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Abstract—Test data compression and test resource partitioning (TRP) are necessary to reduce the volume of test data for system-on-

a-chip designs. We present a new class of variable-to-variable-length compression codes that are designed using distributions of the

runs of 0s in typical test sequences. We refer to these as frequency-directed run-length (FDR) codes. We present experimental results

for ISCAS 89 benchmark circuits and two IBM production circuits to show that FDR codes are extremely effective for test data

compression and TRP. We derive upper and lower bounds on the compression expected for some generic parameters of the test

sequences. These bounds are especially tight when the number of runs is small, thereby showing that FDR codes are robust, i.e., they

are insensitive to variations in the input data stream. In order to highlight the inherent superiority of FDR codes, we present a

probabilistic analysis of data compression for a memoryless data source. Finally, we derive entropy bounds for the benchmark test sets

and show that the compression obtained using FDR codes is close to the entropy bounds.

Index Terms—Automatic test equipment (ATE), decompression architecture, embedded core testing, precomputed test sets, test set

encoding, system-on-a-chip test, variable-to-variable-length codes.
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1 INTRODUCTION

TEST data volume is a major problem encountered in the
testing of system-on-a-chip (SOC) designs [1]. A typical

SOC consists of several intellectual property (IP) blocks, each
of which must be exercised by a large number of precom-
puted test patterns. The increasingly high volume of SOC test
data is not only exceeding the memory and I/O channel
capacity of commercial automatic test equipment (ATEs), it
is also leading to excessively high testing times.

The testing time of an SOC directly impacts test cost. It is
determined by several factors, including the test data
volume, the time required to transfer test data to the cores,
the rate at which the test patterns are transferred (measured
by the test data bandwidth and the ATE channel capacity),
and the maximum scan chain length. For a given ATE
channel capacity and test data bandwidth, reduction in
testing time can be achieved by reducing the test data
volume and by redesigning the scan chains. While test data
volume reduction techniques can be applied to both soft
and hard cores, scan chains cannot be modified in hard (IP)
cores. New techniques are therefore needed to reduce the
test data volume, decrease testing time, and overcome ATE
memory limitations for SOCs containing IP cores.

Built-in self-test (BIST) has emerged as an alternative to
ATE-based external testing [2]. BIST offers a number of key
advantages. It allows precomputed test sets to be embedded
in the test sequences generated by on-chip hardware,
supports test reuse and at-speed testing, and protects

intellectual property. While BIST is now extensively used
for memory testing, it is not as common for logic testing.
This is particularly the case for nonscan and partial-scan
designs in which test vectors cannot be reordered and
application of pseudorandom vectors can lead to serious
bus contention problems during test application. Moreover,
BIST can be applied to SOC designs only if the IP cores in it
are BIST-ready. Since most currently available IP cores are
not BIST-ready, BIST insertion in SOCs containing these
circuits is expensive and requires considerable redesign.

An alternative approach for reducing test data volume
for SOCs is based on the use of data compression
techniques such as statistical coding, run-length coding,
and Golomb coding [3], [4], [5], [6], [7]. In this approach, the
precomputed test set TD provided by the core-vendor is
compressed (encoded) to a much smaller test set TE and
stored in the ATE memory; see Fig. 1. An on-chip decoder is
used for pattern decompression to generate TD from TE

during pattern application. This is an example of test
resource partitioning (TRP) in which ATE complexity is
reduced by moving some of the test resources from the ATE
to the SOC. It was shown in [5], [6], [7] that compressing a
“difference vector” sequence Tdiff determined from TD

results in smaller test sets and reduced testing time. Fig. 2
shows the test architecture based on Tdiff and cyclical scan
registers (CSRs).

While previous research has clearly demonstrated that
data compression offers a practical solution to the problem
of reducing test data volume via TRP, the compression
codes used in prior work were derived from other
application areas. For example, the statistical codes used
in [3] and [4] are motivated by pattern repetitions in large
text files. Similarly, the run-length and Golomb codes used
in [5], [6], [7] are more effective for encoding large files
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containing image data. None of these codes are tailored to
exploit the specific properties of precomputed test sets for
logic circuits. The Huffman code is known to be provably
optimal under certain well-defined conditions for data
compression [8] and it has been proposed for test data
compression [3], [4], [9]; however, its decoding complexity
for large block sizes makes it unsuitable for on-chip
decompression in a TRP scheme. While an attempt was
made in [6], [7] to customize the Golomb code by choosing
an appropriate code parameter, the basic structure of the
code was still independent of the test set. We can therefore
expect even greater reduction in test data volume by
crafting compression codes that are based on the generic
properties of test sets.

