénce
variability than those of test structures and digdircuits.
Production testing of a typical mixed-signal/RF idevoften

modeling the wafer-level performance variation ime t

the(spatial) frequency domain. In this section, weetbyi
performances of the mixed-signal/RF DUTs could kithi

review the VP techniques that were proposed in|[7-9

2.1.Mathematical Formulation
Consider a performance metddqe.g., speed, gain, etc.)

consists of dozens of test items, ranging from DC/A that should be measured for all chips framdifferent

parameters to time/frequency-domain specificati@®mme
of these test items carry stronger spatial coigalatthan
the others.
correlations are expected to have high (low) préstic
accuracy. Hence, classifying all test items basedheir
degree of predictability is of great importance.

Because VP utilizes spatial correlations among ftties
performance prediction, random defects that doemdibit
spatial correlations cannot be predicted. Screenirfg
defective chips resulting from such random failutes
prediction without any explicit testing will be iragsible.

wafers. For each wafer, the measured performgrisenost
likely different from chip to chip due to procesariations.

Those items with strong (weak) spatiaBuch a wafer-level spatial variation can be reprieskas a

two-dimensional functiorgg(x, y) (I = 1,2,..L), wherel
denotes thé-th wafer andx andy represent the coordinate
of a chip within the wafer. Without loss of genésalx and
y can be labeled as integer numberEt {1,2,...P} andy [
{1,2,...Q}

Mathematically, the spatial variatiogy(x, y) can be
mapped to the frequency domain by a two-dimensional
linear transform such as discrete cosine trans{@@ir) [7-

However, random-defect-induced defective chips rofte 9]:

violate multiple specs and thus can be screeneexpiicit
testing using a carefully selected and low-cossstibf test
items. Only those chips passing this subset ofitests are
considered for VP-based prediction. One last igsugoint

out is that the prediction accuracy used for produc

screening should be evaluated based®or3ven 6 errors,
not simply the average prediction errors considardd-9].

The main contribution of this paper is a uniqueposal
which uses VP to minimize the time and cost fotitgs
mixed-signal/RF circuits and a case study basethemeal
test data of an industrial dual-radio RF transaeivihe
proposed method requires screening of defectiveschith
catastrophic failures prior to applying VP-baseddaction.
Our study provides many useful insights to ansvegetime
guestion of how to sample the spatial locationsefplicit
measurement so as to minimize thg6s prediction errors
for those test items without explicit measurem@&wscause
each test item has different degrees of spatiaktaiions,
we classify all test items, based on the accurdcy®
prediction, into three categories: un-predictapledictable,
and highly predictable. Based on the silicon mezrmeint
data, we demonstrate that a good fraction of ansimil
dual-radio RF transceiver’s test items are highbdgctable.
It, in turn, validates the efficacy of the proposedthod for
test cost reduction.

The rest of the paper is organized as follows. i8e@
briefly summarizes the technical background for e
technique. Section 3 describes the details of eapgsed
test methodology, followed by a case study of atugtrial
RF radio chip in Section 4. Section 5 concludespidgaer.
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In (1), {Ggpy(u, v); u=1.2,..P, v =1.2,..0} represents the
DCT coefficients (i.e., the frequency-domain comgpuats of
the spatial variation). Equivalently, the perforroarvalues
{gpx, y); x=1,2,..P, y = 1,2,..Q} can be represented as
the linear combinations ofGy(u, v); u = 1,2,..P, v =
1,2,...Q} by inverse discrete cosine transform (IDCT):
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u=1 v=1
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VP [7-9] aims to measure a small number of chipsnfr
a wafer and then predict the performance vajyé, y) of
other chips on the same wafer. As such, the tintk crst
associated with the performance measurement can be
reduced. Towards this goal, the following lineau&tipns
are formulated:

(4)
(| = 1,2,...,|_)

A gy =By, (5)

