
Test Enrichment for Path Delay Faults Using Multiple Sets of Target Faults

Irith Pomeranz1 and Sudhakar M. Reddy2

School of Electrical & Computer Eng. Electrical & Computer Eng. Dept.
Purdue University University of Iowa

W. Lafayette, IN 47907 Iowa City, IA 52242

Abstract
Test sets for path delay faults in circuits with large
numbers of paths are typically generated for path delay
faults associated with the longest circuit paths. We show
that such test sets may not detect faults associated with the
next-to-longest paths. This may lead to undetected failures
since shorter paths may fail without any of the longest
paths failing. In addition, paths that appear to be shorter
may actually be longer than the longest paths if the pro-
cedure used for estimating path length is inaccurate. We
propose a test enrichment procedure that increases
significantly the number of faults associated with the
next-to-longest paths that are detected by a (compact) test
set. This is achieved by allowing the underlying test gen-
eration procedure the flexibility of detecting or not detect-
ing the faults associated with the next-to-longest paths.
Faults associated with next-to-longest paths are detected
without increasing the number of tests beyond that
required to detect the faults associated with the longest
paths. The proposed procedure thus improves the quality
of the test set without increasing its size.

1. Introduction
The path delay fault model [1] was proposed as a model to
capture small, distributed delay defects. Ideally, all the
path delay faults of a circuit should be tested. However, a
circuit may have a very large number of paths [2], making
it impossible to target all the path delay faults explicitly
during test generation or fault simulation. The large
numbers of paths in practical circuits led to the use of path
selection, where only a subset of the path delay faults in a
circuit are targeted for test generation. A commonly used
criterion for path selection is to consider only the faults
associated with the longest (critical) paths in the circuit.
In [3], paths are selected such that every line in the circuit
is included in at least one selected path which is one of the
�����������������������������������

1. Research supported in part by NSF Grant No. CCR-0098091
and in part by SRC Grant No. 2001-TJ-950.
2. Research supported in part by NSF Grant No. CCR-0097905
and in part by SRC Grant No. 2001-TJ-949.

longest paths through the line.
Procedures to generate compact test sets for path

delay faults were described in [4]-[6]. Path selection was
not needed in [5] and [6], since only circuits with small
numbers of paths are reported. The procedure of [4] tar-
gets the faults selected by the path selection procedure of
[3]. Other test generation procedures for path delay faults
also target fixed sets of faults associated with longest
paths, e.g., [7].

In this work, we observe that it is possible to
improve the quality of a (compact) test set for path delay
faults, without increasing its size, by considering two (or
more) sets of target faults. Under the approach proposed
here, the set of faults P 0 is the set of faults that would be
targeted by a conventional test generation procedure.
These may be the faults associated with the critical paths
of the circuit, or faults selected based on the criterion of
[3]. In addition, we use a set of faults P 1 that contains
faults which are less critical than the faults in P 0; how-
ever, detecting the faults in P 1 would improve the quality
of the test set. For example, consider a circuit with paths
of lengths L 0,L 1, . . . ,Ln −1 such that L 0 > L 1 > . . . >
Ln −1. Let np (Li ) be the number of faults associated with
paths of length Li . We may include in P 0 faults associ-
ated with paths of lengths L 0 and L 1 for a total of
np (L 0)+np (L 1) faults. In addition, we may include in P 1
faults associated with paths of lengths L 2, L 3 and L 4 for a
total of np (L 2)+np (L 3)+np (L 4) faults. Our primary objec-
tive is to detect the faults in P 0. However, whenever pos-
sible without increasing the number of tests, we will also
try to detect faults out of P 1.

Conceptually, the proposed approach is different
from other approaches in that it has the flexibility of
detecting or not detecting some of its target faults (the
faults in P 1). The importance of detecting the faults out of
P 1 results from the fact that Li and Li +1 are typically very
close. Thus, the paths in P 0 are not significantly longer
than the paths in P 1, and small errors in the computation
of the path lengths can result in a path that was placed in
P 1 being longer than a path placed in P 0. While a conven-
tional test generation procedure would not attempt to



detect faults in P 1, the proposed approach will, compen-
sating for errors in the computation of path lengths.

We refer to the proposed approach as a test enrich-
ment procedure since it increases the number of faults
detected by each test while keeping the total number of
tests the same. Under the proposed test enrichment pro-
cedure, the test set size is determined by the requirement
to detect the faults in P 0. However, the quality of the test
set is enhanced by ensuring that the tests generated for
faults in P 0 detect as many faults in P 1 as possible. Thus,
the detection of the faults in P 1 is "free" in terms of the
number of tests. In our implementation, we ensure that
the number of faults in P 1 is reasonably small so as not to
increase the computational effort required for test genera-
tion beyond an acceptable level. In general, the sizes of P 0
and P 1 can be adjusted to control the test generation
effort.

