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SUMMARY

We consider in this paper testing for interactions between a genetic marker set and an environmental
variable. A common practice in studying gene–environment (GE) interactions is to analyze one single-
nucleotide polymorphism (SNP) at a time. It is of significant interest to analyze SNPs in a biologically
defined set simultaneously, e.g. gene or pathway. In this paper, we first show that if the main effects of mul-
tiple SNPs in a set are associated with a disease/trait, the classical single SNP–GE interaction analysis can
be biased. We derive the asymptotic bias and study the conditions under which the classical single SNP–
GE interaction analysis is unbiased. We further show that, the simple minimum p-value-based SNP-set GE
analysis, can be biased and have an inflated Type 1 error rate. To overcome these difficulties, we propose
a computationally efficient and powerful gene–environment set association test (GESAT) in generalized
linear models. Our method tests for SNP-set by environment interactions using a variance component test,
and estimates the main SNP effects under the null hypothesis using ridge regression. We evaluate the per-
formance of GESAT using simulation studies, and apply GESAT to data from the Harvard lung cancer
genetic study to investigate GE interactions between the SNPs in the 15q24–25.1 region and smoking on
lung cancer risk.

Keywords: Asymptotic bias analysis; Gene–environment interactions; Genome-wide association studies; Score
statistic; Single-nucleotide polymorphism; Variance component test.

1. INTRODUCTION

Complex diseases are often caused by the interplay of genes and environment. For example, exposure to
an environmental factor increases disease risk only for patients with specific genetic profiles; patients
with certain genetic profiles have increased disease risk only if they are exposed to an environment.
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668 X. LIN AND OTHERS

Identification of gene–environment (GE) interactions has important implications for understanding under-
lying disease etiology and developing disease prevention and intervention strategies. Genome-wide associ-
ation studies (GWAS), wherein a large number of single-nucleotide polymorphisms (SNPs) are genotyped,
provide a rich opportunity to study GE interactions besides identifying genetic loci that are associated with
diseases/traits. We consider in this paper testing for the interaction effects between multiple SNPs in an
SNP-set and an environmental variable on outcomes.

The work in this paper is motivated by a problem to identify GE interaction effects on lung cancer
risk. The 15q24–25.1 region contains several biologically interesting genes for lung cancer and nicotine
addiction. The published GWAS studies identified several variants in this region that are associated with
both lung cancer risk and smoking behavior (see Hung and others, 2008; Furberg and others, 2010, for
example). The Harvard lung cancer case–control study consists of 1941 subjects (980 lung cancer cases
and 961 controls). Smoking variables and genotypes of 26 SNPs in the 15q24–25.1 region are available.
A question of major interest is to study whether the increased lung cancer risk associated with the multiple
variants in this region is modified by smoking status. In other words, we are interested in examining the
interaction effects between the 15q24–25.1 region, which consists of multiple SNPs and smoking on lung
cancer risk.

In a typical GWAS, GE interactions are investigated by testing the interaction of each SNP and an
environmental variable separately, and then adjusted for multiple testing across the genome. Several
recent efforts have been made to improve the power of the classical single-marker GE interaction test
(Hsu and others, 2012) using an empirical Bayes method (Mukherjee and Chatterjee, 2008) and two-stage
analysis (Murcray and others, 2011). Despite these efforts, the single-marker test has several limitations.
First, multiple comparison adjustment for a large number of markers across the genome could result in
power loss. Secondly, the typed SNPs, i.e. SNPs on a GWAS chip, are often correlated due to linkage
disequilibrium (LD). Furthermore, multiple tests for GE interactions in these single-marker-based GE
interaction models are even more dependent, as interaction terms in these models share the same environ-
mental variable. Dependence among multiple tests can result in incorrect Type 1 error rates and causes
bias in standard multiple comparison adjustments, such as the Bonferroni method, and this bias is often
difficult to correct. Third, the single-marker GE test does not interrogate the joint effects of multiple SNPs
that have similar biological functions. Moreover, as we will show, when there are multiple SNPs whose
main effects are associated with a disease/trait, the single-marker GE test misspecifies the null model and
may result in inflated Type 1 error in testing for GE interactions.

