
Test Data Compression Using Dictionaries with Fixed-Length Indices�

Lei Li and Krishnendu Chakrabarty
Department of Electrical and Computer Engineering

Duke University, Durham, NC 27708

{ll, krish}@ee.duke.edu

Abstract—We present a dictionary-based test data compression
approach for reducing test data volume and testing time in SOCs.
The proposed method is based on the use of a small number of
ATE channels to deliver compressed test patterns from the tester
to the chip and to drive a large number of internal scan chains
in the circuit under test. Therefore, it is especially suitable for a
reduced pin-count and low-cost DFT test environment, where a
narrow interface between the tester and the SOC is desirable. The
dictionary-based approach not only reduces testing time but it also
eliminates the need for additional synchronization and handshak-
ing between the SOC and the ATE. The dictionary entries are de-
termined during the compression procedure by solving a variant
of the well-known clique partitioning problem from graph theory.
Experimental results for the ISCAS-89 benchmarks and represen-
tative test data from IBM show that the proposed method outper-
forms a number of recently-proposed test data compression tech-
niques.

I. INTRODUCTION

Intellectual property (IP) cores are now being routinely used
in large system-on-a-chip (SOC) designs. Higher circuit den-
sities and a larger number of embedded cores lead to higher
test data volume, which in turn leads to an increase in testing
time. New techniques are therefore needed to reduce test data
volume and testing time, as well as to overcome ATE memory
and bandwidth limitation. In order to facilitate test reuse and
the use of IP cores, these techniques should not require detailed
structural models for additional fault simulation or test genera-
tion.

Built-in self-test (BIST) offers a promising alternative to
ATE-based external testing. While BIST is now extensively
used for memory testing, it is less common for logic testing.
Problems with logic BIST include inadequate fault coverage
due to random-resistant fault and bus contention during test ap-
plication. While the fault coverage can be made quite high us-
ing methods such as reseeding [11], bit-flipping [26] and bit-
fixing [22], these techniques require structural information for
fault simulation and test generation.

Structural methods for reducing test data volume and test-
ing time require design modifications. For example, the Illi-
nois scan architecture (ILS) offers an alternative to conventional
scan design [12]. However, fault simulation and test generation
are necessary in ILS as post-processing steps to get high fault
coverage.

Test data compression is a non-intrusive method that can be
used to compress the precomputed test set TD provided by the

�This research was supported in part by the National Science Foundation
under grants CCR-9875324 and CCR-0204077, and by a graduate fellowship
from the Design Automation Conference.

core vendor to a much smaller test set TE , which is then stored
in ATE memory. An on-chip decoder is used to generate TD

from TE during pattern application. A number of techniques
based on statistical coding [13, 15], run-length coding [14],
Golomb coding [4], FDR coding [3], EFDR coding [7], and
VIHC coding [9], have been proposed to reduce test data vol-
ume. Test data volume reduction techniques based on on-chip
pattern decompression are also presented in [2, 6, 18, 21, 23].
Several dictionary-based compression methods have recently
been presented to reduce SOC test data volume. In [15], fre-
quently occurring blocks are encoded into variable-length in-
dices using Huffman coding. A dictionary with fixed-length in-
dices is used to generate all the distinct output vectors in [19].
A test data compression technique based on LZ77 algorithm,
which uses a dynamic dictionary, is proposed in [25].

The resurgence of interest in test data compression has
also led to new commercial tools that can provide over 10X
compression for large industrial designs. For example, the
OPMISR [1] and SmartBIST [16] tools from IBM and the
TestKompress tool from Mentor Graphics [17] reduce test data
volume and testing time through the use of test data compres-
sion and on-chip decompression.

In this paper, we present a new dictionary-based test data
compression method that provides significant compression for
precomputed test sets and leads to considerable reduction in
testing time. The dictionary uses fixed-length indices, and its
entries are carefully selected such that the dictionary is effi-
ciently utilized. The proposed method is based on the use of
a small number of ATE channel to drive a large number of in-
ternal scan chains in the core under test; see Figure 1. (The
test response can be compacted using a MISR or other tech-
niques.) Unlike coding techniques such as [3, 4], this approach
does not require multiple clock cycles to determine the decom-
pressed test pattern after the last bit of the corresponding com-
pressed data packet is transferred from the ATE to the chip.
This dictionary-based approach therefore not only reduces test-
ing time but it also eliminates the need for additional synchro-
nization and handshaking between the SOC and the ATE. This
approach is therefore targeted towards a reduced pin-count test
and low-cost DFT tester [24] environment, where a narrow in-
terface between the tester and the SOC is desirable.