Experimental results presented in this work demon-
strate that many faults in P 1 are not detected accidentally
by tests for the faults in P 0. Thus, targeting faults out of
P 1 explicitly is important in improving the quality of the
test set. We also demonstrate that large numbers of faults
out of P 1 can be detected without increasing the number
of tests compared to the number of tests required to detect
only the faults in P 0. We demonstrate this point using
compact test sets for the faults in P 0 where the flexibility
of detecting additional faults is low compared to non-
compact test sets.

We consider only robust tests in this work. The
paper is organized as follows. In Section 2 we describe
the basic test generation procedure we use for a single set
of target faults P . In Section 3 we describe how multiple
sets of target faults are selected, and the modifications
required to the basic test generation process in order to
accommodate multiple sets of target faults. Experimental
results are given in Section 4. Section 5 concludes the
paper.

2. The basic test generation procedure
In this section, we describe the basic test generation pro-
cedure we use for a given set of target faults P . We also
describe the compaction heuristics we employ to ensure
that the resulting test set is as small as possible. These
details will be needed later to describe the test enrichment
process that targets multiple sets of faults and to demon-
strate its effectiveness.

2.1 Test generation
To robustly detect a path delay fault p , it is necessary and
sufficient to find a two-pattern test t that assigns to the
off-path inputs of the path the values required for robust

propagation of a transition along the path, and in addition
assigns to the source of the path the appropriate transition
(0→1 for a slow-to-rise path delay fault, and 1→0 for a
slow-to-fall path delay fault). We denote by A (p ) the set
of values that a test for p must assign. A pair
(g ,α) ∈ A (p ) indicates that line g must carry the values
designated by α. The constant α is a triple α1α2α3, where
α1 is the value that must be assigned to g under the first
pattern of the test, α3 is the value that must be assigned to
g under the second pattern of the test, and α2 is the inter-
mediate value of g (for a stable value, α1 = α2 = α3; for a
rising transition, α1 = 0, α2 = x and α3 = 1; and for a fal-
ling transition, α1 = 1, α2 = x and α3 = 0). For example,
we consider the combinational logic of ISCAS-89 bench-
mark circuit s 27 shown in Figure 1. For the slow-to-rise
fault on the path (2,9,10,15), A (p ) consists of the off-path
values 000 on line 7 and xx 0 on line 3, and of the source
value 0x 1 on line 2.

+

&

+

+

+

&

+

+

1

2
3

4

5

6

7

8 13

12

9 10

11

14

17

16

15

18

19

20

21

22

23

24

25

26

Figure 1: ISCAS-89 benchmark circuit s 27
For a test t to detect the path delay faults

p 1,p 2, . . . ,pm , it is necessary and sufficient for t to assign

the values included in
i =1
∪
m

A (pi ).

Test generation for a path delay fault p (or a subset
of path delay faults p 1,p 2, . . . ,pm ) is a justification pro-
cess that searches for a two-pattern test to satisfy all the

values in A (p ) (or
i =1
∪
m

A (pi )). The justification process we

use is simulation-based. Initially, every primary input bi

is assigned a triple βi = βi
1
βi

2
βi

3
= xxx . During the

justification process, we check repeatedly for necessary
values, as follows. For every βi

j
, we check whether set-

ting βi
j
to 0 conflicts with any value in A (p ), and whether

setting βi
j

to 1 conflicts with any value in A (p ). If both

values result in a conflict, we stop the test generation pro-
cess without finding a test. If only one of the values results
in a conflict, we assign the other value to βi

j
permanently

under t . Otherwise, we leave βi
j

unspecified. This is

repeated as long as new values are assigned to the primary
inputs.



When no new necessary values can be found, we
select an unspecified value βi

j
, where j = 1 or 3, and we

assign a specified value to it, as follows. If there is a pri-
mary input bi with a triple βi

1
βi

2
βi

3
such that only βi

1
is

specified, we assign the value of βi
1

to βi
2

and βi
3
. Simi-

larly, if only βi
3

is specified, we assign the value of βi
3

to

βi
1

and βi
2
. If no such input can be found, we randomly

select an unspecified value βi
j
such that j = 1 or 3, and we

specify it randomly. After a value is assigned in this way,
we again assign as many necessary values as can be
found. This is repeated until all the primary inputs are
specified or a conflict occurs.