2. Background: Virtual Probe where

The key idea of virtual probe (VP) [7-9] is to test A Apaz Anire
subset of chips at selected locations on a wafdr then, | Apzn Aoz Apzro "
using a statistical algorithm, predict the cirquitrformance Ay = : : : (6)
of other chips, instead of explicitly testing the@uch A A
performance prediction is made possible by canefull OM 11 DOm 12 Aty o
Paper 1.3 INTNEARTIONAL TEST CONFERENCE 2
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In (9), the vectorB; contains the performance values
measured fromM, different chips {&ym Yom); m =
1,2,... Mg} of the I-th wafer. Once the linear equations in (5
are solved to determine the solutigp), i.e., the DCT
coefficients Gy(u, v); u = 1,2,..P, v = 1,2,.Q}, the
performance valugg(x, y) can be calculated for any spatial
location §, y) by the IDCT in (4).

Solving the linear equations in (5), however, ist no
trivial. Note that the number of equations, i.&ly), is
significantly less than the number of unknowns,, itee
product ofP and Q. In other words, the linear equations in
(5) are profoundly under-determined. In this catee
solution 77gy is not unique, unless additional constraints ar
added.

To uniquely determinegy;, VP further assumes thai,
is sparse. Namely, a large number of DCT coeffisieare
close to zero, but we do not know the exact locatiof
these zeros. In general, if the performance variafg)(x,

y); x=1,2,..P,y=1,2,..0Q} presents a spatial pattern, i.e.,
the variation is spatially correlated, the vectpy that
contains the corresponding DCT coefficients is spaf his
sparsity has been observed in many image procetzskg.
As was demonstrated by several industrial exaniplgs9],
such a sparseness assumption is also valid for state
collected from real silicon with advanced VLSI
technologies.

Given the aforementioned sparseness assumption, t

solution 775y of (5) can be uniquely determined by solving
the following optimization [9]:
minimize

imize. 7,

subject to Ay [f, = B,

where |fj,|b stands for the &norm of r;y, i.e., the number
of non-zeros ingg,. The optimization in (10) attempts to
minimize the number of non-zeros i), while satisfying
the linear equatiofy,ls) = By). Hence, it results in a unique
solutionzy, that is as sparse as possible.

The optimization problem in (10) is NP hard andhde
is extremely difficult to solve [9]. A more effiai¢
technique to find sparse solutions is based emdrm
regularization — a relaxed version qfthorm [9]:

minimize

e )
subjectto Ay, [, = B,

where lq|h denotes the f=norm ofy,, i.e., the summation
of the absolute value of all elementsg. The Li-norm

(10)

(11)
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problem in (11) can be re-formulated as a linear

programming problem and solved efficiently [9].

2.2.Bayesian Virtual Probe

Bayesian virtual probe (BVP) [8] can be conceptuall
viewed as an extended version of the aforementidried
technique. It identifies the optimal spatial looas where
silicon chips should be tested to predict the spaariation
of the entire wafer with maximum accuracy. Finditg
optimal sampling locations, however, is not triviaince

)they strongly depend on the spatial pattern of ¢sec

variations. Namely, the optimal sampling locatioase
different from process to process, from wafer tdenaand
from chip to chip. It is impossible to come up wihfixed
set of sampling locations that are optimal for edises.
Instead, the best sampling locations must be addpti
“learned” in real time.

For this reason, BVP starts from a small set of
measurement data by testing very few chips on a&mwif
applies VP to predict the wafer-level spatial véoia and
hen estimates the resulting prediction error baseBayes’
heorem.Next, the optimal sampling locations are found by
information theory to collect additional test dagad
improve prediction accuracy. The aforementioned $teps
(i.e., error estimation and optimal sampling) sepeatedly
applied until the prediction accuracy is sufficigrtigh.