In this paper, we present a class of variable-to-variable-
length compression codes that are designed using the
distributions of the runs of 0s in typical test sequences. In
this way, the code can be tailored to our application
domain, i.e., SOC test data compression. We refer to these
as frequency-directed run-length (FDR) codes. For simpli-
city, we also refer to an instance of this class of codes as an
FDR code. We show that the FDR code outperforms both
Golomb codes and conventional run-length codes. We also
show that the FDR code can be effectively applied to both
the difference vector sequence Tdiff and the precomputed
test set TD. The latter is especially attractive since it
eliminates the need for a separate CSR for decompression.
Additional contributions of this paper include a novel
decompression architecture for FDR codes and an analytical
characterization of the amount of data compression that can
be expected using these codes. We also derive entropy
bounds for the benchmark test sets and show that the
compression obtained using FDR codes is quite close to the
theoretical bounds.

A major advantage of test data compression lies in the
fact that the patterns obtained after on-chip decompression
can target a large number of nonmodeled faults. Test set
compaction methods typically employed in automatic test
pattern generation (ATPG) drastically reduce the number of
patterns that detect any given fault from a fault model.
Recent research has, however, shown that n-detection test
sets, in which every fault is detected by at least n (n > 1)

tests, are more effective in detecting physical defects [15],
[16], [17]. When test data compression is applied to a set of
test cubes containing t patterns, all the t patterns are
applied to the circuit under test (CUT) at scan clock
frequency after on-chip decompression. Thus, test data
compression not only reduces tester memory requirements
and decreases testing time, but it also increases the
likelihood of detecting nonmodeled faults.

The proposed compression approach for reducing test
data volume is especially suitable for SOCs containing IP
cores since it does not require gate-level models for the
embedded cores. Precomputed test sets can be directly
encoded without any fault simulation or subsequent test
generation. This is in contrast to other recent techniques,
such as LFSR-based reseeding for BIST [18], bit-flipping
BIST [19], bit-fixing BIST [20], and scan broadcast [21],
which require structural models for fault simulation and
test generation. For example, the mixed-mode BIST techni-
que in [18] relies on fault simulation for identifying hard
faults and test generation to determine test cubes for these
faults. The scan broadcast technique in [21] also requires
test generation.

The organization of the rest of this paper is as follows: In
Section 2, we first motivate the new FDR code and describe
its construction. In Section 3, we determine the best-case
and the worst-case compression that can be achieved given
some generic parameters of the precomputed test set. We
also present a probabilistic analysis for a memoryless data
source and compare FDR codes to Golomb codes, run-
length codes, and entropy bounds. We then describe some
extensions to the basic FDR code, the data compression
procedure, and the decompression architecture in Section 4.
Finally, in Section 5, we present experimental results for the
six largest ISCAS 89 benchmark circuits as well as the scan
vectors for two production circuits from IBM. We do not
include results for the smaller benchmark circuits since they
are small enough to be considered trivial. Results on
Golomb coding for the smaller circuits can be found in
[7]. We also derive fundamental entropy bounds and show
that the FDR codes provide almost as much compression as
the entropy bounds for the benchmark circuits.

2 FDR CODES

In this section, we describe FDR coding and compare it with
conventional run-length coding and variable-to-fixed-
length Golomb coding. An FDR code is a variable-to-
variable-length code which maps variable-length runs of 0s
to codewords of variable length. It corresponds to a special
case of the exponential Golomb code with code parameter
k ¼ 1 [22].
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Fig. 1. A conceptual architecture for testing a system-on-chip by storing
the encoded test data TE in ATE memory and decoding it using on-chip
decoders.

Fig. 2. Decompression architecture based on a cyclical scan register

(CSR).



An FDR code can be used to compress both the
difference vector sequence Tdiff and the test set TD. Let TD ¼
ft1; t2; t3; . . . ; tng be the (ordered) precomputed test set. The
ordering is determined using a heuristic procedure de-
scribed later. Tdiff is defined as follows:

Tdiff ¼ fd1; d2; . . . ; dng ¼ ft1; t1 � t2; t2 � t3; . . . ; tnÿ1 � tng;

where a bit-wise exclusive-or operation is carried out
between patterns ti and tiþ1. This assumes that the CSR
starts in the all-0 state. (Other starting states can be
considered similarly.) The successive test patterns in a test
sequence often differ in only a small number of bits.
Therefore, Tdiff contains few 1s and it can be efficiently
compressed using the FDR code. However, the test
architecture requires additional CSR and an exclusive-or
gate for pattern decompression. If the uncompacted test set
TD is used for compression, all the don’t-care bits in TD are
mapped to 0s to obtain a fully specified test set before
compression.

A run length l is defined as a stream of 0s terminating
with a 1. Therefore, 000001 is a run length of five (l ¼ 5) and
a single 1 is a run length of zero (l ¼ 0). We now present
some important observations about the distribution of runs
of 0s in typical test sets which motivate the need for an
FDR code. We conducted a series of experiments for the
large ISCAS benchmark circuits and IBM test data and
studied the distribution of the runs of 0s in Tdiff obtained
from complete single stuck-at test sets for these circuits.
Fig. 3 illustrates this distribution for the s9234 benchmark
circuit. We found that the distributions of runs of 0s were
similar for the test sets of the other circuits.

