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Abstract 
 

This paper presents a new X-filling algorithm for test power reduction and a novel encoding technique for test data compression in scan-

based VLSI testing. The proposed encoding technique focuses on replacing redundant runs of the equal-run-length vector with a shorter 

codeword. The effectiveness of this compression method depends on a number of repeated runs occur in the fully specified test set. In 

order to maximize the repeated runs with equal run length, the unspecified bits in the test cubes are filled with the proposed technique 

called alternating equal-run-length (AERL) filling. The resultant test data are compressed using the proposed alternating equal-run-length 

coding to reduce the test data volume. Efficient decompression architecture is also presented to decode the original data with lesser area 

overhead and power. Experimental results obtained from larger ISCAS'89 benchmark circuits show the efficiency of the proposed work. 

The AERL achieves up to 82.05 % of compression ratio as well as up to 39.81% and 93.20 % of peak and average-power transitions in 

scan-in mode during IC testing. 

 
Keywords: Test data compression; design for testability; low-power testing; run-length encoding; decompression; X-filling. 

 

1. Introduction 

The amount of data required to test the integrated circuits (ICs) are 

increasing rapidly with the developments of technology. Also, the 

design of low-power high-performance portable computing devic-

es has become a major objective for the design engineers. Howev-

er, reduction of power dissipation is not only a critical parameter 

for design engineers, but also for design for testability (DFT) en-

gineers as the system consumes much more power during the test 

than during normal operation [1]. Thus, low-power test data com-

pression for digital VLSI systems has become a major concern for 

engineers and scientists of these areas in recent years. Due to the 

increase in the test data volume and higher test power, this area 

has always been actively researched on and a number of test data 

compression and power reduction techniques are introduced. Test 

data compression techniques can be broadly categorized into line-

ar decompression based compression and code-based compression 

techniques. Reduction of test data volume using test compaction 

was described in [2, 3]. Test compaction techniques reduce also 

the test application time. However, the compacted test sets limit 

the detection of many non-modeled physical defects. 

 

Linear compression schemes are very efficient in exploiting un-

specified bits in the test cubes to achieve a large amount of com-

pression. Several techniques were proposed based on LFSR re-

seeding to reduce the test data volume [4, 5, 6]. The LFSR reseed-

ing techniques make use of the many unspecified bits in determin-

istic test patterns. The basic idea of LFSR reseeding techniques is 

to compute a set of seeds for LFSR that can be used to obtain the 

deterministic test cubes. The seed for each deterministic test cube 

can be computed by solving a set of linear equations based on 

feedback polynomial of LFSR. These seed values are expanded 

into actual test vector in the scan-chains with LFSR. Ward et al. 

[7] describe a compression scheme which combines linear decom-

pressor with a non-linear decoder to provide a very high level of 

compression for test data. A technique for simultaneous reduction 

of both test data volume and test power named linear decompres-

sor based test compression were presented in [8]. This scheme 

divides the test cubes into two blocks, test cube with low toggles 

and high toggles which feeds the scan-chain with novel DFT ar-

chitecture to reduce the scan-in transitions.  Kinsman et al. [9] 

present a time-multiplexing based test data compression, where 

the compressed seeds are passed to every embedded core by shar-

ing the data channels. A scan architecture called reconfigured scan 

forest was proposed to reduce test data volume and test application 

cost by [10]. A new scan architecture called virtual chain partition 

(VCP) [11], which is useful for embedded cores to reduce the test 

application time, test data volume and test power. This architec-

ture determines the maximum reduction in test cycles obtainable 

with the architecture and selects the most suitable configuration 

for each circuit.  

 

Several other techniques such as embedded deterministic test 

(EDT) [12], smartBIST [13], reconfigurable serial multiplier [14] 

and reconfigurable interconnection network (RIN) [15] were also 

proposed to reduce the test data volume. Many commercial tools 

adopt LFSR reseeding based test data compression and combina-

tional linear expansion networks which includes TestKompress 

from Mentor Graphics [12], DBIST from Synopsys, SmartBIST 

from IBM/Cadence [13], and ELT-Comp from LogicVision. 