3. VP-based Test Methodology
3.1. Predictability of Performance Parameters

One important assumption that VP is rooted upohe- t
DCT coefficients of the spatial distribution areasge — is
true for a majority, but not all, of the performanmetrics.
For example, Vth, the threshold voltage of a trstosiis
extremely sensitive to the dopant variations anddccbave
}I%rge and unpredictable variations across a did, tao
mention the Vth variations for neighboring dies.clSu
performance metrics/parameters  will therefore be
unpredictable using VP. On the other hand, other
performance parameters, such as the longest priopaga
delay of the chip, may have strong die-to-die spati
correlations across a wafer, and thus would bel iftma
applying the VP technique. Therefore, dependingthos
strength of its wafer-level spatial correlations,
performance parameter may or may not be predictaifey
VP.

It is, however, impossible to know the spatial
distribution of the performance parameteaspriori. In
practice, we can fully characterize one wafer atodlys its
spatial variations by conducting a pre-test analysior to
applying the actual testing procedure. In this psial we
can determine the predictability of a performancetrio
using a cross-validation technique: we can repéated
VP using a small randomly-selected subset of the
measurement data and compare the prediction ohanot
sample set with their actual measurement data. droiss-
validation result could reveal the degree of priadidity.

a



Based on this validation process, we can classfiheest
item (which tests a specific performance metridd ithree
categories: un-predictable predictable and highly-

locations that result in the smallest predictioroemill be
the preferred choices used for production testgch an
approach allows us to identify a set of samplingatns

predictable The classification could be based on thethat yield less prediction error than simple randgsampling

required sample size for VP to achieve a satisfadivel

and, hence, reduce the testing cost. Note thatrrdetieg

of prediction accuracy. For example, an unpredletab the globally optimal sampling locations is an exisdy

parameter might require making explicit measurenfent
more than 90% of the chips in order to predict, hwit
sufficient accuracy, the performance of the otl@¥lof the
chips. On the other hand, a highly-predictable pater
may only require explicit measurement of 10% of ¢hes
in order to predict the other 90% of the chips wliigh
accuracy. For those highly-predictable parametigatified
and validated in this way, we can then confideetiyploy
the VP technique to save test time and cost.

VP and BVP achieve different degrees of efficiefamy
highly predictable and predictable parameters. kighly

difficult, if not impossible, task because it rems to
exhaustively search all possible sampling locatems their
combinations. However, we can further apply BVPaas
efficient heuristic algorithm to find “good” samp
locations. More details on BVP are described inigea.3.
If the prediction error exceeds the target threghtiie
sample size is then increased to, say 20%, for Nalyais
followed by cross-validation. This iterative proses
continues until the prediction error falls belowe tharget
threshold. Such an iterative process is also refddat each
test item. The target threshold for a test iterdatermined

predictable parameters, VP-based prediction is sufficientlybased on the trade-offs between the cost of eXpliEisting

accurate and, hence, further applying BVP only eas
limited benefit. On the other hand, for parameterdhe

(i.e., physically measuring the test item) anddbst of test
escape (i.e., due to the prediction error of VR)adldition,

predictable category, BVP can reduce the number ofwe could use different thresholds for a test itemdifferent
required samples while achieving the same predictioapplications. For example, we might want to setmalker

accuracy as VP.

3.2. Pre-test Analysis Using VP

The goal of pre-test analysis is to identify a sthbaf
locations for each test item to be predicted, acbtef
explicitly measured in testing, to achieve minimtest cost

threshold for the linearity spec of analog-to-digit
converters (ADCs) used in imaging than in audiceays
because the former requires a higher linearity evthie later
has a more demanding spec on harmonics.

