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ABSTRACT

Aims. The test-field method for computing turbulent transport coefficients from simulations of hydromagnetic flows is
extended to the regime with a magnetohydrodynamic (MHD) background.
Methods. A generalized set of test equations is derived using both the induction equation and a modified momentum
equation. By employing an additional set of auxiliary equations, we derive linear equations describing the response
of the system to a set of prescribed test fields. Purely magnetic and MHD backgrounds are emulated by applying an
electromotive force in the induction equation analogously to the ponderomotive force in the momentum equation. Both
forces are chosen to have Roberts flow-like geometry.
Results. Examples with an MHD background are studied where the previously used quasi-kinematic test-field method
breaks down. In cases with homogeneous mean fields it is shown that the generalized test-field method produces the
same results as the imposed-field method, where the field-aligned component of the actual electromotive force from
the simulation is used. Furthermore, results for the turbulent diffusivity tensor are given, which are inaccessible to
the imposed-field method. For MHD backgrounds, new mean-field effects are found that depend on the occurrence of
cross-correlations between magnetic and velocity fluctuations. For strong imposed fields, α is found to be quenched
proportional to the fourth power of the field strength, regardless of the type of background studied.
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1. Introduction

Astrophysical bodies such as stars with outer convective
envelopes, accretion discs, and galaxies tend to be mag-
netized. In all those cases the magnetic field varies on a
broad spectrum of scales. On small scales the magnetic
field might well be the result of scrambling an existing
large-scale field by a small-scale flow. However, at large
magnetic Reynolds numbers, i.e. when advection dominates
over magnetic diffusion, another source of small-scale fields
is small-scale dynamo action (Kazantsev 1968). This pro-
cess is now fairly well understood and confirmed by nu-
merous simulations (Cho & Vishniac 2000; Schekochihin et
al. 2002, 2004; Haugen et al. 2003, 2004); for a review see
Brandenburg & Subramanian (2005). Especially in the con-
text of magnetic fields of galaxies, the occurrence of small-
scale dynamos may be important for providing a strong
field on short time scales (107 yr), which may then act as a
seed for the large-scale dynamo (Beck et al. 1994).

In contemporary galaxies the magnetic fields on small
and large length scales are comparable (Beck et al. 1996),
but in stars this is less clear. On the solar surface the so-
lar magnetic field shows significant amounts of small-scale
fields (Solanki et al. 2006). The possibility of generating
such magnetic fields locally in the upper layers of the con-
vection zone by a small-scale dynamo is sometimes referred
to as surface dynamo (Cattaneo 1999; Emonet & Cattaneo
2001; Vögler & Schüssler 2007). On the other hand, simu-
lations of stratified convection with shear show that small-
scale dynamo action is a prevalent feature of the kinematic
regime, but becomes less important when the field is strong
and has saturated (Brandenburg 2005a; Käpylä et al. 2008).

An important question is then how the primary pres-
ence of small-scale magnetic fields affects the generation
of large-scale fields if these are the result of a dynamo pro-
cess that produces magnetic fields on scales large compared
with those of the energy-carrying eddies of the underlying
and in general turbulent flow (Parker 1979) via an insta-
bility. A commonly used tool for studying these large-scale
dynamos is mean-field electrodynamics, where correlations
of small-scale magnetic and velocity fields are expressed in
terms of the mean magnetic field and the mean velocity us-
ing corresponding turbulent transport coefficients or their
associated integral kernels (Moffatt 1978; Krause & Rädler
1980). The determination of these coefficients (e.g., α ef-
fect and turbulent diffusivity) is the central task of mean-
field dynamo theory. This can be performed analytically,
but usually only via approximations which are hardly justi-
fied in realistic astrophysical situations where the magnetic
Reynolds numbers, ReM, are large.

Obtaining turbulent transport coefficients from direct
numerical simulations (DNS) offers a more sustainable al-
ternative as it avoids the restricting approximations and
uncertainties of analytic approaches. Moreover, no assump-
tions concerning correlation properties of the turbulence
need to be made, because a direct “measurement” of those
properties is performed in a physically consistent situation
emulated by the DNS. The simplest way to accomplish such
a measurement is to include, in the DNS, an imposed large-
scale (typically uniform) magnetic field whose influence on
the fluctuations of magnetic field and velocity is utilized to
infer some of the full set of transport coefficients. We refer
to this technique as the imposed-field method.
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A more universal tool is offered by the test-field method
(Schrinner et al. 2005, 2007), which allows the determi-
nation of all wanted transport coefficients from a single
DNS. For this purpose the fluctuating velocity is taken
from the DNS and inserted into a properly tailored set of
test equations. Their solutions, the test solutions represent
fluctuating magnetic fields as responses to the interaction
of the fluctuating velocity with a set of properly chosen
mean fields. These mean fields will be called test fields. For
distinction from the test equations, which are in general
also solved by direct numerical simulation, we will refer to
the original DNS as the main run. This method has been
successfully applied to homogeneous turbulence with helic-
ity (Sur et al. 2008, Brandenburg et al. 2008a), with shear
and no helicity (Brandenburg et al. 2008b), and with both
(Mitra et al. 2009).

A crucial requirement on any test-field method is the
independence of the resulting transport coefficients on the
strength and geometry of the test fields. This is immediately
clear in the kinematic situation, i.e., if there is no back-
reaction of the mean magnetic field on the flow. Indeed, for
given magnetic boundary conditions and a given value for
the magnetic diffusivity, the transport coefficients must not
reflect anything else than correlation properties of the ve-
locity field which are completely determined by the hydro-
dynamics alone. For this to be guaranteed the test equa-
tions have to be linear and the test solutions have to be
linear and homogeneous in the test fields.

Beyond the kinematic situation the same requirement
still holds, although the flow is now modified by a mean
magnetic field occurring in the main run. (Whether it is
maintained by external sources or generated by a dynamo
process does not matter in this context.) Consequently,
the transport coefficients are now functions of this mean
field. It is no longer so obvious that under these circum-
stances a test-field method with the aforementioned lin-
earity and homogeneity properties can be established at
all. Nevertheless, it turned out that the test-field method
developed for the kinematic situation gives consistent re-
sults even in the nonlinear case without any modification
(Brandenburg et al. 2008c). This method, which we will
refer to as “quasi-kinematic” is, however, restricted to situ-
ations in which the magnetic fluctuations are solely a con-
sequence of the mean magnetic field. (That is, the primary
or background turbulence is purely hydrodynamic.)

The power of the quasi-kinematic method was demon-
strated based on a simulation of an α2 dynamo where the
main run has reached saturation with mean magnetic fields
being Beltrami fields (Brandenburg et al. 2008c). Magnetic
and fluid Reynolds numbers up to 600 were taken into
account, so in some of the high ReM runs there was cer-
tainly small-scale dynamo action, that is, a primary mag-
netic turbulence b0 should be expected. Nevertheless, the
quasi-kinematic method was found to work reliably even
for strongly saturated dynamo fields. This was revealed by
verifying that the analytically solvable mean-field dynamo
model employing the values of α and turbulent diffusivity
as derived from the saturated state of the main run indeed
yielded a vanishing growth rate. Very likely the small-scale
dynamo had saturated on a low level so the contribution
to the mean electromotive force, which was not taken into
account by the quasi-kinematic method, could not create a
marked error.

Limitations of the quasi-kinematic test-field method
were recently pointed out by Courvoisier et al. (2010) and
will be commented upon in more detail in the discussion
section. Indeed, the purpose of our work is to propose
a generalized test-field method that allows for the pres-
ence of magnetic fluctuations in the background turbulence.
Moreover, its validity range should cover dynamically effec-
tive mean fields, that is, situations in which the velocity and
magnetic field fluctuations are significantly affected by the
mean field.

With a view to this generalization we will first recall the
mathematical justification of the quasi-kinematic method
and indicate the reason for its limited applicability (Sect.
2). In Sect. 3 the foundation of the generalized method will
be laid down in the context of a relevant set of model equa-
tions. In Sect. 4 results will be presented for various combi-
nations of hydrodynamic and magnetic backgrounds having
Roberts-flow geometry. The astrophysical relevance of our
results and the connection with the work of Courvoisier et
al. (2010) will be discussed in Sect. 5.

2. Justification of the quasi-kinematic test-field

method and its limitation

In the following we split any relevant physical quantity F
into mean and fluctuating parts, F and f . No specific av-
eraging procedure will be adopted at this point; we merely
assume the Reynolds rules to be obeyed. Furthermore, we
split the fluctuations of magnetic field and velocity, b and
u, into parts existing already in the absence of a mean
magnetic field, b0 and u0 (together they form the back-
ground turbulence), and parts vanishing with B, denoted
by bB and uB . We may split the mean electromotive force

E = u× b likewise and get

E = E0 + EB (1)

with

E0 = u0 × b0, (2)

EB = u0 × bB + uB × b0 + uB × bB . (3)

Note that we do not restrict bB and uB , and hence also not

EB to a certain order in B.
In the present Section we assume that the background

turbulence is purely hydrodynamic, that is, b0 = 0 and
hence b = bB or, in other words, the magnetic fluctuations b
are entirely a consequence of the interaction of the velocity
fluctuations u with the mean field B.