The rest of the paper is organized as follows. In Section II,
we briefly introduce dictionary-based data compression and
show how a dictionary can be used for test data compression.
We describe how a variant of the clique partitioning problem
from graph theory can be used for the compression procedure.
Section III describes the decompression architecture. Exper-

Proceedings of the 21st IEEE VLSI Test Symposium (VTS�03)
1093-0167/03 $17.00 © 2003 IEEE

..

. ..
. ..

. I
M

R
S

ATE
Decoder

Dictionary
Scan chain 2

Scan chain 1

mScan chain

Embedded core

1

Fig. 1. Illustration of the proposed method for a single ATE channel.

x01x10x1010xx1110xx0 x1x0001xx1
0xx11
0x101
x01x1

x1x00
10xx0
01xx1l=5 l=5 l=5 l=5 l=5 l=5

l=5 l=5m =3 m =3

m =3

n =2 n =2

Fig. 2. An example of formatting the test data for multiple scan chains.

imental results and a comparison with related recent work are
presented in Section IV. Finally, Section V concludes the paper.

II. DICTIONARY-BASED TEST DATA COMPRESSION

Dictionary-based methods are quite common in the data
compression domain [20]. While statistical methods use a
statistical model of the data and encode the symbols using
variable-size codewords according to their frequencies of oc-
currence, dictionary-based methods select strings of the sym-
bols to establish a dictionary, and then encode them into equal-
size tokens using the dictionary. The dictionary stores the
strings, and it may be either static or dynamic (adaptive). The
former is permanent, sometimes allowing for the addition of
strings but no deletions, whereas the latter holds strings pre-
viously found in the input stream, allowing for additions and
deletions of strings as new input is processed.

The well-known compression algorithm LZ77 [20] is based
on a dynamic dictionary. It uses part of the previously-seen
input stream as the dictionary. Since our proposed method uses
only a static dictionary, details of a dynamic dictionary are not
discussed here.

We next describe the proposed dictionary-based test data
compression method and illustrate it with an example. In the
following description, we assume that the precomputed SOC
test data TD consists of n test patterns t1, t2, . . . , tn. The scan
elements of the core under test are divided into m scan chains
in as balanced a manner as possible. Each test vector can there-
fore be viewed as m subvectors. If one or more subvectors
are shorter than the others, don’t-cares are padded to the end
of these subvectors so that all the subvectors have the same
length, which is denoted by l. The m-bit data at the same po-
sition of each subvector constitute an m-bit word. A total of
nl m-bit words thus are formed and encoded during the com-
pression procedure. Figure 2 illustrates the formatting of the
given test data for multiple scan chains. During test applica-
tion, after a codeword is shifted into the decoder, an m-bit word
u1, u2, . . . , um is immediately generated by the decoder and
fed into the scan chains (one bit for each scan chain).

In the dictionary-based test data compression method, each
codeword is composed of a prefix and a stem. The prefix is a

1-bit identifier that indicates whether the stem is a dictionary
index or a word of uncompressed test data. If it equals 1, the
stem is viewed as a dictionary index. On the other hand, if the
prefix equals 0, the stem is an uncompressed word and it is m
bits long. The length of the dictionary index depends on the size
of the dictionary. If D is the set of the entries in the dictionary,
the length of the index lindex = �log2 |D|�, where |D| is the
size of the dictionary. Since lindex is much smaller than m,
the compression efficiency is greater if more test data words
can be obtained from the dictionary. However, the dictionary
must be reasonably small to keep the hardware overhead low.
Fortunately, since there are many don’t-care bits in scan test
data for typical circuits, we can appropriately map these don’t-
care bits to binary values and carefully select the entries for the
dictionary, so that as many words as possible are mapped to the
entries in the dictionary.

