
Test Data Compression Using
Dictionaries with Selective Entries
and Fixed-Length Indices

LEI LI and KRISHNENDU CHAKRABARTY
Duke University
and
NUR A. TOUBA
University of Texas, Austin

We present a dictionary-based test data compression approach for reducing test data volume in
SOCs. The proposed method is based on the use of a small number of ATE channels to deliver
compressed test patterns from the tester to the chip and to drive a large number of internal scan
chains in the circuit under test. Therefore, it is especially suitable for a reduced pin-count and low-
cost DFT test environment, where a narrow interface between the tester and the SOC is desirable.
The dictionary-based approach not only reduces test data volume but it also eliminates the need
for additional synchronization and handshaking between the SOC and the ATE. The dictionary
entries are determined during the compression procedure by solving a variant of the well-known
clique partitioning problem from graph theory. Experimental results for the ISCAS-89 benchmarks
and representative test data from IBM show that the proposed method outperforms a number of
recently-proposed test data compression techniques. Compared to the previously proposed test data
compression approach based on selective Huffman coding with variable-length indices, the proposed
approach generally provides higher compression for the same amount of hardware overhead.

Categories and Subject Descriptors: B.7.3 [Integrated Circuits]: Reliability and Testing—built-in
tests; test generation

General Terms: Algorithms, Design

Additional Key Words and Phrases: Embedded core testing, reduced pin-count testing, SoC testing,
test data volume, test application time

This research was supported in part by the National Science Foundation under grants CCR-9875324
and CCR-0204077, and by a graduate fellowship from the Design Automation Conference.
A preliminary and abridged version of this article appeared in Proceedings of the IEEE VLSI Test
Symposium (Napa Valley, Calif., Apr.). IEEE Computer Society Press, Los Alamitos, Calif., pp.
219–224.
Author’s address: L. Li and K. Chakrabarty, Department of Electrical and Computer Engineering,
130 Hudson Hall, Box 90291, Duke University, Durham, NC 27708; email: {ll,krish}@ee.duke.edu;
N. A. Touba, Department of Electrical and Computer Engineering, University of Texas at Austin,
Austin, TX 78712-1084.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 1084-4309/03/1000-0470 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003, Pages 470–490.

Test Data Compression Using Dictionaries • 471

1. INTRODUCTION

Intellectual property (IP) cores are now being routinely used in large system-on-
a-chip (SOC) designs. Higher circuit densities and a larger number of embedded
cores lead to higher test data volume, which in turn leads to an increase in
testing time. New techniques are therefore needed to reduce test data volume
and testing time, as well as to overcome ATE memory and bandwidth limitation.
In order to facilitate test reuse and the use of IP cores, these techniques should
not require detailed structural models for additional fault simulation or test
generation.

Built-in self-test (BIST) offers a promising alternative to ATE-based exter-
nal testing. While BIST is now extensively used for memory testing, it is less
common for logic testing. Problems with logic BIST include inadequate fault
coverage due to random-resistant fault and bus contention during test applica-
tion. While the fault coverage can be made quite high using methods such as
reseeding [Hellebrand et al. 2000], bit-flipping [Wunderlich and Kiefer 1996]
and bit-fixing [Touba and McCluskey 1996], these techniques require structural
information for fault simulation and test generation.

Structural methods for reducing test data volume and testing time require
design modifications. For example, the Illinois scan architecture (ILS) offers
an alternative to conventional scan design [Hsu et al. 2001]. However, fault
simulation and test generation are necessary in ILS as post-processing steps
to get high fault coverage.

Test data compression is a nonintrusive method that can be used to compress
the precomputed test set TD provided by the core vendor to a much smaller test
set TE , which is then stored in ATE memory. An on-chip decoder is used to gen-
erate TD from TE during pattern application. A number of techniques based on
statistical coding [Iyengar et al. 1999; Jas et al. 1999], run-length coding [Jas
and Touba 1998], Golomb coding [Chandra and Chakrabarty 2001b], FDR cod-
ing [Chandra and Chakrabarty 2001a], EFDR coding [El-Maleh and Al-Abaji
2002], and VIHC coding [Gonciari et al. 2002], have been proposed to reduce
test data volume. Test data volume reduction techniques based on on-chip pat-
tern decompression are also presented in Bayraktaroglu and Orailoglu [2001],
El-Maleh et al. [2001], Reda and Orailoglu [2002], Schafer et al. [2002], and
Volkerink et al. [2002]. Several dictionary-based compression methods have re-
cently been presented to reduce SOC test data volume. In Jas et al. [1999],
frequently occurring blocks are encoded into variable-length indices using
Huffman coding. A dictionary with fixed-length indices is used to generate all
the distinct output vectors in Reddy et al. [2002]. A test data compression tech-
nique based on LZ77 algorithm, which uses a dynamic dictionary, is proposed
in Wolff and Papachristou [2002].

The resurgence of interest in test data compression has also led to new com-
mercial tools that can provide over 10X compression for large industrial designs.
For example, the OPMISR [Barnhart et al. 2001] and SmartBIST [Koenemann
et al. 2001] tools from IBM and the TestKompress tool from Mentor Graph-
ics [Rajski et al. 2002] reduce test data volume and testing time through the
use of test data compression and on-chip decompression.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

472 • L. Li et al.

Fig. 1. Illustration of the proposed method for a single ATE channel.

In this article, we present a dictionary-based test data compression method
for IP cores that provides significant compression for precomputed test sets.
The dictionary uses fixed-length indices, and its entries are carefully selected
such that the dictionary is efficiently utilized. The proposed method is based
on the use of a small number of ATE channel to drive a large number of in-
ternal scan chains in the core under test; see Figure 1. (The test response can
be compacted using a MISR or other techniques. We do not consider output
compression in this article.) This technique does not require a gate-level circuit
model for fault simulation or test generation; this is in contrast to BIST meth-
ods such as Touba and McCluskey [1996] and Wunderlich and Kiefer [1996] and
commercial test data compression tools that interleave test cube compression
with test generation [Koenemann et al. 2001; Rajski et al. 2002].

