

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.10) (2018) 1089-1094

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Test Data Compression with Alternating Equal-Run-Length

Coding

Sivanantham S1*, Aravind Babu S2, Babu Ramki S,2 Mallick P.S3

1School of Electronics Engineering, Vellore Institute of Technology, Vellore, India

2Intel India Pvt Ltd, Bangalore, India
3School of Electrical Engineering, Vellore Institute of Technology, Vellore, India

*Corresponding author E-mail: ssivanantham@vit.ac.in

Abstract

This paper presents a new X-filling algorithm for test power reduction and a novel encoding technique for test data compression in scan-

based VLSI testing. The proposed encoding technique focuses on replacing redundant runs of the equal-run-length vector with a shorter

codeword. The effectiveness of this compression method depends on a number of repeated runs occur in the fully specified test set. In

order to maximize the repeated runs with equal run length, the unspecified bits in the test cubes are filled with the proposed technique

called alternating equal-run-length (AERL) filling. The resultant test data are compressed using the proposed alternating equal-run-length

coding to reduce the test data volume. Efficient decompression architecture is also presented to decode the original data with lesser area

overhead and power. Experimental results obtained from larger ISCAS'89 benchmark circuits show the efficiency of the proposed work.

The AERL achieves up to 82.05 % of compression ratio as well as up to 39.81% and 93.20 % of peak and average-power transitions in

scan-in mode during IC testing.

Keywords: Test data compression; design for testability; low-power testing; run-length encoding; decompression; X-filling.

1. Introduction

The amount of data required to test the integrated circuits (ICs) are

increasing rapidly with the developments of technology. Also, the

design of low-power high-performance portable computing devic-

es has become a major objective for the design engineers. Howev-

er, reduction of power dissipation is not only a critical parameter

for design engineers, but also for design for testability (DFT) en-

gineers as the system consumes much more power during the test

than during normal operation [1]. Thus, low-power test data com-

pression for digital VLSI systems has become a major concern for

engineers and scientists of these areas in recent years. Due to the

increase in the test data volume and higher test power, this area

has always been actively researched on and a number of test data

compression and power reduction techniques are introduced. Test

data compression techniques can be broadly categorized into line-

ar decompression based compression and code-based compression

techniques. Reduction of test data volume using test compaction

was described in [2, 3]. Test compaction techniques reduce also

the test application time. However, the compacted test sets limit

the detection of many non-modeled physical defects.

Linear compression schemes are very efficient in exploiting un-

specified bits in the test cubes to achieve a large amount of com-

pression. Several techniques were proposed based on LFSR re-

seeding to reduce the test data volume [4, 5, 6]. The LFSR reseed-

ing techniques make use of the many unspecified bits in determin-

istic test patterns. The basic idea of LFSR reseeding techniques is

to compute a set of seeds for LFSR that can be used to obtain the

deterministic test cubes. The seed for each deterministic test cube

can be computed by solving a set of linear equations based on

feedback polynomial of LFSR. These seed values are expanded

into actual test vector in the scan-chains with LFSR. Ward et al.

[7] describe a compression scheme which combines linear decom-

pressor with a non-linear decoder to provide a very high level of

compression for test data. A technique for simultaneous reduction

of both test data volume and test power named linear decompres-

sor based test compression were presented in [8]. This scheme

divides the test cubes into two blocks, test cube with low toggles

and high toggles which feeds the scan-chain with novel DFT ar-

chitecture to reduce the scan-in transitions. Kinsman et al. [9]

present a time-multiplexing based test data compression, where

the compressed seeds are passed to every embedded core by shar-

ing the data channels. A scan architecture called reconfigured scan

forest was proposed to reduce test data volume and test application

cost by [10]. A new scan architecture called virtual chain partition

(VCP) [11], which is useful for embedded cores to reduce the test

application time, test data volume and test power. This architec-

ture determines the maximum reduction in test cycles obtainable

with the architecture and selects the most suitable configuration

for each circuit.

Several other techniques such as embedded deterministic test

(EDT) [12], smartBIST [13], reconfigurable serial multiplier [14]

and reconfigurable interconnection network (RIN) [15] were also

proposed to reduce the test data volume. Many commercial tools

adopt LFSR reseeding based test data compression and combina-

tional linear expansion networks which includes TestKompress

from Mentor Graphics [12], DBIST from Synopsys, SmartBIST

from IBM/Cadence [13], and ELT-Comp from LogicVision.