In a homogeneous medium, the induction equations for
the total and mean magnetic fields as well as for the mag-
netic fluctuations read

∂B

∂t
= η∇2B + curl (U ×B), (4)

∂B

∂t
= η∇2B + curl (U ×B + E), (5)

∂b

∂t
= η∇2b+ curl (U × b+ u×B + E

′), (6)

with E ′ = u×b−u× b. The solution of the linear equation
(6) for the fluctuations b, considered as a functional of u,
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U and B, is linear and homogeneous in the latter and the
same is true for

EB = E = u× bB = u× b . (7)

If the velocity is influenced by the mean field, that is, if
u and U depend on B, E considered as a functional of B,
E{B}, is of course nonlinear. However, E, again considered
as a functional of u, U and B, E{u,U ,B}, is still linear
in B.

The major task of mean-field theory consists now just in
establishing a linear and homogeneous functional relating
E and B. Making the ansatz

E = αB − η∇B, (8)

with ∇B being the gradient tensor of the mean magnetic
field, this task coincides with determining the tensors α and
η, which are of course functionals of u and U . Because of
linearity and homogeneity we are entitled to employ for this
purpose various arbitrary vector fields BT (i.e., test fields)
in place of B in (6), keeping the velocity of course fixed.
Each specific assignment of BT yields a corresponding bT

and via that an ET and it establishes (up to) three linear
equations for the wanted components of α and η. Hence,
choosing the number of test fields in accordance with the
number of the tensor components, and specifying the ge-
ometry of the test fields “sufficiently independent” from
each other, the components of α and η can be determined
uniquely. In doing so, the amplitude of the test fields clearly
drops out (Brandenburg et al. 2008b).

Is the result affected by the geometry of the test fields?
An ansatz like (8) is in general not exhaustive, but re-
stricted in its validity to a certain class of mean fields, here
strictly speaking to stationary fields which change at most
linearly in space. Consequently, the geometry of the test
fields is without relevance just as long as they are taken
from the class for which the E ansatz is valid, but not for
other choices.

For many applications it will be useful to generalize the
test-field method such that all employed test-fields are har-
monic functions of position, defined by one and the same
wavevector k. The turbulent transport coefficients can then
be obtained as functions of k and have to be identified
with the Fourier transforms of integral kernels which de-
fine the in general non-local relationship between E and
B (Brandenburg et al. 2008a). Quite analogous, the in
general also non-instantaneous relationship between these
quantities can be recovered by using harmonic functions
of time for the test-fields. The coefficients, then depend-
ing on the angular frequency ω, represent again Fourier
transforms of the corresponding integral kernels (Hubbard
& Brandenburg 2009).

If u and U are taken from a series of main runs with
a dynamically effective mean field of, say, fixed geometry,
but from run to run differing strength B, α and η can be
obtained as functions of B. Thus, it is possible to determine
the quenched dynamo coefficients basically in the same way
as in the kinematic case, albeit at the cost of multiple nu-
meric work.

Let us now relax the above assumption on the back-
ground turbulence and admit additionally a primary mag-
netic turbulence b0. For the sake of simplicity we will not
deal here with E0, so let us assume that it vanishes. In the

representation (3) of E we now combine the first and last
terms using u = u0 + uB and obtain

E = u× bB + uB × b0, (9)

differing from (7) by the additional contribution, uB × b0.
The quasi-kinematic method necessarily fails here even
when modifying (6) appropriately to form an equation for
bB as only the term u× bB is provided. Obviously, a valid
scheme must treat also uB in a test-field manner similar
to bB . The equation to be employed for uB has of course
to rely upon the momentum equation. Due to its intrinsic
nonlinearity, however, a major challenge consists then in en-
suring the linearity and homogeneity of the test solutions
in the test fields.

3. A model problem

3.1. Motivation

We commence our study with a model problem that is sim-
pler than the complete MHD setup, but nevertheless shares
with it the same mathematical complications. We drop
the advection and pressure terms and adopt for the dif-
fusion operator simply the Laplacian (and a homogeneous
medium). Thus, there is no constraint on the velocity from
a continuity equation and an equation of state. However,
as in the full problem, we allow the magnetic field to exert
a Lorentz force on the fluid velocity. We also allow for the
presence of an imposed uniform magnetic field Bimp to en-
able a determination of the α effect independently from the
test-field method. The magnetic field is hence represented
as B = Bimp + ∇ × A where A is the vector potential
of its non-uniform part. The resulting modified momentum
equation for the velocity U and the (original) induction
equation read then

∂U

∂t
= J ×B + FK + ν∇2U , (10)

∂A

∂t
= U ×B + FM + η∇2A, (11)

where we have included the possibility of both kinetic and
magnetic forcing terms, FK and FM, respectively. (In this
paper we use hydrodynamic and kinetic forcing synony-
mously.) We have adopted a system of units in whichB has
the dimension of velocity namely B := B/

√
µρ, ρ =const.

Defining the current density as J = ∇ × B, it has the
unit of inverse time. The electric field has then the unit of
squared velocity. Furthermore, ν is the kinematic viscosity
and η the magnetic diffusivity.

As will become clear, the major difficulty in defining a
test-field method for MHD or purely magnetic background
turbulence is caused by bilinear (or quadratic) terms like
J ×B and U ×B. Hence, taking the U ·∇U nonlinearity
into account would not offer any new aspect, but would blur
the essence of the derivation and the clear analogy in the
treatment of the former two nonlinearities. The treatment
of the advective term follows the same pattern, as is demon-
strated in Appendix A. Also, it should be pointed out that
working with the simpler set of equations helps reducing
the risk of errors in the numerical implementation.

In three dimensions and for Bimp = FM = 0, but he-
lical or non-helical kinetic forcing via FK, this system of
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equations is capable of reproducing essential features of tur-
bulent dynamos like initial exponential growth and subse-
quent saturation; see, e.g., Brandenburg (2001) or Haugen
et al. (2004).

If Bimp 6= 0 or FM 6= 0 we are no longer dealing with
a dynamo problem in the strictest sense. A discussion of
dynamo processes can still be meaningful if Bimp = 0 and
the magnetic forcing does not give rise to a mean electro-
motive force E0. A possibility to accomplish this is FK = 0

together with a magnetic forcing resulting in a Beltrami
field b0, but any choice providing an isotropic background
turbulence b0, u0 should be suited likewise.

Note that the mean-field induction equation is still au-
tonomous allowing for the solution B = 0. It then depends
on properties of the background turbulence like chirality
whether, e.g., the α effect or other mean-field effects render
this solution unstable by enabling growing solutions.

If we admit Bimp 6= 0, the two forcing terms can in
principle be adjusted such that the resulting background
turbulence is again isotropic and E0 = 0. Should a grow-
ing mean field then be observed, it can legitimately be at-
tributed to an instability as B = Bimp is a solution of
the mean field induction equation and the imposed field
cannot grow. Thus both scenarios have the potential to ex-
hibit mean-field dynamos although the original induction
equation is inhomogeneous and the dynamo must not be
considered as an instability of the completely non-magnetic
state.

Models of the latter type may well have astrophysi-
cal relevance, because at high magnetic Reynolds numbers
small-scale dynamo action is expected to be ubiquitous.
Large-scale fields are still considered to be the consequence
of an instability, at least if there is no E0 or any other sort
of “battery effect”. Magnetic forcing can be regarded as a
modeling tool for providing a magnetic background turbu-
lence when, e.g., in a DNS the conditions for small-scale
dynamo action are not afforded.

More generally, magnetic forcing and an imposed field
provide excellent means of studying the α effect, the in-
verse cascade of magnetic helicity, and flow properties in
the magnetically dominated regime (see, e.g., Pouquet et
al. 1976; Brandenburg et al. 2002; Brandenburg & Käpylä
2007).

3.2. Purely magnetic background turbulence

Before taking on the most general situation of both mag-
netic and velocity fluctuations in the background turbu-
lence it seems instructive to look first at the case comple-
mentary to that discussed in Section 2. That is, we assume,
perhaps somewhat artificially, that the background velocity
fluctuations vanish, i.e. u0 = 0, so that u = uB . According
to (3) we now find

E = EB = uB × b = u× b. (12)

The modified momentum equation for the velocity fluctua-
tions in a homogeneous medium reads (cf. (10))

∂u

∂t
= J × b+ j ×B + F

′ + ν∇2u, (13)

with F ′ = jB ×b+j0×bB −jB × b+j0 × bB . As (j0×b0)′
needs to vanish in order to guarantee u0 = 0, this could

also be written as F ′ = j × b− j × b. Unlike in the quasi-
kinematic method there is now no longer any way to base
a test-field method upon considering one of the fluctuating
fields, here b, to be given (e.g. taken from a main run) while
interpreting the other, here u, as a linear and homogeneous
functional of the mean field. (This would work here, how-
ever, in the second order correlation approximation, where
F ′ is set to zero.)

3.3. General mean-field treatment

The mean-field equations for U and B = curlA + Bimp

obtained by averaging Eqs. (10) and (11) are

∂U

∂t
= ν∇2U + J ×B + F , (14)

∂A

∂t
= η∇2A+U ×B + E, (15)

where we have assumed that the mean forcing terms vanish.
From now on we extend our considerations also onto the
relation between the mean force F = j × b and the mean
field. In full analogy to the mean electromotive force we
find this relation, considered as a functional of u, U and
B, again to be linear and homogeneous in the latter and
write, to start with,

FB = φB −ψ∇B. (16)

Like α and η, the tensors φ and ψ may depend on B.
In the kinematic limit φ and ψ are expected to be non-
vanishing only if b0 6= 0. An analysis in SOCA, however,
would also require u0 6= 0 to get a non-vanishing result;
see Appendix B. Note that b0 6= 0 allows FB to be linear

in B, which would otherwise be quadratic to leading order.
Consequently, the backreaction of the mean field onto the
flow is no longer independent of its sign.