However, these schemes require large area overhead. Also, all 

these methods are not suitable to test the embedded cores since 

http://creativecommons.org/licenses/by/3.0/
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structural information of the circuits is required for test generation 

and fault simulation. 

Another approach for test compression is to use data compression 

codes such as statistical coding [16, 17], Golomb coding [18] and 

run-length coding [19-26] to encode the test cubes. In these ap-

proaches, the original data are partitioned into symbols, and then 

each symbol is assigned with a codeword to form the encoded 

data. Each codeword is converted into the corresponding symbol 

with on-chip decompression hardware. These data compression 

codes can be further classified into four groups depending on 

whether the size of the symbols and codewords are fixed or varia-

ble lengths [27]. These are fixed-input to fixed-output (FIFO), 

fixed-input to variable-output (FIVO), and variable-input to fixed-

output (VIFO) and variable-input to variable-output (VIVO) cod-

ing techniques. These methods do not require structural infor-

mation about the CUTs and more suitable for intellectual property 

(IP) core based system-on-a-chips (SoCs). 

 

In FIVO coding, the original test cubes are partitioned into n-bit 

blocks to form the symbols. These symbols are then encoded us-

ing variable-length codewords. One form of fixed-to-variable 

coding is statistical coding, where the idea is to calculate the fre-

quency of occurrence of the different symbols in the original test 

cubes and make the codewords that occur most frequently have 

fewer bits and those that occur least frequently more bits. This 

minimizes the average length of a codeword. A Huffman code is 

obtained by constructing a Huffman tree. Huffman coding tech-

nique with fixed-length of blocks to reduce the test data volume is 

described in [16]. However, it requires complex decoder architec-

ture to decode a large number of distinct blocks. That is, full 

Huffman code that encodes all n-bit symbols requires a decoder 

with 2n -1 state. This issue was addressed in a selective Huffman 

code [28], in which only the k most frequently occurring symbols 

are encoded. In selective Huffman coding, an extra bit is added at 

the beginning of each codeword to indicate whether or not it is 

coded. The on-chip decoder requires only n+k states since this 

approach selectively encodes only k symbols. Also, it was shown 

that a selective Huffman code achieves only slightly less compres-

sion than a full Huffman code for the same symbol size while 

using a much smaller decoder. Because the decoder size grows 

only linearly with selective Huffman encoding, it is possible to use 

a much larger symbol size, which significantly improves the effec-

tiveness of the code thereby achieving much more overall com-

pression. Apart from statistical coding, there are many fixed-to-

variable coding which exploits the fact that most scan slices have 

a relatively small number of specified bits as described in [29]. If 

there are b channels coming from the tester, these techniques use a 

variable number of b-bit codewords to decode the specified bits in 

each scan slice.  

 

In FIFO coding, the test cubes are partitioned into n- bit blocks to 

form the symbols. These symbols are then encoded with code-

words that each have b-bits, where b < n. Dictionary-based com-

pression techniques are an example of FIFO coding. In these tech-

niques, each symbol and codeword respectively can be considered 

as an entry in a dictionary and as an index into the dictionary that 

points to the corresponding symbol. There are 2n possible sym-

bols and 2b possible codewords, so not necessarily all possible 

symbols can be in the dictionary.  

 

In VIFO coding, the original test cubes are partitioned into varia-

ble length symbols, and the codewords are each with b-bits long. 

The test data compression based on a run-length coding with cy-

clical scan architecture was described in [30], to enhance the ef-

fectiveness of the basic run-length coding. In this approach, the 

current data to be shifted is XORed with the previous test vector 

with the proposed cyclical scan architecture. That is, instead of 

applying the original test set ( TD ), a different test vector set is 

applied. The main advantage of this scheme is that the test vectors 

can be reordered in such a way that more similar test vectors come 

after each other which will increase the number of 0s in the differ-

ence vectors.   