An important step in the compression procedure is that of
selecting the entries in the dictionary. This problem can be
easily mapped to a variant of the clique partitioning problem
from graph theory [5]. We next describe the clique partitioning
problem and then show how the problem of determining dictio-
nary entries can be mapped to this problem. We then present
a heuristic algorithm for generating the dictionary entries. The
proposed algorithm presents a graph-theoretic view of the pro-
cedure presented in [15].

An undirected graph G consists of a set of vertices V and a
set of edges E, where each edge connects an unordered pair of
vertices. Given an undirected graph G = (V,E), a clique of
the graph is a subset V ′ ⊆ V of vertices, each pair of which
is connected by an edge in E [5]. Given a positive integer K,
the clique partitioning problem refers to the partitioning of V
into k cliques, where k ≤ K. The clique partitioning problem
is NP-hard [8]1, hence heuristic approaches must be used to
solve it in reasonable time for large problem instances.

Recall that in dictionary-based data compression, we obtain
nl m-bit words after placing the test set in a multiple scan chain
format. Two words u1u2 . . . um and v1v2 . . . vm are defined to
be compatible to each other if for any position i, ui and vi are
either equal to each other or at least one of them is a don’t-care
bit. We construct an undirected graph G to reflect the compat-
ible relationships between the words as follows. First, a vertex
is added to the graph for each word. Then we examine each pair
of words. If they are mutually compatible, an edge is added be-
tween the corresponding pair of vertices. A clique in G refers to
a group of test data words that can be mapped to the same dic-
tionary entry. If the dictionary can have at most |D| entries and
the total number of words is nl, the goal of the compression
procedure is to find the largest subset of G that can be parti-
tioned into |D| cliques; the remaining vertices in G denote test
data words that are not compressed. This problem can easily
be shown to be NP-hard by contradiction. If the compression
can be optimally solved in polynomial time then it provide a
yes/no answer to the decision version of the clique partitioning
problem in polynomial time. We therefore use the following

1The decision version of the clique partitioning problem is NP-complete.

Proceedings of the 21st IEEE VLSI Test Symposium (VTS�03)
1093-0167/03 $17.00 © 2003 IEEE

TABLE I. AN EXAMPLE OF TEST DATA FOR MULTIPLE SCAN CHAINS.

Scan
chain Word index

index 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 1 0 1 1 1 1 0 0 0 X X 0 X 0 1
2 X 0 1 1 0 0 1 X X X 1 X X 0 1 0
3 X X X X 0 X 0 1 0 0 1 1 0 X X X
4 X 0 X 0 X X 0 X 0 0 0 0 0 X 0 1
5 0 0 0 0 X 0 X 0 X X X 0 X 1 0 X
6 0 X 1 0 1 0 X X 1 X 0 0 X 0 X X
7 1 0 1 X X X X 1 1 0 X 1 0 0 1 0
8 1 X 0 X 0 1 X 1 0 X X X X X X 1

8

1

4

3

13

7

14

10

12 15 11

6

2 5 16

9

Fig. 3. The graph G for the example of Table I.

heuristic procedure.
1) Copy the graph G to a temporary data structure G′.
2) Find the vertex v with the maximum degree in G′.
3) Establish a subgraph that consists of all the vertices con-

nected to v. Copy this subgraph to G′ and add v to a set
C.

4) If G′ is not empty, go to Step 2. Otherwise, a clique C
has been formed consisting all the vertex found in Step 2.

5) Remove the vertices in the clique C from G and copy
G − C to G′. Go to Step 2 and repeat until |D| cliques
are found.

The complexity of this procedure is O(N3), where N = nl
is the number of vertices in the graph. Table I shows an exam-
ple of test data formatted for multiple scan chains. The number
of scan chains m is 8 in this example. There are total of 16
words, each of which has 8 bits. Figure 3 shows the correspond-
ing graph G for the test data. Let us assume that a dictionary
of size four is to be formed, i.e. |D| = 4. Using the greedy
algorithm described above, we obtain four cliques: {5, 6, 13,
16}, {2, 8, 14}, {3, 4, 7} and {1, 11}. (Here we use the word
indices of Table I to represent the vertices.) After finding the
cliques, we obtain the corresponding dictionary entry for each
clique by merging the words in this clique. In this example, the
four dictionary entries are {11100011, 01000110, 0000100X,
10X10001}. Three bits are then needed to encode the words in
the cliques; an additional 1 bit is needed for the prefix, and 2
bits are required for the dictionary index. For words that are not
in any clique, a total of 9 bits each must be transferred from the
ATE. Since there are 12 words that can be generated from the
dictionary, the size of the compressed data is 3×12+9×4 = 72
bits, which corresponds to a compression of 43.75%. Moreover,
the dictionary entries still contain some don’t-care bits, which
can reduce the hardware for the decoder, as explained next.