There has been interest in multiple marker analysis by grouping SNPs into biological meaningful SNP-
sets, e.g. SNPs in a gene, haplotype block, or pathway, to improve analysis power and results interpretabil-
ity. See Wu and others (2010) for detailed discussions of forming SNP-sets. The existing SNP-set analysis
has focused on testing for the main effects of an SNP-set (Tzeng and Zhang, 2007; Wu and others, 2010).
Limited work has been done on testing for the interactions between a marker set and an environmental
variable. Tzeng and others (2011) developed a test for the interactions between a marker set and an envi-
ronmental variable for continuous traits by regressing the similarity matrix of a continuous outcome on
the similarity matrix of SNPs in a set. However, this approach is difficult to extend to non-Gaussian traits,
such as a binary trait, because of the complex constraints of the similarity matrix of binary traits.

This paper has two objectives. First, we investigate the asymptotic bias of the single-marker GE inter-
action test, and show that when multiple SNPs within an SNP-set are associated with a disease/trait in their
main effects, the single-marker GE interaction test is generally biased. As a consequence, we show that the
simple SNP-set GE interaction analysis using the minimum of the single-marker GE interaction p-values
(min test), can be biased and may be subjected to inflated Type 1 error rates. Secondly, to overcome these
difficulties, we propose a powerful and computationally efficient test called gene–environment set associ-
ation test (GESAT), for assessing the interaction effects of a set of markers and an environmental variable
for continuous and discrete outcomes. Specifically, we assume the coefficients of the GE interaction terms
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to be random effects, and develop a variance component score test within the induced generalized linear
mixed model (GLMM) framework. As some SNPs in a set are likely to be highly correlated due to high
LD, we use ridge regression to estimate the SNP main effects under the null model.

The remainder of the paper is organized as follows. In Section 2, we introduce the SNP-set GE inter-
action model. In Section 3, we investigate the asymptotic bias of the single-marker GE interaction test. In
Section 4, we describe the GESAT testing procedure. In Section 5, we evaluate the finite sample perfor-
mance of GESAT using simulations. In Section 6, we apply GESAT to the Harvard lung cancer data to
study the interaction effects of the 15q24–25.1 region and smoking on lung cancer risk. We conclude with
discussions in Section 7.

2. MARKER SET AND ENVIRONMENTAL INTERACTION GENERALIZED LINEAR MODELS

Suppose that the data consist of n independent and identically distributed random vectors (Yi , X̃ i ) for
i = 1, . . . , n, where Yi is the phenotype of the i th sample, and X̃ i = (XT

i , Ei , GT
i )T, X i = (Xi1, . . . , Xiq)

T

is a vector of q non-genetic covariates, and Ei is a scalar environmental variable, and Gi = (Gi1, . . . , Gip)
T

is a vector of p genetic markers, which form a SNP-set. Without loss of generality, we consider a scalar
environmental variable E . Define Si = (Ei Gi1, . . . , Ei Gip)

T to be a vector of GE interaction terms
for the i th individual. Suppose conditional on X̃ i , Yi follows a distribution in the exponential family
(McCullagh and Nelder, 1989) f (Yi ) = exp{(Yiθi − b(θi ))/ai (φ) + c(Yi , φ)}, where f (·) is the density
of Yi |X̃ i , and a(·), b(·), and c(·) are some known functions, and θi and φ are the canonical parameter
and the dispersion parameter, respectively. Denote by μi = E(Yi |X̃ i ) = b′(θi ). We consider the following
marker-set and environment interaction GLM (McCullagh and Nelder, 1989)

g(μi ) = XT
i α1 + Eiα2 + GT

i α3 + ST
i β, (2.1)

where g(·) is a monotone link function. For simplicity, we assume g(·) is a canonical link function. Define
an n × 1 environmental variable vector E = (E1, . . . , En)

T, an n × q covariate matrix X = [X1 . . . Xn]T,
an n × p genotype matrix G = [G1 . . . Gn]T and an n × p GE interaction matrix S = [S1 . . . Sn]T. In matrix
notation, model (2.1) can be written as

g(μ) = Xα1 + Eα2 + Gα3 + Sβ = X̃α + Sβ, (2.2)

where μ = (μ1, . . . , μn)
T, α = (αT

1 , α2,α
T
3 )T, and X̃ = [X E G]. We are interested in testing if there is

a marker set and environment interaction, i.e. H0 : β = 0.