In VIVO coding, both the symbols and codewords have a variable 

length. In Golomb coding [31], the codewords are divided into 

groups of equal size m. The value of m is given as m= 2 b, where 

b is the block size. The codeword is divided into two parts: the 

prefix and the tail. The size of the group prefix is variable while 

the number of bits in the tail is fixed. This run-length based 

Golomb code provides inefficient compression in many cases 

since each group contains the same number of run-lengths. Later, 

Chandra et al. [19] proposed a frequency-directed run-length 

(FDR) code that has variable-length tails based on the group in-

dex. It can be constructed such that a shorter run-length can be 

encoded into a shorter codeword to give better compression. The 

FDR code is a variable-to-variable-length code which maps varia-

ble-length runs of 0s to variable-length codewords. In FDR cod-

ing, the codewords have two parts: the prefix and the tail and they 

are of equal length. Thus the test data compression can be more 

efficient if the runs of 0s with shorter run-length are mapped to 

shorter codewords. The FDR is similar to Golomb code but the 

difference is the variable group size. For a run-length k, mapping 

of k is done to a group Aj where j= [log2 (k+)-1]. The FDR code 

provides an efficient test compression for the test data which has 

long runs of 0s and fewer 1s. However, the test data composed of 

both runs of 0s and 1s, so FDR coding was inefficient in achieving 

good compression.  

 

The compression methods such as alternating FDR (ARL) coding 

[22], extended FDR (EFDR) coding [21,32], alternating variable-

length (AVR) coding [24], equal-run-length coding (ERLC) [22], 

alternating frequency-directed equal-run-length coding (AFDER) 

[33], low-power selective pattern compression (LP-SPC), [34] and  

Shifted Alternating FDR coding [35] consider both runs of 0s as 

well as 1s to form the codewords. The ARL code [22] is also a 

variable-to-variable length code. Here, the test set T is composed 

of alternating runs of 0s and 1s. This coding technique considers 

an alternating binary variable a, and encoding for each run-length 

is dependent on this parameter value. If a=0, the run-length is 

treated as a run of 0s. On the other hand, if a=1, the run-length is 

treated as a run of 1s. Then a is inverted after each run is encoded 

and it keeps alternating between 0 and 1 thereafter. The default 

initial value of a=0, that is the input data stream starts with a run 

of 0s.  

 

In ERLC encoding [22], both types of runs are considered like in 

EFDR scheme. The novel characteristic of this approach is that 

ERLC scheme explores the relationship between two consecutive 

runs. If there similar run-lengths occurring consecutively, shorter 

codewords like 000 and 100 are assigned indicating the repetition. 

A technique based on merging consecutive compatible blocks of 

the test data is presented in [36]. Other variable-to-variable codes 

that are not based on run-length coding include packet-based 

codes and nine-coded compression technique. Several Huffman 

based compression techniques such as variable-input Huffman 

coding, variable-to-variable Huffman coding, optimal selective 

Huffman coding, complementary Huffman coding and run-length 

based Huffman coding (RLHC) available to improve the compres-

sion efficiency, area overhead and the test application time[37]. 

Many low-power compression techniques are available in the 

literature for the minimization of test power, test data volume and 

test time [8, 33-35]. In observation-oriented test pattern generation 

with the scan-chain disabling technique, the test pattern generation 

process is assisted by testability analysis to generate the observa-

tion-oriented test patterns. A weighted compatibility analysis is 

performed to densely cluster the frequently-used scan cells into 

scan-chains. Consequently, the number of scan-chains is disabled 

during the capture cycle. 

 

Many code based compression techniques have the objective of 

only reducing the test data volume without emphasis on test power 
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reductions. For example, the compression techniques described in 

[21] focus mainly to reduce the test data volume. Several test in-

dependent compression techniques were used to reduce the test 

power and test data volume [21, 22, 24]. The zero-fill algorithm 

was used to maximize the 0-runs to reduce scan-in test power in 

[31]. The zero-fill algorithm fills the unspecified bits with 0's. The 

X-bits were filled with 0s or 1s in order to improve the skewing of 

the occurrence frequencies of the distinct blocks [28]. Minimum 

transition count (MTC) filling is used for the simultaneous reduc-

tion of test data volume and power dissipation [33]. In alternating 

FDR (AFDR) coding, all unspecified bits were filled to minimize 

the weighted transition metric (WTM). The AFDR also reports a 

significant reduction in the scan-out phase but achieves less com-

pression ratio since the unspecified bits are filled to reduce the test 

power. 

