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Abstract— We present a selective encoding method that reduces
test data volume and test application time for scan testing of
intellectual property (IP) cores. This method encodes the slices
of test data that are fed to the scan chains in every clock
cycle. Unlike many prior methods, the proposed method does
not encode all the specified (0s and 1s) and unspecified (don’t-
care) bits in a slice. For example, if a slice contains more 1s than
0s, only the 0s are encoded and all don’t-cares are mapped to 1.
We use only c tester channels, where c = dlog

2
(N + 1)e + 2, to

drive N scan chains. In the best case, we can achieve compression
by a factor of N/c using only one tester clock cycle per slice. We
derive an upper bound on the density of care bits (either 1s or 0s)
that allows us to achieve the best-case compression. The pattern
decompression is of the continuous-flow type because no complex
handshakes are required between the tester and the chip. Unlike
popular compression methods such as EDT and SmartBIST,
the proposed approach is suitable for IP cores because it does
not require structural information for fault simulation, dynamic
compaction, or interleaved test generation. The on-chip decoder is
small, independent of the circuit under test and the test set, and it
can be shared between different circuits. We present compression
results for a number of industrial circuits, and compare our
results to other recent compression methods targeted at IP cores.
We show that up to 28x reduction in test data volume and 20x
reduction in testing time is obtained for these circuits.

I. INTRODUCTION

Test data volume is now recognized as a major contributor

to the cost of manufacturing testing of integrated circuits

(ICs) [1]–[4]. Recent growth in design complexity and the

integration of embedded cores in system-on-chip (SoC) ICs

has led to a tremendous growth in test data volume; industry

experts predict that this trend will continue over the next

few years [5]. For example, the test data volume in 2014 is

expected to be as much as 150 times the data volume in 1999

[6].

High test data volume leads to an increase in testing time. In

addition, high test data volume may also exceed the limited

memory depth of automatic test equipment (ATE). Multiple

ATE reloads are time-consuming because data transfers from a

workstation to the ATE hard disk, or from the ATE hard disk to

ATE channels are relatively slow; the upload time ranges from

tens of minutes to hours [7]. Test application time for scan

testing can be reduced by using a large number of internal scan

chains. However, the number of ATE channels that can directly

drive scan chains is limited due to pin count constraints.

∗This research was supported in part by the National Science Foundation
under grants CCR-9875324 and CCR-0204077.

Logic built-in self-test (LBIST) [8] has been proposed as

a solution for alleviating the above problems. LBIST reduces

dependencies on expensive ATEs and allows precomputed test

sets to be embedded in test sequences generated by BIST

hardware to target random-pattern resistant faults. However,

the memory required to store the top-up patterns for LBIST

can exceed 30% of the memory used in a conventional ATPG

approach [8]. With increasing circuit complexity, the storage of

an extensive set of ATPG patterns on-chip becomes prohibitive

[1]. Moreover, BIST can be applied directly to SoC designs

only if the embedded cores are BIST-ready; considerable

redesign may be necessary for incorporating BIST in cores

that are not BIST-ready.

Test data compression offers a promising solution to the

problem of increasing test data volume. A test set TD for the

circuit under test (CUT) is compressed to a much smaller data

set TE , which is stored in ATE memory. An on-chip decoder

is used to generate TD from TE during test application.

A popular class of compression schemes relies on the use

of a linear decompressor. These techniques are based on

LFSR reseeding [9]–[12] and combinational linear expansion

networks consisting of XOR gates [13]–[15], and they have

been implemented in commercial tools such as TestKompress

from Mentor Graphics [1], SmartBIST from IBM/Cadence [3],

and DBIST from Synopsys [16]. These compression schemes

exploit the fact that scan test vectors typically contain a large

fraction of unspecified bits even after compaction. However,

the on-chip decoders for these techniques are specific to

the test set, which necessitates decompressor redesign if the

test set changes during design iterations. Moreover, since the

decoder is not generic, it cannot be shared by multiple cores

in an SoC. Finally, in order to achieve the best compression,

these methods resort to fault simulation and test generation.

As a result, they are less suitable for test reuse in SoC designs

based on IP cores.

Another category of compression methods uses statistical

coding, variants of run-length coding, dictionary-based coding,

and hybrid techniques [17]–[26]. These methods exploit the

regularity inherent in test data to achieve high compression.

However, most of these schemes target single scan chains and

they require synchronization between the ATE and CUT.

We present a selective encoding method that reduces test

data volume and test application time for scan testing of

intellectual property (IP) cores. This method encodes the slices
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of test data that are fed to the scan chains in every clock cycle.