3. ASYMPTOTIC BIAS ANALYSIS OF THE SINGLE-MARKER GENE–ENVIRONMENT TEST

A common approach for studying GE interactions is to analyze one SNP at a time. In this section, we study
the asymptotic bias of the maximum-likelihood estimator (MLE) of the GE interaction coefficient in the
classical single-marker GE interaction model, when multiple SNPs are associated with the outcome. We
show that the single-maker-based GE interaction test is generally biased and may result in an inflated Type
1 error rate.

3.1 Analytic asymptotic bias of the single-marker gene–environment test

For simplicity, in our asymptotic bias analysis, we assume no covariates are present. Suppose the data are
generated from the following multi-maker GE interaction model

g(μi ) = α1 + α2 Ei +
p∑

k=1

Gikα3k +
p∑

k=1

Gik Eiβk . (3.1)
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The single-marker GE interaction test assumes the following misspecified model using only the j th genetic
marker ( j = 1, . . . , p)

g(μi ) = α∗
1 + α∗

2 Ei + Gi jα
∗
3 j + Gi j Eiβ

∗
j . (3.2)

Simple calculations show the score equation for estimating (α∗
1 , α

∗
2 , α

∗
3 j , β

∗
j ) under (3.2) is

1

n

n∑
i=1

(1, Ei , Gi j , Gi j Ei )
T[Yi − μ{α∗

1 + α∗
2 Ei + Gi jα

∗
3 j + Gi j Eiβ

∗
j }] = 0, (3.3)

where μ(·) = g−1(·). The asymptotic limit of the score equation (3.3) is given by

E[(1, E, G j , G j E)T{μ(α,β; E, G1, . . . , G p) − μ(α∗, β∗
j ; E, G j )}] = 0, (3.4)

where μ(α,β; E, G1, . . . , G p) = μ{α1 + α2 E + ∑p
k=1 Gkα3k + ∑p

k=1 Gk Eβk} and μ(α∗, β∗
j ; E, G j ) =

μ{α∗
1 + α∗

2 E + G jα
∗
3 j + G j Eβ∗

j }, and the expectation E(·) is taken under the true model (3.1). The

MLEs calculated under the misspecified single-marker GE interaction model (3.2), (α̂∗
1 , α̂

∗
2 , α̂

∗
3 j , β̂

∗
j ),

solve the misspecified score equation (3.3). It is easy to show that the asymptotic limits of the MLEs,
(α̃1, α̃2, α̃3 j , β̃ j ), can be obtained by solving equation (3.4).

The closed-form expressions of (α̃1, α̃2, α̃3 j , β̃ j ) are generally not available, and are generally not equal
to the true values (α1, α2, α3 j , β j ). Indeed, under the null hypothesis of no interaction between the marker
set G and environment E in the true multi-marker model, i.e. H0 : β = 0 in model (3.1), one can show that
β̃ j is generally not 0. This means if the true outcome model is a multi-marker model, the single-marker
GE interaction test is generally biased and does not have a correct Type 1 error rate.

Consequently to test the null hypothesis of no SNP-set by environmental interactions, i.e. H0 : β = 0
under the multi-marker GE interaction model (3.1), the min test will generally be invalid and has an
incorrect Type 1 error rate. Specifically, to test H0 : β = 0, the min test calculates the p-value for test-
ing H0 : β∗

j = 0 in the single-marker GE model (3.2) for each marker j , and adjusts the minimum of these
p-values accounting for multiple testing. As each p-value is generally biased, the minimum of them is
biased as well.