Test items that can be predicted from a small sarsize
are classified as highly-predictable. For thesengte the

without compromising test quality. This goal can beprediction error stays relatively constant evethd sample

achieved by conducting a thorough analysis andserossize is increased by 2-4x,

validation on one or several wafers and then apglyhe
findings to develop an optimal test strategy fdrentwafers.
The aforementioned analysis and cross-validaticludte: 1)
classifying each test item into one of the thretegaries,
and 2) for each highly-predictable or predictalast titem,
determining the number of required die samples, thed
locations on the wafer, for explicit test measuretme

We first use an iterative sampling-and-validatioatihod
on one wafer to determine the number of samplesinexd
to achieve a satisfactory level of prediction aecyrusing
VP. For this wafer, we test every die for every tesm and
record their measurement data for analysis. Initarstive
analysis, we first sample a fraction of the dieg; $0%, at
randomly selected locations for VP analysis andamgher
independent subset, say 10%, of random samples,
evaluate the prediction error. If thes 3or 65 of the
prediction error for the test-item-under-analysiddss than
a target threshold (could be different for each itesn) the
test item is classified as highly predictable, #mel sample
count as well as the corresponding locations ofselected
random samples will be used for production testihgther
wafers for this test item. To reduce the variapitif random
sampling for the proposed iterative sampling-anlidation
method, we can repeat the aforementioned procefiture
multiple times, each of which chooses differentlins for
the training and testing sets. For each test itkensampling
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implying that the spatia
correlations have already been captured accuratily a
small sample size. For these test items, VP wittmall
sample size is sufficient to achieve high predictacuracy.

In our experiment, we classify a test item as highl
predictable, if the required sample size is lesstB0% of
available chips.

Test items which cannot reach the target predictioar
(unless using more than 90% samples) are unpréticiad
will need to be measured for every die on everyewafest
items that are neither un-predictable nor highlgditable
are classified as predictable.

For predictable and highly predictable test items,can
apply BVP to determine the best sampling locatidvisre
details on the topic can be found in Sections 3.3.
to Finally, it is worth mentioning that, from time tine, we
can sample additional dies for measurement to icatal the
prediction accuracy. In the event of observing rsreased
prediction error (e.g., a non-trivial number of glieith a
prediction error greater than the dound obtained in the
pre-test analysis), we will re-run the pre-testlgsia to
update the test item selection. This re-evaluapoocess
could be applied to one wafer for each lot on all@gbasis
or when there are changes in the fabrication enwient.

3.3. Using BVP for Reducing Prediction Errors



Table 1:c, test time, and categories of representativetesis.

Test Item

Test Time

Estimated 3¢ Prediction

Number Description Estimation* Error Requirement Category
1 Bit Error Rate 10 6% Un-predictable
7 Receiver voltage 3 12% Highly Predictable
11 Receiver current 1 3 12% Highly Predictable
14 Receiver current 2 3 12% Predictable
33 Power measurement 1 7 10% Highly Predictable
37 Power measurement 2 7 10% Predictable
50 Standby current 3 12% Un-predictable

* Note: Test time estimation is rated scale 1 tpuith the 10 being the most time consuming teshit

BVP adaptively selects optimal locations for exipltest
that helps achieve better prediction accuracy thdh
without increasing the sample size. For a test,itguppose
that a random sample seis chosen by VP to meet a given
target threshold. BVP chooses a subsefofor example

relatively low cost. We can apply these simplestdsst in
our test application and terminate the test proces® a
failure is detected.

The VP-based test methodology can be applied during
both wafer probing and production test after pagiggin

half of S as the initial number of samples and iterativelyboth cases, the locations of each die on the wafer

selects additional samples until the target acguric
reached. We can repeat this iterative process plailtimes,
each with a different initial sample size. The skmgize
and the corresponding locations of the best remulbng
these multiple runs are then used in the produdésn

Note that BVP is only applied during the pre-tasilgsis
to determine the best sampling locations for eash item.
In production testing, test measurement will beéqrered at
the pre-determined testing locations for each itest, and
adaptive sampling is not being applied. It is aleportant
to note that different dies may be associated ditferent
test items for explicit testing.