Unlike coding techniques such as Chandra and Chakrabarty [2001a, 2001b],
this approach does not require multiple clock cycles to determine the de-
compressed test pattern after the last bit of the corresponding compressed
data packet is transferred from the ATE to the chip. This dictionary-based
approach therefore not only reduces testing time but it also eliminates the
need for additional synchronization and handshaking between the SOC and
the ATE. This approach is therefore targeted towards a reduced pin-count
test and low-cost DFT tester [Vranken et al. 2001] environment, where a
narrow interface between the tester and the SOC is desirable. We exploit
the fact that a set of test cubes with close to 100% fault coverage for full
scan circuits contains a large number of don’t-cares [Rajski et al. 2002].
Test set relaxation techniques such as in El-Maleh and Al-Suwaiyan [2002] and
Kajihara and Miyase [2001] can often be used to obtain an even larger number of
don’t-cares.

The rest of the article is organized as follows. In Section 2, we briefly review
dictionary-based data compression. Section 3 shows how a dictionary can be
used for test data compression. We describe how a variant of the clique parti-
tioning problem from graph theory can be used for the compression procedure.
In Section 4, we present upper and lower bounds on the amount of compression
that can be obtained with a dictionary. These bounds are expressed in terms of
the number of scan chains in the circuit under test, the length of the longest
scan chains, the size of the dictionary, and the number of test patterns. Section 5
describes the decompression architecture. Experimental results and a compar-
ison with related recent work are presented in Section 6. Finally, Section 7
concludes the article.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

Test Data Compression Using Dictionaries • 473

Fig. 2. An example of dictionary-based data compression.

2. DICTIONARY-BASED DATA COMPRESSION

Dictionary-based methods are quite common in the data compression do-
main [Salomon 2000]. While statistical methods use a statistical model of the
data and encode the symbols using variable-size codewords according to their
frequencies of occurrence, dictionary-based methods select strings of the sym-
bols to establish a dictionary, and then encode them into equal-size tokens using
the dictionary. The dictionary stores the strings, and it may be either static or
dynamic (adaptive). The former is permanent, sometimes allowing for the ad-
dition of strings but no deletions, whereas the latter holds strings previously
found in the input stream, allowing for additions and deletions of strings as
new input is processed.

A simple example of a static dictionary is an English dictionary used to
encode English text that consists of words. A word in the input text is encoded
as an index to the dictionary if it appears in the dictionary. Otherwise it is
encoded as the size of the word followed by the word itself. In order to distinguish
between the index and the raw word, a flag bit needs to be added to each
codeword. We present an example next to illustrate the encoding of a word.
Suppose the dictionary contains 220 words and thus needs a 20-bit index to
specify an entry. A value of 0 for the flag bit indicates that this codeword is
composed of the size of the word and the word itself following the flag bit.
A value of 1 for the flag bit implies that the 20 bits of data following it is a
dictionary index. Suppose a 5-bit field is used to specify the size of the word. As
shown in Figure 2, the word chip, which is present in the dictionary with index
2048, is encoded as 1|00000000100000000000. The word soc, which is not in
the dictionary, is encoded as 0|00011|01110011|01101111|01100011, where the
5-bit field 00011 indicates that three more bytes follow it.

The well-known compression algorithm LZ77 [Salomon 2000] is based on
a dynamic dictionary. It uses part of the previously-seen input stream as the
dictionary. Since our proposed method uses only a static dictionary, details of a
dynamic dictionary are not discussed here.

3. DICTIONARY-BASED COMPRESSION OF TEST DATA

In this section, we describe the proposed dictionary-based test data compres-
sion method and illustrate it with an example. In the following description,

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

474 • L. Li et al.

Fig. 3. An example of formatting the test data for multiple scan chains.

we assume that the precomputed SOC test data TD consists of n test patterns
t1, t2, . . . , tn. The scan elements of the core under test are divided into m scan
chains in as balanced a manner as possible. Each test vector can therefore be
viewed as m subvectors. If one or more subvectors are shorter than the others,
don’t-cares are padded to the end of these subvectors so that all the subvectors
have the same length, which is denoted by l . The m-bit data at the same position
of each subvector constitute an m-bit word. A total of nl m-bit words thus are
formed and encoded during the compression procedure. Figure 3 illustrates the
formatting of the given test data for multiple scan chains. During test applica-
tion, after a codeword is shifted into the decoder, an m-bit word u1, u2, . . . , um
is immediately generated by the decoder and fed into the scan chains (one bit
for each scan chain).

In the dictionary-based test data compression method, each codeword is
composed of a prefix and a stem. The prefix is a 1-bit identifier that indi-
cates whether the stem is a dictionary index or a word of uncompressed test
data. If it equals 1, the stem is viewed as a dictionary index. On the other
hand, if the prefix equals 0, the stem is an uncompressed word and it is m
bits long. The length of the dictionary index depends on the size of the dictio-
nary. If D is the set of the entries in the dictionary, the length of the index
lindex = dlog2 |D|e, where |D| is the size of the dictionary. Since lindex is much
smaller than m, the compression efficiency is greater if more test data words can
be obtained from the dictionary. However, the dictionary must be reasonably
small to keep the hardware overhead low. Fortunately, since there are many
don’t-care bits in scan test data for typical circuits, we can appropriately map
these don’t-care bits to binary values and carefully select the entries for the
dictionary, so that as many words as possible are mapped to the entries in the
dictionary.