However, these schemes require large area overhead. Also, all

these methods are not suitable to test the embedded cores since

http://creativecommons.org/licenses/by/3.0/

1090 International Journal of Engineering & Technology

structural information of the circuits is required for test generation

and fault simulation.

Another approach for test compression is to use data compression

codes such as statistical coding [16, 17], Golomb coding [18] and

run-length coding [19-26] to encode the test cubes. In these ap-

proaches, the original data are partitioned into symbols, and then

each symbol is assigned with a codeword to form the encoded

data. Each codeword is converted into the corresponding symbol

with on-chip decompression hardware. These data compression

codes can be further classified into four groups depending on

whether the size of the symbols and codewords are fixed or varia-

ble lengths [27]. These are fixed-input to fixed-output (FIFO),

fixed-input to variable-output (FIVO), and variable-input to fixed-

output (VIFO) and variable-input to variable-output (VIVO) cod-

ing techniques. These methods do not require structural infor-

mation about the CUTs and more suitable for intellectual property

(IP) core based system-on-a-chips (SoCs).

In FIVO coding, the original test cubes are partitioned into n-bit

blocks to form the symbols. These symbols are then encoded us-

ing variable-length codewords. One form of fixed-to-variable

coding is statistical coding, where the idea is to calculate the fre-

quency of occurrence of the different symbols in the original test

cubes and make the codewords that occur most frequently have

fewer bits and those that occur least frequently more bits. This

minimizes the average length of a codeword. A Huffman code is

obtained by constructing a Huffman tree. Huffman coding tech-

nique with fixed-length of blocks to reduce the test data volume is

described in [16]. However, it requires complex decoder architec-

ture to decode a large number of distinct blocks. That is, full

Huffman code that encodes all n-bit symbols requires a decoder

with 2n -1 state. This issue was addressed in a selective Huffman

code [28], in which only the k most frequently occurring symbols

are encoded. In selective Huffman coding, an extra bit is added at

the beginning of each codeword to indicate whether or not it is

coded. The on-chip decoder requires only n+k states since this

approach selectively encodes only k symbols. Also, it was shown

that a selective Huffman code achieves only slightly less compres-

sion than a full Huffman code for the same symbol size while

using a much smaller decoder. Because the decoder size grows

only linearly with selective Huffman encoding, it is possible to use

a much larger symbol size, which significantly improves the effec-

tiveness of the code thereby achieving much more overall com-

pression. Apart from statistical coding, there are many fixed-to-

variable coding which exploits the fact that most scan slices have

a relatively small number of specified bits as described in [29]. If

there are b channels coming from the tester, these techniques use a

variable number of b-bit codewords to decode the specified bits in

each scan slice.

In FIFO coding, the test cubes are partitioned into n- bit blocks to

form the symbols. These symbols are then encoded with code-

words that each have b-bits, where b < n. Dictionary-based com-

pression techniques are an example of FIFO coding. In these tech-

niques, each symbol and codeword respectively can be considered

as an entry in a dictionary and as an index into the dictionary that

points to the corresponding symbol. There are 2n possible sym-

bols and 2b possible codewords, so not necessarily all possible

symbols can be in the dictionary.

In VIFO coding, the original test cubes are partitioned into varia-

ble length symbols, and the codewords are each with b-bits long.

The test data compression based on a run-length coding with cy-

clical scan architecture was described in [30], to enhance the ef-

fectiveness of the basic run-length coding. In this approach, the

current data to be shifted is XORed with the previous test vector

with the proposed cyclical scan architecture. That is, instead of

applying the original test set (TD), a different test vector set is

applied. The main advantage of this scheme is that the test vectors

can be reordered in such a way that more similar test vectors come

after each other which will increase the number of 0s in the differ-

ence vectors.

In VIVO coding, both the symbols and codewords have a variable

length. In Golomb coding [31], the codewords are divided into

groups of equal size m. The value of m is given as m= 2 b, where

b is the block size. The codeword is divided into two parts: the

prefix and the tail. The size of the group prefix is variable while

the number of bits in the tail is fixed. This run-length based

Golomb code provides inefficient compression in many cases

since each group contains the same number of run-lengths. Later,

Chandra et al. [19] proposed a frequency-directed run-length

(FDR) code that has variable-length tails based on the group in-

dex. It can be constructed such that a shorter run-length can be

encoded into a shorter codeword to give better compression. The

FDR code is a variable-to-variable-length code which maps varia-

ble-length runs of 0s to variable-length codewords. In FDR cod-

ing, the codewords have two parts: the prefix and the tail and they

are of equal length. Thus the test data compression can be more

efficient if the runs of 0s with shorter run-length are mapped to

shorter codewords. The FDR is similar to Golomb code but the

difference is the variable group size. For a run-length k, mapping

of k is done to a group Aj where j= [log2 (k+)-1]. The FDR code

provides an efficient test compression for the test data which has

long runs of 0s and fewer 1s. However, the test data composed of

both runs of 0s and 1s, so FDR coding was inefficient in achieving

good compression.