The key observations from Fig. 3 are as follows:

. The frequency of runs of 0s of length l is high for
0 � l � 20.

. The frequency of runs of 0s of length l is very small
for l � 20.

. Even within the range 0 � l � 20, the frequency of
runs of 0s of length l decreases rapidly with
decreasing l.

If conventional run-length coding with block size b is
used for compressing such test sets, every run of l 0s,
0 � l � 2bÿ1, is mapped to a b-bit codeword. This is clearly
inefficient for the large number of short runs of 0s. Likewise,
if Golomb coding with code parameter m is used, a run of l
0s is mapped to a codeword with l

m

� �

þ 1þ log2 m bits.

Since Golomb code is a variable-to-variable-length code,

each codeword consists of two parts—a group prefix of
l
m

� �

þ 1 bits and a tail of log2 m bits. This is also inefficient

for short runs of 0s. Clearly, test data compression is more

efficient if the runs of 0s that occur more frequently are

mapped to shorter codewords. This leads us to the notion of

FDR codes.
The FDR code is constructed as follows: The runs of 0s

are divided into groups A1; A2; A3; . . . ; Ak, where k is

determined by the length lmax of the longest run

(2k ÿ 3 � lmax � 2kþ1 ÿ 3). Note also that a run of length l

is mapped to group Aj where j ¼ dlog2ðlþ 3Þ ÿ 1e. The size

of the ith group is equal to 2i, i.e., Ai contains 2
i members.

Each codeword consists of two parts—a group prefix and a

tail. The group prefix is used to identify the group to which

the run belongs and the tail is used to identify the members

within the group. The encoding procedure is shown in Fig. 4

and the encoding of an input data stream is illustrated in

Fig. 5. The FDR code has the following properties:

. For any codeword, the prefix and tail are of equal
length. For example, the prefix and the tail are each
one bit long for A1, two bits long for A2, etc.

. The length of the prefix for group Ai equals i. For
example, the prefix is two bits long for group A2.

. For any codeword, the prefix is identical to the
binary representation of the run length correspond-
ing to the first element of the group. For example,
run length 8 is mapped to group A3 and the first
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Fig. 3. Distribution of runs of 0s for the ISCAS benchmark circuit s9234.

Fig. 4. An example of FDR coding.



element of this group is run length 6. Hence, the
prefix of the codeword for run length 8 is 110.

. The codeword size increases by two bits (one bit for
the prefix and one bit for the tail) as we move from
group Ai to group Aiþ1.

Note that run lengths are also mapped to groups in

conventional run length and Golomb coding. In run-length

coding with block size b, the groups are of equal size, each

containing 2b elements. The number of code bits to which

runs of 0s are mapped increases by b bits as we move from

one group to another. On the other hand, in Golomb coding,

the group size increases as we consider larger runs of 0s,

i.e., Ai is smaller in size than Aiþ1. However, the tails for

Golomb codewords in different groups are of equal length

(log2 m, where m is the code parameter) and the prefix

increases by only one bit as we move from one group to

another. Hence, Golomb coding is less effective when the

runs of zeros are spread far from an “effective” range

determined by m.
We now present a comparison between the three

codes—conventional run-length code with block size

b ¼ 3, Golomb code with parameter m ¼ 4, and the new

FDR code. Fig. 6 shows the number of bits per codeword for

runs of 0s of different lengths. It can be seen from the figure
that the performance of the conventional run-length code is
worse than that of the Golomb code when the run length l
exceeds seven. The performance of the Golomb code is
worse than that of the FDR code for l � 24. We also note
that the new FDR code outperforms the other two types of
codes for runs of length zero and one. Since the frequencies
of runs of length zero and one are very high for
precomputed test sets (Fig. 3) and FDR codes are
significantly more efficient for l � 24, they outperform run
length and Golomb codes for SOC test data compression.
This is demonstrated by experimental results in Section 5.

3 ANALYSIS OF FDR CODES

In this section, we first develop an analysis technique to
determine the worst-case and best-case compression that
can be achieved using FDR codes for some generic
parameters of precomputed test sets. We then present a
probabilistic analysis for a memoryless data source and
compare FDR codes to Golomb codes, run-length codes,
and entropy bounds.

Suppose Tdiff (or TD if it is encoded directly) contains r 1s
and a total of n bits. We first determine Cmax, the number of
bits in the encoded test set TE in the worst case, i.e., when
the compression is the least effective. In doing so, we also
determine the distribution of the runs of 0s that gives rise to
this worst-case compression.

Suppose Tdiff contains ki runs of length i with maximum
run length lmax. Let the size of the encoded test set TE be F
bits and let � ¼ F ÿ ðnÿ rÞ measure the amount of
compression achieved using FDR codes. To make the
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Fig. 5. FDR encoding procedure for an input data stream.