 

This paper presents a new X-filling algorithm to reduce the scan-

power as well as to assist the test data compression by maximizing 

the number of consecutive equal-runs of codes. Then the proposed 

alternating-equal-run-length (AERL) coding encodes the long 

repeated runs of codes into shorter codewords. 

2. Alternating equal-run-length filling for 

power minimization 

The objective of the proposed X-filling algorithm is to increase the 

number of repeated alternating runs with equal length, thereby to 

minimize the test power as well as to enhance the compression 

ratio. In a test vector, a sequence of consecutive d bits, where d    

{0, 1} is called a run of type d. Run-length is the number of bits in 

a run. If two consecutive runs have the same number of bits, irre-

spective of the run type then the runs are said to be of equal run-

length. For example, 0000000 is a run of type 0 with run-length of 

7, while 1111111 is a run of type 1 with run-length of 7. The steps 

involved in the alternating equal-run-length filling (AERL filling) 

algorithm is described as follows:  

 

Input: Test sets with do not care (X) bits. 

Output: Filled test sets with maximum alternating equal-run-

lengths. 

Assumptions: Let startpos be the first bit of the test set, t - first 

specified bit and subsequent t' and t be midpos and lastpos respec-

tively. The portion of the test set between startpos and midpos is 

termed as a test slice. 

1) Let L1=( midpos-startpos ) and L2=( lastpos-midpos+1 ) . 

2) If test slice is even go to 3 else if lastpos = X then remove the 

last bit. 

3) If L1=L2 , then go to 5, else go to 4. 

4) If L1>L2 and if midpos-1 =X then midpos =( midpos-1 ) and 

go to 3. Else if lastpos =X then lastpos=lastpos-1 and go to 3. 

5) If L1<L2 and if midpos+1 =X then midpos =( midpos+1 ) 

and go to 3. Else if lastpos =X then lastpos=lastpos-1 and go 

to 3. 

6) Fill all X-bits between startpos and midpos with t and midpos 

and lastpos with t' . Now set bit position next to lastpos as 

next startpos and restart algorithm. 

7) Fill all X-bits between startpos and midpos with t and set new 

startpos as current midpos and restart algorithm.  

8) Repeat the algorithm until all X-bits in the test cube are filled. 

9) end. 

 

The AERL filling algorithm focuses on maximizing the runs with 

equal run-length to achieve better compression ratio as well as 

fewer transitions to reduce test power. The process of filling the 

X-bits in the test cube with AERL-filling is demonstrated in Fig 1. 

The weighted transition metric (WTM) is used for measuring scan 

power transitions as described in [34]. A transition occurs if any 

two bits are different, i.e. of the type d followed by d' or vice versa. 

In scan mode, the bit applied at the beginning of scan chain has to 

reach the last register in scan-chain passing through all registers in 

scan-chain. If there is a transition present between the first two 

bits, then the transition passes through all registers in the chain, 

causing more power consumption as compared to no transition in 

the first two bits. The effect of transition in the second and third 

bit will significantly lower impact compared to the first two bits as 

this transition will propagate the full scan chain. The average of 

the power consumed while loading all the test patterns is average 

power. The pattern for which has WTM result in high peak-power 

consumption.  

 

2.1. Alternating equal-run-length (aerl) coding for test 

data compression 

 
Once the given test set is filled with AERL-filling, compression 

can be performed with the proposed alternating equal run-length 

(AERL) coding. Table 1 presents the AERL encoding scheme for 

test data compression. The code group of a run n is determined 

using ]2)5L([logn 2 −+= , where L is the run-length. The code-

word can be formed by combining both prefix and tail of the con-

cerned run. It is worth to note that in the given encoding scheme, 

the repetitive equal-run-length is coded with shorter codeword 

instead of the actual codeword to improve the compression. This 

work uses the codeword 101 for the repeated runs.  