The compression methods such as alternating FDR (ARL) coding

[22], extended FDR (EFDR) coding [21,32], alternating variable-

length (AVR) coding [24], equal-run-length coding (ERLC) [22],

alternating frequency-directed equal-run-length coding (AFDER)

[33], low-power selective pattern compression (LP-SPC), [34] and

Shifted Alternating FDR coding [35] consider both runs of 0s as

well as 1s to form the codewords. The ARL code [22] is also a

variable-to-variable length code. Here, the test set T is composed

of alternating runs of 0s and 1s. This coding technique considers

an alternating binary variable a, and encoding for each run-length

is dependent on this parameter value. If a=0, the run-length is

treated as a run of 0s. On the other hand, if a=1, the run-length is

treated as a run of 1s. Then a is inverted after each run is encoded

and it keeps alternating between 0 and 1 thereafter. The default

initial value of a=0, that is the input data stream starts with a run

of 0s.

In ERLC encoding [22], both types of runs are considered like in

EFDR scheme. The novel characteristic of this approach is that

ERLC scheme explores the relationship between two consecutive

runs. If there similar run-lengths occurring consecutively, shorter

codewords like 000 and 100 are assigned indicating the repetition.

A technique based on merging consecutive compatible blocks of

the test data is presented in [36]. Other variable-to-variable codes

that are not based on run-length coding include packet-based

codes and nine-coded compression technique. Several Huffman

based compression techniques such as variable-input Huffman

coding, variable-to-variable Huffman coding, optimal selective

Huffman coding, complementary Huffman coding and run-length

based Huffman coding (RLHC) available to improve the compres-

sion efficiency, area overhead and the test application time[37].

Many low-power compression techniques are available in the

literature for the minimization of test power, test data volume and

test time [8, 33-35]. In observation-oriented test pattern generation

with the scan-chain disabling technique, the test pattern generation

process is assisted by testability analysis to generate the observa-

tion-oriented test patterns. A weighted compatibility analysis is

performed to densely cluster the frequently-used scan cells into

scan-chains. Consequently, the number of scan-chains is disabled

during the capture cycle.

Many code based compression techniques have the objective of

only reducing the test data volume without emphasis on test power

International Journal of Engineering & Technology 1091

reductions. For example, the compression techniques described in

[21] focus mainly to reduce the test data volume. Several test in-

dependent compression techniques were used to reduce the test

power and test data volume [21, 22, 24]. The zero-fill algorithm

was used to maximize the 0-runs to reduce scan-in test power in

[31]. The zero-fill algorithm fills the unspecified bits with 0's. The

X-bits were filled with 0s or 1s in order to improve the skewing of

the occurrence frequencies of the distinct blocks [28]. Minimum

transition count (MTC) filling is used for the simultaneous reduc-

tion of test data volume and power dissipation [33]. In alternating

FDR (AFDR) coding, all unspecified bits were filled to minimize

the weighted transition metric (WTM). The AFDR also reports a

significant reduction in the scan-out phase but achieves less com-

pression ratio since the unspecified bits are filled to reduce the test

power.

This paper presents a new X-filling algorithm to reduce the scan-

power as well as to assist the test data compression by maximizing

the number of consecutive equal-runs of codes. Then the proposed

alternating-equal-run-length (AERL) coding encodes the long

repeated runs of codes into shorter codewords.

2. Alternating equal-run-length filling for

power minimization

The objective of the proposed X-filling algorithm is to increase the

number of repeated alternating runs with equal length, thereby to

minimize the test power as well as to enhance the compression

ratio. In a test vector, a sequence of consecutive d bits, where d

{0, 1} is called a run of type d. Run-length is the number of bits in

a run. If two consecutive runs have the same number of bits, irre-

spective of the run type then the runs are said to be of equal run-

length. For example, 0000000 is a run of type 0 with run-length of

7, while 1111111 is a run of type 1 with run-length of 7. The steps

involved in the alternating equal-run-length filling (AERL filling)

algorithm is described as follows:

Input: Test sets with do not care (X) bits.

Output: Filled test sets with maximum alternating equal-run-

lengths.