An important step in the compression procedure is that of selecting the en-
tries in the dictionary. This problem can be easily mapped to a variant of the
clique partitioning problem from graph theory [Cormen et al. 2001]. We next
describe the clique partitioning problem and then show how the problem of de-
termining dictionary entries can be mapped to this problem. We then present
a heuristic algorithm for generating the dictionary entries. The proposed algo-
rithm presents a graph-theoretic view of the procedure presented in Jas et al.
[1999].

An undirected graph G consists of a set of vertices V and a set of edges E,
where each edge connects an unordered pair of vertices. Given an undirected
graph G = (V , E), a clique of the graph is a subset V ′ ⊆ V of vertices, each pair
of which is connected by an edge in E [Cormen et al. 2001]. Given a positive
integer K , the clique partitioning problem refers to the partitioning of V into

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

Test Data Compression Using Dictionaries • 475

Table I. An Example of Test Data for Multiple Scan Chains

Scan
chain Word index
index 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 0 1 1 1 1 0 0 0 X X 0 X 0 1
2 X 0 1 1 0 0 1 X X X 1 X X 0 1 0
3 X X X X 0 X 0 1 0 0 1 1 0 X X X
4 X 0 X 0 X X 0 X 0 0 0 0 0 X 0 1
5 0 0 0 0 X 0 X 0 X X X 0 X 1 0 X
6 0 X 1 0 1 0 X X 1 X 0 0 X 0 X X
7 1 0 1 X X X X 1 1 0 X 1 0 0 1 0
8 1 X 0 X 0 1 X 1 0 X X X X X X 1

k cliques, where k ≤ K . The clique partitioning problem is NP-hard [Garey
and Johnson 1979],1 hence heuristic approaches must be used to solve it in
reasonable time for large problem instances.

Recall that in dictionary-based data compression, we obtain nl m-bit words
after placing the test set in a multiple scan chain format. Two words u1u2 · · ·um
and v1v2 · · · vm are defined to be compatible to each other if for any position i,
ui and vi are either equal to each other or at least one of them is a don’t-care
bit. We construct an undirected graph G to reflect the compatible relationships
between the words as follows: First, a vertex is added to the graph for each
word. Then, we examine each pair of words. If they are mutually compatible,
an edge is added between the corresponding pair of vertices. A clique in G refers
to a group of test data words that can be mapped to the same dictionary entry.
If the dictionary can have at most |D| entries and the total number of words
is nl , the goal of the compression procedure is to find the largest subset of G
that can be partitioned into |D| cliques; the remaining vertices in G denote
test data words that are not compressed. This problem can easily be shown
to be NP-hard by contradiction. If the compression can be optimally solved in
polynomial time then it provides a yes/no answer to the decision version of the
clique partitioning problem in polynomial time. We therefore use the following
heuristic procedure.

(1) Copy the graph G to a temporary data structure G ′.
(2) Find the vertex v with the maximum degree in G ′.
(3) Establish a subgraph that consists of all the vertices connected to v. Copy

this subgraph to G ′ and add v to a set C. (The subgraph thus formed does
not include the vertex v.)

(4) If G ′ is not empty, go to Step (2). Otherwise, a clique C has been formed
consisting all the vertex found in Step (2).

(5) Remove the vertices in the clique C from G and copy G − C to G ′. Go to
Step 2 and repeat until |D| cliques are found.

The complexity of this procedure is O(N 3), where N = nl is the number
of vertices in the graph. Table I shows an example of test data formatted for

1The decision version of the clique partitioning problem is NP-complete.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

476 • L. Li et al.

Fig. 4. The graph G for the example of Table I.

multiple scan chains. The number of scan chains m is 8 in this example. There
are total of 16 words, each of which has 8 bits. Figure 4 shows the corresponding
graph G for the test data. Let us assume that a dictionary of size four is to be
formed, that is, |D| = 4. Using the greedy algorithm described above, we obtain
four cliques: {5, 6, 13, 16}, {2, 8, 14}, {3, 4, 7} and {1, 11}. (Here we use the word
indices of Table I to represent the vertices.) After finding the cliques, we obtain
the corresponding dictionary entry for each clique by merging the words in this
clique. In this example, the four dictionary entries are {11100011, 01000110,
0000100X, 10X10001}. Three bits are then needed to encode the words in the
cliques; an additional 1 bit is needed for the prefix, and 2 bits are required for the
dictionary index. For words that are not in any clique, a total of 9 bits each must
be transferred from the ATE. Since there are 12 words that can be generated
from the dictionary, the size of the compressed data is 3 × 12 + 9 × 4 = 72
bits, which corresponds to a compression of 43.75%. Moreover, the dictionary
entries still contain some don’t-care bits, which can reduce the hardware for
the decoder, as explained next.

The clique partitioning procedure introduces a certain degree of randomness
in the way the don’t-care bits in TD are filled; the resulting “random fill” can be
expected to increase the fortuitous detection of non-modeled faults. This is in
contrast to coding methods such as Chandra and Chakrabarty [2001a, 2001b]
in which the don’t-cares are all mapped to 0s.

4. COMPRESSION BOUNDS

In this section, we derive simple lower and upper bounds on the amount of
compression that can be obtained using the proposed dictionary. If the length
of a test vector is L bits, the length of each scan chain for a circuit with m
scan chains is l = d L

me. Here we assume that the scan chains are balanced.
Unbalanced scan chains can be balanced by adding dummy cells. As discussed
in Section 2, for a test set TD with n patterns, a total of N = nl = nd L

me m-bit
words are generated and encoded during the compression procedure. If a data
word matches an entry in the dictionary, i.e., it can be mapped to a dictionary
entry by appropriately assigning 0 or 1 to its unspecified bits, a 1+ dlog2 |D|e-
bit codeword is needed to encode it, where |D| is the size of the dictionary;
otherwise, 1+m data bits are needed to encode this data word.