Fig. 6. Comparison of codeword size (bits) for different run lengths for the FDR code, Golomb code (m ¼ 4), and conventional run-length code (b ¼ 3).



presentation simpler, we subtract a constant term from F
for all distributions of runs, given a fixed n and r. If the FDR
coding procedure of Fig. 4 is applied to Tdiff , we have � ¼
2k0 þ k1 þ 2k2 þ k3 ÿ k5 ÿ k7 ÿ 2k8 ÿ 3k9 � � � � (up to lmax).
This can be explained as follows: For each run of 0 of length
i, we compare the size of the run length (i) with the size of
the corresponding codeword. For example, the codeword
corresponding to a run of length 0 contains two bits (one
more than the original run), the codeword for run length 1
is of the same size as the original run length, etc. The
difference between these two quantities contributes to � and
it appears as the coefficient of the appropriate ki term in the
equation for �.

We next use the following simple integer linear
programming (ILP) model to determine the maximum
value of �. This yields the worst-case compression (Cmax)
using FDR codes.

Maximize: � ¼ 2k0 þ k1 þ 2k2 þ k3 ÿ k5 ÿ k7 ÿ 2k8 ÿ 3k9 �

� � � (up to lmax) subject to: 1)
Plmax

i¼1 iki ¼ nÿ r and

2)
Plmax

i¼1 ki ¼ r.

This ILP model can be easily solved, e.g., using a solver

such as lpsolve [14], to obtain the worst-case values for the

ki’s. Note that, even though lmax appears in the above ILP

model, we do not make any explicit use of it. Our goal here

is to determine a worst-case distribution of the runs of 0s.

Generally, short run lengths yield the worst-case compres-

sion; however, if lmax must exceed a minimum value to

satisfy constraints 1) and 2) above, we can use lpsolve to

determine the minimum lmax by incrementally increasing

lmax until the optimization problem becomes feasible.

Table 1 lists the size Cmax of the encoded data set for

worst-case compression for various values of n and r. The

last column shows a distribution of runs for which the

worst-case compression is achieved (a=b indicates a runs of

length b). Note that this distribution is not unique since a

number of run lengths can yield the worst-case distribution.

Note also that the worst-case percentage compression is

negative when r is high relative to n—this is unlikely to be

the case for test sets (don’t-cares mapped to 0s) or difference

vector sequences for which r is generally very small.
Next, we analyze the best-case compression achieved

using FDR codes for any given n and r. Since the
compression is better for longer run lengths, we also need
to constrain the maximum run length in this case. As before,
we formulate this problem using ILP and the following

model can be solved using lpsolve to obtain a best-case

distribution of runs and Cmin, the number of bits in the

encoded test set in the best case.

Minimize: � ¼ 2k0 þ k1 þ 2k2 þ k3 ÿ k5 ÿ k7 ÿ 2k8 ÿ 3k9 �

� � � (upto lmax) subject to: 1)
Plmax

i¼1 iki ¼ nÿ r and

2)
Plmax

i¼1 ki ¼ r.

Table 2 lists the run-length distributions corresponding

to the best case compression using FDR codes. The

corresponding percentage compression values are also

listed. In Fig. 7, a plot shows the lower and upper bounds

on the percentage compression as the number of runs r is

varied (for n ¼ 1; 000). We note that, for small values of r,

the bounds are very close to each other, hence, the FDR

code is robust, i.e., its efficiency is relatively insensitive to

variations in the distributions of the runs.
Next, we analyze FDR codes for a memoryless data

source that produces 0s and 1s with probabilities p and

(1ÿ p), respectively. The purpose of this analysis is to

examine the fundamental limits of the FDR code and to

demonstrate its effectiveness for all values of p, 0 < p < 1.

The entropy HðpÞ of this memoryless source is given by the

following equation [24]:

HðpÞ ¼ ÿp log2 pÿ ð1ÿ pÞ log2ð1ÿ pÞ:

We first analyze Golomb codes with group parameter m.

This is necessary to determine a baseline for evaluating

FDR codes. (The reader is referred to [7] for a review of

Golomb codes.) The smallest and the longest run lengths

that belong to group Ak are given by ðkÿ 1Þm and ðkmÿ 1Þ,
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TABLE 1
Worst-Case Compression Using FDR Codes

TABLE 2
Best-Case Compression Using FDR Codes

Fig. 7. Comparison between the upper and lower bounds on percentage

compression for n ¼ 1; 000.



respectively. Therefore, the probability that an arbitrarily
chosen run of length i belongs to group Ak is given by:

P ði; kÞ ¼
X

ðkmÿ1Þ

i¼ðkÿ1Þm

pið1ÿ pÞ

¼ ð1ÿ pmÞpðkÿ1Þm:

The codewords in group Ak consist of (log2 mþ k) bits [7].
Therefore, the average codeword length �GG for Golomb
codes is given by:

�GG ¼
X

1

k¼1

ð1ÿ pmÞpðkÿ1Þmðlog2 mþ kÞ

¼ log2 mþ
1

ð1ÿ pmÞ

� �

:

We next determine �, the average number of bits in any run
generated by the data source. It can be easily shown that:

� ¼ 1þ
X

1

i¼1

ipið1ÿ pÞ

¼
1

1ÿ p
:

The effectiveness of compression is measured by the
compression gain �G, which is defined as the ratio of the
average number of bits in any run to the average codeword
size, i.e., �G ¼ �

�GG
. This yields

�G ¼
1

ð1ÿ pÞ log2 mþ 1
1ÿpm

� � :

An upper bound on the compression gain is obtained from
the entropyHðpÞ of the source using the following equation:

�max ¼
1

HðpÞ
:

Fig. 8 shows the relationship between �G and p for three

values of m. The upper bound �max is also shown in the

figure. The figure shows that, while the compression gain

for Golomb codes is significant, especially for large values

of p, there is a significant difference between �G and the

upper bound �max. This motivates the need for FDR codes.
We next analyze the effectiveness of conventional run-

length codes for a memoryless data source. Let group Ak for

run-length codes contain (M þ 1) members such that M ¼

2N ÿ 1 for some positive number N . The parameter M must

be kept small, e.g., M ¼ 15, in order to keep the decoder

simple. The smallest and the longest run length that belong
to group Ak are given by Mðkÿ 1Þ and Mk, respectively.

Therefore, the probability that an arbitrarily chosen run of

length i belongs to group Ak is given by:

P ði; kÞ ¼
X

ðkMÿ1Þ

i¼ðkÿ1ÞM

pið1ÿ pÞ þ pMk

¼
pkM

pM
:

The codewords in group Ak consist of k log2ðM þ 1Þ bits.

Therefore, the average codeword length �RR for run-length

codes is given by:

�RR ¼
X

1

k¼1

pkM

pM
k log2ðM þ 1Þ

¼
log2ðM þ 1Þ

ð1ÿ pMÞ2
:

The compression gain �R for run-length codes is given by:

�R ¼
ð1ÿ pMÞ2

ð1ÿ pÞ log2ðM þ 1Þ
:

Finally, we analyze the effectiveness of FDR codes for a

memoryless data source. The smallest and the longest run
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Fig. 8. Compression gain obtained with Golomb codes.



lengths that belong to group Ak are given by ð2k ÿ 2Þ and

ð2kþ1 ÿ 3Þ, respectively. Therefore, the probability P ði; kÞ

that an arbitrarily chosen run of length i belongs to group

Ak is given by:

P ði; kÞ ¼
X

2kþ1ÿ3

i¼2kÿ2

pið1ÿ pÞ

¼ p2
kÿ2ð1ÿ p2

k

Þ:

The codeword in group Ak consists of 2k bits. Therefore, the

average codeword length �FF for FDR codes is given by:

�FF ¼
X

1

k¼1

2kp2
kÿ2ð1ÿ p2

k

Þ

¼ 2
X

1

k¼1

p:2
kÿ2:

Even though we do not have a closed-form expression for
�FF , the above equation can be used to evaluate the

effectiveness of FDR codes. The compression gain �F for

FDR codes is given by

�F ¼
1

2ð1ÿ pÞ
P1

k¼1 p
2kÿ2

:

Fig. 9 shows a comparison between the compression gain

�F , �G, and �R, where �R is the compression gain

corresponding to run-length codes. The upper bound �max

is also shown in the figure. The figure shows that

compression gain for FDR codes is always higher than that

for Golomb codes for all values of p > 0:942. Fig. 10 shows

that, for large values of p, there is a significant difference

between �F and �G. The figures also show how closely the

FDR gain curve follows the upper bound �max. Hence, these

results show that FDR codes are inherently superior to

Golomb codes and run-length codes and they allow us to

approach the fundamental entropy bounds.

4 EXTENSIONS TO THE FDR CODE AND

TEST DATA DECOMPRESSION

In this section, we describe some extensions to the basic

FDR code described in Section 2 and then present the data

compression/decompression method for testing SOCs.

Additional practical issues related to the decompression

architecture are discussed in this section. We design the on-

chip decoder and show that it is independent of the core

under test and the precomputed test set.
The FDR coding algorithm described in Section 2

represents an instance of a code belonging to the class of

more general FDR codes. This instance is especially suitable

when the frequencies of runs decreases monotonically, i.e.,

the number of runs of length l is greater than the number of

runs of length lþ 1. It is also effective when the cumulative

frequency of the runs in any group Ai exceeds the

cumulative frequency of the runs in group Aiþ1. However,

for precomputed test sets, the run-length frequencies do not

always decrease monotonically. For such nonmonotonically

decreasing run lengths, the compression can be increased

by extending the basic FDR code as described below.
For each group Ai, we calculate the cumulative fre-

quency of the run lengths in that group. This is done by

simply adding the frequencies of the run lengths in that

group. Next, instead of assigning the group prefix as shown

in Fig. 4, we assign the prefix based on the cumulative

frequency of that group. A group with a large cumulative

frequency is assigned a short prefix. In this way, the size of

the encoded test set can be reduced by carrying out a small

amount of preprocessing and by using a mapping logic

block (outlined later) in the decoder.
Let us consider a hypothetical test set with the distribu-

tion of run lengths as shown in Fig. 11. Let Ci denote the

cumulative frequencies for group Ai. For our example, these

cumulative frequencies are: C1 ¼ 45, C2 ¼ 40, and C3 ¼ 150.

