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Abstract—In the area of cost-sensitive learning, inductive learning algorithms have been extended to handle different types of costs to

better represent misclassification errors. Most of the previous works have only focused on how to deal with misclassification costs. In

this paper, we address the equally important issue of how to handle the test costs associated with querying the missing values in a test

case. When an attribute contains a missing value in a test case, it may or may not be worthwhile to take the extra effort in order to

obtain a value for that attribute, or attributes, depending on how much benefit the new value will bring about in increasing the accuracy.

In this paper, we consider how to integrate test-cost-sensitive learning with the handling of missing values in a unified framework that

includes model building and a testing strategy. The testing strategies determine which attributes to perform the test on in order to

minimize the sum of the classification costs and test costs. We show how to instantiate this framework in two popular machine learning

algorithms: decision trees and naive Bayesian method. We empirically evaluate the test-cost-sensitive methods for handling missing

values on several data sets.

Index Terms—Cost-sensitive learning, decision trees, naive Bayes.

�

1 INTRODUCTION

INDUCTIVE learning techniques, such as the naive Bayesian
and decision tree algorithms, have met great success in

building classification models with an aim to minimize the
classification errors [1], [2]. However, much previous
inductive learning research has only focused on how to
minimize classification costs such as the cost of false
positive (FP) and the cost of false negative (FN). The
classification errors are useful in deciding whether a
learned model tends to make correct decisions on assigning
class labels for new cases and is useful for dealing with data
with unbalanced classes. However, misclassification costs
are not the only costs to consider in practice. When
performing classification on a new case, values for some
attributes may be missing. In such a case, we may have the
option of performing additional tests in order to obtain a
value for these attributes. However, performing these
additional tests may incur more costs, where some costs
are in the form of lengthy waiting time and others include
monetary payment. Still, some tests are worthwhile to
perform because having the additional values might greatly
increase the classification accuracy. Thus, we often must
consider the “test cost” when missing values must be
obtained through physical “tests” which incur costs

themselves. These costs are often as important as the
misclassification costs.

As an example, consider the task of a medical practice

that examines incoming patients for a certain illness (see

Table 1). Suppose that the doctors’ previous experience has

been compiled into a classification model such as a naive

Bayesian classifier. When dealing with an incoming patient,

it is often the case that certain information for this patent

may not yet be known; for example, the blood tests or the

X-ray test may not have been done yet. At this point, the

doctor (that is, the classification model) must exercise its

judgement appropriately: Performing these tests will incur

certain extra costs, but some tests may provide useful

informational benefits toward reducing the classification

costs. In the end, it is the balancing act of the two types of

costs—namely, the classification costs and the test costs

—that will determine which tests will be done.
Tasks that incur both misclassification and test costs

associated with missing values abound in industrial

practice ranging from medical diagnosis to scientific

research and to drug design. In the past, inductive

learning methods that consider a variety of costs are

often referred to as cost-sensitive learning [3], [4]. In this

paper, we present a unified framework for how to

integrate both cost-sensitive learning and the treatment

of missing values in test data. To distinguish from

methods that only consider misclassification costs, we call

this method test-cost-sensitive learning methods.
Our test-cost-sensitive learning framework, which is

called the TCSL framework, consists of two parts. First, in

part one, when training a model, we consider both the

misclassification costs and the potential test costs associated

with the attributes in order to minimize the potential future

total costs. Then, in part two, we design test strategies that

are tailored for each individual test example in order to
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exploit the known information and propose a plan to
acquire the unknown.

For training a model, we apply our TCSL framework to
two machine learning algorithms, decision trees and naive
Bayesian, and evaluate their relative merits. For testing,
when a new case contains missing values for its attributes,
decisions must be made whether to obtain values of these
attributes through tests. In this paper, we consider two test
strategies: a sequential test strategy and a batch test
strategy. The former takes tests for missing values sequen-
tially. Decisions on whether an additional test is needed or
which attribute with missing value should be tested next
are made based on the outcome of the previous test results.
The batch test strategy requires several new tests to be done
all together rather than in a sequential manner.

The novelty of our work can be seen from several angles,
as follows:

1. Most previous work on cost-sensitive learning has
mostly considered how to increase the classification
accuracy by considering the false positive and
negative costs. In our TCSL framework, we addi-
tionally consider the test cost, by minimizing the
sum of the classification and test costs together.

2. We not only consider how to build a TCSL model
from the training data, but we also consider how to
handle the test cases by considering the sequential
and batch test strategies for obtaining the missing
values.

2 RELATED WORK

Much work has been done in machine learning on
minimizing the classification errors. This is equivalent to
assigning the same cost to each type of classification errors
(for example, FP and FN), and then minimizing the total
misclassification costs. In Turney’s survey papere [3], a
whole variety of costs in machine learning are analyzed,
and the test cost is singled out as one of the least considered
areas in machine learning. In particular, [3] considered the
following types of costs in machine learning:

. Misclassification costs: These are the costs incurred
by misclassification errors. Works such as [5], [4], [6]
considered machine learning with nonuniform mis-
classification costs.

. Test costs: These are the costs incurred for obtaining
attribute values. Some previous work such as [7], [8]
considered the test cost alone without incorporating
misclassification cost. As pointed out in [3], it is
obviously an oversight.