In some special cases, we can derive closed-form expressions of the asymptotic limits (α̃1, α̃2, α̃3 j , β̃ j ).
Specifically, when g(·) is an identity link function and G and E are all binary, we can calculate the
explicit expressions of these asymptotic limits. Define πE = E(E), π j = E(G j ), π jk = E(G j Gk), π j E =
E(G j E), π jk E = E(G j Gk E). In Section A.1 (supplementary material available at Biostatistics online),
we show that the asymptotic limits of the MLEs under the misspecified single-marker GE interaction
model (3.2), which are the solutions of Equation (3.4) are

α̃1 = α1 + 1

π j E − π j − πE + 1

∑
k �= j

α3k(π jk E − π jk − πk E + πk),

α̃2 = α2 +
∑
k �= j

α3k

(
(1 − π j )(π jk E − πk E ) + (π jk − πk)(π j E − πE )

(π j E − π j − πE + 1)(π j E − πE )

)

+ 1

π j E − πE

∑
k �= j

βk(π jk E − πk E ),

α̃3 j = α3 j +
∑
k �= j

α3k

(
(1 − πE )(π jk E − π jk) + (πk E − πk)(π j E − π j )

(π j E − π j − πE + 1)(π j E − π j )

)
,
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β̃ j = β j +
∑
k �= j

βk
π j Eπk E − π jk EπE

π j E (π j E − πE )

−
∑
k �= j

α3k

{
π jk Eπ jπ

2
E − π2

j Eπk E − π j (π j E − π j + 1)(πEπ jk E − π j Eπk E )

π j E (π j E − π j − πE + 1)(π j E − π j )(π j E − πE )

}

−
∑
k �= j

α3k

{
π j E [π jk E (π j E − π jπE ) + (π j E − πE )(π jπk − π jk + πEπ jk − π j Eπk)]

π j E (π j E − π j − πE + 1)(π j E − π j )(π j E − πE )

}
. (3.5)

The asymptotic bias of β̂∗
j is given by β̃ j − β j . In general, β̃ j will not be the same as β j , and so β̂∗

j will be
asymptotically biased.

It is of significant interest to identify situations where the GE interaction coefficient using the single-
marker GE interaction model (3.2) is unbiased when the true model is the multi-marker GE interaction
model (3.1). One trivial case is when α3k = βk = 0 for all k �= j . For the identity link function, from Equa-
tions (3.5), it is straightforward to show that under the null hypothesis H0 : β = 0 in the multi-marker GE
interaction model (3.1), if (i) (G j , E) is independent of {Gk}k �= j or (ii) G j is independent of (E, {Gk}k �= j )

or (iii) {Gk}p
k=1 is independent of E , we have that β̃ j = 0. This means, under (i)–(iii), the single-marker

GE interaction coefficient estimator is asymptotically unbiased under the null. VanderWeele and others
(2012) obtained similar findings in GE interaction models in the presence of unmeasured confounders
using the causal inference method. We note, however, that even if the single-marker GE interaction coef-
ficient estimator is asymptotically unbiased under the null, standard inference can still be wrong as
the conventional standard error estimate can be biased (Section A.2, supplementary material available at
Biostatistics online).

3.2 Numerical examples of asymptotic bias analysis

Consider linear regression with two SNPs (p = 2). Suppose the true model is

E(Yi |Ei , G1i , G2i ) = α1 + α2 Ei + α31G1i + α32G2i + β1 Ei G1i + β2 Ei G2i

and the misspecified single-marker GE model using G1 is

E(Yi |Ei , G1i , G2i ) = α∗
1 + α∗

2 Ei + α∗
31G1i + β∗

1 Ei G1i .

Suppose the two SNPs, G1 and G2, are independent. Let MAF1 and MAF2 be their minor allele fre-
quencies (MAFs). Assuming a dominant model, we have G1 ∼ Binom{1, 1 − (1 − MAF1)

2} and G2 ∼
Binom{1, 1 − (1 − MAF2)

2}. Suppose a binary environmental variable E is related to the genotypes G1

and G2 through the logistic model

logit[P(Ei = 1|G1i , G2i )] = ρ1G1i + ρ2G2i + ρ3G1i G2i . (3.6)

Then the asymptotic limit of β̂∗
1 can be calculated using Equations (3.5) and (3.6).