The clique partitioning procedure introduces a certain degree
of randomness in the way the don’t-care bits in TD are filled;
the resulting “random fill” can be expected to increase the for-

Data_in

Dec_en

shift

select

D_out

valid

reset
inc

i_flag
m_flag

shifter

FSM

m m

m
m

counter

0

1Dictionary
(comb. logic)

m-bit

log2 m-bit

lindex

Fig. 4. Decompression Architecture I.

tuitous detection of non-modeled faults. This is in contrast to
coding methods such as [3, 4] in which the don’t-cares are all
mapped to 0s.

III. DECOMPRESSION ARCHITECTURE

In this section, we describe the decompression architecture
for the dictionary-based test data compression method. Two
architectures for the on-chip decoder are proposed; they are re-
ferred as Architecture I and Architecture II, respectively. Archi-
tecture I does not require any modification to the scan chains
of the core under test. Architecture II is intended for cores
with flexible scan chains since a slight modification to the scan
chains is needed in this case. The latter requires less hardware
than Architecture I.

Figure 4 illustrates the first decompression architecture. The
decoder consists of a finite-state machine (FSM), an m-bit
shifter, a log2 m-bit counter, a selector and the dictionary. The
m-bit shifter takes data from Data in when the signal shift
equals 1. All the m output bits pass to the selector while the
dictionary only gets the higher order lindex bits of the output as
its index. Here we use a combinational logic circuit to imple-
ment the dictionary. It outputs the m-bit word corresponding to
the current value of the index.

The log2 m-bit counter is used to indicate whether the shift-
in of a codeword has finished. It operates as follows.

• The signal reset resets the counter to 0.
• If inc = 1, the counter is incremented.
• When the value of the counter reaches lindex, the output

i f lag equals 1.
• When the value of the counter reaches m, the output

m flag equals 1.
The FSM has only three states. It is enabled when the signal

Dec en is active. It starts by checking the first bit of the data
shifted in from Data in. If this bit is 0, which implies that
the next m bits directly constitute a word, the FSM shifts this
word into the m-bit shifter, which then feeds this word into
the scan chains during the clock cycle in which the decoder
checks the first bit of the next codeword. On the other hand,
if the first bit is 1, the FSM shifts in the next lindex bits and
gets the decoded word from the dictionary. Only 19 gates and
2 flip-flops are required to implement the FSM using Synopsys

Proceedings of the 21st IEEE VLSI Test Symposium (VTS�03)
1093-0167/03 $17.00 © 2003 IEEE

scan chain 1

scan chain 2

select

CLK CLK2
CLK1

clk_en1
ck_en2

shifter

FSM

.m

inc

Data_in

Dec_en

m_flag

..

valid

reset

scan chain

i_flag counter

m

shift

Dictionary
(comb. logic)

log2 m-bit

lindex

lindex-bit

Fig. 5. Decompression Architecture II.