As far as we know, the only works that considered both

misclassification and test costs include [9], [10], [11], [12]. Of
these works, [9] explicitly considered how to directly
incorporate both types of costs in decision tree building
processes and in determining the next attribute to test,

should the attribute contain a missing value. An advantage
of the minimal-test-cost decision tree method is that it
naturally extends the decision tree construction algorithm

by considering both the misclassification costs and the test
cost in a local search framework. It additionally considers
whether a test should be conducted and how to select the
next attribute to test. Through experimentation with this

method, however, we have also found some shortcomings.
Because decision trees are aimed at serializing attribute
tests along the path of a tree, it is not well-suited for
performing batch tests that involve a number of tests to be

done together. Furthermore, because it places different
levels of importance on the attributes by the natural
organization of the tree, it cannot be easily fitted to make

decisions on testing strategies that select attributes for the
tests. In contrast, the naive Bayesian-based algorithms
overcome these difficulties more naturally. As we will see,
the performance offered by the test-cost sensitive naive

Bayesian is significant over its decision-tree counterpart.
In [11], the cost-sensitive learning problem is cast as a

Markov Decision Process (MDP), and an optimal solution is
given as a search in a state space for optimal policies. For a
given new case, depending on the values obtained so far,

the optimal policy can suggest a best action to perform in
order to both minimize the misclassification and the test
costs. While related to our work, their research adopts an

optimal strategy, which may take very high computational
cost to conduct the search process. In contrast, we adopt the
local search algorithm the concept of a utility gain, which is
more efficient to compute and, as we will show, attains a

high level of classification accuracy. Thus, our algorithm
follows the direction of approximation rather than optimal
algorithms.

Similarly, Greiner et al. in the interest in constructing an

optimal learner, [12] studied the theoretical aspects of active
learning with test costs using a PAC learning framework.
Turney [10] presented a system called ICET, which uses a
genetic algorithm to build a decision tree to minimize the

cost of tests and misclassification. As mentioned above,
because our algorithm essentially adopts the conditional
probability-based framework, which requires only a linear
scan through the data set, our algorithm is expected to be

more efficient than Turney’s genetic algorithm-based
approach.
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TABLE 1
An Example of a New Case Containing Missing Values and Their Associated Costs for Getting a Value

MC is the misclassification cost, and TC is the test cost.



In the past, test costs have also been separately
considered in [9], where decision-tree-based testing strate-
gies were explored along with several testing strategies, and
in [13], where a Naive Bayesian-based method is proposed
with sequential strategies. However, these methods have
never been placed under a unified test-cost-sensitive
learning framework, nor have they been compared thor-
oughly together. With the unified framework, it is now
possible to compare not only sequential test strategies, but
also batch test strategies where several tests are selected to
be done together.

3 TEST-COST SENSITIVE LEARNING

3.1 Problem Formulation

The Test-Cost-Sensitive classification learning problem can
be formulated as follows:

Description of Algorithm TCSL
Given: ðD;R; T Þ, where

. D is a data set consisting of N samples ðx1; x2;
� � � ; xNÞ from P classes ðc1; c2; � � � ; cP Þ. Each sample
xi is described by M attributes ða1; a2; � � � ; aMÞ
among whom there can be missing values.

. R is a misclassification cost matrix. Each entry
rij ¼
4
Rði; jÞ specifies the cost of classifying

one sample from class ci as class cj ð1 � i; j � P Þ.
Usually, Rii ¼ 0 ð1 � i � P Þ.

. T is a test cost vector. Each entry Tk ¼
4
T ðkÞ specifies

the cost of taking a test on attribute ak.

Build: a classifier for minimizing the total cost of
classification that includes both the test cost and the
misclassification cost for the training examples, and a test
strategy for deciding, given a test case, an order in which to
obtain the missing values.

Our aim is to minimize the sum of classification costs
Cmc and test costs for every test case, Ctest.

Subject to: constraints such as the total cost is within a
user specified upper bound.

The above formulation provides a more general frame-
work than the traditional cost-sensitive learning formula-
tions. Actually, the latter is just a special case of the TCSL
framework where the test cost is sufficiently large so that no
test will be performed. Also, the conditional risk [14] can be
equivalently implemented by setting the misclassification
cost matrix properly.

TCSL provides a more general framework than the
traditional supervised learning frameworks. Standard su-
pervised learning is just a special case of the TCSL because
no missing values are acquired in the traditional methods.
That is, if we set the test costs T to positive infinite so that
no test will be performed, then the TCSL retrogresses to a
standard supervised learning algorithm which makes
prediction based only on the known attributes. For
example, the conditional risk [14] can be equivalently
implemented by setting the misclassification cost matrix R.

By imposing different constraints on how to obtain the
attributes, we can realize different test strategies. An
important constraint is the available resource constraint
used to limit the total number of test costs. As an example,
consider the task of a medical practice that patients have a

limited amount of money for doing medical tests, each test
having a different test cost. Therefore, the total test fees
cannot exceed the money limitation. When the money
limitation is reached, the patients cannot afford any more
tests, even if there are some tests that can reduce the risk of
false diagnosis (misclassification). Then, the problem of the
doctors is to design an optimal sequential test strategy
within the test cost constraint. The strategy is sequential
since the decision on the next test to perform can be
dependent on the outcome of the previous one.

In addition to doing the test in sequence, in practice,
there is also a great need for batch tests. In medical
diagnosis, doctors cannot afford to wait for the result of the
first test before other tests can be done. They normally order
a set of tests to be done at one shot. This kind of constraint
can be viewed as limiting the times of doing tests in
addition to the resources available. It is more practical and
decisions must be made altogether before any test result
comes out. In this situation, the problem is to design an
optimal batch test strategy instead of doing tests one by one
in a sequential manner. It is interesting how to design such
an “Optimal Batch Test” for the TCSL. We will discuss the
batch test strategy in detail in Section 5.4.

Note that a main contribution of our work is the
unification of attribute test and misclassification costs.
However, in many real-world domains, these two costs
carry different meanings and, therefore, how to combine
them is a domain-dependent issue. For simplicity, however,
in this work, we simply assume that they are comparable
and can be added together to get the total cost.

4 TEST-COST-SENSITIVE DECISION TREES

4.1 Model Construction

The test-cost-sensitive learning framework can include
different classification algorithms. In this section, we review
the test-cost-sensitive decision tree algorithm [9] and model
it under the general test-cost-sensitive learning framework.