As FB is the divergence of the mean Maxwell ten-
sor, it has to vanish in the homogeneous case, i.e. for
homogeneous turbulence and a uniform field. Hence, for
Equation (16) to be valid in physical space, φ has then
to vanish. However, in Fourier space we may retain relation
(16) with lim

k→0 φ(k) = 0 (but not so for ψ). On the other

hand, in the physical space a description of FB employing

the second derivative of B is likely to be more appropriate,
i.e.

FB = φ∗
∇

2B −ψ∇B. (17)

According to the expression for φ(k), which is derived in
Appendix B for Roberts forcing, Equation (17) specified to

FB = φ∗
∂ 2B

∂z2
−ψJ

would indeed be sufficient as long as there is sufficient
scale separation between mean and fluctuating fields. In
the following, we continue referring to φ as introduced by
Equation (16).

The equations for the fluctuations are obtained by sub-
tracting (14) from (10), and (15) from (11), what leads to

∂u

∂t
= J × b+ j ×B + F

′ + fK + ν∇2u, (18)

∂a

∂t
= U × b+ u×B + E

′ + fM + η∇2a, (19)
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respectively, where F ′ = j×b−j × b and E ′ = u×b−u× b
are terms that are quadratic in the correlations, while fK,M

are just the fluctuating parts of the forcing functions.
To arrive at a set of equations that are formally linear

and allow for solutions as responses to a given mean field
that are formally linear and homogeneous in the latter we
make use of the split of all quantities into parts existing in
the absence of B and parts vanishing with B introduced in
Sect. 2. We write u = u0+uB , a = a0+aB and j = j0+jB ,
further F ′ = F ′

0 + F ′

B
and E ′ = E ′

0 + E ′

B
and assume

that the forcing is independent of B. Equation (18) and
(19) split consequently as follows (see Appendix C for an
illustration)

∂u0

∂t
= ν∇2u0 + F

′

0 + fK, (20)

∂a0

∂t
= η∇2a0 +U × b0 + E

′

0 + fM, (21)

∂uB

∂t
= ν∇2uB + J × b+ j ×B + F

′

B
, (22)

∂aB

∂t
= η∇2aB +U × bB + u×B + E

′

B
. (23)

Because of F ′

0 = (j0 × b0)′ and E ′

0 = (u0 × b0)′, Eqs. (20)
and (21) are completely closed. Furthermore, we have

F
′

B
= (j0 × bB + jB × b0 + jB × bB)′, (24)

E
′

B
= (u0 × bB + uB × b0 + uB × bB)′. (25)

We can rewrite these expressions such that they become
formally linear in uB and bB each in two different flavors:

F
′

B
= (j × bB + jB × b0)′ = (j0 × bB + jB × b)′, (26)

E
′

B
= (u× bB + uB × b0)′ = (u0 × bB + uB × b)′. (27)

Now we have achieved our goal of deriving a system of for-
mally linear equations defining the part of the fluctuations
that can be related to the mean field as response to the
interaction with the given fluctuating fields u, u0, b, and
b0.

Splitting mean force and electromotive force we find

F0 = j0 × b0 and E0 = u0 × b0 (28)

for the parts existing already with B = 0, due to a small-
scale dynamo or magnetic forcing. Although it is hard to
imagine that isotropic forcing alone is capable of enabling
a non-vanishing E0, an additional vector influencing the
otherwise isotropic turbulence may well act in this way. For
example, using the second-order correlation approximation
(SOCA) it was found that in the presence of a non-uniform
mean flow U , with mean vorticity W = curlU , we have in
ideal MHD (η = ν = 0)

E0 = −τU
3
u0 · j0U +

τW
3
u0 · b0W . (29)

Here the index ”0” refers to the fluctuating background
uninfluenced by both the magnetic field and the mean
flow. Beyond this specific result, too, one may expect that
some cross correlation of the primary turbulences is crucial.
(Yoshizawa 1990; Rädler & Brandenburg 2010).

For the parts vanishing with B we have

FB = j × bB + jB × b0 = j0 × bB + jB × b, (30)

EB = u× bB + uB × b0 = u0 × bB + uB × b. (31)

We recall that for b0 = 0 (see Section 2), only the term
u× bB ≡ EK

B
occurs in the mean electromotive force and

for u0 = 0 (see Equation (12)) only uB × b ≡ EM
B

. For
interpretation purposes, it is therefore convenient to define
a correspondingly symmetrized version,

FB = j × bB + jB × b− jB × bB = F
K
B

+ F
M
B

+ F
R
B

EB = u× bB + uB × b− uB × bB = E
K
B

+ E
M
B

+ E
R
B
,

with FR
B

= −jB × bB and ER
B

= −uB × bB being resid-
ual terms. Of course this split is only meaningful with a
non-vanishing mean field in the main run. The correspond-
ing transport coefficients might be split analogously. Note,
however, that for an imposed field in, say, the x direction
this is restricted to the (1j) components of the tensors.

3.4. Test-field method

In a next step we define the actual test equations starting
from Eqs. (22), (23), (26) and (27). As they are already
arranged to be formally linear when deliberately ignoring
the relations between uB and u as well as between bB and
b, respectively, we have nothing more to do than to identify
B with a test field BT and bB ,uB with the corresponding
test solutions bT,uT. Due to the ambiguity in (26) and (27)
four different versions are obtained reading

∂uT

∂t
= JT × b+ j ×BT + F

′

T + ν∇2uT, (32)

∂aT

∂t
= U × bT + u×BT + E

′

T + η∇2aT, (33)

with

F
′

T =





(j × bT + jT × b0)′
or

(j0 × bT + jT × b)′,
(34)

E
′

T =





(u× bT + uT × b0)′
or

(u0 × bT + uT × b)′.
(35)

For mean force and electromotive force expressed by the
test solutions we write correspondingly

F
T =





j × bT + jT × b0
or

j0 × bT + jT × b,
(36)

E
T =





u× bT + uT × b0
or

u0 × bT + uT × b,
(37)

and stipulate that the choice within Eqs. (36) and (37) is
always to correspond to the choice in Eqs. (34) and (35).
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Table 1. Illustration of generating the four versions of the gen-
eralized test-field method by combining the different ways of
representing F

′

T and E
′

T in Eqs. (34) and (35)

.

j × bT + jT
× b0 j0 × b

T + jT
× b

u × bT + uT
× b0 ju bu

u0 × b
T + uT

× b jb bb

As we will make use of all four possible versions we label
them in a unique way by the names of the fluctuating fields
of the main run that enter the expressions for F ′

T and E ′

T .
Accordingly, we find by inspection of Eqs. (34) and (35) for
the labels the combinations ju, jb, bu and bb; see Table 1.

Now we conclude that for given u, b, u0, b0 and U the
test solutions uT, bT are linear and homogeneous in the test
fields BT and that the same holds for FT and ET. Hence,
the tensors α, η, φ and ψ derived from these quantities will
not depend on the test fields, but exclusively reflect prop-
erties of the given fluctuating fields and the mean velocity.
If these are affected by a mean field in the main run the
tensor components will show a dependence on B. Thus, like
in the quasi-kinematic method, quenching behavior can be
identified. We observe further that when using the mean
field from the main run as one of the test fields, the corre-
sponding test solutions bT and uT will coincide with b−b0
and u− u0, respectively.

Summing up, we may claim that the presented general-
ized test-field method in either shape satisfies certain nec-
essary conditions for the correctness of its results. But can
we be confident, that these are sufficient, too? An obvi-
ous complication lies in the fact, that in contrast to the
quasi-kinematic method yielding the transport coefficients
uniquely, we have now to deal with four different versions
which need not be completely equivalent. Indeed we will
demonstrate that the reformulation of the original prob-
lem into Eqs. (32) and (33) with Eqs. (34) and (35) in-
troduces occasional spurious instabilities. As we presently
see no strict mathematical argument for the identity of the
outcomes of all four versions, we resort to an empirical justi-
fication of our approach. This is what the rest of this paper
is devoted to.

Remarks: (i) Applying the second order correlation approx-
imation (SOCA) to the system (32), (33), that is, neglecting
F ′

T and E ′

T , melts the four versions down to one and thus
removes all complications.
(ii) In the limitB → 0 we have simultaneously u→ u0 and
b→ b0, so again only one version remains. The method has
then of course no longer any value for quenching considera-
tions, but it still might be useful to overcome the limitations
of SOCA.
(iii) For b0 = 0 the aT equation (33) with the first version
of (35), i.e.

E
′

T = (u× bT )′ (38)

and correspondingly ET = u× bT , but (32) ignored, re-
verts to the quasi-kinematic method. For comparison we
will occasionally apply this method even when b0 6= 0 and
label the quantities calculated in this way with an upper
index “QK”.

From now on we define mean fields by averaging over
two directions, here over the x and y directions, that is, all

mean quantities depend merely on z (if at all) and we get
a 1D mean-field dynamo problem. As a consequence, Bz is
constant and there are only two non-vanishing components
of ∇B, namely Jx and Jy so only the evolution of Bx and

By has to be considered. Moreover, Ez is without influence

on the evolution of B. Hence, instead of Eqs. (16) and (8)
we can write

F i = φijBj − ψijJj , E i = αijBj − ηijJj , (39)

where the original rank-three tensors ψ and η are degener-
ated to rank-two ones.

Only the four components of either tensor with i, j =
1, 2 are of interest, thus altogether 16 components need to
be determined. As one test field BT comprises two relevant
components and yields an FT and an ET, each again with
two relevant components, we need to consider solutions of
Eqs. (22) and (23) with Eqs. (34) and (35) for a set of four
different test fields.