Unlike many prior methods, the proposed method does not

encode all the specified (0s and 1s) and unspecified (don’t-

care) bits in a slice. For example, if a slice contains more

1s than 0s, only the 0s are encoded and all don’t-cares are

mapped to 1. We use only c tester channels, where c =
dlog

2
(N + 1)e + 2, to drive N scan chains. The logarithmic

reduction in the number of tester channels allows us to use

a large number of internal scan chains, thereby reducing test

application time significantly. In the best case, we can achieve

compression by a factor of N/c using only one tester clock

cycle per slice. We derive an upper bound on the density of

care bits (either 1s or 0s) that allows us to achieve the best-case

compression. The pattern decompression is of the continuous-

flow type because no complex handshakes are required be-

tween the tester and the chip, and there is no need to introduce

tester stall cycles. Unlike popular compression methods such

as EDT and SmartBIST, the proposed approach is suitable

for IP cores because it does not require structural information

for fault simulation, dynamic compaction, or interleaved test

generation. The on-chip decoder is small, independent of the

circuit under test and the test set, and it can be shared between

different circuits. We present compression results for a number

of industrial circuits, and compare our results to other recent

compression methods targeted at IP cores. We show that up to

28x reduction in test data volume and 20x reduction in testing

time is obtained for these circuits.

The steady increase in clock frequencies over recent years

has led to designs with a small number of gates between

latches, or between latches and I/O pins. As a result, logic

circuits today have very short combinational logic depth, and

many logic cones with very little overlap. This is in contrast

to older circuits such as the ISCAS-85 benchmarks that tend

to have a smaller number of overlapping logic cones. A

consequence of the shallow logic depth is that test patterns

in present-day circuits contain many don’t-care bits; e.g., it

has been reported recently that test sets for industrial circuits

contain only 1%-5% care bits [27]. After a desired stuck-

at coverage is obtained, a commercial test pattern generator

typically uses random fill to increase the likelihood of sur-

reptitious detection of unmodeled faults. However, if the test

sets for the cores are delivered with the don’t-care bits to the

system integrator, an appropriate compression method can be

used at the system level to reduce test data volume and testing

time. This imposes no additional burden on the core vendor.

Unmodeled faults can still be detected if the compression

method does not arbitrarily map all don’t-cares to either 1s

or 0s.

We do not address the problem of output compaction in this

work. The proposed input compression method can be used

with recent output compaction methods such as X-compact [2],

convolutional compaction [28], and i-compact [29] to further

reduce test data volume.

The rest of the paper is organized as follows. The details

of the proposed approach are described in Section II. Section

III presents the decompression architecture and Section IV
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Fig. 1. Test application using the proposed approach.
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Fig. 2. A slice-code consists of a 2-bit control-code and a K-bit data-code.

presents compression results for industrial circuits.

II. PROPOSED APPROACH

As shown in Fig. 1, the proposed approach encodes the

slices of test data (scan slices) that are fed to the internal

scan chains. The on-chip decoder contains an N -bit buffer,

and it manipulates the contents of the buffer according to the

compressed data that it receives. After all the compressed data

for a single slice is received, the data in the buffer is delivered

to the scan chains.

Each slice is encoded as a series of c-bit slice-codes, where

c = K + 2, K = dlog
2
(N + 1)e and N is the number of

internal scan chains in the CUT. As shown in Fig. 2, the first

two bits of a slice-code form the control-code that determines

how the following K bits, referred to as the data-code, are

interpreted.

As described in Section I, the proposed approach only

encodes a subset of the specified bits in a slice. First, the

encoding procedure examines the slice and determines the

number of 0- and 1-valued bits. If there are more 1s (0s)

than 0s (1s), then all X’s in this slice are mapped to 1 (0),

and only 0s (1s) are encoded. The 0s (1s) are referred to as

target-symbols and are encoded into data-codes in two modes:

1) single-bit-mode and 2) group-copy-mode.

In the single-bit-mode, each bit in a slice is indexed from

0 to N − 1. A target-symbol is represented by a data-code

that takes the value of its index. For example, to encode the

slice “XXX10000”, the X’s are mapped to 0 and the only

target-symbol of 1 at bit position 3 is encoded as “0011”. In

this mode, each target-symbol in a slice is encoded as a single

slice-code. Obviously, if there are many target-symbols that are

adjacent or near to each other, it is inefficient to encode each of

them using separate slice-codes. Hence the group-copy-mode

has been designed to increase compression efficiency.

In the group-copy-mode, an N -bit slice is divided into M =
dN/Ke groups, and each group (with the possible exception

of the last group) is K-bits wide. If a group contains more

than two target-symbols, the group-copy-mode is used and

the entire group is copied to a data-code. Two data-codes are

needed to encode a group. The first data-code specifies the

index of the first bit of the group, and the second data-code

Paper 24.3 INTERNATIONAL TEST CONFERENCE 2



contains the actual data. In the group-copy-mode, don’t-cares

can be randomly filled instead of being mapped to 0 or 1 by

the compression scheme.