Besides the trivial case where α32 = β2 = 0, we first note that there are three distinct scenarios where
β̂∗

1 has no asymptotic bias for all values of α32 and β2 since we assume G1 and G2 are independent: (i)
G1 independent of E (i.e. ρ1 = ρ3 = 0), (ii) G2 independent of E (i.e. ρ2 = ρ3 = 0), and (iii) G1, G2, E
independent (i.e. ρ1 = ρ2 = ρ3 = 0).
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Table 1. Asymptotic and empirical biases of β̂∗
1 under the null hypothesis of no inter-

action between a marker set and environment, and inflated Type 1 error rates at
α = 0.05 level when (G1, G2) and E are not independent

α31 = α32 = ρ1 = ρ2 = ρ3 Empirical β̃ j Theoretical β̃ j Empirical Type 1 error

0.00 0.003 0.000 0.047
0.10 0.002 0.002 0.052
0.20 0.010 0.010 0.051
0.30 0.022 0.022 0.053
0.40 0.037 0.039 0.059
0.50 0.058 0.059 0.065
0.60 0.083 0.082 0.079
0.70 0.106 0.107 0.098
0.80 0.126 0.132 0.113
0.90 0.156 0.155 0.139
1.00 0.173 0.176 0.146

α31 = α32 = −ρ1 = −ρ2 = −ρ3 Empirical β̃ j Theoretical β̃ j Empirical Type 1 error

0.00 −0.001 0.000 0.045
0.10 −0.006 −0.002 0.049
0.20 −0.012 −0.010 0.051
0.30 −0.024 −0.022 0.050
0.40 −0.035 −0.039 0.062
0.50 −0.057 −0.059 0.066
0.60 −0.081 −0.082 0.081
0.70 −0.104 −0.107 0.107
0.80 −0.134 −0.132 0.122
0.90 −0.157 −0.155 0.133
1.00 −0.178 −0.176 0.161

The empirical value is obtained by averaging β̂∗
1 over 5000 simulations with sample size n = 1000.

We conducted numerical studies to investigate the asymptotic bias of β̂∗
1 in a number of different scenar-

ios. We assumed MAF1 = 0.2, MAF2 = 0.3, α1 = 0, α2 = 0.4. Besides computing the theoretical asymp-
totic bias β̃1 using Equation (3.5), we also simulated data with sample size n = 1000 and calculated the
empirical bias obtained by averaging β̂∗

1 over 5000 simulations.
We first considered the case where the null hypothesis holds, i.e. β1 = β2 = 0. In the top panel of Table 1,

we set α31 = α32 = ρ1 = ρ2 = ρ3 and varied these values from 0 to 1 in steps of 0.10. This corresponds to the
case where the environmental factor is positively associated with the SNPs, and increase in environmental
factor and/or SNPs corresponds to an increase in the mean of the outcome. In this scenario, the bias is
always positive, that is β̃1 > β1 = 0. In bottom panel of Table 1, we set α31 = α32 = −ρ1 = −ρ2 = −ρ3 and
varied these values from 0 to 1 in steps of 0.10. This corresponds to the case where the environmental factor
is negatively associated with the SNPs, and an increase in environmental factor and/or SNPs corresponds
to an increase in the mean of the outcome. In this scenario, the bias is always negative, that is, β̃1 < β1 = 0.
These results make sense intuitively, as the misspecified single-marker GE model omits G2. Thus when E
and G2 are positively associated, we expect β̃1 to have the same sign as α32, the regression coefficient of
G2 in the true model. When E and G2 are negatively associated, we expect the sign of β̃1 to be opposite
that of α32. As expected, since β̂∗

1 is biased asymptotically, the Wald test based on β̂∗
1 has an inflated Type

1 error rate (last column of Table 1).
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Fig. 1. Asymptotic and empirical biases of the interaction coefficient β̂∗
1 under the single-marker GE interaction

model (3.2) when (G1, G2) and E are not independent. The horizontal axis gives true β1 under the true multi-marker
GE interaction model (3.1), and the vertical axis gives the percentage of the relative bias in estimating β1. % Rela-
tive asymptotic bias is computed as 100(β̃1 − β1)/β1. Left panel: α31 = α32 = β1 = β2 = ρ1 = ρ2 = ρ3. Right panel:
α31 = α32 = β1 = β2 = −ρ1 = −ρ2 = −ρ3. Square gives the empirical % relative bias by averaging β̂∗

1 over 5000
simulations for sample size n = 1000. Solid line gives the theoretical % relative asymptotic bias computed using the
closed-form expressions for β̃1 in (3.5).