Fig. 11 shows the group prefix assignment for the FDR code

described in Section 2, as well as the more efficient prefix

assignment based on the cumulative frequencies. Since

1082 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 8, AUGUST 2003

Fig. 9. Comparison of compression gain obtained with FDR codes,

Golomb codes, and run-length codes for 0:9 � p � 0:99.

Fig. 10. Comparison of compression gain obtained with FDR codes,

Golomb codes, and run-length codes for 0:99 � p � 0:999.



C3 > C1 > C2, the group prefixes for A1, A2, and A3 are 10,
110, and 0, respectively.

For this example, the size of the test set is 1,624 bits. If the
cumulative frequencies are not used for prefix assignment,
the size of the encoded test set is 1,150 bits, which implies a
compression of 29.68 percent. On the other hand, if the
cumulative frequencies are used as described above, the
encoded test set contains only 935 bits, which implies
42.42 percent compression. Hence, the compression in-
creases by 12.74 percent when prefix assignment is done
based on cumulative frequencies.

4.1 Test Data Compression/Decompression

We next describe the test data compression procedure, the
decompression architecture, and the design of the on-chip
decoder. We show that the decoder is simple and scalable
and independent of both the core under test and the
precomputed test set. Moreover, due to its small size, it
does not introduce significant hardware overhead.

The encoding procedure for a block of data using FDR
codes was outlined in Section 1. Let TD be the uncom-
pacted test set and let Tdiff be the corresponding difference
vector test sequence. If TD is used for compression, all
don’t-cares in it are carefully mapped to 0 to obtain long
runs of 0s. If Tdiff is used for compression, then the don’t-
cares are mapped to 0 or 1 so as to obtain long runs of 0s in
the difference vector sequence. For full-scan cores, the
patterns can be reordered. However, since the ordering
problem is equivalent to the NP-Complete Traveling
Salesman problem, a heuristic algorithm is used to reorder
the patterns [6], [7].

For sequential cores, a boundary scan register is required
at the functional inputs for decompression [7]. This register
is usually available for cores that are wrapped. The encoded
data is fed bitwise to the decoder, which produces a
sequence of difference vectors. The decompression hard-
ware then translates the difference vectors into the test
patterns, which are applied to the core. If an existing
boundary-scan register or the P1500 test wrapper is used to
decompress the test data, the decoder and a small amount
of synchronizing logic are the only additional logic
required.

We first design the decoder for the basic FDR code
presented in the Section 2 and then describe the mapping
logic that allows cumulative frequencies to be used for
prefix assignment. The design is similar to the FSM-based
decoder in [6], [7]. Issues related to data synchronization are
described in [7]. The decoder decompresses the encoded

test set TE and outputs TD. It can be efficiently implemented
by a k-bit counter, a log2 k-bit counter, and a finite-state
machine (FSM). The block diagram of the decoder is shown
in Fig. 12. The bit in is the input to the FSM and an enable
(en) signal is used to input encoded data when the decoder
is ready. The FSM output counter in is used to shift in the
prefix or the tail into the k-bit counter and the signals shift,
dec1, and rs1 are used to shift the data in, to decrement, and
to indicate the reset state of the counter, respectively. The
second counter of log2 k-bit is used to count the length of the
prefix and the tail so as to identify the group. The signals
inc and dec2 are used to increment and decrement the
counter, respectively, and rs2 indicates that the counter has
finished counting. Finally, the signal out is the decoder
output and v indicates when the output is valid. The
operation of the decoder is as follows:

. The FSM feeds the k-bit counter with the prefix. The
end of the prefix is identified by the separator 0. The
en, shift, and inc signals are high till the 0 is
received.

. The FSM output 0s and decrements the k-bit counter
and makes the signal dec1 high. It continues to
output 0s until rs1 goes high. The signal v is used to
indicate a valid output.

. The tail part is shifted in until the log2 k-bit counter
resets to zero. The dec2 signal then goes high, the
counter is decremented, and the signal rs2 indicates
when it is in the zero state.

. The FSM output 0s corresponding to the tail
followed by a 1 at the end of tail decoding.

The state diagram for the FSM used for pattern
decompression is shown in Fig. 13. We note that the state
diagram consists of only nine states. We synthesized the
FSM using Synopsys design compiler [26]. The synthesized
circuit contains only four flip-flops and 38 gates. Therefore,
the additional hardware needed for the decoder is very
small and existing counters on the SOC can be reused for
decompression.