For example, let N = 8 and K = 4, i.e., each slice is

8-bits wide and consists of two 4-bit groups. To encode the

slice “X1110000”, the three 1s in group 0 are encoded. The

resulting data-codes are “0000” and “X111”, which refer to

bit 0 (first bit of group 0) and the content of the group,

respectively.

Since data-codes are used in both modes, control-codes are

needed to avoid ambiguity. Control-codes “00”, “01” and “10”

are used in the single-bit-mode and “11” is used in the group-

copy-mode. Control-codes “00”, “01” are referred to as initial-

control-codes and they indicate the start of a new slice.

The encoding procedure is summarized in Fig. 3. In Step

(1), each test vector is divided into a series of slices. We then

encode each slice as a series of slice-codes. In Steps (3)-(7),

the numbers of 0s and 1s are calculated, and the target-symbol

as well as the control-code of the first slice-code are set. The

first slice-code of each slice must contain an initial-control-

code.

Steps (8)-(14) encode all the groups of a slice. For each

group of a slice, if it contains more than two target-symbols,

it is encoded using the group-copy-mode; otherwise it is

encoded using the single-bit-mode. A single-bit-mode slice-

code contains a control-code of “00”, “01”, or “10”. The data-

code for the single-bit-mode ranges from 0 to N . However,

since there are only N scan chains, a data-code of N is

interpreted as a dummy and it implies that no bits are to be

set. For example, if a slice contains no target-symbols, it is

encoded as an initial-control-code and a dummy data-code.

Step (15) generates slice-codes for the entire slice. The

first slice-code is a single-bit-mode code and it can encode

any group that contains only one target-symbol. To improve

compression efficiency, if n ≥ 2 adjacent groups are to be

encoded using the group-copy-mode, they are merged together.

Only one data-code is used to specify the index of the first

bit of these groups, followed by n data-codes carrying the

contents of the n groups. Obviously, group-copy-mode slice-

codes should be interleaved with single-bit-mode slice-codes.

Since the data-code carrying the bit index of the first group

and the data-codes carrying the actual data are all associated

with the same control-code of “11”, only the occurrence of

a single-bit-mode slice-code can terminate a series of group-

copy-mode slice-codes.

As can be seen from Fig. 3, the encoding procedure consists

of two nested loops: the outer loop is for scan slices, and the

inner loop is for groups of a slice. Hence its time complexity

is O(S · N) = O(V ). Table I shows a complete example to

further illustrate the encoding procedure.

The following two theorems provide more insights into the

proposed compression method based on selective encoding of

scan slices.

Theorem 1: Let the test data volume for the CUT with

N internal scan chains be V bits. Let the compressed test

data volume obtained after selective encoding of scan slices

Encoding procedure:

(1) Format the given test vectors into slices;

(2) for each slice

(3) Determines the number of 0s (k0) and 1s (k1) in the

slice;

(4) If k0 > k1 then

(5) target-symbol := 1, 1st control-code := 00;

(6) else

(7) target-symbol := 0; 1st control-code := 01;

(8) for each group of the slice

(9) calculate the number of target-symbols;

(10) if number-of-target-symbols > 2 then

(11) encode the group using the group-copy-mode;

(12) else

(13) encode the group using the single-bit-mode;

(14) end for (group);

(15) generate slice-codes for the current slice.

(16) end for (slice);

Fig. 3. Encoding procedure.

TABLE I

AN EXAMPLE TO ILLUSTRATE SLICE ENCODING.

Slice Slice code Description
Control
code

Data
code

XX00 010X 00 0101 Start a new slice, map X to 0, set
bit 5 to 1.

1110 0001 00 0111 Start a new slice, map X to 0, set
bit 7 to 1.

11 0000 Enter group-copy-mode starting
from bit 0 (i.e.., group 0).

11 1110 The data is 1110.

XXXX XX11 01 1000 Start a new slice, map X to 1, no
bits are set to 0.

be U bits. The maximum value of the compression factor

V/U that can be achieved is given by f = N/c, where

c = dlog
2
(N + 1)e + 2 corresponds to the number of ATE

channels used to drive the decompression logic.

Proof: The maximum compression is achieved when

each slice is encoded as a single slice-code. Since a total of

c = dlog
2
(N + 1)e+ 2 ATE channels is used in the proposed

method, the test data volume for every scan slice is reduced

by a factor of N/c.
Theorem 2: Let the number of scan slices be S, and let k0,i

(k1,i) be the number of 0s (1s) in scan slice i, 0 ≤ i ≤ S − 1.