We assume that the training data may consist of some
missing values (whose values cannot be obtained). We also
assume the test costs are associated with attributes (that is,
to perform a CAT Scan in a medical case, the cost to the
patient is the same regardless of the outcome). Furthermore,
we assume that the test cost and the misclassification cost
have been defined on the same cost scale, such as the dollar
cost incurred in a medical diagnosis. For simplicity, we
consider discrete attributes and binary class labels; exten-
sions to other situations, such as numerical classes, can be
made similarly. We assume that FP is the cost of one false
positive example and FN is the cost of one false negative
example.

Our decision-tree learning algorithm uses a new splitting
criterion of minimal total cost on training data, instead of
minimal entropy, to build decision trees. This cost measure
is equivalent to the expected total cost measure used in the
works of [3], [11], [12]. More specifically, at each step, rather
than choosing an attribute that minimizes the entropy (as in
C4.5), our algorithm chooses an attribute that reduces and
minimizes the total cost, which is the sum of the test cost and
the misclassification cost, for the split. With the total cost
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formula, similar to C4.5, our algorithm chooses a locally
optimal attribute without backtracking. Another similarity
is the way it treats missing values in the training data set.
Thus, even though the resulting tree may not be globally
optimal, the efficiency of the tree-building algorithm is
generally high. A concrete example is given later in this
section.

An important point is how the leaves are labeled. In
traditional decision tree algorithms, the majority class is
used to label the leaf node. In our case, as the decision tree
is used to make predictions in order to minimize the total
cost, the leaves are labeled also to minimize the total cost.
That is, at each leaf, the algorithm labels the leaf as either
positive or negative (in a binary decision case) by minimiz-
ing the misclassification cost. More specifically, suppose
that the leaf has P positive examples and N negative
examples. If P � FN > N � FP (i.e., the cost of predicting
negative is greater than the cost of predicting positive), then
the leaf is labeled as positive (þ); otherwise, it is labeled as
negative (�). Therefore, the label of a leaf not only depends
on the majority class of the leaf, but also on the cost of
misclassification.

Algorithm csDT-learn() (see Algorithm 1) lists the
general input and output required to learn a model in
test-cost-sensitive decision-tree learning. Once a model is
built on the training data, the model can then be applied to
a test case x, as shown in Algorithm 2 in the next section.

Algorithm 1 csDT-learnðD;A;CL;R; T ; TCF Þ

Input:

D—a data set of samples fx1; x2; . . . ; xNg,

A—a set of attributes fA1; A2; . . . ; AMg, where

Am 2 fvm;1; vm;2; . . . ; vm;jAmjg,

CL—predefined classes fc1; c2; . . . ; cPg,

R—misclassification cost matrix (for binary class
problems, this defines the FP and FN costs),

T—a test cost vector, which is an array listing the

cost value for each attribute,

TCF—a total cost formula for each outcome.

Output:

ModelðcÞ—the learned model that predicts the class

value of a new case c with a probability measure.

Step 1: Let T be the minimum misclassification cost of

stopping at D with a class label cD, among all

possible cD 2 CL;

Step 2: For each attribute Ai; i ¼ 1; 2; . . . ;m in D, calculate

the total cost Ti of testing and splitting D on Ai’s

values;

Step 3: If T � Ti for all i, then stop at D with a class label cD
from Step 2;

Step 4: Select the Ai with the minimum total cost Ti among

all Ai in D, and split the data set D according the

values of Ai, producing data sets Dij; j ¼ 1; 2; . . . k;

Step 5: Apply TCSL-learn algorithm to each Dij

recursively.

Consider a concrete example to illustrate the calcula-
tion of the total cost. Assume that, during the tree
building process, there is a set of P and N positive and
negative examples, respectively, to be further classified by

possibly building a subtree. If P � FN > N � FP , then, if
no subtree is built, the set would be labeled as positive
(+). Thus, the total misclassification cost is T ¼ N � FP .
Suppose that an attribute A with a test cost C is
considered for a potential splitting attribute. Assume that
an attribute A has two values, and there are P1 and N1

positive and negative examples with the first value,
respectively, and P2 and N2 positive and negative
examples with the second value, respectively. Then, the
total test cost would be ðP1þN1þ P2þN2Þ � C.

Assume that the first branch will be labeled as positive
(as P1 � FN > N1 � FP ), and the second branch will be
labeled as negative, then the total misclassification cost of
the two branches would be N1 � FP þ P2 � FN . Based on
these considerations, the total cost of choosing A as a
splitting attribute, when processing the training examples,
would be:

TA ¼ ðP1þN1þ P2þN2Þ � C þN1 � FP þ P2 � FN:

If TA < T , where T ¼ N � FP , then splitting on A would
reduce the total cost of the original set, and we will choose
such an attribute with the minimal total cost as a splitting
attribute. We will then apply this process recursively on
examples falling into branches of this attribute. If TA � T for
all remaining attributes, then no further subtree will be
built, and the set would become a leaf with a positive label.

4.2 Test Strategy on New Examples

After the minimal-cost decision tree is built, the next
interesting question is how this tree can be used to deal
with testing examples with many missing values in order to
predict the class of the testing examples with the minimal
total cost for this case. A test strategy determines an order to
obtain missing values for each particular testing test case.
Different test strategies can result in different total costs. In
this paper, we consider a simple sequential strategy: to
simply follow the tree built in the previous section.

The testing strategy we consider in this paper is to
simply follow the tree (see Algorithm 2) because the
decision trees have already specified an order in which to
perform the tests. During the process of classifying a single
example, should there be any missing values for an
attribute, we always do a test on that attribute in order to
obtain a value. This process continues until a leaf node is
reached.

Algorithm 2 csDT-testðModel; C; T ; Ttotal; xÞ

Input:

ModelðÞ—a test-cost-sensitive classification model,

R—a misclassification cost matrix,

T—a test cost vector,

Ttotal—the total resources available,

x—a testing example.

Output:

Label—the predicted class,
Ttest—the test cost for the example.