Selection of test fields: The simplest choice are homoge-
neous fields in the x and y directions, but they are only
suited to determine the α tensor.

All four tensors can be extracted by use of test fields
with either the x or the y component proportional to ei-
ther cos kz or to sin kz and the other vanishing (see, e.g.,
Brandenburg 2005b; Brandenburg et al. 2008a, 2008b; Sur
et al. 2008). That is, BT is either Bpc

i = δip cos kz or
Bps

i = δip sin kz, p = 1, 2, where the superscript pq, q = c, s
labels the test field and the subscript i refers to its com-
ponents. By varying the wavenumber k, the wanted tensor
components can in principle be determined as functions
of k, but are then no longer allowed to be interpreted in
the usual way (cf. Brandenburg et al. 2008a). Here we re-
frain from doing so and fix k to the smallest possible value
k = 2π/Lz where Lz is the extent of the computational
domain in z direction. But even then we introduce some
errors because the harmonic test fields do not belong to
the class of mean fields for which the ansatzes Eqs. (16)
and (8) are exhaustive (see Sect. 2). We must be aware
that the tensors calculated in this way are “polluted” by
some contributions from terms with higher derivatives of
B in E and F . To monitor these departures we compare
the α and φ tensors found with harmonic test fields with
those obtained with uniform ones.

For each pair of test fields (Bpc,Bps) we determine 2×4
unknowns by solving the linear systems

Fpq

i = φijB
pq

j − ψijJ
pq

j , Epq

i = αijB
pq

j − ηijJ
pq

j . (40)

q =c,s. Note that there is no coupling between the systems
for p = 1 and p = 2. Inversion of the rotation matrix

R =

(
cos kz − sin kz
sin kz cos kz

)
(41)

(with the angle kz) provides the solutions explicitly, hence
we have

(
φij

ψijk

)
= Rt

(
Fjc

i

Fjs

i

)
,

(
αij

ηijk

)
= Rt

(
Ejc

i

Ejs

i

)
. (42)

Here the superscript “t” indicates transposition.
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3.5. Forcing functions, computational domains and boundary
conditions

For testing purposes, a common and convenient choice is
the Roberts flow forcing function,

f = σkfΨẑ+∇× (Ψẑ) with Ψ = cos kxx cos kyy, (43)

and the effective forcing wavenumber kf = (k2
x + k2

y)1/2.
With the chosen averaging the Roberts forcing is isotropic
in the xy plane. Furthermore, σ is a parameter controlling
the helicity of the flow: with σ = 0 it is non-helical while for
σ = 1 it reaches maximum helicity. If not declared other-
wise, we will employ just maximally helical Roberts forcing.

The Roberts forcing function can be employed for ki-
netic as well as magnetic forcing, so we write fK,M =
NK,Mf , where the NK,M are amplitudes having the units
of acceleration and velocity squared, respectively. Note that
for σ = 1 Eq. (43) yields a Beltrami field, i.e., it has the
property curlf = kff . Therefore, provided Bimp = 0,
kinetic and magnetic forcing act completely uninfluenced
from each other and create just a flow and a magnetic field
having exactly the Roberts geometry. This is not the case
for σ 6= 1.

The computational domain is a cuboid with quadratic
base Lx = Ly = 2π while its z extent remains adjustable
and depends on the smallest wavenumber in the z direction,
k1z, to be considered. However, as the Roberts forcing func-
tion is not z dependent, the runs from which only α and φ
are extracted were carried out in 2D with k1z = 0.

We choose here kx = ky = k1 where k1 = 1 is the
smallest wavenumber that fits into x and y extent of the
computational domain. For random forcing the domain is
always cubic, i.e. Lx = Ly = Lz = 2π. In all cases we
assume periodic boundary conditions in all directions. The
results presented below are based on revision r13439 of the
Pencil Code1, which is a modular high-order code (sixth
order in space and third-order in time) for solving a large
range of different partial differential equations.

3.6. Control parameters and non-dimensionalization

In cases with an imposed magnetic field, we set Bimp =
(B0, 0, 0). Along with it the forcing amplitudes NK,M are
the most relevant control parameters. The only remaining
one is the magnetic Prandtl number, PrM = ν/η.

It is convenient to measure length in units of the inverse
minimal wavenumber k1, time in units of 1/ηk2

1, velocity
in units of ηk1, and the magnetic field also in units of ηk1.
The forcing amplitudes NK,M are given in units of η2k3

1 and
η2k2

1, respectively. Results will also be presented in dimen-
sionless form: αij and ψij in units of ηk1, ηij in units of η,
φij in units of ηk2

1 if not declared otherwise. Dimensionless
quantities are denoted by a tilde throughout.

The intensities of the physically relevant actual and pri-
mary turbulences are readily measured by the magnetic
Reynolds number and the Lundquist number,

ReM = urms/ηkf , Lu = brms/ηkf , (44)

where urms and brms are the rms values of fluctuating veloc-
ity and magnetic field, respectively, and kf is the effective
forcing wavenumber.

1 http://pencil-code.googlecode.com

4. Results

Throughout this section we set the mean flow U to zero. An
important criterion for the correctness of the generalized
test-field methods is the agreement of their results with
those of the imposed-field method. In most cases we checked
for this criterion. Of course, the imposed-field method is
only applicable if the actual mean field in the main run is
uniform. If this is not the case, we are in some instances still
able to perform validation by comparing with analytical
results.

4.1. Zero mean magnetic field

In this section we assume that the mean field is absent or
weak enough as not to affect the fluctuating fields markedly,
that is, u ≈ u0, b ≈ b0. In particular it can then not render
the transport coefficients anisotropic. Therefore, we denote
by α and ηt simply the average of the first two diagonal
components of α and η, i.e. α = (α11 + α22)/2 and ηt =
(η11 + η22)/2, respectively. If not specified otherwise we set

B̃imp = 10−3 or zero. Furthermore, we take PrM = 1, i.e.
ν = η.

4.1.1. Purely hydrodynamic forcing

In order to make contact with known results, we consider
first the case of the hydrodynamically driven Roberts flow.
In two dimensions, no small-scale dynamo is possible, hence
b0 = 0 and u0rms = NK/νk

2
f . In three dimensions, how-

ever, this solution could be unstable, but we have not
yet employed sufficiently large ReM allowing for that. For
ReM ≪ 1, α is given by (Brandenburg et al. 2008a)

α/α0K = ReM/[1 + (kz/kf)
2], α0K = −urms/2, (45)

where kz is the wavenumber of the harmonic test fields. The
minus sign in α0 accounts for the fact that the Roberts flow
has positive helicity, which results in a negative α.

Making use of the quasi-kinematic method, as well as of
all four versions of the generalized method, we calculated
α for NM = 0, kz = 0 (2D case) and values of ÑK rang-
ing from 0.01 to 100 with a ratio of 10; ũrms grows then
from 0.005 to 50. Figure 1 shows α/α0 versus ReM (solid
line). Here the data points for all methods are indistinguish-
able. All results also agree with those of the imposed-field
method.

Agreement with the SOCA result (45) (dotted line) ex-
ists for ReM ≪ 1. For ReM > 1, this is not applicable, be-
cause dropping the E ′

T term is then no longer justified. The
SOCA values are nevertheless numerically reproducible by
the test-field methods when ignoring the F ′

T and E ′

T terms
in Eqs. (32) and (33); see the diamond-shaped data points
in Figure 1.

Corrections to the result (45) with the E ′

T term retained
were computed analytically by Rädler et al. (2002a,b). The
corresponding values are again well reproduced by all fla-
vors of the generalized test-field method as well as by the
imposed-field method.

In the first line of Table 2, we repeat the result for
ÑK = 1 and added that for test fields with the wavenum-
ber kz = 1, from where we also come to know the turbulent
diffusivity ηt. Note the difference between the α values for
kz = 1 and kz = 0 roughly given by the factor

√
2 from
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Fig. 1. α/α0K vs. ReM for purely kinetic Roberts forcing with
PrM = 1 and kz = 0 (2D case) from the quasi-kinematic and
all versions of the generalized method (solid line with squares).
Note the full agreement with Eq. (45) (dotted line) for ReM ≪ 1.
Diamonds indicate the results of the test-field methods with
the F

′

T and E
′

T terms in Eqs. (32) and (33) neglected, again
coinciding with (45).

(45) for kz = kf = 1. Additionally, the results of the quasi-

kinematic method for kz = 1, αQK and ηQK
t , are shown. As

expected, they coincide completely with α and ηt.

4.1.2. Purely magnetic forcing

Next we consider the case of purely magnetic Roberts forc-
ing i.e. NK = 0. Due to its Beltrami property, b0 ∝ f ,
u0 = 0 is a solution of Eqs. (20) and (21). A bifurcation
leading to solutions with u0 6= 0 cannot be ruled out gen-
erally, but was never observed. Thus we have for the rms
value of the magnetic vector potential a0rms = NM/ηk

2
f ,

hence b0rms = NM/ηkf . The appropriate parameter for ex-
pressing the strength of the fluctuating field(s) is now the
Lundquist number and the corresponding analytic result
for Lu ≪ 1 reads

α/α0M = (Lu/PrM)/[1 + (kz/kf)
2], α0M = 3brms/4 (46)

(for the derivation see Appendix D). It turns out that the
sign of α coincides now with that of the helicity of the forc-
ing function. Again, we consider first the two-dimensional
case with kz = 0; see Figure 2. In analogy to purely hy-
drodynamic forcing we find for Lu ≪ 1 agreement between
all versions of the generalized test-field method (solid line
with squares) with Equation (46) (dotted line). For higher
values the SOCA versions (see Sect. 4.1.1) accomplish the
same; see diamond data points. Note, that for the last data
point with Lu = 7 it was necessary to lower the strength of
the imposed field to Bimp/ηk1 = 10−4, because otherwise
the solution of the main run becomes unstable and changes
to a new pattern.