A necessary condition for the maximum compression factor

of Theorem 1 to be achieved is given by:

S−1
∑

i=0

min(k0,i, k1,i) ≤ S (1)

Proof: The maximum compression factor of Theorem 1

can only be achieved if every slice is encoded as a single slice-

code. This in turn is only possible if every scan slice contains

either zero or one target-symbol, i.e., min(k0,i, k1,i) ≤ 1, 0 ≤
i ≤ S − 1. The necessary condition given by (1) therefore

follows.

The significance of Theorem 2 lies in the fact that the

maximum compression factor of N/c can only be achieved if

the test generator is tailored to satisfy (1). Test set relaxation

methods as in [30] can also be used to satisfy (1). Such

methods however require structural information about the

circuit.

A property of the proposed compression method is that

consecutive c-bit compressed slices fed by the ATE are often
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Fig. 5. State transition diagram of the decoder.

identical or compatible. Therefore, ATE pattern-repeat can be

used to further reduce test data volume after selective encoding

of scan slices. In the uncompressed data sets, especially among

the test vectors that lie near the end of a test set, there are

a large number of consecutive slices that contain no target-

symbols. These slices are encoded as identical single slice-

codes that have only dummy data-codes. With ATE pattern-

repeat, these slice-codes can be further compacted. Addition-

ally, consecutive group-copy-mode slice-codes can also be

compacted if they are compatible. Fig. 4 shows how a set

of scan slices are encoded. The example shows that some

slice-codes, e.g., the first two in the encoded test set, can be

combined and applied using ATE pattern-repeat.

III. DECOMPRESSION ARCHITECTURE

Fig. 5 shows the state transition diagram of the decoder.

The decoder enters designated states and performs different

operations as specified by the control-codes that it receives.

Initially the decoder is in the init state; when it receives

an “initial-control-code”, it enters the single-bit-mode and

performs a series of operations referred to as P1. Table II

explains the five groups of operations (P1–P5) in Fig. 5.

Fig. 6 shows the block diagram of the decoder. The finite-

state machine (FSM) generates control signals for the other

components. The K-bit address register is used in the group-

copy-mode to store the index of the first bit of the target group.

This register can be incremented by K to address a series

of adjacent groups. The K-to-N address decoder generates

selection signals to address a single bit of the buffer. The N -bit

buffer contains combinational logic that provides the following

functionalities: (1) each bit in the buffer can be individually

TABLE II

FIVE GROUPS OF OPERATIONS FOR THE DECODER.

Group Description

P1 If the control-code is 00 (01), the target-symbol is 1 (0). Set
the bit specified by the associated data-code to the target-symbol
and all other bits to the complemented value.

P2 Shift the current content of the buffer to the internal scan chains,
then perform P1.

P3 Save the value of the data-code to an address register, which is
the index of the first bit of the group.

P4 Copy the value of the data-code to the group specified by the
address register, then increment the address register by K.

P5 Set the bit specified by the data-code to the target-symbol.

addressed, and (2) all bits in the same group can be addressed

in parallel. These two functions are used in the single-bit-mode

and the group-copy-mode, respectively.

The 2-bit input signal control is the control-code from the

tester. The signal rst, when asserted to 0, resets the FSM to

its initial state. The signal v is set to high when the decoding

process for a slice is finished and the content of the buffer is

shifted to the internal scan chains.

If the signal is grp is asserted, the decoder works in

the group-copy-mode. The inc grp is used to increment the

address register by K. In the group-copy-mode, the K-to-N
address decoder receives input from the address register; in

the single-bit-mode, it receives input from the data-code input.

The N -bit selection (sel) signal is used to address a single bit

in the buffer. At any given time only one of the N wires is

asserted.

The second bit of the control-code (control), i.e., the target-

symbol, is latched to ts. In the single-bit-mode, the specified

bit is set to ts. If the control-code is “00” or “01”, the signal

set buf is asserted, and all other bits except the specified

bit are set to the complement of ts (ts). The signal den is

asserted whenever the buffer contents are to be changed. The

signal den is set to 0 only during the first clock cycle of the

group-copy-mode; at the same time the address of the first bit

of the group is loaded to the address register.

The sel signal from the address decoder can only address a

single bit of the buffer. However, in the group-copy-mode, all

the K bits in the target group should be addressed (the last

group may contain less bits). Therefore, in the group-copy-

mode, additional combinational logic is needed to address the

other bits together with the first bit. For each bit i of the buffer,

an N -bit signal en(i) is defined, where

en(i) =







sel(i) if i mod K = 0;
sel(i) ∨ (is grp ∧
sel(i − (i mod K)) if i mod K 6= 0.

where i = 0, 1, . . . , N − 1.