3.4. Test Application

The pre-test analysis yields a list of teghiefor each die.
Some dies will be tested with more test items thtrers.
Other test items that are not applied/measurea fitie will
be predicted accurately by VP. This die-locatiopatedent
test plan is incorporated into the test programaftiual test
application.

Since the performance values of defective chipsh wit
catastrophic failures will not follow any spatiadreelation,
they should be screened out prior to applying tiebdsed
test methodology. Because these defective chipallydail
multiple performance parameters, we can apply gmpiv-
cost tests first to identify them. For example hgaind offset
errors are good indicators of whether an ADC carfiop
basic conversions. These two test
performed first to filter out ADCs that have cataphic
failures caused by random defects. On the othed,hfam
phase-locked loops (PLLs), a simple

items should be

frequency

recorded so that VP can reconstruct the spatigti@ns of
the wafer.

3.5. Summary of the proposed test methodology
In the pre-test analysis:

1) For each test item on a single wafer, use sample-an
validation method to determine the sample sizé/fér

2) Determine the category of each test item basedhen t
required sample size to achieve a target levetofiiacy.

3) For predictable and highly predicable items, detaenif
BVP should be applied.

4) If BVP should be applied, use BVP to select theroait
sampling locations.

In the test application:
1) Apply simple tests to detect defective chips thaveh
catastrophic failures.
Based on the pre-test analysis results, apply a die
location-dependent test plan, collect measurematd d
from one/multiple wafer(s), and run VP to predice t
performance of those that are not explicitly meadur
If VP is used, for each test item, cross-validdie t
prediction accuracy for one wafer in a lot by conmz
the predicted values with additional measuremenats f
a subset of, say 10%, dies at randomly selectetitots.
If the 35 error is greater than a target limit, re-run the
pre-test analysis. Otherwise, conduct Step (2)Herest
of the wafers in the same lot.

2)

3)

4. Case Study of a Dual Radio RF Transceiver

We applied the VP-based test flow to the wafer prob

measurement can be used to determine whether it caneasurement data of an industrial RF transceivép ch

successfully reach a clock generating state [10hy A
random defects that affect one or more buildingckdo
within the loop will likely cause fail-to-lock coiittbn.
Other methods presented in the literature, suchthas
structural-based test approach for RF deviceslhdhd the
defect-oriented test methods for mixed-signal discun
[12], can effectively detect catastrophic failureé a
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which includes two radios. The dataset consistslth
wafers from 9 lots, and each wafer has over 6086.dNe
examined 51 test items including bit error rate RBE
power, current, and voltage measurements.

Table 1 lists several representative test itemm ftbe
total of 51. In the table, a short description atle listed
item is given. For each item, the estimated tewie tis
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Figure 2: Histogram showing sample size for eashitem.

wherex, y are the locations of the die on the wafer, gfd
y) and g*(x, y) denote the actual and the predicted
performance values respectively. For each test, itemn
compute the average, standard deviatign §nd & values
of the PredictionError of all predicted dies.

Figure 1 shows theo3prediction error as a function of
the number of samples for several test items lisieHable

denoted on a scale from 1 to 10, where a value (of 11- Test item #1 (BER Test) is not plotted in Figure
corresponds to the most time consuming test item. jbecause it has a prediction error around 700% ibat

addition, each test item has a unique requirenwrnthe 3
prediction error. In our experiment, we set a semadirror
tolerance for those items that have longer testgimvhich
reflects their more stringent test precision reguients. The
category column reports the classification result thoe
corresponding test items after our pre-test aralysi

4.1. Pre-Test Analysis Result

Among the 51 test items, the BER and standby ctirrert’

are highly sensitive to independent random vanetiof a

number of device and circuit parameters and thues ar’

expected to have significant standard deviatiorts \&aak
spatial correlations. Therefore, these types dfitems are
likely un-predictable. Other test items such astags,

power, and current measurements have strongerakpati

correlations and are likely to be highly predictabbr
predictable.