We denote the compressed test data set by TE . A lower bound BL on the size
of compressed test data |TE | is obtained by assuming that all the N data words

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

Test Data Compression Using Dictionaries • 477

Fig. 5. Variation of the compression bounds and |TE | with dictionary size for s15850 with
(a) m = 16 (b) m = 32 (c) m = 64 (d) m = 200.

are matched to dictionary entries. This implies that

BL = N (1+ dlog2 |D|e)
= n

⌈
L
m

⌉
(1+ dlog2 |D|e).

Similarly, an upper bound BU on |TE | is obtained by assuming that each
dictionary entry matches only one data word, that is,

BU = (1+ dlog2 |D|e)|D| + (N − |D|)(1+m)

= (1+ dlog2 |D|e)|D| +
(

n
⌈

L
m

⌉
− |D|

)
(1+m).

In order to study these bounds further, we encode the test sets for two ISCAS-
89 benchmark circuits, and compare the TE with these bounds. The test sets
were obtained from the Mintest ATPG program [Hamzaoglu and Patel 1998].
Figure 5 shows the variations of these bounds and |TE | with dictionary size
|D| for various values of m for the s15850 benchmark circuit. The number of
entries in the dictionary |D| is varied in powers of 2 from 16 to 128. We find
that |TE | is very close to the lower bound BL when m = 16 and |D| = 128.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

478 • L. Li et al.

Fig. 6. Variation of the compression bounds and |TE | with dictionary size for s38584 with (a)
m = 16 (b) m = 32 (c) m = 64 (d) m = 200.

This is because when the number of scan chains m, which also denotes the
length of the data words, is small, the total number 2m of possible data words
is small. As a result, there is a strong likelihood that every data word matches
a dictionary entry, a scenario that we used to derive the lower bound BL. In
Figure 5(a), it appears that 128 dictionary entries match most of the 16-bit data
words obtained from the test set for s15850. A similar situation is observed in
Figure 5(b) for m = 32. On the other hand, |TE | is very close to BU for m = 200
and |D| = 2 in Figure 5(d). When m is large, the total number 2m of possible data
words is also large. Thus a small dictionary is likely to match only a few data
words, which is analogous to the scenario used to derive the upper bound BU
(only |D| words are covered by the dictionary). Figure 6 shows similar results
for the s38584 benchmark circuit.

In Table II, we list the closeness of |TE | to BL, which is defined as C = |TE |−BL
BU−BL

,
for various values of the number of dictionary entries |D| and the number of
scan chains m. The closeness values listed in the table also show that |TE | is
closer to BL for a small number of scan chains and a relatively large dictionary,
and closer to BU for a large number of scan chains and a relatively small dic-
tionary. As expected, the entries in the lower left corner of the table are close to
zero.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

Test Data Compression Using Dictionaries • 479

Table II. The Closeness of |TE | to BL for (a) s15850 and (b) s38584

No. of scan chains
|D| m = 16 m = 32 m = 48 m = 64 m = 128 m = 200
2 0.36 0.49 0.56 0.60 0.71 0.78
4 0.28 0.41 0.50 0.52 0.63 0.69
8 0.21 0.34 0.40 0.44 0.52 0.55
16 0.15 0.28 0.34 0.37 0.42 0.44
32 0.11 0.22 0.27 0.29 0.33 0.36
64 0.06 0.15 0.20 0.21 0.24 0.27
128 0.03 0.08 0.11 0.13 0.15 0.15

(a)

No. of scan chains
|D| m = 16 m = 32 m = 48 m = 64 m = 128 m = 200
2 0.37 0.59 0.65 0.75 0.82 0.87
4 0.29 0.49 0.57 0.66 0.76 0.81
8 0.22 0.39 0.49 0.58 0.69 0.73
16 0.17 0.32 0.41 0.49 0.60 0.66
32 0.13 0.25 0.33 0.38 0.50 0.55
64 0.10 0.19 0.25 0.28 0.38 0.42
128 0.07 0.14 0.18 0.19 0.25 0.28

(b)

5. DECOMPRESSION ARCHITECTURE

In this section, we describe the decompression architecture for the dictionary-
based test data compression method. Two architectures for the on-chip decoder
are proposed; they are referred as Architecture I and Architecture II, respec-
tively. Architecture I does not require any modification to the scan chains of the
core under test. Architecture II is intended for cores with flexible scan chains
since a slight modification to the scan chains is needed in this case. The latter
requires less hardware than Architecture I.

Figure 7 illustrates the first decompression architecture. The decoder con-
sists of a finite-state machine (FSM), an m-bit shifter, a log2 m-bit counter, a
selector and the dictionary. The m-bit shifter takes data from Data in when
the signal shift equals 1. All the m output bits pass to the selector while the
dictionary only gets the higher order lindex bits of the output as its index. Here,
we use a combinational logic circuit to implement the dictionary. It outputs the
m-bit word corresponding to the current value of the index.

The log2 m-bit counter is used to indicate whether the shift-in of a codeword
has finished. It operates as follows.

—The signal reset resets the counter to 0.
—If inc = 1, the counter is incremented.
—When the value of the counter reaches lindex, the output i flag equals 1.
—When the value of the counter reaches m, the output m flag equals 1.

The FSM has only three states. It is enabled when the signal Dec en is active.
It starts by checking the first bit of the data shifted in from Data in. If this bit

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

480 • L. Li et al.

Fig. 7. Decompression Architecture I.

Fig. 8. State transition diagram for the FSM in Architecture I.

is 0, which implies that the next m bits directly constitute a word, the FSM
shifts this word into the m-bit shifter, which then feeds this word into the scan
chains during the clock cycle in which the decoder checks the first bit of the
next codeword. On the other hand, if the first bit is 1, the FSM shifts in the
next lindex bits and gets the decoded word from the dictionary. Only 19 gates
and 2 flip-flops are required to implement the FSM using Synopsys Design
Compiler.