Step 1: If a batch-test strategy is followed, then obtain all

missing values of x with tests, and then apply the

decision tree classification to x; output the class

label and total test cost TtestðxÞ, and stop.
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Step 2: If a sequential-test strategy is followed, then apply
the tree to x starting from the root node;

Step 3: Repeat: at any node N , if the corresponding value of

x is missing, then perform a test on this attribute if

the total test cost so far is less than Ttotal; if exceeding

Ttotal already, then stop and report the minimal cost

class label at node N ;

Step 4: If a leaf node is met, then report the class label C

with the total test cost so far TtestðxÞ and stop.

The decision-tree-based sequential test strategy, while
optimal based on the minimal cost of the training set, is
sequential in nature. A batch test strategy can be modeled in
our decision tree as well, although, as we will see in the next
section, not as natural as in a Naive Bayesian algorithm. The
basic idea is that, when a testing case is stopped at the first
attribute whose value is unknown, all unknown values
under that attribute must be obtained. Clearly, this batch
strategy will return the same prediction as the decision-tree-
based test strategy (i.e., same misclassification cost), but it
would incur a higher test cost in general because some test
results are not used in classification.

5 TEST-COST-SENSITIVE NAIVE BAYES

5.1 Costs in Naive Bayesian Classification

Decision trees determine a natural sequence of tests to be
done, but may be too strict in some cases. To allow a more
flexible testing strategy, we now turn to Naive Bayesian
classifiers, which are shown to perform very well in practice
[15]. Below, we consider the cost-sensitive Naive Bayesian
Learning [13] under our test-cost sensitive learning frame-
work. For classification, the standard naive Bayes algorithm
computes the posterior probability P ðcjjxÞ of sample x
belonging to class cj according to Bayes’ rule:

P ðcjjxÞ ¼
P ðxjcjÞP ðcjÞ

P ðxÞ
;

where

P ðxjcjÞ ¼
YjAj

m¼1

P ðAm ¼ vm;kjcjÞ

is theproduct of jAj likelihoods. jAj is thenumberof attributes
describing x and vm;k is one possible value of attribute Am.
Then, samplex is predicted to belong to class j�which has the
highest value P ðcj� jxÞ. When there exist missing values in
sample x, the corresponding attributes are simply left out in
likelihood computation and the posterior probability is
computed only based on the known attributes eAA � A.
Therefore, P ðxjcjÞ ¼

Q
Am2eAA P ðAm ¼ vm;kjcjÞ.

The standard naive Bayesian algorithm can be extended
to take into account the misclassification cost. Suppose that
Cij is the cost of predicting an example of class i as
belonging to class j. In this situation, the expected total cost
(that is, the Ttotal in Algorithm 1) of predicting a single
sample x as a class j is known as the conditional risk [14] and
is defined as: RðjjxÞ ¼

P
i Cij � P ðijxÞ, where P ðijxÞ is the

posterior probability. Then, sample x is predicted to belong
to the class j� which has the minimal conditional risk RðjjxÞ.

Before considering the test costs, let us consider an
example. Suppose that, in the medical diagnosis of a
hepatitis case, 21 percent of patients are positive (have
hepatitis, c1) and 79 percent of patients are negative
(healthy, c2). Therefore, the priors are P ðc1Þ ¼ 21 percent
and P ðc2Þ ¼ 79 percent, respectively. Assume the misclas-
sification costs (conditional risk) are C12 ¼ 400, C21 ¼ 100,
and C11 ¼ C12 ¼ 0.

There are four attributes to characterize a patient, and the
test cost of each attribute and the likelihoods are listed in
Table 2.

When diagnosing a new patient, the doctor faces the
decision of whether a test should be performed and, if so,
which one. Since each test on an unknown attribute has its
own discriminating power on disease and also brings a
certain amount of cost, decisions must be made by
considering both factors. Later, we will see that the attribute
“ascites” is the best first choice since it trades off the
misclassification cost and test costs. However, if its test cost
is raised from 45 to 47, the attribute “liver firm” will be
more preferable for testing first. This example shows that
the testing strategy is related to the test costs.

In practice, the problem is even more complicated when
more attributes are involved and some tests are with
delayed results. For example, the blood tests are usually
shipped to a laboratory and the results are sent back to
doctors the next day. In this case, for the sake of patients,
doctors often ask for a batch of tests simultaneously.
Therefore, the test strategy must consider more than
one test to be done, under different constraints.

5.2 Model Construction in csNB

The procedure of learning a csNB classifier is basically an
estimation of the distribution parameters as in standard
naive Bayes. Algorithm 3 outlines the learning procedure.

Algorithm 3 csNB-learnðD;A;CLÞ

Input:

D—a data set of samples fx1; x2; . . . ; xNg,

A—a set of attributes fA1; A2; . . . ; AMg, where

Am 2 fvm;1; vm;2; . . . ; vm;jAmjg,
CL—predefined classes fc1; c2; . . . ; cPg.

Output:

P̂P ðcjÞ—the estimated prior probabilities,

P̂P ðAm ¼ vm;kjcjÞ—the estimated likelihoods, where

0 < k <¼ jAmj.
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Steps:
1: for each class cj do

2: P̂P ðcjÞ ¼

PN

i¼1
P ðcjjxiÞ

N

3: end for

4: for each class cj do

5: for each attribute Am do

6: for each value vm;k of attribute Am in class cj do

7: P̂P ðAm ¼ vm;kjcjÞ

¼
�þ�N

i¼1NumðAm¼vm;k;xiÞP ðcjjxiÞ

�jAmjþ�
jAm j
l¼1

�N
i¼1

NumðAm¼vm;l;xiÞP ðcjjxiÞ

8: end for

9: end for

10: end for

In the above equations, � is the smoothing factor. � ¼ 1 is
known as the Laplacian smoothing which we use in our
experiments. The NumðAm ¼ vm;k; xiÞ is a function counting
the number of times that attribute Am has the value vm;k.
Moreover, P ðcjjxiÞ 2 f0; 1g, j 2 f1; � � � ; Pg; if xi belongs to
the class j, the value is 1; otherwise, the value is 0.