During the first step in the pre-test analysis pss; we
thoroughly analyze one of the wafers. For this deyi
among all the dies on the wafer being analyzedkvadie
are screened, and the remaining dies (more tha® 600
total) are included in our pre-test analysis.

We start with 1,000 random samples, out of the

significantly higher than the error of other itenfgure 1
shows that, as the sample size increases, VP dmitdr
estimate the spatial correlations, thereby reducthg
prediction error for all test items. In additiomoh test item
requires different sample sizes to achieve the same
prediction accuracy. For example, to make thgRediction
error lower than the target thresholds, test itéiis #11,
#33 would require 1,000 samples, and test items atid}
37 would need 3,000 and 4,500 samples, respectivel
Accordingly to our classification, test items #7,1# and
33 are highly predictable whereas test items #1dl #87
are predictable. On the other hand, test itemswd1#&0 are
unpredictable as they would need a large amousaiwiples

to achieve the given target accuracy.

Figure 2 shows the histogram of sample sizes reddor
the 51 test items. For un-predictable items, wedn&e
explicitly test all dies and, thus, the number amples
equals the total number of dies on a wafer. Amdregy 51
test items studied, our pre-test analysis classiB@ as
highly predictable, 7 as predictable, and 12 as un-
predictable, which account for 62%, 14%, and 24%hef
overall test items reviewed, respectively.

Figure 3 depicts thes3of the measurement values and

remaining 6000+ dies, for our proposed sampling—andthe I of the prediction errors for both the predictablel

validation process and increment an additional &dples
for each subsequent iteration. In each iterationghch die
and for each predicted test item, we calculateptiediction
error as:

PredictiorError (x, y) = (12)

g(xy)-g*(xy)|.
axy)
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highly-predictable test items. Each circle représen test
item and the diagonal line represents the boundésre x
and y axes have the same values. For this expetimen
randomly sampled 3,500 locations and predict theaiging
2500+ dies. It is clear that all the circles ar¢hatright side
of the diagonal line — which confirms that VP daapture
the spatial correlation because it yieldsoagpBediction error
much lower than the o3 of the measurement data.

addition, for the same sampling size, test item¢h va

In
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Figure 3: Comparison of thes®f the measurement data and the
prediction error. The sample size are 3,500 fotesil items.

smaller standard deviation of measurement valued te
have a smaller prediction error too.

The distribution of the measurement data for iesh
#33 (a power measurement), a highly predictableites,
is illustrated in Figure 4(a). Thes2f the measurement data
is 10.86%. We randomly selected 3,500 dies and U&etb
replace the measurement of the remaining 2500+ diles
histogram of the prediction error for all the dasthe wafer
is drawn in Figure 4(b), where the average erra2.isl%

and (b). The 8 values of the performance and the
prediction error are 30.32% and 13.82%, respegtigbth
results show that, regardless of the data distdhst VP
can predict a great majority of the performancei@salwith
high accuracy.

Figures 4(c) and 5(c) illustrate the normalized
measurement values of test items #33 and #14 owafer,
respectively. While both test items have a simdpatial
distribution, the variation of item #14 is largdiherefore,

given the same sample size, item #14 has a greater

prediction error than item #33. On the other hdfidure 6
plots the normalized measurement values of test #& (bit
error rate, an un-predictable item) on the wafersHows
that no spatial correlation exists. Thereforesitmpossible
to predict its value using VP.

4.2. Evaluation of Test Application

In the pre-test analysis, for each die, we detegnairlist
of test items for explicit testing. We then apply-¥Wased
test method to all wafers. Test items without eoipli
measurement are predicted using VP. The maximutheof
3o prediction error in each lot for predictable aridhiy
predictable items is shown in Table 2.