Fig. 7 shows the structure of a single bit of the buffer.

Each bit is represented by a falling edge-triggered D-flipflop

(DFF) with enable input (EN ). The DFF receives input data

from a multiplexer and receives the enable signal from the

combinational logic. In the group-copy-mode, the input is from

the data-code from the tester. Bit i of the buffer is connected

to bit i mod K of the data-code. In the single-bit-mode, the
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input is either ts or ts, as determined by en(i). The multiplexer

implements the following function:

D =







data code(i mod K) if is grp = 1;
ts if is grp = 0, en(i) = 1;
ts if is grp = 0, set buf = 1.

The DFF is changed only when EN is high. The combina-

tional logic implements the boolean function

EN = den ∧ (set buf ∨ en(i))

The DFF’s are falling edge-triggered and the FSM is rising

edge-triggered. Therefore, upon the rising edge of the clk
signal, all control signals are generated and become stable

before the falling edge of clk. The buffer is updated at the

falling edge of clk.

The state diagram of the FSM is shown in Fig. 8. The state

S0 is the initial state. States S1 and S2 correspond to the

single-bit-mode and the group-copy-mode, respectively. We

simulated the decoder using VHDL and Synopsys tools to

ensure its correct operation. We also synthesized the decoder

using Synopsys Design Compiler to assess the hardware

overhead. The synthesized FSM contains only 5 flip-flops and

23 combinational gates. For the lsi 10k library, the reported

area is 55 units. The other parts of the decoder are synthesized

separately since they depend on K and N . For N = 64 and

K = 7, the synthesized circuit contains 536 gates and 71 flip-

flops, and the area is 1341 units. If N = 1024 and K = 11,

the synthesized circuit contains 6409 gates and 1035 flip-flops,

and the area is 18,877 units. For the larger than million-gate

designs considered in our experiments, this corresponds to an

area overhead of only 1%. The schematic of the FSM is shown

in Fig. 9.

IV. EXPERIMENTAL RESULTS

In this section, we apply the proposed approach to eight rep-

resentative industrial circuits. These circuits vary in size from

S1 S2

0-/10001

0-/11001
11/00100

control(0), control(1)/den, v, is_grp, inc_grp, set_buf

10/10000

11/10110

0-/11001

10/10000

S0

Fig. 8. Decode FSM state diagram.

Fig. 9. Synthesized FSM in the decoder.

approximately 50K gates to over 1.4M gates. For each circuit,

we compress test sets with high fault coverage that were pro-

vided to us by industrial partners. These test sets are generated

by commercial ATPG tools with dynamic compaction turned

on and random-fill turned off. The percentages of specified

bits in these test sets are approximately in the range 1%-4%.

Table III describes these circuits and the corresponding test

sets. Ckt-1 and Ckt-2 are deterministic test sets after applying

64,000 random vectors. For ckt-3, we were provided with four

different sets of test cubes. The differences in these test sets

lie in the maximum number of care bits in each test pattern.

For example, in ckt-3-2000, each test pattern is constrained to

have no more than 2000 care bits.

We do not report compression results for the ISCAS-89

benchmark circuits because they are too small to be repre-

sentative of today’s designs. Moreover, their test sets contain

too many care bits, due in part to their large logic depth.

Table IV shows the compression results obtained using the

proposed method for the different test cases. Column N refers

to the number of internal scan chains and column c denotes

the number of ATE channels. We consider a varying number

of internal scan chains N to show how an appropriate value

of N can be determined for designs with flexible scan chains.

The test application time and the size of compressed data are

shown in columns TAT and TE , respectively. The parameter

ΥV = |TD| / |TE | refers to the data volume reduction factor.

The parameter ΥTAT is the test application time reduction

factor over standard scan testing based on c ATE channels.

Without ATE pattern-repeat, ΥV and ΥTAT are as high as

22.96x and 22.91x, respectively. With ATE pattern-repeat, ΥV

is as high as 28.82x. For ckt-8 with 255 internal scan chains,

the compression of 20.12x is close to the theoretical maximum

of 25.5x (without ATE pattern-repeat) predicted by Theorem

1. The CPU time for generating the compressed data is at most

two minutes, even for the largest circuits.

We compare the proposed compression method to two other

recent compression methods that have been proposed for IP
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TABLE III

DESCRIPTION OF INDUSTRIAL CIRCUITS AND TEST SETS .