Assumptions: Let startpos be the first bit of the test set, t - first

specified bit and subsequent t' and t be midpos and lastpos respec-

tively. The portion of the test set between startpos and midpos is

termed as a test slice.

1) Let L1=(midpos-startpos) and L2=(lastpos-midpos+1) .

2) If test slice is even go to 3 else if lastpos = X then remove the

last bit.

3) If L1=L2 , then go to 5, else go to 4.

4) If L1>L2 and if midpos-1 =X then midpos =(midpos-1) and

go to 3. Else if lastpos =X then lastpos=lastpos-1 and go to 3.

5) If L1<L2 and if midpos+1 =X then midpos =(midpos+1)

and go to 3. Else if lastpos =X then lastpos=lastpos-1 and go

to 3.

6) Fill all X-bits between startpos and midpos with t and midpos

and lastpos with t' . Now set bit position next to lastpos as

next startpos and restart algorithm.

7) Fill all X-bits between startpos and midpos with t and set new

startpos as current midpos and restart algorithm.

8) Repeat the algorithm until all X-bits in the test cube are filled.

9) end.

The AERL filling algorithm focuses on maximizing the runs with

equal run-length to achieve better compression ratio as well as

fewer transitions to reduce test power. The process of filling the

X-bits in the test cube with AERL-filling is demonstrated in Fig 1.

The weighted transition metric (WTM) is used for measuring scan

power transitions as described in [34]. A transition occurs if any

two bits are different, i.e. of the type d followed by d' or vice versa.

In scan mode, the bit applied at the beginning of scan chain has to

reach the last register in scan-chain passing through all registers in

scan-chain. If there is a transition present between the first two

bits, then the transition passes through all registers in the chain,

causing more power consumption as compared to no transition in

the first two bits. The effect of transition in the second and third

bit will significantly lower impact compared to the first two bits as

this transition will propagate the full scan chain. The average of

the power consumed while loading all the test patterns is average

power. The pattern for which has WTM result in high peak-power

consumption.

2.1. Alternating equal-run-length (aerl) coding for test

data compression

Once the given test set is filled with AERL-filling, compression

can be performed with the proposed alternating equal run-length

(AERL) coding. Table 1 presents the AERL encoding scheme for

test data compression. The code group of a run n is determined

using]2)5L([logn 2 −+= , where L is the run-length. The code-

word can be formed by combining both prefix and tail of the con-

cerned run. It is worth to note that in the given encoding scheme,

the repetitive equal-run-length is coded with shorter codeword

instead of the actual codeword to improve the compression. This

work uses the codeword 101 for the repeated runs.

Table 1: AERL encoding scheme

Group Run-length Prefix Tail Codeword Length
- 10 1 101 3

A1 1 01 0 010

2

1 011 3

3 10 0 100

A2 4

00 00100

5 001 01 00101

6

10 00110

7

11 00111 5

8

00 11000

9 110 01 11001

10

10 11010

11

11 11011

A3 12

000 0001000

13 0001 001 0001001

14

010 0001010

15

011 0001011

16

100 0001100

⋯ ⋯ ⋯ ⋯

20

000 1110000

21 1110 001 1110001

22

010 1110010

23

011 1110011

24

100 1110100

⋯

Fig.1: Illustration of filling the X-bits in the test cube with AERL-
filling

1092 International Journal of Engineering & Technology

Figure 2 shows the example for encoding the test set with pro-

posed AERL coding and other run-length based codes. Where TD

represents the size of uncompressed test data and TE represents

the size of the encoded bits. It is shown that the AERL encodes the

94-bits data into 47-bits whereas the FDR, FPVL, ALT-FDR, and

ERLC schemes are encoded into 118-bits, 148-bits, 62-bits and

55-bits respectively. Better compression can be achieved as the

number of repeated run-length is increased. An on-chip decoder is

used to decompress the test data and provide the decompressed

test data to the scan chain of the circuit under test (CUT). This

work considers only the runs of different bit type occur alterna-

tively so as to simplify the decompression architecture.

3. Decompression architecture

An on-chip decoder is used to decompress the test data and pro-

vide the decompressed test data to be applied to the scan chain.

Test time can be reduced by using on-chip decoder as the chip

works at a frequency higher than the ATE frequency in most cases.