Figure 8 shows the state transition diagram for the FSM in Architecture I.
There are four inputs to the FSM in the order Dec en, Data in, i flag and m flag.
The outputs of the FSM are set to 1 only when they appear in the output list in
the state transition diagram.

In Architecture I, an m-bit shifter is needed for the on-chip decoder. If the
number of scan chains is large, then the hardware overhead resulting from
this shifter is also large. If a small modification to the scan chain is permitted,
e.g., in the case of flexible scan chains, this m-bit shifter can be replaced by
a small lindex-bit shifter. Figure 9 illustrates this decompression architecture,
referred to as Architecture II. Here, the scan chains are slightly modified such

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

Test Data Compression Using Dictionaries • 481

Fig. 9. Decompression Architecture II.

that the first cell in each scan chain can receive the input test data either from
the dictionary or from the first bit of the previous scan chain. The signal select
is used to select the source of the input test data for the first cell of the scan
chains. The modification to a scan chain is therefore limited to its first scan cell.
This can be implemented in a non-intrusive fashion by adding a multiplexer at
the scan input pin. During decompression, the controlled clock signal CLK1 is
used to drive the first cells of the scan chains, and CLK2 drives the remaining
flip-flops in the scan chains and the MISR. The operation of the FSM is now
slightly different from that of Architecture I for the codewords that consist of
a 0 followed by a word. If the first bit of the codeword is 0, CLK1 is enabled
for the next m cycles and CLK2 is enabled only for the next cycle. Thus in the
next cycle, the response in the scan chains are shifted one bit towards the MISR
and one bit data is shifted into the first cell of the first scan chain. During the
subsequent m−1 cycles, the remaining m−1 bits data are shifted into the first
cells of the scan chains and other cells in the scan chains are frozen by disabling
the clock signal CLK2. The FSM for Architecture II has only 4 states (as shown
in Figure 10), and 21 gates and 2 flip-flops are required to implement it using
Synopsys Design Compiler.

We can further reduce hardware overhead by using a single dictionary for
several cores. We concatenate the test sets for the cores and view the concate-
nated test data as a single entity during compression. The cores that use the
same dictionary are tested serially during the test session.

In the above decompression architectures, it is assumed that only one
ATE channel is used to transfer the compressed data. The extension to mul-
tiple channels is straightforward. For example, if the length of the dictio-
nary index is 7, then a codeword consists of 8 bits (1-bit prefix and 7-bit
index). For such a configuration, we can use either 2, 4 or 8 ATE channels
and an on-chip register of appropriate size without wasting ATE channel
bandwidth.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

482 • L. Li et al.

Fig. 10. State transition diagram for the FSM in Architecture II.

Table III. Compression Results with Varying Number of Scan Chains

No. of No. of Size of No. of gates
test scan TD Size of TE for varying no. of scan chains (bits) for the

Circuit vectors cells (bits) m=16 m=32 m=48 m=64 m=128 m=200 dictionary
s5378 111 214 23754 12999 7791 6572 6345 8794 12970 656
s9234 159 247 39273 21189 13551 13659 12783 11498 16826 951
s13207 236 700 165200 83882 43936 31231 24074 13990 8517 1118
s15850 126 611 76986 40491 24960 19705 18573 13873 14840 1093
s35932 16 1763 28208 17214 8818 11583 7403 3123 1400 640
s38417 99 1664 164736 92304 84009 62939 94350 104192 114243 581
s38584 136 1464 199104 107962 71148 63740 58027 58189 53287 1469

6. EXPERIMENTAL RESULTS

In this section, we first apply the dictionary-based test data compression
method to the test cubes for the seven largest ISCAS-89 circuits. These test
cubes were obtained from the Mintest ATPG program [Hamzaoglu and Patel
1998]. We refer to the uncompressed test set as TD and the compressed test set
as TE . For each test set, we determine a dictionary that contains 128 entries,
which provides good tradeoff between compression and hardware overhead.
Thus, the length of the dictionary index is 7 bits.

Table III shows the compression results for a varying number of scan chains.
The second and third columns list the number of test vectors in each test set
and the number of scan cells in each circuit, respectively. The minimum size
of TE for each circuit is shown in boldface. Clearly, the amount of compression

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

Test Data Compression Using Dictionaries • 483

Table IV. Comparison of Compression Results

Size of TE (bits)
Size of Size of Mutation

TD ATPG-compacted Proposed XOR Mutation encoding + XOR
Circuit (bits) test set (bits) method EFDR VIHC network encoding network
s5378 23754 20758 6345 11419 11516 N/A N/A N/A
s9234 39273 25935 11498 21250 17736 N/A N/A N/A
s13207 165200 163100 8517 29992 27737 25344 74423 15783
s15850 76986 57434 13873 24643 30271 22784 26021 10798
s35932 28208 19393 1400 5554 9458 7128 7222 3972
s38417 164736 113152 62939 64962 74938 89856 45003 42264
s38584 199104 161040 53287 73853 85674 38976 73464 22636

depends on the number of scan chains for any given circuit. The last column
of the table shows the hardware overhead for the dictionary corresponding to
the value of m for which the minimum size of TE is obtained. For instance, the
choice of m = 64 minimizes the size of TE for circuit s5378, and 656 gates are
required to implement the corresponding dictionary, which has 7 inputs and
64 outputs. Since no additional handshaking is required between the ATE and
the SOC, the testing time (in ATE clock cycles) is simply equal to the size of
TE . This is usually higher than the nl ATE clock cycles required if no encoding
is done. However, the proposed approach uses only a single ATE data channel
instead of m channels needed to drive m scan chains in parallel. If additional
data channels are used, the testing time can be reduced significantly for the
proposed method.