Circuit
No. of
gates

No. of
scan
cells

No. of
test

cubes

Size of
TD

(bits)

Fault
coverage

Percentage
of

specified
bits

ckt-1 51,082 12,256 3,768 46,180,608 99.80% 2.18

ckt-2 94,340 22,216 2,636 58,561,376 99.76% 4.27

ckt-3-2000 2,191 21,094,948 98.66% 1.96
ckt-3-1000 121,470 9,628 2,409 23,193,852 98.51% 2.04
ckt-3-500 3,072 29,577,216 98.45% 1.83
ckt-3-200 4,927 47,437,156 98.27% 1.32

ckt-4 302,714 43,414 1,528 66,336,592 99.42% 1.58

ckt-5 404,860 26,970 4,899 132,126,030 98.85% 1.31

ckt-6 1.18M ∼ 80,000 2,859 231,601,872 97.86% 2.58

ckt-7 1.21M ∼ 20,000 18,027 400,289,535 99.16% 1.76

ckt-8 1.41M ∼ 110,000 18,142 1,974,992,546 95.07% 0.92

cores. These methods also do not require fault simulation or

test generation. To ensure fairness of comparison, we do not

consider compression methods that require structural informa-

tion. Table V presents comparative data for two-dimensional

compression [25]. The compression method in [25] was im-

plemented and applied to a number of industrial test cases. In

every case considered, the number of ATE channels required

is much less for the proposed method compared to [25]. Out

of the 21 cases considered, |TE | for [25] is higher in 20 cases.

The value of ΥTAT in [25] is smaller in 18 cases.

The test sets described in Table III were obtained using

dynamic compaction during ATPG. As is the case of other

compression methods, these test sets were not compressed

further using static compaction after ATPG. In some cases,

e.g. ckt-3, a commercial ATPG tool was given a maximum

number of care bits per vector as a constraint. It was reported

in [25] that the compressed test sets for ckt-1 and ckt-2 are

an order of magnitude smaller than the compacted test sets

used during production testing for these circuits. Therefore,

the proposed method can achieve significant reduction in data

volume over ATPG-compacted test sets.

Table VI compares the proposed method to the recent

compression technique based on dictionaries with corrections

[21]. We implemented the procedures from [21] and applied

this technique to several industrial test cases. Table VI is

similar to Table V, with an additional column mem that shows

the size of the on-chip memory. Out of the 24 cases considered,

|TE | in [21] is higher in 15 cases. Note that for the 9 cases

where |TE | in [21] is less, an excessive amount of on-chip

storage (as high as 8M bits) is needed for [21]. Hence it is

difficult to use [21] in practice for these cases. TAT is lower in

[21] in most cases, but it also requires a much larger number of

ATE channels. If the number of ATE channels and the amount

of on-chip storage are limited (or constrained), the proposed

method outperforms [21] both in terms of TE and TAT .

Finally, we determine for each circuit, the number of

internal scan chains N that leads to the maximum data volume

reduction factor ΥV as well as the value of N that leads to

the maximum TAT reduction factor ΥTAT . For IP cores with

flexible scan chains, this information can allow appropriate

scan chain configurations. Fig. 10 and Fig. 11 show how ΥV

and ΥTAT vary with N for the test cases. For some circuits,

namely ckt-1, ckt-2, ckt-3-200, and ckt-7, the best value of N
for the highest ΥV also leads to the highest ΥTAT . However,

for the other test cases, the best value of N for the highest ΥV

does not maximize ΥTAT . For example, for ckt-8, ΥTAT is

maximum for N = 255 while ΥV is maximum for N = 511.

V. CONCLUSION

We have presented a test data compression technique for

designs with multiple scan chains. This method does not

require detailed structural information about the circuit under

test (CUT), and utilizes a generic on-chip decoder that is

independent of the CUT and the test set. While the hardware

overhead depends on the number of internal scan chains, we

have seen that for an industrial circuit with over 1M gates,

the overhead is only 1% for as many as 1024 internal scan

chains. If a small amount of circuit redesign is permitted, we

can reduce the hardware overhead by modifying the first scan

cells of each scan chain such that they can be used as the N -

bit on-chip buffer. The clock inputs of these scan cells need to

be appropriately gated so that they can be triggered separately

from other cells in the same scan chain. Experimental results

for eight industrial circuits show that compared to dynamically

compacted test sets, up to 28x reduction in test data volume

and 20x reduction in test application time can be obtained.
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TABLE IV

COMPRESSION RESULTS.