Design Compiler.
In Architecture I, an m-bit shifter is needed for the on-chip

decoder. If the number of scan chains is large, then the hard-
ware overhead resulting from this shifter is also large. If a small
modification to the scan chain is permitted, e.g., in the case
of flexible scan chains, this m-bit shifter can be replaced by a
small lindex-bit shifter. Figure 5 illustrates this decompression
architecture. Here, the scan chains are slightly modified such
that the first cell in each scan chain can receive the input test
data either from the dictionary or from the first bit of the previ-
ous scan chain. The signal select is used to select the source of
the input test data for the first cell of the scan chains. The mod-
ification to a scan chain is therefore limited to its first scan cell.
This can be implemented in a non-intrusive fashion by adding
a multiplexer at the scan input pin. During decompression, the
controlled clock signal CLK1 is used to drive the first cells
of the scan chains, and CLK2 drives the remaining flip-flops
in the scan chains and the MISR. The operation of the FSM is
now slightly different from that of Architecture I for the code-
words that consist of a 0 followed by a word. If the first bit of
the codeword is 0, CLK1 is enabled for the next m cycles and
CLK2 is enabled only for the next cycle. Thus in the next cy-
cle, the response in the scan chains are shifted one bit towards
the MISR and one bit data is shifted into the first cell of the first
scan chain. During the subsequent m− 1 cycles, the remaining
m − 1 bits data are shifted into the first cells of the scan chains
and other cells in the scan chains are frozen by disabling the
clock signal CLK2. The FSM for Architecture II has only 3
states, and 21 gates and 2 flip-flops are required to implement it
using Synopsys Design Compiler.

We can further reduce hardware overhead by using a single
dictionary for several cores. We concatenate the test sets for
the cores and view the concatenated test data as a single entity
during compression. The cores that use the same dictionary are
tested serially during the test session.

In the above decompression architectures, it is assumed that
only one ATE channel is used to transfer the compressed data.
The extension to multiple channels is straightforward. For ex-
ample, if the length of the dictionary index is 7, then a code-
word consists of 8 bits (1-bit prefix and 7-bit index). For such a

configuration, we can use either 2, 4 or 8 ATE channels and an
on-chip register of appropriate size without wasting ATE chan-
nel bandwidth.

IV. EXPERIMENTAL RESULTS

In this section, we first apply the dictionary-based test data
compression method to the test cubes for the seven largest
ISCAS-89 circuits. These test cubes were obtained from the
Mintest ATPG program [10]. We refer to the uncompressed
test set as TD and the compressed test set as TE . For each
test set, we determine a dictionary that contains 128 entries,
which provides good tradeoff between compression and hard-
ware overhead. Thus the length of the dictionary index is 7 bits.
Table II shows the compression results for a varying number of
scan chains. The second and third columns list the number of
test vectors in each test set and the number of scan cells in each
circuit, respectively. The minimum size of TE for each cir-
cuit is shown in boldface. The last column of the table shows
the hardware overhead for the dictionary corresponding to the
value of m for which the minimum size of TE is obtained. For
instance, the choice of m = 64 minimizes the size of TE for
circuit s5378, and 656 gates are required to implement the cor-
responding dictionary, which has 7 inputs and 64 outputs. Since
no additional handshaking is required between the ATE and the
SOC, the testing time (in ATE clock cycles) is simply equal to
the size of TE .

Table III presents a comparison of the compression results
with EFDR coding [7], variable-length input Huffman coding
(VIHC) [9], RESPIN++ [21], XOR network encoding [2], and
test data mutation encoding [18]. The size of TE listed for the
dictionary-based method is the minimum size shown in bold-
face in Table II. We find that the dictionary-based method
outperforms EFDR coding, VIHC coding and RESPIN++ for
all circuits. The result for RESPIN++ in [21] are based on a
preprocessing step of 400 pseudorandom patterns. Despite the
fact that the deterministic patterns in [21] targeted a smaller
number of faults than in this work, we obtain higher com-
pression than [21]. Compared to XOR network encoding, the
compression is higher for four out of five circuits. There are
two sets of compression results for test data mutation encoding
in [18]. They are obtained by encoding Mintest test sets (1)
and Atalanta-generated test sets (2), respectively. The last col-
umn lists the compression results obtained by combining test
data mutation encoding and XOR network encoding, as well as
additional structural information for test generation and com-
paction. Compared to these three sets of results, the dictionary-
based method achieves higher compression for at least three out
of five circuits for each case.

In [19], all distinct output m-bit words for m scan chains are
included in the dictionary. This leads to a prohibitively large
dictionary, especially for large values of m. The statistical
coding method of [15] is based on dictionaries with variable-
length indices. For comparison, we implemented this method
and found that it provides higher compression. However, the
finite-state machine decoder of [15] requires 2–3 times more

Proceedings of the 21st IEEE VLSI Test Symposium (VTS�03)
1093-0167/03 $17.00 © 2003 IEEE

TABLE II. COMPRESSION RESULTS WITH VARYING NUMBER OF SCAN CHAINS.