We next considered the case of the alternative hypothesis, i.e. β1 = β2 �= 0. In the left panel of Figure 1,
we set α31 = α32 = β1 = β2 = ρ1 = ρ2 = ρ3. In the right panel of Figure 1, we set α31 = α32 = β1 = β2 =
−ρ1 = −ρ2 = −ρ3. We varied β1 from 0 to 1 in steps of 0.05. The bias is always positive in the first case
(β̃1 > β1) while the bias is always negative in the second case (β̃1 < β1), for the same reason given above.

In our data example, the 26 SNPs in the 15q24–25.1 region may be associated with both lung cancer
risk (phenotype) and smoking (environmental factor) since genes in this region have been implicated in
both lung cancer risk and nicotine dependence. Thus, if more than one SNP in this region are associated
with smoking and have main effects, using a single-marker test to assess SNP-smoking interaction may
be inadequate. In the remainder of this paper, we develop GESAT, a SNP-set—environment interaction
statistical framework—which allows us to adjust for the main effects of all SNPs while simultaneously
testing for the interactions between the SNPs in the region and smoking on lung cancer risk.

4. GENE–ENVIRONMENT SET ASSOCIATION TEST

4.1 Derivation of the test statistic

We consider in this section testing H0 : β = 0 under the multi-marker GE interaction model (2.1). A classi-
cal approach treats β j ’s as fixed effects and proceeds with a p degrees of freedom (DF) test. This approach
can suffer from power loss when p is moderate/large, and numerical difficulties when some genetic mark-
ers in the set are in high LD.

To overcome this problem, we derive a test statistic for testing H0 by assuming β j ’s follow an arbitrary
distribution with mean zero and common variance τ 2 and that the β j ’s are independent. The GE interaction
GLM (2.1) then becomes a GLMM (Breslow and Clayton, 1993). The null hypothesis H0 : β = 0 is then
equivalent to H0 : τ 2 = 0. We hence can perform a variance component test using a score test under the
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induced GLMM. This approach allows one to borrow information among the β j ’s. The variance component
score test has two advantages: first, it is locally most powerful under some regularity conditions (Lin, 1997);
secondly, it requires only fitting the model under the null hypothesis and is computationally attractive.

Following Lin (1997), the score statistic for the variance component τ is

Q = (Y − μ̂)TSST(Y − μ̂) = [Y − μ(α̂)]TSST[Y − μ(α̂)], (4.1)

where μ̂ = μ(α̂) and α̂ is estimated under the null main effects model,

g(μ) = Xα1 + Eα2 + Gα3 = X̃α. (4.2)

If the dimension of α is small, one can use regular maximum likelihood to estimate α. However, because
the number of SNPs p in a set is likely to be large and some SNPs might be in high LD with each other, the
regular MLE might not be stable or difficult to calculate. We propose using ridge regression to estimate α

under the null model (4.2), where we impose a L2 penalty on the coefficients of the main SNP effects α3.
The penalized log-likelihood under the null model (4.2) is 	P(α) = ∑n

i=1 	(α; Yi , X i , Ei , Gi ) − 1
2λαT

3 α3,

where 	(·) = log( f (Yi )), f (·) is the density of Yi under the null model (4.2) and λ is a tuning parameter.
Given λ, simple calculations show that estimation of α under the null model (4.2) proceeds by solving

the estimating equation Uλ(α) = X̃
T
(Y − μ) − λI2α = 0, where I2 is (q + 1 + p) × (q + 1 + p) block

diagonal matrix with the top (q + 1) × (q + 1) block diagonal matrix being 0 and the bottom p × p block
diagonal matrix being an identity matrix I p×p.