Figure 4 is the module level block diagram of the decompression

architecture. The decompression architecture consists of a FSM, a

(n+1)-bit counter, a n=log2(n+1)-bit counter, a (n+1)-bit register,

a n=log2(n+1) -bit register, a T-flip flop and associated gates as

shown in Fig. 3. If Lmax is the longest run in the test volume, then

n=log2[(Lmax+5)-2](n+1) gives the bit size of the prefix of the

longest codeword and log2(n+1 gives the size of the tail. These

counters find the number of bits to be read for decompression. A

T-flip flop is used to flip output for each run length that was pro-

duced by flipping a-bit in compression. Figure 4 shows the state

diagram of the FSM used in decompression architecture.

clk

en

bit_in

FSM

T- Flip flop

 log2
(n+1)

-bit counter

scan_clk

clk

a XOR

scan_in

v

dec2 inc rs2

clk

out

store2

load2

 log2
(n+1)

-bit Register
clk

(n+1) – bit Counter clk

shift

decl

rsl

(n+1) – bit Register clk
load1

store1

data_in

Fig. 3: Decoder Architecture

S0

S3 S7

S1 S2

S4

S6

S5

0XX/001101000001

1XX/001101000001

1XX/001101000001

1XX/001101000001

0XX/001100000001

0XX/001101010000

1XX/000101010000

X11/00000000000

X0X/010010000000

X10/001000000000

XX0/001100100000

X0X/0100100000000

0XX/001101000001

1XX/001101000000

1XX/000000010000

bit_in,rs1,rs2 /out,v,en,shift,dec1,inc,dec2,store1,load1,store2,load2,data_in

Fig. 4: State diagram for the FSM used in decompression architecture

The working of a finite state machine (FSM) used in the decom-

pression architecture is described as follows:

• bit_in is the compressed test vector signal from ATE,

that acts as input to FSM and data_in is the input to the

(n+1)-bit counter.

• en signifies whether the circuit can receive bit_in.

• shift signal is used to indicate the counter to shift right,

and data from bit_in is placed in the LSB of the (n+1)-

bit counter.

• dec1 and dec2 signal are used to control the decrement

of the (n+1)-bit counter and the)1n(2log + -bit coun-

ter respectively.

• inc increment the content of)1n(2logn += -bit coun-

ter.

• save1 and save2 signals are used to copy content of

(n+1)-bit counter into the (n+1)-bit register and the con-

tent of log2(n+1)-bit counter into log2(n+1-bit register

respectively.

• load1 and load2 signals are used to copy content back

from (n+1)-bit register into (n+1)-bit counter and the

content of)1n(2log + -bit register into)1n(2log + -

bit counter respectively.

• rs1 signal is used to reset the FSM to S0 state.

• out is the output signal from the FSM. This signal is fed

to T-flip flop to produce the same output till a 1 is re-

ceived, upon which the output flips. This output is re-

ceived as scan_in output that can be connected directly

to the scan-chain.

• scan_in is valid only at the positive edge of scan_clk

which will be used as a scan-mode clock.

• clk is the system clock which controls the operation of

the entire circuit.

Working of entire decompression architecture which is part of the

manufactured IC used to get back the actual test vector used to test

the IC are as follows: Initially FSM, counters, registers, signal v,

signal out and T- flip flop are reset to zero. The signal is made

en=1 the circuit is ready to receive input. input from bit_in is re-

ceived and shifted into (n+1)-bit register till a complement bit is

received. If 1…0 type prefix is received the input is loaded directly

through data_in and if of type 0…1 is received then the data_in is

the complement of the bit received and it is shifted into the coun-

ter. Each bit loaded into counter sends inc signal to log2(n+1-bit

counter. When the complement bit is received, load1, dec1 are set

high and inc, en is made low. If the input received is 101 then

load1 and load2 are made high. FSM outputs strings of 0’s till

Fig.2: Illustration of various encoding scheme including AERL

International Journal of Engineering & Technology 1093

(n+1)-bit counter is reset (ie. till it becomes 1). Signal v is made

high to indicate that the output is valid.

Once (n+1)-bit counter is reset, the content of log2(n+1-bit coun-

ter is decremented by setting dec1 is low and dec2, en and bit_in

signals high. This log2(n+1)-bit counter determines the number of

tail bits to be shifted into the (n+1)-bit counter. When log2(n+1-

bit counter becomes zero, dec2, en and bit_in signals are made

low and dec1 is made high. FSM outputs strings of 0’s till (n+1)-

bit counter is reset (ie. till it becomes 1). Signal v is made high to

indicate that the output is valid. On reset, rst1 is made high and

FSM is reset to S0 state. Signal v made low to indicate the output

is invalid.