5.3 Sequential Test Strategies

After a naive Bayes classifier is built, an interesting question
now is how the classifier performs tests when the testing
examples have missing values. Instead of treating test costs
Ctest and misclassification costs Cmc separately, we offer
testing strategies for minimizing the sum of Ctest and Cmc

for different situations. In this section, we consider the
sequential test strategy and leave the batch test strategy to
Section 5.4.

The sequential test strategy is as follows: During the
process of classification, decisions are made sequentially on
whether a test on an unknown attribute (an attribute with
missing value) should be performed based on the results of
previous tests, and, if so, which attribute is selected.

Formally, let S ¼< D1; D2; � � � > denote the strategy of a
sequence of decisions where Di ¼ Aj represents the
ith decision of selecting an unknown attribute Aj for
testing. Sequential test means that decision Diþ1 is made
dependent on the result of decision Di, more specifically,
the outcome of the test.

Suppose that x ¼ ða1; a2; � � � ; aMÞ is a testing example.
Each attribute ai can be either known or unknown. Let eAA
denote the set of all known attributes among attributes A
and A the unknown attributes. The misclassification cost of
classifying x as class cj is:

RðcjjxÞ ¼
XP

i¼1

Cij � P ðcjjxÞ; 1 � j � P; ð1Þ

where P ðcjjxÞ ¼
P ðxjcjÞP ðcjÞ

P ðxÞ is the posterior probability
obtained using Bayes’ rule. The class c�j with the minimum
cost is then viewed as the predicted label and the value
Rðc�j jxÞ is the misclassification cost Cmc with the current
values of attributes in eAA.

Prediction can be made based on eAA. However, a test or a
sequence of tests on some unknown attributes may be more
preferable to reduce the misclassification cost while mini-
mizing the total cost. To decide whether a further test is
needed and, if so, which attribute Ai 2 A to select, we

introduce the utility of testing an unknown attribute Ai as
follows:

UtilðAiÞ ¼ GainðA;AiÞ � CtestðAiÞ: ð2Þ

CtestðAiÞ is the test cost of Ai given by Ti. GainðA;AiÞ is the
reduction in misclassification cost obtained from knowing
Ai’s true value, which is given by:

Gainð eAA;AiÞ ¼ Cmcð eAAÞ � Cmcð eAA [AiÞ: ð3Þ

Cmcð eAAÞ ¼ minj Rðcjj eAAÞ is easily obtained using (1). How-

ever, it is not trivial as the calculation of Cmcð eAA [AiÞ since

the value of unknown Ai is not revealed until the test is

performed. We calculate it by taking expectation over all

possible values of Ai as follows:

Cmcð eAA [AiÞ ¼ E
�
min
j

�
Rðcjj eAA [AiÞj eAA

��

¼
XjjAijj

k¼1

�
P ðAi ¼ vi;kj eAAÞ

ð4Þ

�min
j

Rðcjj eAA;Ai ¼ vi;kÞ
�
: ð5Þ

In (4), the expected minimum value of misclassification cost

is dependent on the values of attributes eAA known so far. In

the expended form (5), the minimum misclassification

given Ai ¼ vi;k is weighted by the conditional probability

P ðAi ¼ vi;kj eAAÞ which can be obtained using Bayes’ rule.
Overall, by using (2) to calculate all the utilities of testing

unknown attributes in A, we can decide whether a test is
needed (9iUtilðAiÞ > 0) and which attribute A

�

i should be
tested (argmaxi UtilðAiÞ).

After the attribute A
�

i is selected and tested, the set of
known attributes eAA is extended to eAA [ fA�i g and the
corresponding A is reduced to A=fA

�

i g. Such a selection
process is repeated until all the utilities of testing unknown
attributes left is negative (unworthy) or there is no
unknown attribute left.

Finally, a class label is predicted based on the extended
unknown attribute set eAA. The misclassification cost Cmc is
then Cij if the example of true class ci is predicted as cj.
All the costs brought by the attribute tests are comprised
of the test costs Ctest. Consequently, the total cost Ctotal ¼
Cmc þ Ctest can be obtained. The details of the csNB-
sequential prediction are given in Algorithm 4. As the
output, the algorithm gives the prediction of a testing
example x as well as the test costs Ctest involved for some
unknown attributes.

Algorithm 4 csNB-sequential-predictðNBC;R;T; xÞ

Input:

NBC—a cost-sensitive naive Bayes classifier,

R—a misclassification cost matrix,
T—a test cost vector,

x—a testing example.

Output:

Label—the predicted class,

Ctest—the test costs.
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Steps:
1: Let eAA and A denote the set of known attributes and the

set of unknown attributes of x.

2: Set Ctest ¼ 0.

3: while A is not empty do

4: for all Ai 2 A do

5: Calculate UtilðAiÞ by using (2);

6: end for

7: if not 9iUtilðAiÞ > 0 then

8: break;

9: end if

10: A
�

i ¼ maxi UtilðAiÞ

11: Reveal Ai’s value v.

12: Ctest ¼ Ctest þ T
A
�

i

13: eAA eAA [ fAi ¼ vg

14: A A=fA
�

i g

15: end while

16: Calculate the misclassification costs Rðcjj eAAÞ by (1).

17: Label = argminj Rðcjj eAAÞ.
Back to the example in Section 5.1, the utilities of the four

attributes are 9.6, 8.6, 9.0, and 11.1, respectively. Therefore,
the unknown attribute “ascites” will be selected in the first
place. Through further calculation, a test sequence can be
obtained.