2.2 Test compaction
Compaction in our test generation procedure is based on
the use of primary and secondary target faults to generate
every test [8]. Test generation with primary and secondary
target faults in [8] uses values that remain unspecified
under a test t in order to detect additional faults. The pro-
cess proceeds as follows. Let P be the set of target faults.
To generate a new test t , a target fault p 0 ∈ P is selected.
This fault is called the primary target fault. If a test t can
be generated for p 0, another target fault p 1 ∈ P is
selected, and an attempt is made to specify unspecified
values in t in order to detect p 1. After p 1, another fault
p 2 ∈ P is selected, and an attempt is made to specify
unspecified values in t in order to detect p 2. This is
repeated until t is fully specified, or all the faults in P
have been considered. The faults p 1,p 2, . . . are called
secondary target faults. Before every secondary target
fault is selected, specified values in t may be unspecified
to increase the number of unspecified values available for
the next target fault. Once the generation of t is complete,
fault simulation is carried out for all the faults in P , and
the detected faults are dropped from P .

Since our simulation-based justification procedure
results in fully-specified tests, we cannot use unspecified
values in t to detect secondary target faults. Instead, we
use the following approach. We define a subset of faults
P (t ) that initially consists of the primary target fault p 0.
We attempt to add to P (t ) secondary target faults
p 1,p 2, . . . ,pm one at a time. After pi is added to P (t ), we
apply the justification procedure to generate a test t that
satisfies all the values in ∪{A (pj ):pj ∈ P (t )}, with pi

included in P (t ). The addition of pi to P (t ) is accepted if
the simulation-based justification procedure can generate
such a test t . Otherwise, pi is removed from P (t ).

Although the test generation effort is increased
compared to [8] since we generate a new test after every
fault is added to P (t ), the use of a simulation based pro-

cedure compensates for this increase. More important, the
number of secondary target faults that can be detected is
potentially increased, since we are not restricted by values
specified under t in order to detect faults that were added
to P (t ) earlier. New values can be specified under t after
pi is added to P (t ) if they are more suitable for detecting
pi .

The level of compaction achieved by a test genera-
tion procedure that uses primary and secondary target
faults is influenced to a large extent by the order in which
the primary and secondary target faults are selected for
test generation. To obtain a smaller number of tests, the
fault order should ensure that a larger number of secon-
dary target faults would be detected by every test. We
compare three heuristics, described next, in terms of their
ability to minimize the number of tests.
Arbitrary order: Under this order, both the primary and
the secondary target faults are selected in the order they
appear in the fault list P , which is an arbitrary order.
Length-based order: Under this heuristic, the primary
target fault is selected such that the path it is associated
with is the longest of all the faults in P . The secondary
target faults are also selected according to the same order.
The longer paths tend to require more values that the test t
must satisfy. Thus, the associated faults are not likely to
be detected accidentally. If they are left to the end of the
test generation process, it is likely that each fault would
require an additional test. At the beginning of the process,
we have the flexibility of detecting other faults together
with them, thus minimizing the number of tests. A similar
heuristic was used in [4].
Value-based order: Under this heuristic, the primary tar-
get fault p 0 is selected such that the path it is associated
with is the longest of all the faults in P . This is the same
criterion used to select the primary target fault under the
length-based order. For the secondary target faults, we
attempt to minimize the number of new values that the test
t will have to satisfy. This will make it more likely that t
will be able to detect the new fault in addition to all the
faults already included in P (t ). As a result, it is more
likely that t will detect a large number of faults. We use
the following procedure to select the next secondary target
fault. For every fault pi ∈ P −P (t ), we find the set of
values that will have to be added to ∪{A (pj ):pj ∈ P (t )}
in order to detect pi . We denote this set by ∆(pi ). We have
∆(pi ) = A (pi )−∪{A (pj ):pj ∈ P (t )}. We denote the size
of ∆(pi ) by n ∆(pi ). We select the fault pi for which
n ∆(pi ) is minimum.

For comparison purposes, we also consider a test
generation procedure that does not attempt to detect
secondary target faults. Under this procedure, tests are



generated for primary target faults without attempting to
maximize the number of additional faults detected by each
test. This procedure will allow us to demonstrate the lev-
els of compaction achievable by the heuristics above. This
is important since our goal is to show that even with a
compact test set, the use of a second set of target faults
can improve the quality of the test set significantly.

3. Test enrichment
In this section, we describe the derivation of multiple sets
of target faults, and the proposed test enrichment process
that performs test generation with multiple sets of target
faults.

3.1 Sets of target faults
Sets of target faults for test generation can be defined in
various ways. In our study, we include in the first set, P 0,
the faults associated with the longest paths of the circuit,
and we include in the second set, P 1, faults associated
with the next-to-longest paths.