4. Experimental results and analysis

The experiments were conducted on six larger ISCAS'89 bench-

mark circuits to validate the effectiveness of the proposed work.

For comparison of this work with others, we have used the test

sets generated using Mintest ATPG. The proposed AERL com-

pression technique is implemented using C-language and com-

piled using Dev C++ tool (version 5.3.0.4) on a 64-bit machine

with Intel i5-3210 processor operating at 2.50 GHz having 4 GB

RAM capacity.

Table 2: Compression ratio of AERL against Mintest test set

Circuit #SFFs Original
% of X-

bits
AERL

 (α) in

%

s5378 214 23754 72.62 11822 50.23

s9234 247 39273 73.01 21029 46.45

s13207 700 165200 93.15 29648 82.05

s15850 611 76986 83.56 23962 68.87

s38417 1664 164736 68.08 61814 62.48

s38584 1464 199104 82.28 71798 63.94

Table 2 shows the compression achieved using AERL compres-

sion on Mintest test cubes. Column 1 is the name of the ISCAS’89

benchmark circuit and column 2 and 3 provide the number of scan

flip-flops in the circuit and Mintest ATPG generated original test

volume (TD) respectively. Percentage of X-bits in the test cube for

each circuit is provided in column 4. Columns 5 and 6 are the

compressed test volume (TE) and compression ratio (α) obtained

from AERL methodology.

The compression ratio is computed using the Eq. (1).

100
|T|

|T||T|
=%)in(rationCompressio

D

ED
−

 (1)

The comparison of compression results obtained from AERL

scheme with various coding based compression methods like

Golomb, FDR EFDR, ALT-FDR, and ERLC are presented in

Table 3. Columns 3 through 7 describe the compressed test data

volume (TE)) obtained for Golomb, FDR EFDR, ALT-FDR and

ERLC respectively. The last column presents the compression

obtained from AERL method. Table 3 clearly indicates that the

AERL technique provides a compression ratio of up to 82.05%

and also better reduction in test data volume as compared to other

methodologies.

The peak and average power transitions during scan-in test mode

are presented in Table 4. The weighted transition metric (WTM) is

used to compute the average and peak-power in scan-in test appli-

cations. The WTM of the given test vector is computed using

equation 2.

 =
−

=
+

1N

1j
1jj j)SS(WTM (2)

Where N is the number of scan cells in the scan chain, Sj denotes

the logic value (‘0’ or ‘1’) of jth scan-cell in the test vector.

Table 3: Comparison: Compression ratio of various techniques with
AERL coding

Circuit
TD

 (bits)

FDR

[19]

EFDR

 [21]

ALT-FDR

 [20]

ERLC

[22]

AERL

s5378 23754 12346 11419 11694 12389 11822
s9234 39273 22152 21250 21612 22210 21029

s13207 165200 30880 29992 32648 32044 29648

s15850 76986 26000 24643 26306 25844 23962

s38417 164736 93466 64962 64976 67990 61814

s38584 199104 77812 73853 77372 76473 71798

Avg. 111509 43776 37687 39101 39492 36679

Table 4: Comparison: Reduction of peak and average power transitions

Circuit
Mintest [24] AERL % of reduction

Ppeak PAvg PPeak PAvg PPeak PAvg

S5378 13423 11081 9537 2526 28.95 77.20

s9234 17494 14630 12087 3665 30.91 74.94
s13207 135607 122031 94893 8299 30.02 93.20

s15850 100228 90899 63536 14239 36.61 84.34

s38417 683765 601840 411564 119156 39.81 80.20
s38584 572618 535875 480792 90368 16.04 83.14

Avg. 253856 229393 178735 39709 29.59 82.69

In Table 4, columns 2 and 3 are the peak and average power tran-

sitions for the Mintest ATPG generated test vectors. Columns 4

and 5 are the peak and average power transitions obtained from

proposed AERL technique. Column 6 and 7 are the percentage of

reduction of peak and average power for the proposed approach

against [24]. Columns 8 and 9 are the peak and average power

obtained with a result of AERL filling. The AERL scheme saves

up to 39.81% and 93.20% of peak and average power transitions,

and overall 29.59% and 82.69% of less peak-power and average-

power transitions in respectively compared to the actual power

transitions obtained from Mintest test set.

The decompression architecture used for on-chip decompression is

modeled using Verilog hardware description language (HDL) and

simulated using NCsim from Cadence for functional verification.