Table IV presents a comparison of the compression results with EFDR
coding [El-Maleh and Al-Abaji 2002], variable-length input Huffman coding
(VIHC) [Gonciari et al. 2002], XOR network encoding [Bayraktaroglu and
Orailoglu 2001], and test data mutation encoding [Reda and Orailoglu 2002].
Of these methods, only El-Maleh and Al-Abaji [2002] is based on a circuit-
independent and test-independent decoder. The best reported results for the
competing methods are listed in Table IV. The sizes of the ATPG-compacted
test sets are also listed for the sake of comparison. The size of TE listed for the
dictionary-based method is the minimum size shown in boldface in Table III.
We find that the dictionary-based method outperforms EFDR coding and VIHC
coding for all circuits. Compared to XOR network encoding, the compression is
higher for four out of five circuits. There are two sets of compression results for
test data mutation encoding in Reda and Orailoglu [2002]. They are obtained
by encoding Mintest test sets and Atalanta-generated test sets, respectively. We
used the first set of results for comparison since it is based on the same test sets
that are used in our experiments. The last column lists the compression results
obtained by combining test data mutation encoding and XOR network encoding,
as well as additional structural information for test generation and compaction.
Compared to these three sets of results, the dictionary-based method achieves
higher compression for at least three out of five circuits for each case. Note that
for mutation encoding, an additional test enable signal is necessary. This adds
to the overhead for the scheme—additional storage (not included in Table III)
and an additional tester channel are needed.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

484 • L. Li et al.

Fig. 11. Compression versus the number of scan chains for circuit s15850 with (a) |D| = 64
(b) |D| = 128.

Fig. 12. Hardware overhead versus the number of scan chains for circuit s15850 with (a) |D| = 64
(b) |D| = 128.

In Reddy et al. [2002], all distinct output m-bit words for m scan chains are
included in the dictionary. This leads to a prohibitively large dictionary, espe-
cially for large values of m. The statistical coding method of Jas et al. [1999] is
based on dictionaries with variable-length indices. For comparison, we imple-
mented the selective Huffman coding algorithm in Jas et al. [1999] and used
it to encode the dictionary entries that are obtained by the heuristic procedure
described in Section 2. Figure 11 shows the percentage compression versus the
number of scan chains for s15850 for two different dictionary sizes |D| = 64
and |D| = 128. Figure 12 shows the hardware overhead required to implement
the corresponding dictionaries. The method based on Huffman coding provides
higher compression than the proposed method. However, the difference in the
compression for the two method is insignificant for large values of m, where
the highest compression is achieved for both methods. Furthermore, the finite-
state machine decoder for selective Huffman coding requires 2–3 times more
chip area to implement than the proposed fixed-length-index dictionary. In or-
der to compare the two methods accurately, we set a priori limit on the hardware

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

Test Data Compression Using Dictionaries • 485

Fig. 13. Compression versus the limit on the hardware overhead for circuit s15850.

Fig. 14. Compression versus the number of scan chains for circuit s38584 with (a) |D| = 64
(b) |D| = 128.

overhead and determined the compression for both methods. The best compres-
sion results are shown in Figure 13 over all possible values of m and |D| that
meet the constraints on hardware overhead. As shown in Figure 13, the pro-
posed method provides higher compression for all the but one cases. It is only
when the limit on hardware overhead is set to 200 gates that the method based
on Huffman coding provides higher compression. Similar results are observed
for s38584 (shown in Figures 14–16) and the other benchmark circuits.

Note that even smaller test data volume has been reported recently for these
circuits using a combination of packetization and data compression codes [Volk-
erink et al. 2002]. These numbers were however obtained after a preprocessing
step involving pseudorandom patterns, therefore a direct comparison can be
misleading. Test data compression of up to 100X has also been reported re-
cently for industrial designs using commercial tools [Rajski et al. 2002]. This
approach however relies on the use of test generation together with test data
compression—less compression might be expected for precomputed tests. A di-
rect comparison with Rajski et al. [2002] is also difficult due to the proprietary
nature of the underlying compression method and the industrial designs. In

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

486 • L. Li et al.

Fig. 15. Hardware overhead versus the number of scan chains for circuit s38584 with (a) |D| = 64
(b) |D| = 128.

Fig. 16. Compression versus the limit on the hardware overhead for circuit s38584.

our work, we neither use a preprocessing step involving pseudorandom pat-
terns nor do we interleave test generation with test data compression. These
additional steps can also be used to enhance the effectiveness of dictionary-
based compression.

Table V shows compression results when a single dictionary is used for pairs
of ISCAS-89 circuits. We consider pairs of circuits that have nearly the same
number of scan cells. The third column in the table lists the number of scan
chains with which the dictionary-based method is used. The test data volume
for the competing methods is calculated by summing the test data volumes for
the individual circuits. We see that even though a single dictionary is used for
the two circuits, the compression is greater than that for VIHC coding in all
cases, also better than that for EFDR coding in two out of three cases, and it
is higher than XOR-network encoding and test data mutation encoding in one
out of two cases.