Without ATE pattern-repeat With ATE pattern-repeat

Circuit N c
TAT

(cycles)
|TE |
(bits)

ΥV

(x)
|TE |
(bits)

ΥV

(x)
ΥTAT

(x)
ckt-1 255 10 400,960 3,971,920 11.63 3,322,690 13.90 11.53

511 11 354,260 3,855,412 11.98 3,325,267 13.89 11.87
800 12 306,482 3,632,568 12.71 3,153,672 14.64 12.58

1,023 12 338,049 4,011,372 11.51 3,421,764 13.50 11.40

ckt-2 255 10 802,354 7,997,180 7.32 6,514,040 8.99 7.30
511 11 739,859 8,109,453 7.22 6,626,180 8.84 7.20
700 12 628,795 7,513,908 7.79 6,108,024 9.59 7.77

1,023 12 692,295 8,275,908 7.08 6,540,048 8.95 7.06

ckt-3-2000 255 10 208,556 2,063,650 10.22 1,424,740 14.81 10.13
511 11 180,526 1,961,685 10.75 1,448,392 14.56 10.64

1,023 12 164,771 1,950,960 10.81 1,440,396 14.65 10.69

ckt-3-1000 255 10 232,104 2,296,950 10.10 1,784,390 13.00 10.01
511 11 208,640 2,268,541 10.22 1,909,611 12.15 10.13

1,023 12 198,263 2,350,248 9.87 1,942,968 11.94 9.77

ckt-3-500 255 10 256,100 2,530,280 11.69 2,042,330 14.48 11.56
511 11 234,888 2,549,976 11.60 2,277,814 12.98 11.47

1,023 12 228,603 2,706,372 10.93 2,423,400 12.20 10.80

ckt-3-200 255 10 279,450 2,745,230 17.28 2,215,140 21.42 17.00
511 11 253,568 2,735,051 17.34 2,506,174 18.93 17.04

1,023 12 253,761 2,986,008 15.89 2,798,136 16.95 15.61

ckt-4 255 10 508,588 5,070,600 13.08 3,264,850 20.32 13.05
511 11 411,454 4,509,186 14.71 3,391,454 19.56 14.66

1,023 12 369,497 4,415,628 15.02 3,505,908 18.92 14.97
2,047 13 347,795 4,501,471 14.74 3,574,064 18.56 14.68

ckt-5 255 10 816,757 8,118,580 16.27 6,079,410 21.73 16.18
511 11 677,339 7,396,840 17.86 6,462,555 20.44 17.74

1,023 12 662,548 7,891,788 16.74 7,178,544 18.41 16.63
2,047 13 669,840 8,644,233 15.28 7,831,798 16.87 15.18

ckt-6 255 10 2,543,116 25,402,570 9.12 22,531,820 10.28 9.11
511 11 2,510,478 27,583,809 8.40 25,517,118 9.08 8.39

1,023 12 2,535,011 30,385,824 7.62 27,914,232 8.30 7.61
2,047 13 2,540,256 32,986,161 7.02 29,083,392 7.96 7.02

ckt-7 255 10 2,939,692 29,216,650 13.70 25,847,430 15.49 13.63
511 11 2,845,279 31,099,772 12.87 29,058,689 13.78 12.80

1,023 12 2,915,940 34,774,956 11.51 32,587,644 12.28 11.45
2,047 13 2,992,613 38,669,618 10.35 35,185,618 11.38 10.30

ckt-8 255 10 9,835,025 98,168,830 20.12 68,528,200 28.82 20.08
511 11 7,839,684 86,036,962 22.96 74,718,468 26.43 22.91

1,023 12 7,607,971 91,077,948 21.68 86,462,016 22.84 21.64
2,047 13 7,809,912 101,293,010 19.50 98,412,002 20.07 19.46

TABLE V

COMPARISON WITH 2-DIMENSIONAL COMPRESSION [25].

[25] Proposed method

Circuit N c
TAT

(cycles)
|TE |
(bits)

ΥV

(x)
ΥTAT

(x)
c

TAT

(cycles)
|TE |
(bits)

ΥV

(x)
ΥTAT

(x)
ckt-1 255 20 195,799 3,840,620 12.02 11.82 10 400,960 3,322,690 13.90 11.53

511 30 126,840 3,692,160 12.51 12.18 11 354,260 3,325,267 13.89 11.87
1023 45 65,712 2,787,480 16.57 15.71 12 338,049 3,421,764 13.50 11.40

ckt-3-2000 255 191 36,771 6,604,780 3.19 3.10 10 208,556 1,424,740 14.81 10.13
511 311 19,671 5,436,280 3.88 3.56 11 180,526 1,448,392 14.56 10.64
1023 476 11,321 4,345,880 4.85 4.26 12 164,771 1,440,396 14.65 10.69

ckt-3-1000 255 147 46,451 6,474,174 3.58 3.47 10 232,104 1,784,390 13.00 10.01
511 228 24,487 5,033,784 4.61 4.33 11 208,640 1,909,611 12.15 10.13
1023 349 14,149 4,097,260 5.66 4.94 12 198,263 1,942,968 11.94 9.77

ckt-3-500 255 106 61,744 6,219,232 4.76 4.58 10 256,100 2,042,330 14.48 11.56
511 166 32,674 4,913,932 6.02 5.55 11 234,888 2,277,814 12.98 11.47
1023 248 18,802 3,901,040 7.58 6.54 12 228,603 2,423,400 12.20 10.80