The design is synthesized using RTL compiler from Cadence with

TSMC180nm CMOS standard cell library. The synthesis result of

a finite state machine used in the decompression architecture takes

only 43 logic cells with a chip area of 675 nm2. Also, its total

power consumption is 37719.14nW. This shows the proposed

compression technique can be implemented for industrial circuits

with almost negligible area overhead and power dissipation.

5. Conclusion

An efficient test data compression technique which employs on

run-length based coding to reduce the test data volume and test

power consumption is presented. A new compression algorithm

replacing redundant equal-run-length with a shorter codeword and

a new X-filling technique presented in this paper increases the

number of equal-run-lengths. Experimental results show that the

proposed AERL coding technique reduces the test data volume

without increasing the peak and average scan-in test power. A

decompression architecture presented in this paper occupies little

silicon area in hardware but the advantage obtained is significantly

higher. This compression technique can also be applied to any

industrial circuits and System-on-a-Chips (SoCs) which contain

much intellectual property (IP) cores since this method does not

require the internal structure of CUTs.

References

[1] P. Girard, X. Wen & N. Touba, “Low power testing, in System On

Chip Test Architectures”, Morgan Kaufmann, (2008).

1094 International Journal of Engineering & Technology

[2] R. Sankaralingam, R. R. Oruganti & N. A. Touba, “Static compac-

tion techniques to control scan vector power dissipation,” Proceed-
ings of the IEEE VLSI Test Symposium, (2000), pp. 35–40.

[3] A. El-Maleh, S. Khursheed & S. Sait, (2006), “Efficient static com-

paction techniques for sequential circuits based on reverse-order
restoration and test relaxation,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 25, no. 11, pp.

2556–2564.
[4] H. Kim, S. Kang & M. S. Hsiao, (2008) “A new scan architecture

for both low power testing and test volume compression under soc
test environment,” Journal of Electronic Testing: Theory and Ap-

plications (JETTA), vol. 24, no. 4, pp. 365–378.

[5] Z. Wang, H. Fang, K. Chakrabarty & M. Bienek, (2009), “Devia-
tion-based lfsr reseeding for test-data compression,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 28, no. 2, pp. 259–271.
[6] W. Lien, K. Lee & T. Hsieh, “A test-per-clock lfsr reseeding algo-

rithm for concurrent reduction on test sequence length and test data

volume,” in Proceedings of the Asian Test Symposium, (2012), pp.
278–283.

[7] S. Ward, C. Schattauer & N. Touba, “Using statistical transfor-

mations to improve compression for linear decompressors,” in 20th

IEEE International Symposium on Defect and Fault Tolerance in

VLSI Systems, (2005), pp. 42–50.

[8] Sivanantham, S., Gopakumar, G., Pandey, A., & Paikada, M. J.
(2013), ‘Adaptive test clock scheme for low transition LFSR and

external scan based testing,” 2013 International Conference on

Computer Communication and Informatics,
[9] A. B. Kinsman & N. Nicolici, (2010) “Time-multiplexed com-

pressed test of soc designs,” IEEE Tranactions Very Large Scale

Integration, (VLSI) System, vol. 18, no. 8, pp. 1159–1172.
[10] D. Xiang, Y. Zhao, K. Chakrabarty & H. Fujiwara, (2008), “A re-

configurable scan architecture with weighted scan-enable signals

for deterministic bist,” IEEE IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27, no. 6, pp.

999–1012.

[11] J. M. Solana, (2009), “Reducing test application time, test data vol-
ume and test power through virtual chain partition,” Integration, the

VLSI Journal, vol. 42, no. 3, pp. 385–399.

[12] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, (2004), “Em-
bedded deterministic test,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 23, no. 5, pp. 776–

792.
[13] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth,

and D. Wheater, “A smartbist variant with guaranteed encoding,”

in Proceedings of the Asian Test Symposium, (2001)pp. 325–330.
[14] S. Sivanantham, M. Padmavathy, S. Divyanga & P. V. Anitha

Lincy, “System-on-a-chip test data compression and decompression

with reconfigurable serial multiplier,” International Journal of En-
gineering and Technology, vol. 5, no. 2, pp. 973–978, 2013.

[15] L. Li & K. Chakrabarty, (2004), “Test set embedding for determin-

istic bist using a reconfigurable interconnection network,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 23, no. 9, pp. 1289–1305.

[16] A. Jas, G.-D. Jayabrata & N. A. Touba, “Scan vector compression/
decompression using statistical coding,” in Proc IEEE VLSI Test

Symp. , (1999), pp. 114–120.