To define P 0 and P 1, we enumerate a set of path
delay faults P that consists of the NP faults associated
with the longest paths in the circuit, where NP is a
preselected constant. We ensure that P includes all the
faults associated with the longest paths, all the faults
associated with the second-to-longest paths, and so on,
without allowing the size of P to exceed NP . In our
implementation, NP = 10000 (in general, NP can be deter-
mined by considering the number of paths of every length
and taking into account an acceptable bound on test gen-
eration effort). We eliminate from P as many undetect-
able faults as possible. We then select faults for P 0 as
described below. The remaining faults out of P are
included in P 1, i.e., we set P 1 = P −P 0.

To determine P 0, let the path lengths in P be
L 0,L 1, . . . ,Ln −1 such that L 0 > L 1 > . . . > Ln −1. Let
np (Li ) be the number of faults associated with paths of
length Li . In benchmark circuits, np (L 0) is typically very
small. Therefore, we include in P 0 faults associated with
paths of lengths L 0,L 1, . . . ,Li

0
, where i 0 is such that the

number of path delay faults in P 0 is not smaller than a
constant NP

0
. In our implementation, NP

0
= 1000 (in gen-

eral, NP
0
can be determined similar to NP based on the cir-

cuit and the test generation effort).
Next, we provide a more detailed description of the

derivation of P , P 0 and P 1. We start with a procedure
suitable for circuits with moderate numbers of paths. We
then extend this procedure to circuits with large numbers
of paths.

We use an explicit enumeration procedure to find
the path delay faults associated with the longest paths of

the circuit. Paths are enumerated by starting from the pri-
mary inputs and adding lines that expand the paths
towards the primary outputs. At an arbitrary stage of this
procedure, we have a set of faults P . Some of the faults in
P are associated with complete paths (paths that start at a
primary input and end at a primary output), and some of
the faults in P are associated with partial paths (paths that
start at a primary input but end before reaching a primary
output). Every time the number of faults in P reaches or
exceeds a constant NP , we remove from P the faults asso-
ciated with the shortest complete paths included in P .
Faults are removed until the number of faults in P is
lower than NP . We do not eliminate faults associated with
the longest complete paths during this process. For cir-
cuits with moderate numbers of paths, we could always
reduce the number of paths below NP by eliminating
faults associated with paths that are (significantly) shorter
than the longest paths in P .

For example, we apply the enumeration process to
the combinational logic of s 27 shown in Figure 1. We
assume that the delay of a path is equal to the number of
lines along the path (other delay models can be accommo-
dated by the procedure we use). For simplicity, we con-
sider paths and not faults in this example (each path is
associated with two faults). We use an upper bound of
NP = 20 on the number of paths included in P .

The path enumeration process starts by including
each primary input in a path. We thus have P = {(1)p,
(2)p, (3)p, (4)p, (5)p, (6)p, (7)p}. The p following a path
indicates that this is a partial path (i.e., the path does not
end at a primary output). We select the first path, (1), and
extend it into the path (1,8). Next, we extend this path in
all possible ways. We obtain the paths (1,8,12) and
(1,8,13). Both paths are entered into P to obtain P =
{(1,8,12)p, (2)p, (3)p, (4)p, (5)p, (6)p, (7)p, (1,8,13)p}.
We continue with the first path, and obtain (1,8,12,25).
This path now reaches a primary output, and its construc-
tion terminates. We obtain P = {(1,8,12,25)c, (2)p, (3)p,
(4)p, (5)p, (6)p, (7)p, (1,8,13)p}, where c stands for a
complete path (i.e., a path that ends at a primary output).
Next, we extend the second path, (2). We obtain (2,9) and
then the two paths (2,9,10) and (2,9,11). We now have
P = {(1,8,12,25)c, (2,9,10)p, (3)p, (4)p, (5)p, (6)p, (7)p,
(1,8,13)p, (2,9,11)p}. Construction of P continues until
we obtain the set of paths shown in Table 1(a), that con-
tains 20 paths. Among the complete paths, the shortest
path length is two. We reduce the size of P by omitting
the complete path (3,15) of length two. Since the size of
P is lower than 20 after the omission, we do not remove
any additional paths. Construction of P continues by
extending the first partial path in Table 1(a), (1, 8, 13, 14,
16, 19, 20, 21, 22). We skip several steps, and consider



the set of paths shown in Table 1(b). This set contains 21
paths, and we need to omit some of the complete paths in
order to reduce its size. In this case, it is necessary to omit
complete paths of lengths three and four before the size of
P goes below 20. The construction of P ends with a set of
18 paths of lengths between 7 and 10. Thus, the paths of
lengths 2, 3 and 4 that we eliminated are significantly
shorter than the longest paths.