The second line of Table 2 repeats the result for ÑM = 1,
again amended by those for kz = 1 and the results of the
quasi-kinematic method which is obviously unable to pro-
duce correct answers. This is because the mean electromo-
tive force is now given by uB × b0. which is only taken into
account in the generalized method. Note further that ηt is
positive both for hydrodynamic and magnetic forcings.

Fig. 2. α/α0M versus Lu for purely magnetic Roberts forcing
with PrM = 1 and kz = 0 (2D case) from all versions of the gen-
eralized method (solid line with squares). Note the full agree-
ment with Equation (46) (dotted line) for Lu ≪ 1. Diamonds
give the results of the test-field methods with the E

′

T and F
′

T

terms in (38) neglected, again coinciding with (46).

Table 2. Kinematic results for α̃ and η̃t for purely hydrody-

namic (ÑM = 0) purely magnetic (ÑK = 0), and hydromagnetic
Roberts forcing, PrM = 1. The wavenumber of the test field is
kz = 1, except in the third column where kz = 0. Its results agree
with those of the imposed-field method. α̃QK and η̃QK

t refer to
the quasi-kinematic method.

ÑK ÑM α̃(kz = 0) α̃ α̃QK η̃t η̃QK
t

1 0 −0.0857 −0.0569 −0.0569 0.0399 0.0399
0 1 0.2499 0.1684 0.0000 0.1188 0.0000

3.364 0 −0.7330 −0.4734 −0.4734 0.3087 0.3087
0 1.942 0.8219 0.5664 0.0000 0.3983 0.0000

3.364 1.942 −0.0081 0.0664 −0.4734 0.6604 0.3086

3.364 0 −1.0002 −0.6668 −0.6666 0.4715 0.4714 1

0 1.942 1.0000 0.6666 0.0000 0.4714 0.0000 1

3.364 1.942 −4·10−6 2·10−5
−0.6666 0.9428 0.4714 1

1 with SOCA

4.1.3. Hydromagnetic forcing

As already pointed out in Sect. 3.5, in the absence of a mean
field, for simultaneous kinetic and magnetic Roberts forcing
there is a solution of Eqs. (20) and (21) consisting just of
the solutions u0 and b0 of the system forced purely hydro-
dynamically and magnetically, respectively. Again, a bifur-
cation leading to another type of solution cannot be ruled
out, but was not observed. Only within SOCA, however,
the decoupling of u0 and b0 lets the value of α for hydro-
magnetic forcing be purely additive in the values for purely
hydrodynamic and purely magnetic forcings. We denote the
two latter by αk = α(b0 = 0) and αm = α(u0 = 0), re-
spectively. When abandoning SOCA, the terms (uB × b0)′
and (j0×bB +jB ×b0)′ in Equations (22) and (23) provide
couplings between uB and bB and give rise to an additional
“magnetokinetic” part, of α defined as αmk = α−αk−αm.
Note that we use here lower case subscripts k, m, and
mk to distinguish from the split introduced at the end of
Section 3.3, which applies to the nonlinear case. In contrast,
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Fig. 3. α versus ReM = Lu for hydromagnetic Roberts forcing
with PrM = 1 and kz = 0 (2D case). Along with the total value
the constituents ,αk, αm and αmk as well as αk +αm are shown.
Note the sign change in α at ReM ≈ 0.54. The inset shows αmk in
comparison to the result of a fourth order analytical calculation
(solid line).

the occurrence of αmk is a purely kinematic effect. While
αk and αm are, to leading order (and hence in SOCA),
quadratic in the respective background fluctuations the
magnetokinetic term is of leading fourth order and is rep-
resentable in schematic form as αmk ∝ 〈u0ψ0 b0a0〉.

Lines 5 and 8 of Table 2 show cases with hydromag-
netic forcing and amplitudes adjusted such that we would
have α̃k = α̃m = 1 if SOCA were valid. In either case the
preceding two lines present the corresponding purely forced
cases. Lines 6 to 8 refer to the SOCA version of the test-field
methods. It can be clearly seen that the results are additive
only in the latter case. The value of αmk as inferred from
lines 3 to 5 is −0.1 resulting in a considerable reduction of α
in comparison with the purely additive value. This is owed
to the strong forcing amplitudes leaving the applicability
ranges of SOCA far behind.

Figure 3 shows αmk for equally strong velocity and mag-
netic fluctuations as a function of ReM = Lu together with
αk, αm, αk + αm and the resulting total value α. Note
the significant difference between the naive extrapolation
of SOCA, αm + αk, and the true α. In its inset the figure
shows the numerical values of αmk in comparison to the
result of a fourth order calculation αmk = −

√
2/64u2

rmsb
2
rms

(for the derivation see Appendix E). Clearly, the validity
range of this expression extends beyond ReM = Lu = 1
and hence further than the one of SOCA. It remains to be
studied whether the magnetokinetic contribution has a sig-
nificant effect also in the more general case when u0 6‖ b0. If
so, considering α to be the sum of a kinetic and a magnetic
part, as often done in quenching considerations, may turn
out to be too simplistic.

Likewise one may wonder whether closure approaches
to the determination of transport coefficients supposed to
be superior to SOCA can be successful at all as long as they
do not take fourth order correlations into account properly.

For the tensors φ and ψ, which turn out to show up with
simultaneous hydromagnetic and magnetic forcing only (in

addition, φ requires z-dependent mean fields) we have of
course again isotropy, φ11 = φ22 ≡ φ, ψ11 = ψ22 ≡ ψ.

As a peculiarity of the Roberts flow, ψ vanishes in the
range of validity of SOCA if the helicity is maximum (σ = 1
in (43)). For this case the first three panels of Figure 4 show
the dependences α(kz), η(kz) and φ(kz) with different val-
ues of u0rms = b0rms (data points, dotted lines). The last
panel shows ψ(kz) for σ = 0.5 and the same forcing am-
plitudes as before. As explained above, u0 and b0 can now
no longer be forced independently from each other. Hence
both fields can not show exactly the geometry defined by
(43) and urms and brms diverge increasingly with increasing
forcing.

As demonstrated in Appendix B, φ(kz) ∝ k2
z/(k

2
z + k2

f ),
α(kz), η(kz), ψ(kz) ∝ 1/(k2

z + k2
f ) in the SOCA limit. For

comparison these functions are depicted by solid lines. Note
the clear deviations from SOCA for ReM = Lu = 5, partic-
ularly in α. Note also that the expression for ψ was derived
under the assumption that the background has the geome-
try (43). It is therefore not applicable in a strict sense. The
clear disagreement with the values of ψ from the test-field
method for the high values of ReM and Lu are hence not
only due to violating the validity constraint ReM ≪ 1.

4.2. Dependence on the mean field

We now admit dynamically effective mean fields and hence
have to deal with anisotropic fluctuating fields u and b
which result in anisotropic tensors α, η, φ and ψ. For the
chosen forcing, B is the only source of anisotropy in the xy
plane, so α has to have the form

αij = α1δij + α2B̂iB̂j , i, j = 1, 2,

with B̂ the unit vector in the direction of B (here the x
direction). We obtain then α11 = α1 + α2 and α22 = α1.
Of course, the tensors η, φ and ψ are built analogously.
Clearly, irrespective whether the forcing is pure or mixed
the effects of Bimp prevent the fluctuating u and b from
having Roberts geometry .

For vanishing magnetic background, b0 = 0, the gener-
alized methods are still expected to give results coinciding
with those of the quasi-kinematic one, but with b0 6= 0 we
will leave safe mathematical grounds and enter empirical
work.

4.2.1. Purely hydrodynamic forcing

In this case we have EB = u× bB = EK
B

and all flavors of
the generalized method have to yield results which coincide
with those of the quasi-kinematic method. This is valid to
very high accuracy for the ju and bu versions and somewhat
less perfectly so for the bb and jb versions. We emphasize
that the presence of Bimp, although being solely responsible
for the occurrence of magnetic fluctuations, does not result
in a failure of the quasi-kinematic method as one might
conclude from the model used by Courvoisier et al. (2010).

Figure 5 presents the constituents of α as functions of
the imposed field in the 2D case with PrM = 1 We may
conclude from the data that α2 is negative and approxi-
mately equal to αM

11 . For values of Bimp/ηk1 > 5 its mod-
ulus approaches α22 = α1 and thus gives rise to the strong
quenching of the effective α = α11. Indeed, α(Bimp) can be
described by a power law with an exponent −4 for large
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Fig. 4. α(kz), ηt(kz), and φ(kz) for hydromagnetic Roberts forcing with PrM = 1 and σ = 1 (left three panels), likewise ψ(kz),
but for σ = 0.5 (rightmost panel). Solid lines correspond to SOCA results, cf. Appendix B. Curve labels refer to ReM = Lu or
(ReM,Lu).

Fig. 5. α11 (solid line, filled circles) and α22 (dashed line, open
triangles) as functions of the imposed field strength Bimp, com-
pared with −αM

11 (dotted line, small dots) and α22 −α11 = −α2

(dotted line, open circles) for purely kinetic Roberts forcing with

ÑK = 1 and PrM = 1. αM
11 ≈ α2 throughout. Note that α0K < 0

and that the α symbols in the legend refer to the normalized
(hence sign-inverted) quantities.