4.2 Evaluation of the null distribution of the test statistic

Under main effect models, Zhang and Lin (2003) and Wu and others (2010) showed that the null distri-
bution of the variance component score test follows a mixture of χ2 distribution asymptotically. However,
our score test statistic Q in Equation (4.1) is different from their test statistic, since we use ridge regression
to estimate α under the null model. In this section, we derive the null distribution of the test statistic Q,
and show that it follows a mixture of χ2 distribution with different mixing coefficients that depend on the
tuning parameter λ.

Suppose the estimated tuning parameter λ̂ = o(
√

n). Define �λ(α) = −(∂Uλ(α)/∂α) = X̃
T
�−1X̃ +

λI2, where  = diag{g′(μi )}, and let α0 and �0 be the true value of α and � under H0. In Section B.1
(supplementary material available at Biostatistics online), we show that under H0, we have

n−1 Q = n−1(Y − μ̂)TSST(Y − μ̂)

= n−1(y − X̃α0)
T(I − H λ̂)T�−1

0 SST�−1
0 (I − H λ̂)(y − X̃α0) + op(1), (4.3)

where H λ̂
∗ = �−1

0 X̃�λ̂(α0)
−1X̃

T
, μ′(α0) = �−1

0 X̃ , H λ̂ = X̃�λ̂(α0)
−1X̃

T
�−1

0 , and y = X̃α0 + �0

{Y − μ(α0)}, which is the GLM working vector. Define

A = (I − H λ̂)T�−1
0 SST�−1

0 (I − H λ̂) and � = cov(Y),

then the null distribution of Q is approximately equals to
∑p

v=1 dvχ
2
1 , where dv is the vth eigenvalue of the

matrix �1/2�0A�0�
1/2, and χ2

1 s are iid χ2 random variables with 1 DF. The p-value of the test statistic
Q can then be obtained using the characteristic function inversion method (Davies, 1980). In Section
B.2 (supplementary material available at Biostatistics online), we describe how the tuning parameter λ is
selected using generalized cross validation (O’Sullivan and others, 1986).

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/14/4/667/368701 by guest on 16 August 2022

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt006/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt006/-/DC1


Test for genetic marker set and environment interactions in GLMs 675

5. SIMULATION STUDIES

We conducted simulations to evaluate the finite sample performance of GESAT. We simulated 166 HapMap
SNPs in the 15q24–25.1 region using the LD structure of the CEU population in the HapMap project. To
mimic the Harvard lung cancer data, only the 26 typed variants on Illumina 610-Quad array in this region
are used for analysis. These 26 typed SNPs form the SNP-set used for analysis in simulations and the data
example in Section 6. We restricted the analysis to common variants (MAF � 0.05), giving p = 25 − 26.
Based on LD structure in the region, we selected a group of 5 candidate untyped SNPs from which the
causal SNPs are chosen (Section C.2, supplementary material available at Biostatistics online). We consid-
ered the SNP-set and environment interaction model in Equation (2.1), where G contains the 26 typed SNPs
in the 15q24–25.1 region. To test for the null hypothesis of no marker-set and environment interactions, we
computed the min test as a benchmark, correcting the smallest p-value for multiple comparisons using the
effective number of DF (Gao and others, 2008) and the Bonferroni method (Section C.1, supplementary
material available at Biostatistics online).

5.1 Comparing GESAT and min test when G and E are independent

We first considered the case when G and E are independent. We report both empirical Type 1 error and
power results. We generated a binary outcome assuming a logistic regression model

logit[P(Yi = 1|X1i , X2i , Ei , SNP1i , SNP2i )]

= α0 + 0.05X1i + 0.057X2i + 0.64Ei + αSNP1SNP1i + αSNP2SNP2i + β1SNP1i × Ei

+ β2SNP2i × Ei ,

where α0 = log(0.01/0.99), X1 mimics age and is normally distributed with mean 62.4 and standard devi-
ation 11.5, and X2 mimics sex and takes on 1 and 2 with probability 0.52 and 0.48, respectively. For each
dataset, SNP1 and SNP2 are randomly selected from the group of 5 candidate causal SNPs described
above, independent of E . For the environmental variable E , we considered three cases: (i) a Bernoulli
random variable taking 1 with probability 0.87 (mimicking the Harvard lung cancer data), (ii) a Bernoulli
random variable taking 1 with probability 0.5, and (iii) a standard normal random variable. Each dataset
had a sample size of n = 2000 (1000 cases and 1000 controls). We generated 100 000 datasets and 500
datasets, respectively, to evaluate the empirical size and empirical power at α = 0.05 level. We calculated
GESAT and min test using X1, X2, E , and the 26 typed SNPs.