Circuit No. of test No. of scan Size of TD
Size of TE for varying no. of scan chains (bits) No. of gates for

vectors cells (bits) m = 16 m = 32 m = 48 m = 64 m = 128 m = 200 the dictionary
s5378 111 214 23754 12999 7791 6572 6345 8794 12970 656
s9234 159 247 39273 21189 13551 13659 12783 11498 16826 951

s13207 236 700 165200 83882 43936 31231 24074 13990 8517 1118
s15850 126 611 76986 40491 24960 19705 18573 13873 14840 1093
s35932 16 1763 28208 17214 8818 11583 7403 3123 1400 640
s38417 99 1664 164736 92304 84009 62939 94350 104192 114243 581
s38584 136 1464 199104 107962 71148 63740 58027 58189 53287 1469

TABLE III. COMPARISON OF COMPRESSION RESULTS.

Size of TE (bits)
Circuit Size of TD Dictionary EFDR VIHC RESPIN++ XOR network Mutation encoding [18] Mutation encoding

(bits) based [7] [9] [21] [2] (1) (2) + XOR network [18]
s5378 23754 6345 11419 11516 17332 N/A N/A N/A N/A
s9234 39273 11498 21250 17736 17198 N/A N/A N/A N/A
s13207 165200 8517 29992 27737 26004 25344 74423 16913 15783
s15850 76986 13873 24643 30271 32226 22784 26021 14676 10798
s35932 28208 1400 5554 9458 N/A 7128 7222 11298 3972
s38417 164736 62939 64962 74938 89132 89856 45003 55848 42264
s38584 199104 53287 73853 85674 63232 38976 73464 47886 22636

TABLE IV. COMPRESSION RESULTS ON USING A SINGLE DICTIONARY FOR TWO CIRCUITS.

Size of No. of No. of gates Size of TE (bits)
Circuit TD scan for the Dictionary based EFDR VIHC RESPIN++ XOR Mutation encoding [18] Mutation encoding

pair (bits) chains (m) dictionary Joint Separate [7] [9] [21] network [2] (1) (2) + XOR network [18]
{s5378,
s9234} 63027 32 525 24642 21342 32669 29252 34530 N/A N/A N/A N/A

{s13207,
s15850} 242186 128 1175 40810 27863 54635 58008 58230 48128 100444 31589 26581

{s38417,
s38584} 363840 48 689 150090 126679 138815 160612 152364 128832 118467 103734 64900

TABLE V. COMPRESSION RESULTS FOR TEST DATA FROM IBM.

Circuit Size of TD No. of scan Size of TE Percentage No. of gates for Size of TE (bits) No. of gates for the
(bits) chains (m) (bits) compression the dictionary for [15], and compression FSM in [15]

CKT1 11613472 400 232824 98.00 1541 122407 (98.95%) 6256
CKT2 4124288 200 172519 95.82 1917 136118 (96.70%) 4283

chip area than the proposed fixed-length dictionary.
Note that even smaller test data volume has been reported re-

cently for these circuits using a combination of packetization
and data compression codes [23]. These numbers were how-
ever obtained after a preprocessing step involving pseudoran-
dom patterns, therefore a direct comparison can be misleading.
Test data compression of up to 100X has also been reported re-
cently for industrial designs using commercial tools [17]. This
approach however relies on the use of test generation together
with test data compression—less compression might be ex-
pected for precomputed tests. A direct comparison with [17]
is also difficult due to the proprietary nature of the underlying
compression method and the industrial designs. In our work,
we neither use a preprocessing step involving pseudorandom
patterns nor do we interleave test generation with test data com-
pression. These additional steps can also be used to enhance the
effectiveness of dictionary-based compression.

Table IV shows compression results when a single dictionary
is used for pairs of ISCAS-89 circuits. We consider pairs of cir-
cuits that have nearly the same number of scan cells. The third
column in the table lists the number of scan chains with which
the dictionary-based method is used. The test data volume for
the competing methods is calculated by summing the test data

volumes for the individual circuits. We see that even though a
single dictionary is used for the two circuits, the compression is
greater than that for VIHC coding and RESPIN++ in all cases,
also better than that for EFDR coding in two out of three cases,
and it is higher than XOR-network encoding and test data mu-
tation encoding in one out of two cases.