Table 1: Paths of s 27

(a) Set 1 (b) Set 2� ���������������������������������������������������������������������������������������������������
(1,8,12,25)c (4,19,20,21,22,25)c
(2,9,10,15)c (6,14,16,19,20,21,22,25)c
(3,15)c (1,8,13,14,16,19,20,21,22,25)c
(4,19,20,21,22,25)c (2,9,11,18,20,21,22,25)c
(5,21,22,25)c (4,19,20,21,23,26)c
(6,14,16,19,20,21,22,25)c (4,19,20,21,24)c
(7,9,10,15)c (5,21,23,26)c
(1,8,13,14,16,19,20,21,22)p (5,21,24)c
(2,9,11)p (6,14,17,18,20,21,22,25)c
(4,19,20,21,23)p (6,14,16,19,20,21,23,26)c
(4,19,20,21,24)p (6,14,16,19,20,21,24)c
(5,21,23)p (7,9,11,18,20,21,22)p
(5,21,24)p (1,8,13,14,17)p
(6,14,17)p (1,8,13,14,16,19,20,21,23)p
(6,14,16,19,20,21,23)p (1,8,13,14,16,19,20,21,24)p
(6,14,16,19,20,21,24)p (2,9,11,18,20,21,23)p
(7,9,11)p (2,9,11,18,20,21,24)p
(1,8,13,14,17)p (6,14,17,18,20,21,23)p
(1,8,13,14,16,19,20,21,23)p (6,14,17,18,20,21,24)p
(1,8,13,14,16,19,20,21,24)p (7,9,11,18,20,21,23)p

(7,9,11,18,20,21,24)p
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

For circuits with large numbers of paths, the
number of path delay faults in P may exceed NP even
after eliminating all the faults associated with complete
paths that are not the longest paths in P . In this case, we
use the extension described next. We associate with every
line g in the circuit its distance from the primary outputs.
In this work, the distance for g is the maximum number of
lines along a path from g to the primary outputs. The dis-
tance of every line in the circuit is computed in one pass
over the circuit starting from the primary outputs and pro-
gressing towards the primary inputs.

For every path delay fault in P associated with a
path p , let g be the last line of p , and let d (g ) be the dis-
tance of g from the primary outputs. The maximum length
of any path that has p as its prefix is equal to the length of
p plus d (g ). This is illustrated in Figure 2. In the figure,
d (g ) is the length of the longest path out of {p 1,p 2,p 3}.
Let this be p 1. The longest path that includes p is the path
(p ,p 1). Its length is equal to the length of p plus the length
of p 1, which is equal to d (g ). We denote the maximum
length of any path that has p as its prefix by len (p ). We
use len (p ) in two ways.

p g
p 1
p 2
p 3

Figure 2: Distance
(1) We always extend the path delay fault in P which is

associated with a path p for which len (p ) is max-
imum.

(2) When the number of faults in P reaches NP , we
remove from P faults associated with complete and
partial paths p for which len (p ) is minimum. We
continue to remove path delay faults with the
minimum value of len (p ) until all the path delay
faults have the same, maximum path length, or the
number of path delay faults in P is lower than NP .
Using the distances d (g ) and lengths len (p ) as

above, we can eliminate from P path delay faults associ-
ated with partial paths that will not result in the longest
paths of the circuit, as well as path delay faults associated
with complete paths that are not the longest paths. Thus,
more path delay faults can be eliminated than when dis-
tances are not used

Once enumeration of P is completed, we eliminate
from P two types of undetectable faults. (1) If the set of
values A (p ) of a path delay fault p ∈ P contains
conflicting values for a line g , p is undetectable and it is
eliminated from P . (2) We find the implications of the
values in A (p ) for every p ∈ P . If the implication pro-
cess assigns conflicting values to a line g , p is undetect-
able and it is eliminated from P . It is also possible to use a
method for identifying undetectable faults, such as the
ones from [9]-[12], to prevent undetectable faults from
being included in P .

Once P is found, we select P 0 and P 1 out of P . We
use the following notation to describe the selection of P 0
and P 1.

Let np (Li ) be the number of faults in P associated
with paths of length Li . We define Np (Li ) =
Σ{np (Lj ):Lj ≥Li }, i.e., Np (Li ) is the number of faults in P
associated with paths of length Li or higher. Table 2
shows the values of Li and Np (Li ) for the 20 highest path
lengths in the combinational logic of ISCAS-89 bench-
mark circuit s 1423. In this circuit, the longest path is of
length 96, and we have L 0 = 96, L 1 = 95, . . . , L 19 = 77.
The number of faults in P associated with paths of length
L 0 is np (L 0) = 4; the number of faults associated with
paths of length L 1 is np (L 1) = 8, resulting in Np (L 1) = 12



(i.e., 12 faults associated with paths of lengths L 1 = 95 and
L 0 = 96); and so on.