The above decoder can be easily modified for decom-
pressing data encoded using cumulative frequencies for the
groups. Since the use of the cumulative frequencies affects
only the prefix and not the tail, we only need to add a
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Fig. 11. An example of an extended FDR code for nonmonotonically

decreasing run lengths of 0s.

Fig. 12. Block diagram of the decoder used for on-chip pattern

decompression.



mapping logic block between the encoded data stream and

the decode FSM. Thus, the mapping logic feeds the decode

FSM and transforms the prefixes in the encoded data to the

prefix assignment of Fig. 4. Fig. 14 sketches the position of

the mapping logic relative to the decoder. For the

hypothetical test case considered in Fig. 11, we have the

following mapping: 10 ) 0; 110 ) 10; 0 ) 110. For exam-

ple, if the mapping logic receives 110, the output to the

decode FSM is 10.
In our experiments with ISCAS 89 benchmark circuits,

we observed that the run lengths were never long enough to

exceed group A10. Therefore, in the worst case, the mapping

logic is required for only 10 prefixes. We show in Section 5

that a small amount of additional compression is achieved

using the mapping logic. Thus, if area overhead is a major

concern, then the decoder can be designed without the

mapping logic, thereby trading off area overhead with the

amount of compression.

5 EXPERIMENTAL RESULTS

We now present experimental results on test data compres-
sion for the large ISCAS benchmark circuits. We considered
both full-scan and nonscan circuits for the proposed
compression/decompression scheme. For full-scan circuits,
patterns were reordered to achieve higher compression
whereas no ordering was done for the nonscan circuits. For
all the full-scan circuits, we considered a single scan chain.
The compression percentage was computed as follows:

Percentage compression

¼
Size of the test setÿ Size of encoded test set

Size of the test set
� 100

¼
jTDj ÿ jTE j

jTDj
� 100:

The first set of experimental data that we present is
based on the use of difference vector sequences Tdiff

obtained from partially-specified test sets (test cubes).
Table 3 presents results for test cubes obtained using the
Mintest ATPG program [23] with dynamic compaction. We
compare the compression obtained using FDR coding with
Golomb coding and also with fully compacted test sets
generated using Mintest. Note that there is no loss in fault
coverage due to on-chip decompression. We carried out our
experiments using a Sun Ultra 10 workstation with a
333 MHz processor and 256 MB of DRAM. The table lists
the percentage compression, sizes of the precomputed
(original) test sets, sizes of the encoded test sets, and the
sizes of the smallest ATPG-compacted test sets.

Table 3 shows that FDR codes provide better compres-
sion than Golomb codes in all cases.1 For the benchmark
circuit s38417, there is as much as a 7 percent increase in
compression. We also note that that, in all cases, the size of
the encoded test set TE is much smaller than the compacted
test set obtained using Mintest. On average, the percentage
compression using FDR codes was 4.9 percent higher than
that obtained using Golomb codes. Note that test data
compression leads to encoded test sets that are always
smaller than ATPG compacted test sets [7]. Moreover, the
testing time is reduced significantly [10], [11] and sub-
stantial reduction is obtained in power consumption during
scan testing [12]. Testing time is decreased by employing
faster on-chip decompression of encoded test data. The
compressed data can be transferred at a slower rate from
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Fig. 13. State diagram of the FSM used for on-chip pattern

decompression.

Fig. 14. The mapping logic and the decoder used for pattern

decompression.

TABLE 3
Compression Obtained Using Tdiff

1. The percentage compression results for Golomb codes reported here
are better than those reported in [6], [7] due to the use of an improved
pattern reordering heuristic.



the ATE to the SOC. This allows the use of low-end ATEs
with less memory and slower clock rates [11]. Test power is
reduced by decreasing the power dissipation during scan
shifting operation. Scan power consumption during scan-in
and scan-out has been shown to be a dominant part of the
total power dissipation during scan-based testing [13]. Scan
power can be decreased by carefully mapping the don’t-
care bits in the test cubes. Therefore, significant savings in
average and peak power can be obtained using the methods
based on test data compression [12].

Table 4 demonstrates that the use of test cubes TD (with
all the don’t-cares mapped to 0) also yields very high
compression. The advantage of using TD for compression is
that the decompression architecture for on-chip pattern
generation does not require a separate CSR. For circuits
with long scan chains, additional CSRs of lengths equal to
the scan chain lengths increase the hardware overhead
significantly. Therefore, compressing TD to generate the
encoded test set not only yields smaller test sets but also
reduces the hardware overhead.

Next, we present experimental results on test data
compression for nonscan circuits. We obtained the test
sequences for these circuits from HITEC [27]. No reordering
of test patterns was done during compression. Table 5 lists
the sizes of the precomputed test sequences and the
percentage compression obtained in each case for the basic
FDR code and the modified code using mapping logic. Not
surprisingly, we found out that more compression is
obtained using the mapping logic. The results also show
that very high compression is achieved for nonscan circuits
using FDR codes.