 
Table 1: AERL encoding scheme 

Group Run-length Prefix  Tail Codeword Length  
- 10 1 101 3 

A1 1 01 0 010 
 

 
2 

 
1 011 3  

3 10 0 100 
 

A2 4 
 

00 00100 
 

 
5 001 01 00101 

 
 

6 
 

10 00110 
 

 
7 

 
11 00111 5  

8 
 

00 11000 
 

 
9 110 01 11001 

 

 
10 

 
10 11010 

 

 
11 

 
11 11011 

 

A3 12 
 

000 0001000 
 

 
13 0001 001 0001001 

 

 
14 

 
010 0001010 

 
 

15 
 

011 0001011 
 

 
16 

 
100 0001100 

 

 
⋯ ⋯ ⋯ ⋯ 

 

 
20 

 
000 1110000 

 
 

21 1110 001 1110001 
 

 
22 

 
010 1110010 

 

 
23 

 
011 1110011 

 
 

24 
 

100 1110100 
 

  
⋯ 

   

 

 
Fig.1: Illustration of filling the X-bits in the test cube with AERL-
filling 
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Figure 2 shows the example for encoding the test set with pro-

posed AERL coding and other run-length based codes. Where TD 

represents the size of uncompressed test data and TE represents 

the size of the encoded bits. It is shown that the AERL encodes the 

94-bits data into 47-bits whereas the FDR, FPVL, ALT-FDR, and 

ERLC schemes are encoded into 118-bits, 148-bits, 62-bits and 

55-bits respectively. Better compression can be achieved as the 

number of repeated run-length is increased. An on-chip decoder is 

used to decompress the test data and provide the decompressed 

test data to the scan chain of the circuit under test (CUT).  This 

work considers only the runs of different bit type occur alterna-

tively so as to simplify the decompression architecture. 

 

3. Decompression architecture 

 
An on-chip decoder is used to decompress the test data and pro-

vide the decompressed test data to be applied to the scan chain. 

Test time can be reduced by using on-chip decoder as the chip 

works at a frequency higher than the ATE frequency in most cases. 

Figure 4 is the module level block diagram of the decompression 

architecture. The decompression architecture consists of a FSM, a 

(n+1)-bit counter, a n=log2(n+1)-bit counter, a (n+1)-bit register, 

a n=log2(n+1) -bit register, a T-flip flop and associated gates as 

shown in Fig. 3. If Lmax is the longest run in the test volume, then  

n=log2[(Lmax+5)-2](n+1) gives the bit size of the prefix of the 

longest codeword and log2(n+1 gives the size of the tail. These 

counters find the number of bits to be read for decompression. A 

T-flip flop is used to flip output for each run length that was pro-

duced by flipping a-bit in compression. Figure 4 shows the state 

diagram of the FSM used in decompression architecture. 

 

clk

en

bit_in

FSM

T- Flip flop

       log2
(n+1)

-bit counter

scan_clk

clk

a XOR

scan_in

v

dec2 inc rs2

clk

out

store2

load2

 log2
(n+1)

-bit Register
clk

(n+1) – bit Counter clk

shift

decl

rsl

(n+1) – bit Register clk
load1

store1

data_in

 
Fig. 3: Decoder Architecture 

 

S0

S3 S7

S1 S2

S4

S6

S5

0XX/001101000001

1XX/001101000001

1XX/001101000001

1XX/001101000001

0XX/001100000001

0XX/001101010000

1XX/000101010000

X11/00000000000

X0X/010010000000

X10/001000000000

XX0/001100100000

X0X/0100100000000

0XX/001101000001

1XX/001101000000

1XX/000000010000

bit_in,rs1,rs2 /out,v,en,shift,dec1,inc,dec2,store1,load1,store2,load2,data_in

Fig. 4: State diagram for the FSM used in decompression architecture 

 

The working of a finite state machine (FSM) used in the decom-

pression architecture is described as follows:  

• bit_in is the compressed test vector signal from ATE, 

that acts as input to FSM and data_in is the input to the 

(n+1)-bit counter. 

• en signifies whether the circuit can receive bit_in. 

• shift signal is used to indicate the counter to shift right, 

and data from bit_in is placed in the LSB of the (n+1)-

bit counter. 

• dec1 and dec2 signal are used to control the decrement 

of the (n+1)-bit counter and the )1n(2log + -bit coun-

ter respectively. 

• inc increment the content of )1n(2logn += -bit coun-

ter. 