ckt-3-200 255 67 116,191 7,454,688 6.36 6.15 10 279,450 2,215,140 21.42 17.00
511 103 62,326 5,912,097 8.02 7.51 11 253,568 2,506,174 18.93 17.04
1023 149 36,207 4,660,720 10.18 8.98 12 253,761 2,798,136 16.95 15.61

ckt-4 255 235 178,513 41,591,475 1.59 1.59 10 508,588 3,264,850 20.32 13.05
511 466 89,673 41,075,570 1.61 1.62 11 411,454 3,391,454 19.56 14.66
1023 898 46,033 39,965,490 1.66 1.66 12 369,497 3,505,908 18.92 14.97

ckt-5 255 241 400,809 95,414,310 1.38 1.38 10 816,757 6,079,410 21.73 16.18
511 453 202,801 89,649,606 1.47 1.47 11 677,339 6,462,555 20.44 17.74
1023 798 105,744 80,474,310 1.64 1.62 12 662,548 7,178,544 18.41 16.63
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TABLE VI

COMPARISON WITH RECENT DICTIONARY-BASED COMPRESSION METHOD [21].

[21] Proposed method

Circuit N c
mem

(bits)
TAT

(cycles)
|TE |
(bits)

ΥV

(x)
ΥTAT

(x)
c

TAT

(cycles)
|TE |
(bits)

ΥV

(x)
ΥTAT

(x)
ckt-1 255 19 295,176 188,400 3,508,008 12.14 12.94 10 400,960 3,322,690 13.90 11.53

511 21 1,126,244 94,200 1,899,072 15.26 23.40 11 354,260 3,325,267 13.89 11.87
1023 22 3,433,920 48,984 994,752 10.43 43.00 12 338,049 3,421,764 13.50 11.40

ckt-2 255 20 946,726 234,604 4,639,360 10.48 12.49 10 802,354 6,514,040 8.99 7.30
511 22 3,350,170 118,620 2,551,648 9.92 22.47 11 739,859 6,626,180 8.84 7.20
1023 24 8,589,040 60,628 1,391,808 5.87 40.30 12 692,295 6,540,048 8.95 7.06

ckt-3-2000 255 19 401,574 85,449 1,581,902 10.64 13.03 10 208,556 1,424,740 14.81 10.13
511 20 834,015 43,820 832,580 12.66 24.15 11 180,526 1,448,392 14.56 10.64
1023 21 1,523,466 24,101 460,110 10.63 41.82 12 164,771 1,440,396 14.65 10.69

ckt-3-1000 255 19 354,584 93,951 1,739,298 11.08 13.03 10 232,104 1,784,390 13.00 10.01
511 20 919,698 48,180 915,420 12.64 24.15 11 208,640 1,909,611 12.15 10.13
1023 21 1,909,629 26,499 505,890 9.60 41.82 12 198,263 1,942,968 11.94 9.77

ckt-3-500 255 18 152,146 119,808 2,101,248 13.13 13.74 10 256,100 2,042,330 14.48 11.56
511 20 614,484 61,440 1,167,360 16.60 24.15 11 234,888 2,277,814 12.98 11.47
1023 21 1,685,250 33,792 645,120 12.69 41.82 12 228,603 2,423,400 12.20 10.80

ckt-3-200 255 15 23,622 192,153 2,808,390 16.75 16.49 10 279,450 2,215,140 21.42 17.00
511 18 146,523 98,540 1,685,034 25.90 26.80 11 253,568 2,506,174 18.93 17.04
1023 20 648,099 54,197 985,400 29.04 43.91 12 253,761 2,798,136 16.95 15.61

ckt-4 255 20 871,474 262,816 5,225,760 10.88 12.63 10 508,588 3,264,850 20.32 13.05
511 21 1,568,770 131,408 2,727,480 15.44 24.06 11 411,454 3,391,454 19.56 14.66
1023 22 2,880,520 67,232 1,445,488 15.33 44.89 12 369,497 3,505,908 18.92 14.97

ckt-5 255 20 574,260 524,193 10,385,880 12.06 12.62 10 816,757 6,079,410 21.73 16.18
511 21 1,363,323 264,546 5,452,587 19.39 23.81 11 677,339 6,462,555 20.44 17.74
1023 22 3,347,556 137,172 2,910,006 21.11 43.82 12 662,548 7,178,544 18.41 16.63
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Fig. 10. Reduction in test data volume and TAT for varing number of internal scan chains for the smaller circuits.
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Fig. 11. Reduction in test data volume and TAT for varing number of internal scan chains for the larger circuits.
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