The results in Table 2 show that, after pre-testyesis,
the VP test method can be successfully appliedafens in
different lots to achieve a prediction error lekart the
target threshold for most test items. However,tést item

and the 8 error is 7.12%. The same experiment is#14, the maximum of thes3prediction errors is larger than
conducted for test item #14 (a receiver current), ahe target threshold for lots 3, 6, 7 and 8. Suclarge

predictable test item. The results are shown inureg 5(a)

(a) Test #33 Measurement Data Distribution
2000

(b) Test ltem #33 Prediction Error

prediction error can be detected if we explicitlganure all

(c)Normalized Measured Values (Test #33)
100 = =

1500

® 3-sigma =10.86% ; 5
S 1500 g % 3
= 2 awy error =2.11% k
8 & 1000 z 0 ¥
7 9 max error =15.57% 60 15
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Figure 4: Histogram of the test item #33 and thesljmtion error calculated by Eq. (12) for all theps on the same wafer

(a) Test Item #14 Measurement Data Distribution (b) Test Item #14 Prediction Error

(c)Normalized Measured Values (Test #14)

1500 1200 100 i .
Bl
_sigma = 9 1000 avg error =4.07% f‘f - .
§ 3-sigma =30.32% § Vg 80 e ..r.F' 15
= 0, " . R,
E 1000 § 800 max error =24.40% “‘t “ﬂ: 5,.!1 g’}
2 2 3-sigma error =13.82% o 607Nk, - g g f 10
5 5 60 | F i B
5 5 > a0/ By AN
£ 500 & 400 i o
5 : n, Firiyy >
z Z 200 20 %ﬂ 2
i i i
=
0 0
0 5 10 15 20 0 10 20 30 20 40 60 80
Normalized Value Prediction Error (%) Xaxis

Figure 5: Histogram of the test item #14 and thesljmtion error calculated by Eq. (12) for all theps on the same wafer.
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Table2: The maximumd3prediction error for applying VP-based test mettmdiafers in different lots.

Test Item Sample Lotl | Lot2 | Lot3 | Lot4 | Lot5 | Lot | Lot7 | Lot8 | Loto
Number Size
Number of Wafers 8 25 23 25 2 17 25 25 25
7 1,000 4.26% | 4.70% | 4.02% | 4.77% | 3.57% | 3.74% | 4.00% | 4.25% | 5.70%
11 1,000 6.03% | 6.18% 6.04% 6.23% 5.34% 5.77% 5.80% 5.98% 6.62%
14 4,000 9.46% | 10.72% | 12.75% | 10.00% | 10.51% | 16.71% | 15.34% | 16.62% | 9.08%
33 1,000 8.38% | 8.45% 8.51% 9.65% 7.50% | 10.52% | 8.75% 9.10% 9.27%
37 4,500 11.20%| 11.48% | 11.51% | 11.43% | 11.72% | 11.05% | 11.21% | 11.69% | 11.39%
Normalized Measured Values (Test #1) 3 sigma Prediction Error for Test Item #14 and #33
100 25 ‘ ‘ ‘
—<— BVP: Test 14
80 8 = —o— VP: Test 14
- < 20 —<- -BVP: Test 33
w 60 ik 6 2 VP: Test 33
> g0 EREE 4 § 15
o 3
8
20 2 < 10
o
©
)
X axis w5 — —
Figure 6: Measured value (normalized with a randwmber) for @ 1.3x O— ¢
test item 1 (bit error rate) test. '

O L L L L L L
. . , 800 900 1000 1100 1200 1300 1400 1500
test items for a subset of dies, say 10%, in eatcfol cross- Sample Size

validation. If a large & prediction error is observed (such as Figure 7: Comparison of the 3 sigma predictionsrro
the case for lots 3, 6, 7 and 8), we should rethenpre-test for VP and BVP methods.

analysis. On the other hand, we can also re-rurptbeest

analysis when a much smalles Brediction error is detected. 4.3. Evaluation of BVP Effectiveness

This means that further cost reduction may be ptessor We evaluated the effectiveness of BVP for 1,88 die
this lot. In either case, we re-run the pre-tesilysis if  from a single wafer. The initial die locations ufed BVP
inconsistency is observed. were randomly selected. Based on the predictioor érom