Table 2: Numbers of faults in s 1423

i Li Np (Li )� �������������������������������
0 96 4
1 95 12
2 94 22
3 93 36
4 92 54
5 91 84
6 90 118
7 89 160
8 88 208
9 87 256

10 86 314
11 85 378
12 84 458
13 83 556
14 82 668
15 81 799
16 80 934
17 79 1116
18 78 1314
19 77 1538

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

We select the first set of target faults, P 0, such that
it would satisfy the following conditions. (1) P 0 includes
all the faults associated with the longest paths in P . For
this purpose, we select a length Li = Li

0
, and include all

the faults associated with paths of length Li
0

or higher in

P 0. (2) The number of faults in P 0 would be close to a
constant Np

0
, but not smaller than NP

0
. Thus, we use the

highest length Li
0

(or the smallest value of i 0) for which

Np (Li
0
) ≥ NP

0
. In our implementation, we use NP

0
= 1000.

For s 1423 with NP
0
= 1000, the first value of i 0 that results

in P 0 of size 1000 or more is i 0 = 17. This value
corresponds to L 17 = 79, and defines a set of target faults
P 0 of size 1116. Note that a lower value of i 0, i 0 = 16,
corresponds to a longer path length, L 16 = 80, and will
result in fewer than 1000 path delay faults in P 0 if
selected.

We include the remaining faults of P in P 1, i.e.,
P 1 = P −P 0.

It is possible to partition P into a a larger number of
subsets. We consider only two subsets in this work.

3.2 Test generation
Next, we describe the test generation procedure with mul-
tiple sets of target faults.

Of the three compaction heuristics described in Sec-
tion 2, we selected the value-based heuristic as the com-
paction heuristic for the proposed test generation pro-
cedure. Experimental results presented in Section 4
demonstrate that this heuristic is effective in minimizing

the number of tests.
The test generation process with sets of target faults

P 0 and P 1 proceeds as follows.
We select a primary target fault p 0 ∈ P 0. If p 0 can

be detected, we include it in the set of faults P (t ) to be
detected by the current test t . We then select secondary
target faults out of P 0 one at a time. We add a secondary
target fault pi ∈ P 0 to P (t ) if it can be detected together
with the faults already in P (t ). Once all the faults in P 0
have been considered, we consider secondary target faults
out of P 1. We add a secondary target fault pi ∈ P 1 to
P (t ) if it can be detected together with the faults already
in P (t ). The generation of t terminates after considering
all the faults in P 1. Next, another primary target fault
p 0 ∈ P 0 is selected, and the process is repeated until all
the faults in P 0 are either detected or have been tried as
primary target faults.

It is important to note that the faults in P 1 are not
selected as primary target faults. In addition, a secondary
target fault out of P 1 is selected only if no secondary tar-
get fault out of P 0 can be detected by the test t . As a
result, faults in P 1 are detected without increasing the
number of tests.

4. Experimental results
In this section, we first provide experimental results to
demonstrate that compact test sets are generated by the
basic test generation procedure we described, i.e., when a
single set of target faults P 0 is used. We then show the
importance of using a second set of target faults P 1 in
order to improve the number of faults detected by the
resulting test set. This improvement is achieved without
increasing the number of tests.

We consider the combinational logic of ISCAS-89
benchmark circuits and ITC-99 benchmark circuits. We
only consider circuits with at least 1000 paths. We use
eight circuits, s 641, s 953, s 1196, s 1423 and s 1488 from
the ISCAS-89 set and b 03, b 04 and b 09 from the ITC-99
set, for comparison purposes. We consider additional cir-
cuits under the proposed test generation procedure later.

In Tables 3 and 4 we show the results obtained by
the basic test generation approach (where a single set of
target faults P 0 is used for test generation) using the vari-
ous compaction heuristics described in Section 2. In Table
3, after the circuit name, we show the value of i 0 based on
which P 0 is defined (P 0 includes all the faults associated
with paths of lengths ≥ Li

0
, and i 0 for which we report the

results is the first one for which the size of P 0 is at least
1000). We then show the total number of target faults (the
number of faults in P 0). Under column P0 detected we
show the number of faults detected using each one of the



compaction heuristics of Section 2. In Table 4, under
column P0 tests we show the number of tests obtained
using each one of the compaction heuristics of Section 2.
We use uncomp to denote the basic test generation pro-
cedure with no compaction heuristics, arbit for the arbi-
trary order heuristic, length for the length-based compac-
tion heuristic, and values for the value-based compaction
heuristic.
Table 3: Basic test generation using P 0 (detected faults)

P0 P0 detected
circuit i0 flts uncomp arbit length values� �����������������������������������������������������������������������������������������������������
s641 57 1057 915 915 915 915
s953 15 1236 1231 1231 1231 1231
s1196 13 1033 572 572 572 572
s1423 17 1116 929 931 932 924
s1488 10 1184 1148 1148 1148 1148� �����������������������������������������������������������������������������������������������������
b03 8 1006 869 869 869 869
b04 5 1606 458 456 461 456
b09 1 1432 944 944 944 944