Next, we compare the experimental results to the
theoretical upper bounds on the compression predicted by
the “entropy” of the test data. Let S be a data sequence with
patterns s1; s2; s3; . . . ; sk and let p1; p2; p3; . . . ; pk be the
relative frequencies of the patterns in S, respectively. An
entropy measure of S is given by:2

EðSÞ ¼
X

k

i¼1

pi log2ð1=pÞ:

Intuitively, EðSÞ provides a lower bound on the average
number of bits required to encode each pattern inS [25]. If b is
the sum of the relative frequencies of s1; s2; s3; . . . ; sk, a lower
bound on the encoded data stream for S is given by bEðSÞ.

Table 6 lists the sizes of the precomputed test sequences
lower bounds on the size of encoded data and percentage
compression based on entropy analysis and the actual size
of encoded test data and percentage compression obtained
in each case for the FDR code using TD. We find that, in
almost all the cases, the percentage compression obtained is
very close to the entropy bound. Table 7 shows the lower
bounds on the size of encoded data and percentage
compression based on entropy analysis and the actual size
of encoded test data and percentage compression obtained
in each case for the FDR code using Tdiff . The results show
that the difference between the lower bound on the size of
the encoded data obtained using entropy and FDR codes is
less than 2 percent in all cases.

We next present experimental results for two real test
sets from industry. The test set for the first circuit (CKT1)
from IBM consists of 32 statically compacted scan vectors
(a total of 362,922 bits of test data per vector). This
microprocessor design consists of 3.6 million gates and
726,000 latches. The compression results using the
Golomb and the FDR code and the entropy bounds for
the 32 scan vectors are shown in Table 8. Note that we
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TABLE 4
Compression Obtained Using TD

2. An explicit distinction is being made here between the formal notion
of entropy for a probabilistic data source and the entropy measure for a
deterministic test set with relative frequencies of test patterns.

TABLE 5
Compression Obtained Using TD and FDR Codes for
Nonscan Circuits with and without Mapping Logic

TABLE 7
Comparison of Compression Predicted by Entropy of

Test Data and FDR Codes for Tdiff

TABLE 6
Comparison of Compression Predicted by Entropy of

Test Data and FDR Codes for TD



obtain a staggering 97.10 percent compression on average.
Table 8 also shows the entropy bounds for the test
vectors. The difference between the entropy-based lower
bound on the size of the encoded data and the size of
FDR-coded data is less than 1 percent in all cases.

Table 9 shows experimental results for a second

microprocessor circuit (CKT2) from IBM. TD for this
consists of a set of four scan vectors (a total of 1,031,072 bits
of test data per vector); this design contains 1.2 million gates
and 32,200 latches. Over 95 percent compression is obtained
for the test cubes of CKT2. The compression results here are
also within 1 percent of the entropy bounds.

Finally, we compare the compression obtained using the
FDR code to the Unix file compression utilities gzip and
compress. In order to carry out a fair comparison, we

converted the encoded test sets obtained using the FDR
code to a binary format. Table 10 shows the size of the
encoded test set and the percentage compression obtained

using gzip, compress, and the FDR code. We note that, in

almost all cases, the compression obtained using the FDR

code is close to the compression obtained using the two

Unix utilities. For s9234, the FDR code outperforms both

gzip and compress. The gzip and compress utilities employ far

more complex encoding algorithms than the FDR code.

Hence, it is inconceivable that they can be decoded using

simple hardware techniques for TRP; the corresponding

decompression utilities (gunzip and uncompress) are usually

implemented in software. It is therefore particularly

noteworthy that the simpler FDR code, which can be easily

used for on-chip decompression, provides almost as much

compression as gzip and compress.

6 CONCLUSIONS

We have presented a new class of variable-to-variable-

length compression codes that are designed using the
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TABLE 8
Compression Obtained for CKT1 from IBM

TABLE 9
Compression Obtained for CKT2 from IBM



distributions of the runs of 0s in typical test sequences. We

refer to these as frequency-directed run-length (FDR) codes.

We have presented experimental results for the ISCAS 89

benchmark circuits and two production circuits from IBM

to show that FDR codes outperform Golomb codes for test

data compression. We have presented a decompression

architecture for FDR codes, as well as an analytical

characterization of the amount of compression that can be

expected using these codes. Our analysis provides lower

and upper bounds on the compression expected for some

generic parameters of the test set. These bounds are

especially tight when the number of runs is small. This

shows that FDR codes are robust, i.e., they are insensitive to

variations in the input data stream.
We have also presented a probabilistic analysis of the

FDR code for a memoryless data source in order to highlight

its inherent superiority for all data sources. Experimental

results show that the compression for FDR codes is quite

close to the fundamental entropy bounds for the benchmark

circuits. We are currently reviewing tester technology to

determine practical ways to adapt and configure testers to

apply FDR-coded test data to an SOC under-test. This work

will pave the way for easy adoption of test data compression

in the semiconductor industry.
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