Without VP, the total number of measurements fbteskt  the initial samples, BVP iteratively determines thext best
items per wafer would be the number of test itemssampling location. In our experiment, we sample@ @es
multiplied by the number of samples, which is qlétge in initially and iteratively chose additional sampld%or the
our experiment. With VP, 59% of the measurementddco rest of the dies that were not sampled, their perémce
be replaced by prediction. We further weight edemiwith  values were predicted and the corresponding piedict
their estimated test time to evaluate the savingsst time.  errors were calculated. We evaluated the prediction
For each die, the total normalized test time reglifor  accuracy for sample sizes ranging from 800 to 1500.
applying the 51 test items studied is 305 timesurftor the Figure 7 compares the prediction errors of BVP ¥Rd
number of samples we used, the total test time aviye!  for test items #14 (a receiver current) and #3Jdgaver
approximately 1,900,000 time-units. With VP, thetato measurement). All the sampling locations for VP are
normalized test time is reduced to approximately08@ randomly selected. The x-axis shows the sample aimby-
time-units, yielding 2.36x speedup in test time. axis is the prediction error. For test item #14radictable

We further make pass/fail decisions based on the VRAtem, BVP reduces the prediction error by up to 3B%6
based test results. To accommodate the predictiorsewe  comparison with VP using the same sample size.t&sir
add margins to the pass/fail threshold from 5% %861 item #33, BVP reduces the prediction error by u@186.
Compared to the decisions made using conventiogstl t When the sample size becomes relatively large, (&,500
results, we do not observe any test escape or iisdfrom  samples in this experiment), VP and BVP achievelaim
the 175 wafers in our experiment. However, extraprediction accuracy.

measurement data are required to accurately estithat These results demonstrate the importance of sedpcti
actual escape rate because such results couldramgt@r good sampling locations. For predictable items, BA&Rs
and data dependent. achieve the same prediction accuracy with a sicpmifily

smaller sample size (i.e., fewer measurements neajuiOn
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the other hand, because the spatial variationsigfilyr technologies via Bayesian inference," Rmoc. of IEEE/ACM
predictable items are strongly correlated, randaming Design Automation Conferen@®AC), pp. 262-267, 2010.

used by VP is sufficiently good and BVP has little 8] X. Li, R. Rutenbar, and R. Blanton, "Virtual gire: a
additional benefit. For both predictable and highly statistically optimal framework for minimum-cost ligbn
predictable items, we can employ BVP during the-tpee characterization of nanoscale integrated circuits,'Proc. of

. . . IEEE/ACM International Conference on Computer-Aided
analysis to fully characterize one wafer and thetenine Design(ICCAD), pp. 433-440, 2009.

the sampling locations that best capture spatietet@tions  [10] S. Sunter and A. Roy, “BIST for phase-lockedgs in digital

with minimum prediction error. applications,” inProc. of International Test Conferen¢dC),
1999.

5. Conclusion [11] D. Mannath, D. Webster, V. Montano-Martinez, D. €EohS.

In this paper, we explore the application of VRdplace Kush, T. Ganesan, and A. Sontakke, “Structural @ggr for

built-in tests in RF devices,” ifProc. of International Test

a large number of test measurement by predictian fo Conferencq|TC), 2010,

mlxed-SIgnaI{RF CIrC.UItS' W_e flrs_t analyze _the pc.mbll.lty [12] Y. Xing, "Defect-Oriented Testing of Mixed-Sigl ICs:
of each test item usmg an iterative Sampllng-aahtiatlon Some Industrial Experience," iRroc. of International Test
approach and determine the sample size for eactrwaf ConferencgITC), 1998.

case study on an industrial RF transceiver dematestithat

more than 75% of the test items can be predictetyusP

and the estimated speedup of overall test timbasite2.36x.
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