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

Table 4: Basic test generation using P 0 (numbers of tests)

P0 tests
circuit i0 uncomp arbit length values� �������������������������������������������������������������������������������������
s641 57 471 135 130 129
s953 15 581 308 303 312
s1196 13 329 175 172 175
s1423 17 495 332 335 324
s1488 10 464 321 321 317� �������������������������������������������������������������������������������������
b03 8 299 90 88 96
b04 5 457 301 304 302
b09 1 406 147 147 158

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

Table 3 shows small variations in the numbers of
faults detected using each one of the heuristics. These are
due to the random selection of values during test genera-
tion, and can be eliminated by using a branch-and-bound
procedure instead of a simulation-based procedure for
justification. From Table 4 it can be seen that all three
compaction heuristics reduce the number of tests com-
pared to the case where no compaction heuristics are used.
We selected the value-based heuristic for the underlying
test generation process embedded in the proposed test
enrichment procedure.

For comparison with the proposed enrichment pro-
cedure, we simulated the faults in P 0∪P 1 under the test
sets generated by the basic test generation procedure.
This experiment will provide information about the
number of faults out of P 1 that are accidentally detected
when only the faults in P 0 are targeted explicitly. The
numbers of faults detected are shown in Table 5. Under
column P0,P1 faults we show the total number of faults in
P 0∪P 1. Under column P0,P1 detect we show the
numbers of faults detected out of P 0∪P 1 by the various
test sets generated using the basic test generation pro-
cedure.

Table 5: Simulation of P 0∪P 1

P0,P1 P0,P1 detect
circuit i0 faults uncomp arbit length values� �������������������������������������������������������������������������������������������������������
s641 57 2127 1452 1436 1417 1420
s953 15 2312 1830 1759 1781 1778
s1196 13 4527 1414 1338 1312 1341
s1423 17 1314 1013 1019 1017 1007
s1488 10 1918 1697 1641 1651 1654� �������������������������������������������������������������������������������������������������������
b03 8 1450 1057 1038 1035 1025
b04 5 8370 936 935 941 936
b09 1 2207 1160 1160 1160 1160

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

It is interesting to note, based on Table 5, that the
number of faults accidentally detected out of P 1 by a
non-compact test set is only slightly higher than the
numbers of faults out of P 1 that are accidentally detected
by compact test sets that are significantly smaller.

In Table 6 we show the results of the proposed
enrichment procedure using the faults in P 0 and P 1 as tar-
get faults. After the circuit name and the value of i 0, we
show the total number of faults in P 0 and the number of
faults detected out of P 0. We then show the total number
of faults in P 0∪P 1, and the number of faults detected out
of this set. In the last column we show the number of tests.
We include in Table 6 circuits considered in Tables 3, 4
and 5, as well as additional circuits. For the additional cir-
cuits, we use their more testable versions resynthesized in
[13]. In this way, we obtain a larger number of testable
path delay faults to consider. The following points can be
seen from Tables 3, 4, 5 and 6.

Table 6: Results of test enrichment using P 0 and P 1

P0 faults P0,P1 faults
circuit i0 total detect total detected tests� �����������������������������������������������������������������������������������������������������
s641 57 1057 915 2127 1815 127
s953 15 1236 1231 2312 2063 315
s1196 13 1033 572 4527 1932 174
s1423 17 1116 934 1314 1039 332
s1488 10 1184 1148 1918 1746 317� �����������������������������������������������������������������������������������������������������
b03 8 1006 869 1450 1178 95
b04 5 1606 459 8370 1485 303
b09 1 1432 944 2207 1301 150� �����������������������������������������������������������������������������������������������������
s1423* 24 1061 982 1593 1227 267
s5378* 3 1028 913 8537 5469 441
s9234* 7 1158 1158 9344 1465 824

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

* - resynthesized circuit from [13]

The test set sizes of the proposed procedure are
very close to those produced by the basic test generation
procedure with the value-based compaction heuristic. The
small differences are a result of the fact that we select
some primary input values randomly during the test gen-
eration procedure. The variations sometimes result in a
slightly larger test set, and sometimes in a slightly smaller
test set than that produced by the basic test generation
procedure.



Compared to the basic test generation procedure
with any one of the compaction heuristics, the proposed
enrichment procedure detects a significantly larger
number of faults out of P 1. This indicates that accidental
detection of the faults in P 1 does not have a high likeli-
hood of occurring, and it is important to target these faults
explicitly in order to improve the quality of the test set.