A desirable property is that even though all the test costs
are zero, the csNB may not do tests for all missing
attributes. One reason is that the gain from knowing a
new attribute value Ai is not always positive. According to
(4), if the misclassification cost Cmcð eAA [AiÞ is equal to or
even larger than the original one Cmcð eAAÞ, the gain is
nonpositive. This creates a paradox: Adding new features
(especially unrelated features) to a naive Bayes classifier
may actually lead to a worse prediction accuracy. The basic
source can be traced back to the wrong independent
assumption of naive Bayes [14]. For the same reason,
adding these features to the csNB can increase the
misclassification costs and is therefore not preferred. Also,
another reason is that the characteristics of some misclassi-
fication cost matrix can affect the testing process dramati-
cally. As an example, suppose the entries Cij0 in the j0th
column of misclassification matrix C is much smaller than
other entries in C, so that the minimizing function
minj Rðcjj eAAÞ and (5) always have j0 returned. In this case,
the gain from any unknown attribute Ai is always zero and
csNB will not do any tests even if their costs are zero.

5.4 Batch Test Strategies

The sequential test strategy is optimal in the sense that 1) it
takes expectation on all possible outcomes of attribute tests
and 2) the decisions are made in a sequential manner such
that the next test is dependent on the previous one.
However, in many situations, tests are required to be done
at once due to some practical constraints, such as time. In
these situations, unknown attributes are predetermined for
testing in a batch manner.

Specifically, the batch test strategy is different from the
sequential test strategy mainly in two facets. First, tests on
unknown attributes must be determined in advance before

any one of them is carried out (time constraints). Second,

because of the limitation on available resources, it is

impossible to test all the unknown attributes and, conse-

quently, selection must be made among those attributes

(resource constraints). Therefore, under the paradigm of

batch test, a strategy S ¼ fD1; D2; � � � ; Dtg is no longer a

sequence of, but a set of decisions. Still, Di ¼ Aj represents

the selection of unknown attribute Aj for testing. While

two decisions are correlated due to the constraints imposed,

one decision is no longer dependent on the outcome of the

other as in the sequential test strategy.
While finding the optimal batch test strategy S by

examining all possible subset of unknown attributes A is

computationally difficult, we assume the conditional in-

dependence assumption of attributes and map the problem

of finding strategy S as a knapsack problem [18]. Given a

knapsack and a set of items, each with a volume and a

value, the problem is to determine the number of each item

to include in the knapsack so that the total volume is less

than the volume of the knapsack and the total value is as

large as possible.
The equivalent knapsack problem is defined as follows:

Each unknown attribute Ai 2 A is viewed as an item in the

currently missing item set A. The volumes of each item Ai is

the test cost TAi
of it given by the test cost vector T . The gain

of Ai given by (3) is cast as its value. Furthermore, the

resource constraint Ttotal is viewed as the whole volume of

the knapsack. Then, the problem is to find the most valuable

set of items (a subset of A) that fit in the knapsack of fixed

volume Ttotal which can be solved using dynamic program-

ming in �fjAjTtotalg.The resulting algorithm is given in

Algorithm 5.

Algorithm 5 csNB-batch-predictðNBC;R;T;Ttotal; xÞ

Input: NBC—a cost-sensitive naive Bayes classifier,

R—a misclassification cost matrix,

T—a test cost vector,
Ttotal—the total resources available,

x—a testing example.

Output:

Label—the predicted class,

Ctest—the test costs.

Steps:

1: Let eAA and A denote the set of known attributes and the

set of unknown attribute of x.
2: Set Ctest ¼ 0.

3: Set V alues ¼ fg and V olumes ¼ fg.

4: for all Ai 2 A do

5: Calculate Gainð eAA [AiÞ by (3)

6: if GainðAiÞ > CtestðAiÞ ¼ TAi
then

7: V alues V alues [ fGainðAiÞg

8: V olumes V olumes [ fTAi
g

9: end if

10: end for

11: ðfA
�

i g; CtestÞ ¼ KNAPSACKðV alues; V olumesÞ

12: Reveal the values of attributes in fA
�

i g.

13: eAA eAA [ fA�i ¼ v�i;kg

14: Calculate the misclassification costs Rðcjj eAAÞ by (1).

15: Label = argminj Rðcjj eAAÞ.
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In Step 11 of the csNB-batch algorithm, the outputs of the
function KNAPSACKð�Þ are the selected items A

�

i (un-
known attributes) and the total test costs Ctest � Ttotal.
Similarly, the misclassification cost Cmc can be calculated in
the same way as in csNB-sequential and, subsequently,
Ctotal can be obtained.

6 EXPERIMENTS

In order to evaluate the performance of the TCSL frame-
work for both decision-trees and naive Bayesian methods,
in both sequential and batch test manners, several experi-
ments were carried out on data sets from the UCI ML
repository [15] as well as a real-world data set from an
insurance company. The eight data sets used are listed in
Table 3. These data sets were chosen because they have
discrete attributes, binary class, and a sufficient number of
examples. We only consider binary class problems (positive
and negative) in the following experiments, although our
TCSL algorithms can be used in multiple class problems
naturally. The numerical attributes in data sets were
discretized using minimal entropy method [18].

We ran a three-fold cross validation on these data sets.
For the testing examples, a certain percentage (missing rate)
of attributes are randomly selected and marked as
unknown. If during testing, an algorithm decides to
perform a test on an unknown attribute, the real value of
the attribute is revealed and the test cost Ctest is accumu-
lated. Finally, the misclassification cost Cmc can be obtained
by comparing the predicted label with the true class label.
The performance of the algorithms is therefore measured in
terms of the total cost Ctotal, the sum of Ctest and Cmc. To the
two-class problems, let c1 be the positive class and c2 the
negative class. The misclassification matrix was set as R12 ¼
R21 ¼ 400 and R11 ¼ R22 ¼ 0, where R12 can be interpreted
as false negative and R21 false positive. Test costs of each
attributes in T are set randomly between 0 and 100.