• save1 and save2 signals are used to copy content of 

(n+1)-bit counter into the (n+1)-bit register and the con-

tent of log2(n+1)-bit counter into log2(n+1-bit register 

respectively. 

• load1 and load2 signals are used to copy content back 

from (n+1)-bit register into (n+1)-bit counter and the 

content of )1n(2log + -bit register into )1n(2log + -

bit counter respectively. 

• rs1 signal is used to reset the FSM to S0 state. 

• out is the output signal from the FSM. This signal is fed 

to T-flip flop to produce the same output till a 1 is re-

ceived, upon which the output flips. This output is re-

ceived as scan_in output that can be connected directly 

to the scan-chain. 

• scan_in is valid only at the positive edge of scan_clk 

which will be used as a scan-mode clock.  

• clk is the system clock which controls the operation of 

the entire circuit. 

 

Working of entire decompression architecture which is part of the 

manufactured IC used to get back the actual test vector used to test 

the IC are as follows: Initially FSM, counters, registers, signal v, 

signal out and T- flip flop are reset to zero. The signal is made 

en=1 the circuit is ready to receive input. input from bit_in is re-

ceived and shifted into (n+1)-bit register till a complement bit is 

received. If 1…0 type prefix is received the input is loaded directly 

through data_in and if of type 0…1 is received then the data_in is 

the complement of the bit received and it is shifted into the coun-

ter. Each bit loaded into counter sends inc signal to log2(n+1-bit 

counter. When the complement bit is received, load1, dec1 are set 

high and inc, en is made low. If the input received is 101 then 

load1 and load2 are made high. FSM outputs strings of 0’s till 

 
Fig.2: Illustration of various encoding scheme including AERL 
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(n+1)-bit counter is reset (ie. till it becomes 1). Signal v is made 

high to indicate that the output is valid.  

 

Once (n+1)-bit counter is reset, the content of log2(n+1-bit coun-

ter is decremented by setting dec1 is low and dec2, en and bit_in 

signals high. This log2(n+1)-bit counter determines the number of 

tail bits to be shifted into the (n+1)-bit counter. When log2(n+1-

bit counter becomes zero, dec2, en and bit_in signals are made 

low and dec1 is made high. FSM outputs strings of 0’s till (n+1)-

bit counter is reset (ie. till it becomes 1). Signal v is made high to 

indicate that the output is valid. On reset, rst1 is made high and 

FSM is reset to S0 state. Signal v made low to indicate the output 

is invalid. 

 

4. Experimental results and analysis 

 
The experiments were conducted on six larger ISCAS'89 bench-

mark circuits to validate the effectiveness of the proposed work. 

For comparison of this work with others, we have used the test 

sets generated using Mintest ATPG. The proposed AERL com-

pression technique is implemented using C-language and com-

piled using Dev C++ tool (version 5.3.0.4) on a 64-bit machine 

with Intel i5-3210 processor operating at 2.50 GHz having 4 GB 

RAM capacity. 

 
Table 2: Compression ratio of AERL against Mintest test set 

Circuit #SFFs Original 
% of  X-

bits 
AERL 

 (α) in 

% 

s5378 214 23754 72.62 11822 50.23 

s9234 247 39273 73.01 21029 46.45 

s13207 700 165200 93.15 29648 82.05 

s15850 611 76986 83.56 23962 68.87 

s38417 1664 164736 68.08 61814 62.48 

s38584 1464 199104 82.28 71798 63.94 

 

Table 2 shows the compression achieved using AERL compres-

sion on Mintest test cubes. Column 1 is the name of the ISCAS’89 

benchmark circuit and column 2 and 3 provide the number of scan 

flip-flops in the circuit and Mintest ATPG generated original test 

volume (TD) respectively. Percentage of X-bits in the test cube for 

each circuit is provided in column 4. Columns 5 and 6 are the 

compressed test volume (TE) and compression ratio (α) obtained 

from AERL methodology. 

 

The compression ratio is computed using the Eq. (1). 