Bimp. By comparing with computations in which the non-
SOCA term was neglected, we have checked that this dis-
crepancy is not a consequence of SOCA. This is at odds
with analytic results predicting either α ∝ B−2 (Field et
al. 1999; Rogachevskii & Kleeorin 2000) or ∝ B−3 (Moffatt
1972; Rüdiger 1974). Sur et al. (2007) suggested that this
difference was due to the fact that the flows are either time-
dependent or steady. However, inspecting their Figure 2,
their numerical values for α do exhibit the B−4 power law.
They also found that a αM, defined similarly to our α11,
increases quadratically with B for weak fields and declines
quadratically for strong fields (Sur et al. 2007). This is in
turn in agreement with our present results.

4.2.2. Purely magnetic forcing

Here, the mean electromotive force is simply E = EM
B

=

uB × b. This is true as long as significant velocities in the
main run occur only due to the presence of a mean field,
that is, as long as u0 = 0 (see above). While B is weak,
E is approximately uB × b0. However, one could speculate
that, if the imposed field reaches appreciable levels, i.e.,
if u is sufficiently strong, E can, with good accuracy, be
approximated by EK

B
= u× bB . Since the quasi-kinematic

method takes just this term into account, it should then
produce useful results.

In Figure 6 we show the rms values of the resulting
magnetic and velocity fields as functions of the imposed
field strength for ÑM = 1, corresponding to Lu = 1/2 if
Bimp = 0. The data points can be fitted by expressions of
the form

brms

b0rms
=

1

1 +B2
imp/B

2
∗

,
urms

b0rms
=

Bimp/B∗

1 +B2
imp/B

2
∗

, (47)

where B∗ ≈ 1.8 ÑM. Note, that indeed the velocity fluc-
tuations become dominant over the magnetic ones for
Bimp/ηk1 > 2.

The resulting finding, as shown in Figure 7, is com-
pletely analogous to the one of Sect. 4.2.1, but now we see
−αK

11 ≈ −α2 approaching α22 = α1 with increasing Bimp.
Hence, the supposition that the quasi-kinematic method
could give reasonable results for strong mean fields has not
proven true as αK

11 is not approaching α11, despite the dom-
ination of urms over brms. Instead, the values from the quasi-
kinematic method have the wrong sign and deviate in their
moduli by several orders of magnitude.

In Table 3 we compare, for different values of Bimp,
the values of α11 and α22, obtained using the generalized
test-field method, with those of αK

11 and those from the

quasi-kinematic method, αQK
11 and αQK

22 , where the entire
dynamics of bB has been ignored. Note, again, that the re-
sults of all four version of the generalized test-field method
agree with each other.
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Fig. 6. Root-mean-square values brms (filled circles) and urms

(open circles) as functions of the imposed field strength Bimp

for purely magnetic Roberts forcing ÑM = 1 with PrM = 1. The
solid and dashed lines represent the fits given by Equation (47).

Fig. 7. α11 (solid line, filled circles) and α22 (dashed line, open
triangles) as functions of the imposed field strength Bimp, com-
pared with −αK

11 (dotted line, small dots) and α22 −α11 = −α2

(dotted line, open circles) for purely magnetic Roberts forcing

with ÑM = 1 and PrM = 1. Note that αK
11 ≈ α2 throughout.

4.3. Hydromagnetic forcing

Given that the α effect can be sensitive to the value of
PrM, we study α11 and α22 as functions of PrM, keeping

Table 3. Dependence of the diagonal components of the α ten-

sor on eBimp for eNM = 1, PrM = 1 using the generalized method
(α̃11 and α̃22) together with the kinetic contribution α̃K

11 and

the results from the quasi-kinematic method (α̃QK
11 and α̃QK

22 ).

B̃imp 10−2 1 101 102

α̃11 2.499 10−1 1.376 10−1 2.000 10−4 2.131 10−8

α̃22 2.499 10−1 1.747 10−1 6.161 10−3 6.390 10−5

α̃K
11 −8.391 10−6

−4.540 10−2
−6.666 10−3

−7.067 10−5

α̃QK
11 −7.858 10−6

−4.350 10−2
−6.657 10−3

−7.067 10−5

α̃QK
22 −2.247 10−7

−1.152 10−3
−4.740 10−7

−5.326 10−13

Fig. 8. α11 (solid line, filled circles) as function of the im-
posed field strength Bimp, compared with −αK

11 (dotted line,
small dots), αM

11 (dash-dotted line, open circles) and αR
11 (dot-

ted line, open squares) for hydromagnetic Roberts forcing with

ÑM = ÑK = 1 and PrM = 1. The inset shows α22 (dashed line,
open triangles) compared to α11.

Fig. 9. Dependence of α11 and α22 on PrM for hydromagnetic
Roberts forcing with Lu/PrM = 1 and Bimp/νk1 = 1.

Lu/ReM = 1 and Bimp/νk1 = 1 fixed. The result is shown
in Figure 9.

In the interval 2 ≤ PrM ≤ 10 the α coefficients ex-
hibit a high sensitivity with respect to PrM changing even
their sign at PrM ≈ 0.7 and 2, respectively. Note also the
occurrence of a minimum and the subsequent growth for
PrM > 4.

Analogously to Figures 5 and 7 we show in Figure 8 the
constituents of α versus Bimp. Note that we have used here
α0KReM0 + α0MLu0 > 0 for normalizing α which is the
kinematic value of α11 = α22 for kz = 0 and small u0rms,
b0rms; see Equations (45) and (46), Sect. 4.1.3.

It can be observed that αM
11 at first dominates over −αK

11,
but at Bimp/ηk1 ≈ 10 their relation reverses. Remarkably,
the ratio of the moduli reaches, for high values of Bimp, just
the inverse of that for low values. The strong quenching of
α11 is now a consequence of αR

11 approaching −αK
11 − αM

11.
In complete agreement with the former two cases with pure
forcings, −α11 is proportional to B−4

imp. However, we see a
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Fig. 10. Convergence of α11 the ju and jb versions of the gener-
alized method with the result of the imposed-field method and
exponential divergence of the versions bu and bb for PrM = 1

with eNK = eNM = 1, B̃0 = 1, kz = 0 and a resolution of either
322 mesh points (upper panel) or 642 mesh points (lower panel).
Note the significant improvement of the converging methods’
agreement by doubling the resolution: The deviation is chang-
ing from ≈ 2.5% to ≈ 0.05%, that is, by a factor close to 26

suggested by the sixth order of the difference scheme.

deviating behavior of α22(Bimp) as it is no longer following
a power law.

4.4. Convergence

In most of the cases the four different versions of the gener-
alized method, (see Table 1) give quite similar results. For
purely hydrodynamic and purely magnetic forcing there is
agreement to all significant digits. The agreement becomes
somewhat less certain when there is hydromagnetic forc-
ing, i.e. NK 6= 0, NM 6= 0. In general, however, agreement
is improved by increasing the numerical resolution.

Yet another complication arises when B0 6= 0, because
then some of the versions display exponentially growing
solutions; see Figure 10. We see no other explanation than
that by the deliberate rearrangements leading to (34), (35)
a potential for spurious instabilities was introduced.

Their real occurrence, however, depends obviously on
intricate properties of the fluctuating fields from the main
run u and b. As the test equations are linear, unlimited
exponential growth results (at least for stationary fields in
the main runs). We suppose that if one could remove the
unstable eigenvalues of the homogeneous version of the sys-

tem (32)–(35) arbitrarily from its spectrum the solution of
the inhomogeneous system would just be the correct one.

5. Discussion

The main purpose of the developed method consists in
dealing with situations in which hydrodynamic and mag-
netic fluctuations coexist. The quasi-kinematic method can
only afford those constituents of the mean-field coefficients
that are related solely to the hydrodynamic background u0,
but the new method is capable of delivering, in addition,
those related to the magnetic background b0. Moreover, it
is able to detect mean-field effects that depend on cross
correlations of u0 and b0. We have demonstrated this with
the two fluctuations being forced externally to have the
same Roberts-like geometry. With respect to α we observe a
“magneto-kinetic” part that is, to leading order, quadratic
in the magnetic Reynolds and Lundquist numbers and is
capable of reducing the total α significantly in comparison
with the sum of the α values resulting from purely hydro-
dynamic and purely magnetic backgrounds. The tensors φ
and ψ which give rise to the occurrence of mean forces
proportional to B (or ∇2B) and J are, to leading order,
bilinear in ReM and Lu. In nature, however, external elec-
tromotive forces imprinting finite cross-correlations of u0

and b0 are rarely found. Therefore the question regarding
the astrophysical relevance of these effects has to be posed.
Given the high values of ReM in practically all cosmic bod-
ies, small-scale dynamos are supposed to be ubiquitous and
do indeed provide hydromagnetic background turbulence.
But is it realistic to expect non-vanishing cross-correlations
under these circumstances?

Let us consider a number of similar, yet not completely
identical turbulence cells arranged in a more or less regular
pattern. We assume further that there is some asymme-
try between upwellings and downdrafts such that, say, the
downdrafts are more efficient in amplifying magnetic fields
than the upwellings (Nordlund et al. 1992; Brandenburg
et al. 1996). As dynamo fields are solutions of the homoge-
neous induction equation and the Lorentz force is quadratic
in B, bilinear cross-correlations, u0ib0j , obtained by aver-
aging over single cells can be expected to change their sign
randomly from cell to cell provided the cellular dynamos
have evolved independently from each other. Consequently,
the average over many cells would approach zero and the
aforementioned effects would not occur. In contrast, cross-
correlations that are even functions of the components of b0
and their derivatives, were not rendered zero due to polar-
ity changes in the dynamo fields (e.g. the magneto-kinetic
α).