In order to evaluate the compression efficiency of the
dictionary-based method for large test sets, we applied the
method to two real test sets from industry. The test set for
the first circuit (CKT1) from IBM consists of 32 statically-
compacted scan vectors (a total of 362921 bits of test data
per vector). This microprocessor design consists of 3.6 mil-
lion gates and 726000 latches. The test set for a second micro-
processor circuit (CKT2) from IBM consists of a set of 4 scan
vectors (a total of 1031072 bits of test data per vector); this
design contains 1.2 million gates and 32200 latches. Table V
lists the information about the test sets and the compression
results for these two industrial circuits. In the absence of infor-
mation about the number of scan chains for CKT1 and CKT2,
we assumed a total of 400 scan chains for CKT1 and 200 scan
chains for CKT2. The sixth column of Table V lists the number
of gates required to implement the corresponding dictionaries
with Synopsys Design Compiler. For CKT1 and CKT2, we ob-

Proceedings of the 21st IEEE VLSI Test Symposium (VTS�03)
1093-0167/03 $17.00 © 2003 IEEE

tain 50X and 25X compression, respectively, and the hardware
overhead due to the dictionaries is negligible. We applied the
technique of [15] to these test sets for block sizes of 400 and
200, respectively. As shown in Table V, the compression is
greater, but the hardware overhead is substantially higher for
the coding method of [15].

Note that, as in [9, 15, 19], the dictionaries presented are
specific to the circuit under test. It is often desirable however to
use a circuit-independent dictionary, which as in [3, 4], makes
the decompression logic independent of the precomputed test
set. This is especially useful in cases of circuit redesign or test
set modifications. In the proposed approach, the decompression
logic is test-independent if the dictionary is transferred from the
ATE to an embedded RAM at the start of a test session. If this
is not the case, and the dictionary is implemented as a custom
combinational logic, we can still use the same dictionary for
several circuits, albeit with a potential decrease in the amount
of compression. The negative impact on compression can how-
ever be minimized if a dictionary for a small circuit (CKT A)
is used for a large circuit (CKT B). The relatively smaller num-
ber of test patterns for CKT A leaves many don’t-cares in the
dictionary, which in turn can be used to efficiently match the
test patterns for CKT B. For example, we compressed TD for
s13207 using the dictionary for s5378 and found that TE in
this case contains 23571 bits, which is still less than the test
data volume for several competing methods. In another experi-
ment aimed at evaluating the effect of test set modifications, we
first generated a dictionary for s38584 with m = 32 and then
randomly altered 10% of the test vectors in TD. The resulting
compression obtained with the original dictionary is only 6%
less than before. We are currently investigating this aspect of
dictionary-based compression in more detail.

V. CONCLUSION

We have shown how dictionary-based test data compres-
sion can be used to reduce test data volume and testing time
for SOCs. The proposed method delivers compressed patterns
from the tester to the chip and drives a large number of inter-
nal scan chains using only a single ATE channel. Hence the
dictionary-based compression technique is especially suitable
for reduced-pin count testing, multi-site testing, as well as a
low-cost DFT test environment. In contrast to techniques based
on data compression codes, this approach does not rely on ad-
ditional synchronization between the SOC and the ATE. Exper-
imental results for the ISCAS-89 and representative test data
from IBM show that the dictionary can be implemented with
a small amount of hardware and the test data volume for the
proposed method is less than that for a number of recently-
proposed test data compression techniques. We are currently
carrying out a more detailed comparison between the proposed
method and compression based on dictionaries with variable-
length indices.

ACKNOWLEDGMENT

We thank Prof. Nur Touba of University of Texas at Austin
for valuable comments on a draft version of this paper.

REFERENCES

[1] C. Barnhart et al., “OPMISR: the foundation for compressed ATPG vec-
tors”, Proc. Int. Test Conf., pp. 748–757, 2001.

[2] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time
reduction through scan chain concealment”, Proc. ACM/IEEE Design
Automation Conf., pp. 151–155, 2001.

[3] A. Chandra and K. Chakrabarty, “Frequency-directed run-length (FDR)
codes with application to system-on-a-chip test data compression,” Proc.
VLSI Test Symp., pp. 42-47, 2001.