For algorithm comparison, two variations of traditional
naive Bayes classifiers were used as the baselines. The first
one is the naive Bayes classifier augmented to minimize the
misclassification cost (conditional risk), as given in [14].
This classifier is termed Lazy Naive Bayes (LNB) since it
simply predicts class labels based on the known attributes
and requires no further tests to be done on unknown ones.
The second variation is the naive Bayes classifier extended
further from LNB. It requires all the missing values to be
made up before prediction. Since this classifier allows no

missing values, it is therefore termed Exacting Naive Bayes

(ENB). Comparisons were also made between csNB and the

Test-Cost-Sensitive Decision Trees (csDT) proposed in

Section 4.
In summary, four methods were examined:

. LNB—Lazy naive Bayes,

. ENB—Exacting naive Bayes,

. csNB—Cost-sensitive naive Bayes, and

. csDT—test-cost-sensitive decision trees with the
sequential test strategy (follow the tree).

We note that the decision tree algorithm we use here is a

rather simple minded one: It simply follows the tree

sequentially to knowwhich test to perform in order to obtain

a next missing value. Other more sophisticated methods can

be further developed, which is our ongoing work.

6.1 Comparing Decision Tree and Naive Bayesian

We first compared the cost-sensitive decision-tree algorithm

with sequential test strategy (follow the tree) with the
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Fig. 1. Average total cost comparisons of four methods on data sets:

Ecoli, Breast, Heart, and Thyroid.

Fig. 2. Average total cost comparisons of four methods on data sets:

Australia, Cars, Voting, and Mushroom.



different cost-sensitive naive Bayesian algorithms. Fig. 1

and Fig. 2 show the results of different algorithms in

sequential test strategy on all the eight data sets. In these

experiments, the percentage of unknown attributes (missing

rate) was 40 percent. Each group of four bars represents the

runs of four algorithms on one particular data set. The

height of a bar represents the average total cost and,

therefore, the lower the better. Each bar consists of

two parts: The lower dark portion stands for the mis-

classification cost while the upper light portion stands for

the test costs.
There are several interesting observations from these

experiments. First, although the misclassification costs of

the ENB method are almost always the lowest among the

four methods, the average total costs are the highest. This is

because the low misclassification costs are achieved at the

cost of testing all unknown attributes, which is costly when

the missing rate is high.
Second, despite its lazy nature, the LNB method per-

forms surprisingly well, even better than the csDT method.

This can be explained by the fact that, while csDT uses the

splitting criterion of minimal total costs for attribute

selection in tree building, whenever trees are built, all tests

are fixed. Only the values of those attributes associated with

tree nodes along the paths are examined and the others are

omitted. However, the other attributes that are on other

branches of a tree can still be informative for classification.

LNB, on the other hand, is capable of making use of these

attributes. For the example in Section 5.1, suppose that the

attributes “ascites” and “Spiders” are known. csDT may

choose “ascites” as a splitting node and leave “Spider” out,

while csNB still utilizes both attributes.
To investigate the impact of the percentage of unknown

attributes on the total costs, experiments were carried out on

average total costwith the increasing percentage of unknown

attributes. Fig. 3 shows the results on the Mushroom data set

(other figures are spared for space). As we can see, when the

percentage increases (> 40 percent), the average total cost of

LNB increases significantly and surpasses that of csDT.

Again, csNB is better than the other twoover thewhole range.

Another set of experiments was conducted to compare

two cost-sensitive algorithms csDT and csNB in test costs.

The misclassification costs are still fixed at 400 (FP) and

400 (FN). Fig. 4 and Fig. 5 are the results on the Breast and

Mushroom data sets with both the missing rate 20 percent

and 60 percent. One can see that, when the test costs are

small (below 20), csDT wins overall. However, as the test

costs increase, csNB outperforms csDT. One thing to note is

that csNB is less sensitive to the test costs than csDT. This

reveals that the csNB algorithm is better at balancing the

misclassification and test costs.

6.2 Comparison to Other Cost-Sensitive Learning
Systems

In addition, we consider comparing with three main

previous works in cost sensitive learning. Incorporating

attribute costs into decision trees is an established research

direction in coping with cost-sensitive learning. As we

reviewed in Section 2, several approaches have been

proposed that have mainly focused on fixing existing

decision tree-based algorithms. They include ICET [19],
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Fig. 5. Comparisons on the Mushroom data set with varying test costs.



EG2 [20], CS-ID3 [21], and IDX [22]. In this section, we

compare with these systems empirically.

EG2 [20] is a top-down decision-tree induction algorithm

that uses the Information Cost Function (ICF ðAiÞ) for
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selecting an attribute Ai, instead of the information gain
used in C4.5. The selection score for the attribute Ai is
defined as

ICF ðAiÞ ¼
2�IðAiÞ � 1

ðcostðAiÞ þ 1Þ!
: ð6Þ

We implemented EG2 using this equation. In this equation,
the value of ! needs to be determined. In the EG2 system,
the value of ! is set to a constant value of one. In ICET [19],
this value is learned through a genetic algorithm. We have
implemented both EG2 and ICET for the comparison.

In addition, we have implemented and compared with
the CS-ID3 system of [21]. Our implementation uses the
following formula for attribute selection:

CSID3ðAiÞ ¼
�IðAiÞ

2

costðAiÞ
: ð7Þ

Finally, the IDX [22] system uses a similar but simpler
heuristic

IDXðAiÞ ¼
�IðAiÞ

costðAiÞ
: ð8Þ

We have done a comprehensive set of experiments to
compare both our test-cost sensitive decision tree and naive
Bayesian algorithms with these previous works. Further-
more, we have tested our system on a new real-world
domain. The results are shown in Fig. 6.

Fig. 6 shows the comparison against previous methods.
As can be seen, our methods csDT and csNB both preform
much better on the UCI domains Ecoli, Heart, Australia,
Thyroid, and so on, for increasing noise ratios. csNB
performs the best in almost all the testing domains. For
these tests, we used different settings of FP and FN costs:
FP ¼ 400 and FN ¼ 200. The attribute costs are the same as

that assumed in Section 4.1. Our conclusion is that both of

our proposed algorithms work well on different domains

with different levels of noise.