 

100
|T|

|T||T|
=%)in(rationCompressio

D

ED 
−

                     (1) 

 

The comparison of compression results obtained from AERL 

scheme with various coding based compression methods like 

Golomb, FDR EFDR, ALT-FDR, and ERLC are presented in 

Table 3. Columns 3 through 7 describe the compressed test data 

volume (TE)) obtained for Golomb, FDR EFDR, ALT-FDR and 

ERLC respectively. The last column presents the compression 

obtained from AERL method. Table 3 clearly indicates that the 

AERL technique provides a compression ratio of up to 82.05% 

and also better reduction in test data volume as compared to other 

methodologies. 

 

The peak and average power transitions during scan-in test mode 

are presented in Table 4. The weighted transition metric (WTM) is 

used to compute the average and peak-power in scan-in test appli-

cations. The WTM of the given test vector is computed using 

equation 2. 

 

 =
−

=
+

1N

1j
1jj j)SS(WTM                                                     (2) 

Where N is the number of scan cells in the scan chain, Sj denotes 

the logic value (‘0’ or ‘1’) of jth scan-cell in the test vector. 

 
Table 3: Comparison: Compression ratio of various techniques with 
AERL coding 

Circuit 
TD 

 (bits) 

FDR  

[19] 

EFDR 

 [21] 

ALT-FDR 

 [20] 

ERLC  

[22] 

 

AERL 

s5378 23754 12346 11419 11694 12389 11822 
s9234 39273 22152 21250 21612 22210 21029 

s13207 165200 30880 29992 32648 32044 29648 

s15850 76986 26000 24643 26306 25844 23962 

s38417 164736 93466 64962 64976 67990 61814 

s38584 199104 77812 73853 77372 76473 71798 

Avg. 111509 43776 37687 39101 39492 36679 

 
Table 4: Comparison: Reduction of peak and average power transitions 

Circuit 
Mintest [24] AERL % of reduction 

Ppeak PAvg PPeak PAvg PPeak PAvg 

S5378 13423 11081 9537 2526 28.95 77.20 

s9234 17494 14630 12087 3665 30.91 74.94 
s13207 135607 122031 94893 8299 30.02 93.20 

s15850 100228 90899 63536 14239 36.61 84.34 

s38417 683765 601840 411564 119156 39.81 80.20 
s38584 572618 535875 480792 90368 16.04 83.14 

Avg. 253856 229393 178735 39709 29.59 82.69 

 

In Table 4, columns 2 and 3 are the peak and average power tran-

sitions for the Mintest ATPG generated test vectors. Columns 4  

and 5 are the peak and average power transitions obtained from 

proposed AERL technique. Column 6 and 7 are the percentage of 

reduction of peak and average power for the proposed approach 

against [24]. Columns 8 and 9 are the peak and average power 

obtained with a result of AERL filling.  The AERL scheme saves 

up to 39.81% and 93.20% of peak and average power transitions, 

and overall 29.59% and 82.69% of less peak-power and average-

power transitions in respectively compared to the actual power 

transitions obtained from Mintest test set. 

 

The decompression architecture used for on-chip decompression is 

modeled using Verilog hardware description language (HDL) and 

simulated using NCsim from Cadence for functional verification. 

The design is synthesized using RTL compiler from Cadence with 

TSMC180nm CMOS standard cell library. The synthesis result of 

a finite state machine used in the decompression architecture takes 

only 43 logic cells with a chip area of 675 nm2. Also, its total 

power consumption is 37719.14nW. This shows the proposed 

compression technique can be implemented for industrial circuits 

with almost negligible area overhead and power dissipation. 

 

5. Conclusion 

 
An efficient test data compression technique which employs on 

run-length based coding to reduce the test data volume and test 

power consumption is presented. A new compression algorithm 

replacing redundant equal-run-length with a shorter codeword and 

a new X-filling technique presented in this paper increases the 

number of equal-run-lengths. Experimental results show that the 

proposed AERL coding technique reduces the test data volume 

without increasing the peak and average scan-in test power. A 

decompression architecture presented in this paper occupies little 

silicon area in hardware but the advantage obtained is significantly 

higher. This compression technique can also be applied to any 

industrial circuits and System-on-a-Chips (SoCs) which contain 

much intellectual property (IP) cores since this method does not 

require the internal structure of CUTs. 
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