In order to evaluate the compression efficiency of the dictionary-based
method for large test sets, we applied the method to two real test sets from

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

Test Data Compression Using Dictionaries • 487

Table V. Compression Results on Using a Single Dictionary for Two Circuits

No. of No. of Size of TE (bits)
Size of scan gates Mutation

Circuit TD chains for the Proposed method XOR Mutation encoding + XOR
pair (bits) (m) dictionary Joint Separate EFDR VIHC network encoding network
{s5378,
s9234} 63027 32 525 24642 21342 32669 29252 N/A N/A N/A

{s13207,
s15850} 242186 128 1175 40810 27863 54635 58008 48128 100444 26581

{s38417,
s38584} 363840 48 689 150090 126679 138815 160612 128832 118467 64900

Table VI. Compression Results for Test Data from IBM

Size of No. of Size of No. of gates Size of TE (bits) No. of gates
TD scan TE Percentage for the for [Jas et al. 1999], for the FSM

Circuit (bits) chains (m) (bits) compression dictionary and compression in [Jas et al. 1999]
400 232824 98.00 1541 122407 (98.95%) 6256

CKT1 11613472 300 309848 97.33 1721 205057 (98.23%) 5039
200 464880 96.00 1198 273983 (97.64%) 3255
256 164752 96.01 2455 150793 (96.34%) 4963

CKT2 4124288 200 172519 95.82 1917 136118 (96.70%) 4283
128 276668 93.29 1516 177744 (95.69%) 2866

industry. The test set for the first circuit (CKT1) from IBM consists of 32
statically-compacted scan vectors (a total of 362921 bits of test data per vector).
This microprocessor design consists of 3.6 million gates and 726000 latches. The
test set for a second microprocessor circuit (CKT2) from IBM consists of a set
of 4 scan vectors (a total of 1031072 bits of test data per vector); this design
contains 1.2 million gates and 32200 latches. Since we do not have access to
the gate-level models for these circuits, we are unable to report fault coverage
values for these test sets. Table VI lists the information about the test sets and
the compression results for these two industrial circuits. In the absence of in-
formation about the number of scan chains for CKT1 and CKT2, two cases are
assumed for each circuit: a total of 400 and 200 scan chains for CKT1, and 200
and 128 scan chains for CKT2. The sixth column of Table VI lists the number
of gates required to implement the corresponding dictionaries with Synopsys
Design Compiler. For CKT1 and CKT2, we obtain 50X and 25X compression,
respectively, and the hardware overhead due to the dictionaries is negligible.
We applied the technique of Jas et al. [1999] to these test sets for block sizes
of 400 and 200, respectively. As shown in Table VI, the compression is greater,
but the hardware overhead is substantially higher for the coding method of Jas
et al. [1999].

Note that, as in Gonciari et al. [2002], Jas et al. [1999], and Reddy et al.
[2002], the dictionaries presented are specific to the circuit under test. It is often
desirable however to use a circuit-independent dictionary, which as in Chandra
and Chakrabarty [2001a, 2001b], makes the decompression logic independent
of the precomputed test set. This is especially useful in cases of circuit redesign
or test set modifications. In the proposed approach, the decompression logic is
test-independent if the dictionary is transferred from the ATE to an embedded

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

488 • L. Li et al.

RAM at the start of a test session. If this is not the case, and the dictionary
is implemented as a custom combinational logic, we can still use the same
dictionary for several circuits, albeit with a potential decrease in the amount of
compression. The negative impact on compression can however be minimized if
a dictionary for a small circuit (CKT A) is used for a large circuit (CKT B). The
relatively smaller number of test patterns for CKT A leaves many don’t-cares in
the dictionary, which in turn can be used to efficiently match the test patterns
for CKT B. For example, we compressed TD for s13207 using the dictionary for
s5378 and found that TE in this case contains 23571 bits, which is still less than
the test data volume for several competing methods. In another experiment
aimed at evaluating the effect of test set modifications, we first generated a
dictionary for s38584 with m = 32 and then randomly altered 10% of the test
vectors in TD. The resulting compression obtained with the original dictionary
is only 6% less than before.

We also investigated the impact of incremental changes to the circuit netlist
and the test set on the effectiveness of dictionary-based compression. We consid-
ered the ISCAS-89 benchmark circuit s5378, which consists of 1775 inverters
and 1004 other logic gates (239 OR gates and 765 NOR gates). We used Atalanta
to generate a test set TD for s5378, containing 1125 test cubes. This test set
was then compressed using a dictionary of 128 entries to obtain TE . For a scan
configuration of 128 scan chains, the percentage compression was found to be
92.36%. We next modified circuit s5378 to s5378∗ by changing 5% of the 1004
logic gates to another type (12 OR gates to AND gates, and 38 NOR gates to
NAND gates), and used Atalanta to generate a test set T ∗D for s5378∗ contain-
ing 943 test cubes. The dictionary used to compress the test set TD was then
used to compress T ∗D. The percentage compression in this case was 91.20%,
which is only marginally less than the compression percentage for the original
circuit.

Finally, we generated a single dictionary for four ISCAS-89 benchmark cir-
cuits, namely s5378, s9234, s13207, and s15850, and compared the combined
test data volume for compression for these circuits to that obtained using sep-
arate dictionaries and using the EFDR and VHIC methods. The total test data
volume based on separate dictionaries is 48155 bits, a significant reduction
from the original test data volume of 305213 bits. With a single dictionary for
all four circuits, the test data volume is 85665 bits, which still amounts to a
significant amount of compression. More importantly, this test data volume is
less than the 87304 bits and 87260 bits, obtained with the EFDR and VHIC
methods, respectively.

7. CONCLUSION

We have shown how dictionary-based test data compression can be used to
reduce test data volume for SOCs. The proposed method delivers compressed
patterns from the tester to the chip and drives a large number of internal scan
chains using only a single ATE channel. Hence, the dictionary-based compres-
sion technique is especially suitable for reduced-pin count testing, multi-site
testing, as well as a low-cost DFT test environment. In contrast to techniques

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

Test Data Compression Using Dictionaries • 489

based on data compression codes, this approach does not rely on additional
synchronization between the SOC and the ATE. Experimental results for the
ISCAS-89 and representative test data from IBM show that the dictionary can
be implemented with a small amount of hardware and the test data volume for
the proposed method is less than that for a number of recently proposed test
data compression techniques. Compared to the previously proposed test data
compression based on selective Huffman coding, the proposed method achieves
higher compression for the same amount of hardware overhead, except for the
special case when the constraint on the hardware overhead is very small.