Compared to the basic test generation procedure
without any compaction heuristics, the proposed enrich-
ment procedure generates significantly smaller test sets
while still detecting a larger number of faults out of P 1.
This indicates that compaction does not reduce the quality
of the test set in this case.

Finally, we report in Table 7 the increase in run
time due to the proposed enrichment procedure compared
to the basic procedure. We consider the circuits of Table
3 under the value-based heuristic which is also used in the
proposed procedure. We report the ratio RTenrich /RTbasic ,
where RTenrich is the run time of the test enrichment pro-
cedure, and RTbasic is the run time of the basic procedure.

Table 7: Run time ratios

circuit i0 ratio� ���������������������������������
s641 57 1.10
s953 15 1.56
s1196 13 2.51
s1423 17 0.94
s1488 10 1.22� ���������������������������������
b03 8 1.13
b04 5 1.13
b09 1 1.60

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

5. Concluding remarks
We described a test enrichment approach for path delay
fault test generation that uses multiple sets of target faults
to improve the quality of the test set generated. The first
set of target faults contains faults associated with the criti-
cal paths of the circuit. These faults must be detected by
the test set (if they are detectable). The second set of tar-
get faults contains faults associated with the next-to-
longest paths. The test enrichment procedure attempts to
detect as many of these faults as possible, but without
increasing the number of tests. In this way, the proposed
procedure improves the quality of the test set without
increasing its size.

We presented experimental results to show that
many faults in the second set of target faults are not
detected accidentally by tests for the faults in the first set.
Thus, targeting faults out of the second set explicitly is
important in improving the quality of the test set. We also
demonstrated that large numbers of faults out of the
second set can be detected without increasing the number
of tests compared to the number of tests required to detect

only the faults in the first set. This was demonstrated using
compact test sets where the flexibility of detecting addi-
tional faults is low compared to non-compact test sets.

References
[1] G. L. Smith, "Model for Delay Faults Based Upon Paths",

in Proc. 1985 Intl. Test Conf., pp. 342-349.
[2] I. Pomeranz and S. M. Reddy, "An Efficient Non-

Enumerative Method to Estimate Path Delay Fault Cover-
age", in Proc. Intl. Conf. on Computer-Aided Design,
1992, pp. 560-567.

[3] W.-N. Li, S. M. Reddy and S. K. Sahni, "On path Selec-
tion in Combinational Logic Circuits", IEEE Trans. on
Computer-Aided Design, Jan. 1989, pp. 56-63.

[4] L. N. Reddy, "Compact Test Sets for Digital Logic Cir-
cuits", Ph.D. Thesis, ECE Dept., University of Iowa,
August 1992.

[5] S. Bose, P. Agrawal and V. D. Agrawal, "Generation of
Compact Delay Tests by Multiple Path Activation", in
Proc. 1993 Intl. Test Conf., Oct. 1993, pp. 714-723.

[6] J. Saxena and D. K. Pradhan, "A Method to Derive Com-
pact Test Sets for Path Delay Faults in Combinational
Circuits", in Proc. 1993 Intl. Test Conf., Oct. 1993, pp.
724-733.

[7] M. H. Schultz, K. Fuchs and F. Fink, "Advanced
Automatic Test Pattern Generation Techniques for Path
Delay Faults", in Proc. Intl. Symp. on Fault-Tolerant
Computing, June 1989, pp. 44-51.

[8] P. Goel and B. C. Rosales, "Test Generation & Dynamic
Compaction of Tests", in Digest of Papers 1979 Test
Conf., Oct. 1979, pp. 189-192.

[9] K. Fuchs, F. Fink and M. H. Schulz, "DYNAMITE: An
Efficient Automatic Test Pattern Generation for Path
Delay Faults", IEEE Trans. on Computer-Aided Design,
Oct. 1991, pp. 1323-1335.

[10] K.-T. Cheng and H.-C. Chen, "Delay Testing for Non-
robust Untestable Circuits", in Proc. Intl. Test Conf., Oct.
1993, pp. 954-961.

[11] U. Sparmann, D. Luxenburger, K.-T. Cheng, and S. M.
Reddy, "Fast Identification of Robust Dependent Path
Delay Faults", in Proc. Design Autom. Conf., June 1995,
pp. 119-125.

[12] S. Kajihara, K. Kinoshita, I. Pomeranz and S. M. Reddy,
"A Method for Identifying Robust Dependent and Func-
tionally Unsensitizable Paths", in Proc. 1997 VLSI
Design Conf., Jan. 1997, pp. 82-87.

[13] I. Pomeranz and S. M. Reddy, "On Synthesis-for-
Testability of Combinational Logic Circuits", in Proc.
32nd Design Autom. Conf., June 1995, pp. 126-132.