However, the assumption of independently acting cellu-
lar dynamos can be put in question when the whole pro-
cess beginning with the onset of the turbulence-creating
instability (e.g. convection) is taken into account. During
its early stages, i.e. for small magnetic Reynolds numbers,
the flow is at first unable to allow for any dynamo action,
but with growing amplitude the large-scale dynamo can be
excited first to create a field that is coherent over many tur-
bulence cells. With further growth of its amplitude the (hy-
drodynamic) turbulence eventually enters a stage in which
small-scale dynamo action becomes possible. The seed fields
for these dynamos are now prevailingly determined by the
mean field and due to its spatial coherence the polarity of
the small-scale field is not settling independently from cell
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to cell, thus potentially allowing for non-vanishing cross-
correlations.

But even if one wants to abstain from employing the in-
fluence of a pre-existing mean field it has to be considered
that neighboring cells are never exactly equal. Thus, in the
course of the growing amplitude of the hydrodynamic back-
ground in some of them, the small-scale dynamo will start
working first hence setting the seed field for its immediate
neighbors. It is well conceivable that the field polarity ini-
tiated by one of the early starting cells “cascades” to more
and more distant neighbors until this process is limited by
the cascades originating from other early starting cells. The
result could resemble the domains with uniform field orien-
tation in ferromagnetic materials. Consequently, we arrive
at a situation similar to the one discussed before, yet with
less extended regions of coinciding field polarity. Instead of
employing the idea of a pre-existing large scale dynamo in
the cosmic object at hand one may even suppose that, given
the smallness of the turbulence cells compared to the scale
of the embedding surroundings, there is always a large-scale
field, e.g. the galactic one, that is coherent across a large
number of turbulence cells.

In summary, cross-correlations and the mean-field ef-
fects connected to them are to be considered realistic op-
tions. Direct numerical simulations employing the scenar-
ios discussed above should be performed in order to clarify
the significance of these effects. This is equally valid for
the cross-correlations related effects leading to E0 (see Eq.
(29)).

In a recent paper, Courvoisier et al. (2010) discuss
the range of applicability of the quasi-kinematic test-field
method. Their model consists of the equations of incom-
pressible magneto-hydrodynamics with purely hydrody-
namic forcing. However, by imposing an additional uniform
magnetic field B, together with the forced fluctuating veloc-
ity a fluctuating magnetic field arises. It must be stressed
that, following the further lines of their arguments, these
fluctuations have to be considered as part of the background
(u0, b0), that is, representing just those fluctuations that
occur in the absence of the mean field. This follows from
the fact that, when defining transport coefficients such as
α, the field B is not regarded as part of the mean field
〈B〉, in contrast to our treatment; see their section 2.(b).
For simplicity they consider only the kinematic case and
restrict the analysis to mean fields ∝ eikzz with kz → 0. In
their main conclusion, drawn under these conditions, they
state that the quasi-kinematic test-field method which con-
siders only the magnetic response to a mean magnetic field
must fail for B 6= 0, that is b0 6= 0. We fully agree in this
respect, but should point out that the method was never
claimed to be applicable in that case; see Brandenburg et
al. (2008c, Sect. 3), where it is mentioned that “as in al-
most all supercritical runs a small-scale dynamo is opera-
tive, our results which are derived under the assumption of
its influence being negligible may contain a systematic er-
ror.” However, Courvoisier et al. (2010) overinterpret their
finding in postulating that already the determination of
quenched coefficients such as α(B) for b0 = 0 by means
of the quasi-kinematic method leads to wrong results. The
paper of Tilgner & Brandenburg (2008), quoted by them in
this context, is just proving the correctness of the method,
as do Brandenburg et al. (2008c).

Our tensor ψ is related to their newly introduced mean-
field coefficient Γ by ψij = ǫkj3Γi3k. Unfortunately, an at-
tempt to reproduce their results for Γ (and likewise for α)
is not currently possible owing to our modified hydrody-
namics. We postpone this task to a future paper.

6. Conclusions

Having been applied to situations with a magnetohydro-
dynamic background where both u0 and b0 have Roberts
geometry, the proposed method has proven its potential for
determining turbulent transport coefficients. In particular,
effects connected with cross-correlations between u0 and b0
could be identified and are in full agreement with analyti-
cal predictions as far as available. No basic restrictions with
respect to the magnetic Reynolds number or the strength
of the mean field in the main run, which causes the nonlin-
earity of the problem, are observed so far. As a next step,
of course, the simplifications in the hydrodynamics we used
will be dropped, thus allowing to produce more relevant re-
sults and facilitating comparisons with work already done.

Due to the fact that we have no strict mathematical
proof for its correctness, there can be no full certainty about
the general reliability of the method. As a hopeful indica-
tion, in many cases, all four flavors of the method produce
practically identical results, but occasionally some of them
show, for unknown reasons, unstable behavior in the test
solutions. Clearly, further exploration of the method’s de-
gree of reliance by including three-dimensional and time-
dependent backgrounds is necessary. Homogeneity should
be abandoned and backgrounds which come closer to real
turbulence such as forced turbulence or turbulent convec-
tion in a layer are to be taken into account.

Thus, the utilized approach of establishing a test-field
procedure in a situation where the governing equations
are inherently nonlinear, although by virtue of the Lorentz
force only, has proven to be promising. This fact encourages
us to develop test-field methods for determining turbulent
transport coefficients connected with similar nonlinearities
in the momentum equation. An interesting target is the
turbulent kinematic viscosity tensor, and especially its off-
diagonal components that can give rise to a mean-field vor-
ticity dynamo (Elperin et al. 2007; Käpylä et al. 2009), as
well as the so-called anisotropic kinematic α effect (Frisch et
al. 1987; Sulem et al. 1989; Brandenburg & von Rekowski
2001; Courvoisier et al. 2010) and the Λ effect (Rüdiger
1980, 1982). Yet another example is given by the turbulent
transport coefficients describing effective magnetic pressure
and tension forces due to the quadratic dependence of the
total Reynolds stress tensor on the mean magnetic field
(e.g., Rogachevskii & Kleeorin 2007; Brandenburg et al.
2010).
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Appendix A: Incompressibility

The equations used in this paper had the advantage of sim-
plifying the derivation of the generalized test-field method,
but the resulting flows are not realistic because the pressure
and advective terms are absent. Here we drop these restric-
tions and derive the test equations in the incompressible
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case with constant density. The full momentum and induc-
tion equations take then the form

∂U

∂t
= U ×W + J ×B + FK + ν∇2U − ∇P, (A.1)

∂A

∂t
= U ×B + FM + η∇2A. (A.2)

where W = curlU is the vorticity and P is the sum of gas
and dynamical pressure and absorbs the constant density.
The corresponding mean-field equations are

∂U

∂t
= U ×W + J ×B + F + ν∇2U − ∇P , (A.3)

∂A

∂t
= U ×B + E + η∇2A, (A.4)

where F = u×w+ j × b and E = u× b, and the forcings
were assumed to vanish on averaging. The equations for the
fluctuations are consequently

∂u

∂t
=U ×w + u×W + J × b+ j ×B

+ F
′ + FK + ν∇2u− ∇p, (A.5)

∂a

∂t
= U × b+ u×B + E

′ + FM + η∇2a, (A.6)

where F ′ = (u×w+j×b)′ and E ′ = (u×b)′. As above we
split the fields and likewise the Equations (A.5) and (A.6)
into two parts, i.e. we write u = u0 +uB and a = a0 + aB
and arrive at

∂u0

∂t
= U ×w0 + u0 ×W + F

′

0 + FK + ν∇2u0 − ∇p0,

(A.7)

∂a0

∂t
= U × b0 + E

′

0 + FM + η∇2a0, (A.8)

and the equations for the B dependent parts

∂uB

∂t
=U ×wB + uB ×W + J × b+ j ×B

+ F
′

B
+ ν∇2uB − ∇pB (A.9)

∂aB

∂t
= U × bB + u×B + E

′

B
+ η∇2aB , (A.10)

where F ′ = F ′

0 + F ′

B
and E ′ = E ′

0 + E ′

B
with F ′

0 = (u0 ×
w0 + j0 × b0)′, E ′

0 = (u0 × b0)′, and

F
′

B
= (j0 × bB + jB × b0 + jB × bB

+ u0 ×wB + uB ×w0 + uB ×wB)′, (A.11)

E
′

B
= (u0 × bB + uB × b0 + uB × bB)′. (A.12)

We can rewrite these equations such that they become for-
mally linear in uB and bB . Following the pattern utilized
in Sect. 3.3 we find already for F ′

B
four different ways of

doing that. Together with the two variants in the case of
E ′

B
we finally obtain eight flavors of the test-field method

where again in either case F and E are to be constructed
analogously to F ′

B
and E ′

B
. One of these flavors is defined

by

F
′

B
= (u×wB + uB ×w0 + j × bB + jB × b0)′, (A.13)

E
′

B
= (u× bB + uB × b0)′. (A.14)

It is the one which comes closest to the quasi-kinematic
test-field method, because there E ′

B
= (u× bB)′. Next, we

substitute B by a test field, BT, and uB and bB by the test
solutions, uT and bT, i.e.