REFERENCES

BARNHART, C., BRUNKHORST, V., DISTLER, F., FARNSWORTH, O., KELLER, B., AND KOENEMANN, B. 2001.
OPMISR: The foundation for compressed ATPG vectors. In Proceedings of the International Test
Conference. 748–757.

BAYRAKTAROGLU, I. AND ORAILOGLU, A. 2001. Test volume and application time reduction through
scan chain concealment. In Proceedings of the ACM/IEEE Design Automation Conference. ACM,
New York, 151–155.

CHANDRA, A. AND CHAKRABARTY, K. 2001a. Frequency-directed run-length (FDR) codes with appli-
cation to system-on-a-chip test data compression. In Proceedings of the VLSI Test Symposium.
42–47.

CHANDRA, A. AND CHAKRABARTY, K. 2001b. System-on-a-chip test data compression and decompres-
sion architectures based on Golomb codes. IEEE Trans. Computer-Aided Design 20, 355–368.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. 2001. Introduction to Algorithms. MIT
press, Cambridge, London, England.

EL-MALEH, A. AND AL-ABAJI, R. 2002. Extended frequency-directed run-length codes with im-
proved application to system-on-a-chip test data compression. In Proceedings of the International
Conference on Electronics, Circuits and Systems. 449–452.

EL-MALEH, A. AND AL-SUWAIYAN, A. 2002. An efficient test relaxation technique for combinational
and full-scan sequential circuits. In Proceedings of the VLSI Test Symposium. 53–59.

EL-MALEH, A., AL ZAHIR, S., AND KHAN, E. 2001. A geometric-primitives-based compression scheme
for testing systems-on-chip. In Proceedings of the VLSI Test Symposium. 54–59.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, New York.

GONCIARI, P. T., AL-HASHIMI, B., AND NICOLICI, N. 2002. Improving compression ratio, area over-
head, and test application time for system-on-a-chip test data compression/decompression. In
Proceedings of the Design, Automation and Test in Europe Conference. 604–611.

HAMZAOGLU, I. AND PATEL, J. H. 1998. Test set compaction algorithms for combinational circuits.
In Proceedings of the International Conference on CAD. 283–289.

HELLEBRAND, S., LIANG, H.-G., AND WUNDERLICH, H.-J. 2000. A mixed-mode BIST scheme based on
reseeding of folding counters. In Proceedings of the International Test Conference. 778–784.

HSU, F. F., BUTLER, K. M., AND PATEL, J. H. 2001. A case study on the implementation of illinois
scan architecture. In Proceedings of the International Test Conference. 538–547.

IYENGAR, V., CHAKRABARTY, K., AND MURRAY, B. T. 1999. Deterministic built-in pattern generation
for sequential circuits. J. Elect. Test: Theory Appl. 15, 97–115.

JAS, A., GHOSH-DASTIDAR, J., AND TOUBA, N. A. 1999. Scan vector compression/decompression using
statistical coding. In Proceedings of the VLSI Test Symposium. 114–120.

JAS, A. AND TOUBA, N. A. 1998. Test vector decompression via cyclical scan chains and its applica-
tion to testing core-based design. In Proceedings of the International Test Conference. 458–464.

KAJIHARA, S. AND MIYASE, K. 2001. On identifying don’t care inputs of test patterns for combina-
tional circuits. In Proceedings of the International Conference on CAD. 364–369.

KOENEMANN, B., BARNHART, C., B.KELLER, SNETHEN, T., FARNSWORTH, O., AND WHEATER, D. 2001. A
SmartBIST variant with guaranteed encoding. In Proceedings of the Asian Test Symposium.
325–330.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

490 • L. Li et al.

RAJSKI, J., TYSZER, J., KASSAB, M., MUKHERJEE, N., THOMPSON, R., TSAI, H., HERTWIG, A., TAMARAPALLI,
N., MRUGALSKI, G., EIDE, G., AND QIAN, J. 2002. Embedded deterministic test for low-cost man-
ufacturing test. In Proceedings of the International Test Conference. 301–310.

REDA, S. AND ORAILOGLU, A. 2002. Reducing test application time through test data mutation
encoding. In Proceedings of the Design, Automation and Test in Europe Conference. 387–393.

REDDY, S. M., MIYASE, K., KAJIHARA, S., AND POMERANZ, I. 2002. On test data volume reduction for
multiple scan chain design. In Proceedings of the VLSI Test Symposium. 103–108.

SALOMON, D. 2000. Data Compression: The Complete Reference. Springer-Verlag New York, Inc.,
New York, NY.

SCHAFER, L., DORSCH, R., AND WUNDERLICH, H.-J. 2002. Respin++—Deterministic embedded test.
In Proceedings of the European Test Workshop. 37–44.

TOUBA, N. A. AND MCCLUSKEY, E. J. 1996. Altering a pseudo-random bit sequence for scan based
BIST. In Proceedings of the International Test Conference. 167–175.

VOLKERINK, E. H., KHOCHE, A., AND MITRA, S. 2002. Packet-based input test data compression
techniques. In Proceedings of the International Test Conference. 154–163.

VRANKEN, H., WAAYERS, T., FLEURY, H., AND LELOUVIER, D. 2001. Enhanced reduced pin-count test
for full-scan designs. In Proceedings of the International Test Conference. 738–747.

WOLFF, F. G. AND PAPACHRISTOU, C. 2002. Multiscan-based test compression and hardware decom-
pression using LZ77. In Proceedings of the International Test Conference. 331–339.

WUNDERLICH, H.-J. AND KIEFER, G. 1996. Bit-flipping BIST. In Proceedings of the International
Conference on Computer-Aided Design. 337–343.

Received March 2003; revised July 2003; accepted August 2003

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 4, October 2003.