[4] A. Chandra and K. Chakrabarty, “System-on-a-chip test data compression
and decompression architectures based on Golomb codes”, IEEE Trans.
Computer-Aided Design, vol. 20, pp. 355–368, March 2001.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, MIT press, Cambridge, London, England, 2001.

[6] A. El-Maleh, S. al Zahir, and E. Khan, “A geometric-primitives-based
compression scheme for testing systems-on-chip”, Proc. VLSI Test Symp.,
pp. 54–59, 2001.

[7] A. El-Maleh and R. Al-Abaji, “Extended Frequency-Directed Run-
Length Codes with Improved Application to System-on-a-Chip Test Data
Compression”, Proc. Int. Conf. Electronics, Circuits and Systems, pp.
449–452, 2002.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, New York, 1979.

[9] P. T. Gonciari, B. Al-Hashimi and N. Nicolici, “Improving compression
ratio, area overhead, and test application time for system-on-a-chip test
data compression/decompression”, Proc. Design, Automation and Test in
Europe Conf., pp. 604–611, 2002.

[10] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for com-
binational circuits”, Proc. Int. Conf. CAD, pp. 283-289, 1998.

[11] S. Hellebrand, H.-G. Liang and H.-J. Wunderlich, “A mixed-mode BIST
scheme based on reseeding of folding counters”, Proc. Int. Test Conf., pp.
778–784, 2000.

[12] F. F. Hsu, K. M. Butler and J. H. Patel, “A case study on the implemen-
tation of Illinois scan architecture”, Proc. Int. Test Conf., pp. 538–547,
2001.

[13] V. Iyengar, K. Chakrabarty and B. T. Murray, “Deterministic built-in pat-
tern generation for sequential circuits,” JETTA, vol. 15, pp. 97-115, 1999

[14] A. Jas and N. A. Touba, “Test vector decompression via cyclical scan
chains and its application to testing core-based design”, Proc. Int. Test
Conf., pp. 458–464, 1998.

[15] A. Jas, J. Ghosh-Dastidar and N. A. Touba, “Scan vector compres-
sion/decompression using statistical coding,” Proc. VLSI Test Symp., pp.
114-120, 1999.

[16] B. Koenemann et al., “A SmartBIST variant with guaranteed encoding,”
Proc. Asian Test Symp., pp. 325–330, 2001.

[17] J. Rajski et al., “Embedded deterministic test for low-cost manufacturing
test,” Proc. Int. Test Conf., pp. 301–310, 2002.

[18] S. Reda and A. Orailoglu, “Reducing test application time through test
data mutation encoding”, Proc. Design, Automation and Test in Europe
Conf., pp. 387-393, 2002.

[19] S. M. Reddy, K. Miyase, S. Kajihara, and I. Pomeranz, “On test data
volume reduction for multiple scan chain design”, Proc. VLSI Test Symp.,
pp. 103–108, 2002.

[20] D. Salomon, Data Compression: The Complete Reference, Springer-
Verlag New York, Inc., New York, NY, 2000.

[21] L. Schafer, R. Dorsch, and H.-J. Wunderlich, “RESPIN++ – Determinis-
tic Embedded Test”, Proc. European Test Workshop, pp. 37-44, 2002.

[22] N. A. Touba and E. J. McCluskey, “Altering a pseudo-random bit se-
quence for scan based BIST”, Proc. Int. Test Conf., pp. 167–175, 1996.

[23] E. H. Volkerink, A. Khoche and S. Mitra, “Packet-based input test data
compression techniques”, Proc. Int. Test Conf., pp. 154–163, 2002.

[24] H. Vranken, T. Waayers, H. Fleury and D. Lelouvier, “Enhanced reduced
pin-count test for full-scan designs”, Proc. Int. Test Conf., pp. 738–747,
2001.

[25] F. G. Wolff and C. Papachristou, “Multiscan-based test compression and
hardware decompression using LZ77”, Proc. Int. Test Conf., pp. 331–339,
2002.

[26] H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST”, Proc. Int. Conf.
Computer-Aided Design, pp. 337-343, 1996.

Proceedings of the 21st IEEE VLSI Test Symposium (VTS�03)
1093-0167/03 $17.00 © 2003 IEEE