∂uT

∂t
=U ×wT + uT ×W + JT × b+ j ×BT

+ F
′

T + ν∇2uT − ∇pT, (A.15)

∂aT

∂t
= U × bT + u×BT + E

′

T + η∇2aT, (A.16)

where

F
′

T = (u×wT + uT ×w0 + j × bT + jT × b0)′, (A.17)

E
′

T = (u× bT + uT × b0)′. (A.18)

For the mean electromotive force and force the ansatzes (8)
and (16) can be employed without change. Note, however,
that the tensors φ and ψ now contain contributions from
the Reynolds stress created by uB , that is eventually, by

B. From the point of view of the tensorial structure of the
relationship between B and F or E the ansatzes (8) and
(16) provide full generality as long as only the mean field
and its first spatial derivative are to be included. That’s
why there are no separate terms with the mean velocity
or its gradient tensor. Instead the latter play the role of
problem parameters and all transport coefficients can of
course be determined as functions of them. A separate task
would consist in determining the tensors which appear in
an analogous form of (29) in place of the scalar coefficients
when a general anisotropic background is given. Then a test
method with respect to U had to be tailored.

Appendix B: Derivation of φ(kz), ψ(kz)

Start with the stationary induction equation in SOCA

η∇2bB + curl (u0 ×B) = 0. (B.1)

Assume u0 = u0rmsf and b0 = b0rmsf with f = f(x, y),

curlf = kff , f2 = 1, B = B̂eikzz, and B̂x,y = const,

B̂z = 0. Hence ∇2f = −k2
f f . Then we can make the ansatz

bB = b̂(x, y)eikzz with ∇2b̂ = −k2
f b̂ and get

bB =
1

η

1

k2
f + k2

z

[
(B · ∇)u0 − ikz u0zB

]

For the calculation of the mean force

FB = j0 × bB + jB × b0

we need further

jB = curl bB = curl (eikzz b̂) = eikzz(curl b̂+ ikzẑ × b̂)
(B.2)

=
kf

η(k2
f + k2

z)

[
(B · ∇)u0 + ikz(B · u0)ẑ

]
+ ikzẑ × bB .

(B.3)
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Consequently,

FB = kfb0 × bB + jB × b0

=
1

η

1

k2
f + k2

z

[

ikz

(
kf(B · u0)ẑ + kfu0zB + ẑ × (B · ∇)u0

)
× b0

+ k2
z u0z(ẑ ×B) × b0

]

=
1

η

1

k2
f + k2

z

[
ikzkf

(
(B · u0)ẑ + u0zB

)
× b0

+ ikzb0z(B · ∇)u0 − ẑb0 · (B · ∇)u0

+ k2
z(u0zb0zB − ẑu0zb0 ·B)

]

and with J = ikzẑ ×B, that is, ikzBk = ǫki3J i, k = 1, 2,

FBi =
1

η

1

k2
f + k2

z

[
kf

(
ǫi3kǫml3u0mb0k − ǫijkǫkl3u0zb0j

)
J l

+ ǫlj3

(
−b0z

∂u0i

∂xj
+ δi3b0 ·

∂u0

∂xj

)
J l

+ k2
z

(
u0zb0z Bi − δi3u0zb0l Bl

)]
.

The tensors are hence

φil =
1

η

k2
z

k2
f + k2

z

(
u0zb0zδil − u0zb0lδi3

)
,

ψil =
1

η

1

k2
f + k2

z

[
kf(u0zb0zδil − u0zb0lδi3)

+ kf(1 − δi3)
(
u0ib0l − δil(u01b01 + u02b02)

)

+ ǫlj3

(
b0z

∂u0i

∂xj
− b0 ·

∂u0

∂xj
δi3

)]
, l 6= 3

φi3 = ψi3 = 0.

For kz → 0 the tensor φ is proportional to k2
z thus the corre-

sponding mean force expressed in physical space by a convo-

lution φ̆ ◦B, with φ̆ being the Fourier-backtransformed φ,
can be approximated by a term ∝ ∂2B/∂z2. For kz ≫ kf ,
however, the mean force can be represented by a term ∝ B.

With Roberts geometry we have for σ = 1

φ11 = φ22 =
1

2η

k2
z

k2
z + k2

f

u0rmsb0rms , ψ = 0.

All other φ components vanish, too.
If, however, for the Roberts geometry 0 ≤ σ < 1 the

field f has indeed yet the property ∇2f = −k2
f f , but is no

longer of Beltrami type. Instead, we have

curlf = σkf(f +
1 − σ2

σ2
fzẑ).

The tensor ψ does not vanish any longer, but is now given
by

ψ11 = − 1

η(k2
z + k2

f )

k2
y(1 − σ2)

kf(1 + σ2)
u0rmsb0rms,

ψ22 = − 1

η(k2
z + k2

f )

k2
x(1 − σ2)

kf(1 + σ2)
u0rmsb0rms,

ψ12 = ψ21 = 0.

Appendix C: Illustration of extracting a linear

evolution equation from a nonlinear one

To illustrate the procedure of extracting a linear evolution
equation from a nonlinear problem, let us consider a sim-
ple quadratic ordinary differential equation, y′ = y2, where
a prime denotes here differentiation. We split y into two
parts, y = yN + yL, so we have

y2 = y2
N + 2yNyL + y2

L. (C.1)

In the last two terms we can replace yN+yL by y, so we have
2yNyL+y2

L = (yN+y)yL, which is now formally linear in yL.
Here, y corresponds to the solution of the ‘main run’. Thus,
at the expense of having to solve an additional nonlinear
auxiliary equation, y′N = y2

N, we have extracted a linear
evolution equation for yL. Altogether we have





y′ = y2,
y′N = y2

N,
y′L = (yN + y)yL,

(C.2)

where the last equation is linear in yL. Note, that the system
(C.2) is exactly equivalent to (C.1), i.e. no approximation
has been made.

Appendix D: Derivation of (46)

Consider the stationary version of (22) with F ′

B
dropped

(i.e. SOCA) and a uniform B, i.e., J = 0

ν∇2uB + j ×B = 0. (D.1)

Assume b = curla, diva = 0, hence j = −∇2a. We get

uB = a×B/ν (D.2)

and further

(uB × b)i =
1

ν
ǫilmǫlkjakbmBj = αijBj

that is,
αij = (a · b δij − aibj)/ν.

Isotropy results in

α = αii/3 = 2a · b/3ν.

For b with Roberts geometry, however, we have α = α11 =
α22 6= α33, hence

α = (a · b+ a3b3)/2ν = kf(a2 + a2
3)/2ν = 3b2rms/4kfν

and with Lu = brms/ηkf

α =
3

4
brmsLu/PrM. (D.3)

Adopt now a B depending on z only with B ∝ eikzz,
but b, a still independent of z. Roberts geometry implies
∇2a = −k2

f a and ∇2uB = −(k2
f +k2

z)uB . Inserting in (D.1)

(with the term proportional to J omitted) yields

(k2
f + k2

z)uB = k2
f a×B/ν + . . .

and comparison with (D.2) reveals that (D.3) has only to
be modified by the factor 1/

[
1 + (kz/kf)

2
]
.
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Appendix E: Derivation of αmk in fourth order

approximation

We employ the iterative procedure of ... to obtain those
contributions to EB which are quadratic in u0rms and b0rms

and expand for that purpose bB and uB into the series

bB = b
(1)

B
+ b

(2)

B
+ b

(3)

B
+ . . . ,

uB = u
(1)

B
+ u

(2)

B
+ u

(3)

B
+ . . .

with

η∇2b
(1)

B
= −curl (u0 ×B)

ν∇2u
(1)

B
= −(j0 ×B + J × b0)

η∇2b
(i)

B
= −curl (u0 × b(i−1)

B
+ u

(i−1)

B
× b0)

ν∇2u
(i)

B
= −(j0 × b(i−1)

B
+ j

(i−1)

B
× b0) , i = 2, . . .

and

EB =
∞∑

i=1

(
u0 × b(i)B

+ u
(i)

B
× b0

)
=

∞∑

i=1

E
(i)

B

In the following we assume B to be uniform and u0, b0 to

have Roberts geometry (43). The SOCA solutions b
(1)

B
and

u
(1)

B
read

b
(1)

B
=

1

ηk2
f

(B · ∇)u0, u
(1)

B
=

1

νkf
b0 ×B .

From here on we switch to dimensionless quantities and set
η = ν = 1, kx = ky = 1, kf =

√
2, |B| = 1. So we have

b
(1)

B
=
u0rms

2
[sinx sin y, cosx cos y,−

√
2 sinx cos y]

u
(1)

B
=
b0rms

2
[0, 2 cosx cos y,−

√
2 sinx cos y]

u
(2)

B
= 0

b
(2)

B
=

1

8

(
− u2

0rms[cos 2y, 0,
√

2 sin 2y] +
b20rms

2

[cos 2y(cos 2x+ 2), sin 2y sin 2x,
√

2 sin 2y(cos 2x+ 3)]
)
.

For b
(3)

B
and u

(3)

B
we present here only those parts which

eventually contribute to αmk:

b
(3)

B
=
u0rmsb

2
0rms

32
[sinx sin y, cosx cos y,−4

√
2 sinx cos y]

+ . . .

u
(3)

B
=
u2

0rmsb0rms

16
[0, cosx cos y,−

√
2

2
sinx cos y] + . . . .

Finally,

E
(3)

B
= u0 × b(3)B

+ u
(3)

B
× b0 = −u2

0rmsb
2
0rms

√
2

64
+ . . . ,

i.e.

αmk ≈ −u2
0rmsb

2
0rms

√
2

64
.

Note, that the contributions omitted in E
(3)

B
provide fourth

order corrections to αk and αm. They result in dependences
on ReM and Lu that are weaker than the parabolic SOCA
ones; see Fig. 3.
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