[17] H. Ichihara, Y. Iwamoto, Y. Yoshikawa & T. Inoue, “Test com-
pression based on lossy image encoding,” in Proceedings of the

Asian Test Symposium, (2011), pp. 273–278.

[18]] A. Chandra & K. Chakrabarty, (2002) “Test data compression and

decompression based on internal scan chains and golomb coding,”

IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 21, no. 6, pp. 715–722.

[19] A. Chandra & K. Chakrabarty, (2003), “Test data compression and

test resource partitioning for system on-a-chip using frequency-
directed run-length (fdr) codes,” IEEE Transaction on Computers,

vol. 52, no. 8, pp. 1076 – 1088.

[20] A. Chandra & K. Chakrabarty, (2003), “A unified approach to re-
duce soc test data volume, scan power and testing time,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 22, no. 3, pp. 352–362.
[21] A. H. El-Maleh, (2008), “Test data compression for system-on-a-

chip using extended frequency-directed run-length code,” IET

Computers and Digital Techniques, vol. 2, no. 3, pp. 155–163.
[22] W. Zhan & A. El-Maleh, (2012),“A new scheme of test data com-

pression based on equal-run-length coding(erlc),” Integration, the

VLSI Journal, vol. 45, no. 1, pp. 91–98.

[23] P. Rosinger, P. Gonciari, B. Al-Hashimi & N. Nicolici, “Simulta-

neous reduction in volume of test data and power dissipation for
systems-on-a-chip,” Electronics Letters, vol. 37, no. 24, pp. 1434–

1436, 2001.

[24] B. Ye, Q. Zhao, D. Zhou, X. Wang & M. Luo, (2011),“Test data
compression using alternating variable run-length code,” Integra-

tion, the VLSI Journal, vol. 44, no. 2, pp. 103–110.

[25] A. Chandra & K. Chakrabarty, “Combining low-power scan testing
and test data compression for system-on-a-chip,” in Proceedings of

Design Automation Conference, (2001), pp. 166 – 169.
[26] J. Feng and G. Li, “A test data compression method for system-on-

a-chip,” in Proceedings - 4th IEEE International Symposium on

Electronic Design, Test and Applications, (2008), pp. 270–273.
[27] L. T. Wang, C. W. Wu & X. Wen, VLSI Test Principles and Ar-

chitectures: Design for Testability, 2006.

[28] A. Jas, J. Ghosh-Dastidar, M. Ng & N. Touba, (2003) “An efficient
test vector compression scheme using selective huffman coding,”

IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, vol. 22, no. 6, pp. 797–806.
[29] S. Reda & A. Orailoglu, “Reducing test application time through

test data mutation encoding,” in Proceedings of Design, Automation

and Test in Europe Conference and Exhibition, (2002), pp. 387–

393.

[30] A. Jas and N. A. Touba, “Test vector decompression via cyclical

scan chains and its application to testing core-based designs,” in
IEEE International Test Conference, (1998), pp. 458–464.

[31] A. Chandra and K. Chakrabarty, (2001) ,“System-on-a-chip test-

data compression and decompression architectures based on
golomb codes,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 20, no. 3, pp. 355–368.

[32] A. El-Maleh and R. Al-Abaji, “Extended frequency-directed run-
lengthcode with improved application to system-on-a-chip test data

compression,” in 9th International Conference on Electronics, Cir-

cuits and Systems, (2002), vol. 2, pp. 449 – 452.
[33] S. Sivanantham, M. Padmavathy, G. Gopakumar, P. S. Mallick, and

J. R. P. Perinbam, (2014), “Enhancement of test data compression

with multistage encoding,” Integration, the VLSI Journal, Vol.47
No.4, pp. 499-509.

[34] S. Sivanantham, P. S. Mallick, and J. Raja Paul Perinbam, (2014),

“Low power selective pattern compression for scan-based test ap-
plications,” Computers and Electrical Engineering, Vol.40, No.4,

pp. 1053-1063.

[35] S. Sivanantham, J. Manuel, K. Sarathkumar, P. S. Mallick, and J. R.
P. Perinbam, “Reduction of test power and test data volume by

power aware compression scheme,” in International Conference on

Advances in Computing and Communications, (2012), pp. 158–161.
[36] A. H. El-Maleh, “Efficient test compression technique based on

block merging,” IET Computers and Digital Techchiques, vol. 2, no.

5, pp. 327–335, 2008.
[37] Thilagavathi, K., Sivanantham, S. (2018), “Two-stage low power

test data compression for digital VLSI circuits” Computers and

Electrical Engineering, 71, pp. 309-320.