6.3 Evaluation on Real Data

In order to test the system’s ability to handle real-world

data, we have also tested all algorithms on an insurance

data set collected with an insurance company in Canada. It

consists of more than 900 records for customers who have

the status of “stay” or “leave” the insurance company. Our

target is to determine whether the customer will continue to

stay with the insurance company or not. We will refer to

them as positive and negative, respectively. The data set is

described by more than 10 attributes that are associated

with costs. The FP cost is 400 and the FN cost is 200. Some

attributes and their costs are listed in Table 4. The idea is

that, when some attributes have missing value, it costs the

insurance company extra resources to obtain their values.

Thus, in order to reduce costs, it is natural to apply test-

cost-sensitive learning. In the test, we used three-fold cross

validation.
The result of the empirical tests are shown in Fig. 7. As

can be seen, both of our methods again wins by a large

margin over the previous methods. This result demon-

strates the effectiveness of csDT and csNB in their ability to

reduce the total costs in a real-world setting.

6.4 Batch Test Strategy

Batch test is also investigated by conducting several

experiments. In order to compare CSNB with CSDT in

terms of their abilities in batch test strategies, set the

parameters Ttotal given in Algorithm 5.
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The results of average total cost on the eight data sets with

20 percent missing rate are shown in Fig. 8. The resource

constraint Ttotal is set to 100. Overall, csNB-batch outper-

forms csDT-batch greatly. This reveals that, although both

algorithms aim tominimize the total cost, csNB trades off the

misclassification cost and the test costs much better than

csDT, especially when resource constraints are imposed.
Fig. 9 shows the two runs on the Breast and Mush-

room data sets with the variation of percentage of

unknown attributes. As we can see, csNB-batch is less

sensitive to the missing-value rate and performs much

better than csDT-batch.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a test-cost-sensitive earning

framework for designing classifiers that minimize the sum

of the misclassification cost and the test costs. In the

framework of TCSL, attributes are selected for testing

intelligently to get both the sequential test strategy and the

batch test strategy. Experiments show that our method

outperforms other competing algorithms. We observe that

the decision tree algorithm we use here is a rather simple-

minded one in that it simply follows the tree sequentially to

obtain a next missing value. In the future, we plan to

consider more sophisticated test strategies for decision

trees. We will also consider the conditional test costs [3] in

which the cost of a certain test is conditional on the other

attributes. For example, in medical diagnosis, the cost of an

exercise stress test on a patient may be conditional on

whether the patient has heart disease or not. Another

direction is to consider group tests where the cost of

performing tests on a group of samples are cheaper than the

sum of the costs spent individually.

ACKNOWLEDGMENTS

The authors would like to thank Hong Kong RGC for their

support under grant No. HKUST 6187/04E. They also thank

the anonymous referees for their comments.

REFERENCES

[1] T.M. Mitchell, Machine Learning. McGraw Hill, 1997.
[2] J.R. Quinlan, C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers, 1993.
[3] P.D. Turney, “Types of Cost in Inductive Concept Learning,” Proc.

Workshop Cost-Sensitive Learning at the 17th Int’l Conf. Machine
Learning, 2000.

[4] C. Elkan, “The Foundations of Cost-Sensitive Learning,” Proc. 17th
Int’l Joint Conf. Artificial Intelligence, pp. 973-978, 2001.

[5] P. Domingos, “Metacost: A General Method for Making Classi-
fiers Cost-Sensitive,” Knowledge Discovery and DataMining, pp. 155-
164, 1999.

[6] M.T. Kai, “Inducing Cost-Sensitive Trees Via Instance Weighting,”
Principles of Data Mining and Knowledge Discovery, Second European
Symp., pp. 139-147, 1998.

[7] M. Nunez, “The Use of Background Knowledge in Decision Tree
Induction,” Machine Learning, vol. 6, pp. 231-250, 1991.

[8] M. Tan, “Cost-Sensitive Learning of Classification Knowledge and
Its Applications in Robotics,” Machine Learning J., vol. 13, pp. 7-33,
1993.

[9] C. Ling, Q. Yang, J. Wang, and S. Zhang, “Decision Trees with
Minimal Costs,” Proc. 2004 Int’l Conf. Machine Learning, 2004.

[10] P.D. Turney, “Cost-Sensitive Classification: Empirical Evaluation
of a Hybrid Genetic Decision Tree Induction Algorithm,”
J. Artificial Intelligence Research, vol. 2, pp. 369-409, 1995.

[11] V.B. Zubek and T.G. Dietterich, “Pruning Improves Heuristic
Search for Cost-Sensitive Learning,” Proc. 19th Int’l Conf. Machine
Learning, pp. 27-34, 2002.

[12] R. Greiner, A. Grove, and D. Roth, “Learning Cost-Sensitive
Active Classifiers,” Artificial Intelligence J., vol. 139, no. 2, pp. 137-
174, 2002.

[13] X. Chai, L. Deng, Q. Yang, and C.X. Ling, “Test-Cost Sensitive
Naive Bayesian Classification,” Proc. 2004 IEEE Int’l Conf. Data
Mining (ICDM ’04), Nov. 2004.

[14] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, second
ed. Wiley and Sons, Inc., 2001.

[15] P. Domingos and M. Pazzani, “On the Optimality of the Simple
Bayesian Classifier Under Zero-One Loss,” Machine Learning,
vol. 29, pp. 103-130, 1997.

[16] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, second ed. McGraw Hill and MIT Press, 2001.

[17] C.L. Blake and C.J. Merz, “UCI Repository of Machine Learning
Databases,” http://www.ics.uci.edu/~mlearn/MLRepository.
html, 1998.

[18] U.M. Fayyad and K.B. Irani, Multi-Interval Discretization of
Continuous-Valued Attributes for Classification Learning, pp. 1022-
1027. Morgan Kaufmann, 1993.

[19] P.D. Turney, “Cost-Sensitive Classification: Empirical Evaluation
of a Hybrid Genetic Decision Tree Induction Algorithm,”
J. Artificial Intelligence Research (JAIR), vol. 2, pp. 369-409, 1995.
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