To evaluate the Type 1 error, we set β1 = β2 = 0. For all the three configurations of E , the empirical
Type 1 error is evaluated for two distinct scenarios: (a) αSNP1 = αSNP2 = 0 and (b) αSNP1 = αSNP2 = 0.4.
The empirical size at the nominal Type 1 error of 0.05 is shown in Table 2, indicating that both GESAT
and min test have protected Type 1 error rates. We note that the empirical Type 1 error rates of the min test
can be slightly conservative.

We conducted additional Type 1 error simulations (Section C.3, supplementary material available at
Biostatistics online) for both the 15q24–25.1 region and the ASAH1 gene (which has stronger LD) for
various sample sizes, distributions of environmental variables, MAFs of the causal variants, number of
causal variants, and different Type 1 error levels. Similar results are obtained.

To calculate power, we varied β1 = β2 from 0 to 0.6 in a step of 0.05. Likewise, for all three config-
urations of E , we calculated the power for two scenarios: (a) αSNP1 = αSNP2 = 0 (left panel of Figure 2)
and (b) αSNP1 = αSNP2 = 0.4 (right panel of Figure 2). Our results show that GESAT performs well and
generally outperforms min test. For unbalanced designs when a binary environmental exposure has a low
frequency in one category (top panel in Figure 2), GESAT is most advantageous over min test (Figure 2),
and min test is the most conservative (Table 2). Such unbalanced designs can occur due to case–control
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Table 2. Empirical Type 1 error rates for both GESAT and
min test calculated using 105 simulations at 0.05 level when

G and E are independent

αSNP1, αSNP2 Environmental variable GESAT min Test

0 Bernoulli w. prob 0.87 5.05e−02 3.09e−02
0 Bernoulli w. prob 0.5 5.12e−02 3.58e−02
0 Standard Normal 5.18e−02 3.53e−02

0.4 Bernoulli w. prob 0.87 5.22e−02 3.23e−02
0.4 Bernoulli w. prob 0.5 5.15e−02 3.83e−02
0.4 Standard Normal 5.11e−02 3.58e−02

The results indicate that the Type 1 error rates are protected for both methods
in this setting.

sampling and the strong association of an environmental factor with disease. For example in the Harvard
lung cancer genetic study data example in Section 6, most cases and controls are ever smokers (87%), as
the controls are frequency matched to cases with respect to age, sex, smoking status as part of the study
design.

We conducted several additional simulation studies. We studied the power using imputed SNPs when
there is a single genotyped causal locus for the ASAH1 gene (Section C.4, supplementary material avail-
able at Biostatistics online). This is a scenario optimized for the min test as there is only a single causal SNP.
When the effect size is modest, GESAT performs better than the min test, but when the effect size is strong,
the min test performs better than GESAT. We also report simulations by fitting the null model using reg-
ular regression instead of ridge regression (Section C.5, supplementary material available at Biostatistics
online). The results show a non-trivial number of simulations failed to converge using the regular regression
method. Also, we performed simulations by comparing GESAT with the similarity regression approach of
Tzeng and others (2011) (Section C.7, supplementary material available at Biostatistics online) for con-
tinuous outcomes. The two methods yield similar results, while GESAT is much faster.

5.2 Comparing GESAT and min test when G and E are not independent

We compare in this section GESAT and min test when the environmental variable E and the genotypes G
are not independent. Similar to before, we generated a binary outcome assuming

logit[P(Yi = 1|X1i , X2i , Ei , SNP1i , SNP2i )]

= α0 + 0.05X1i + 0.057X2i + 0.64Ei + 0.4SNP1i + 0.4SNP2i + β1SNP1i × Ei + β2SNP2i × Ei ,

where α0 = log(0.01/0.99). The non-genetic covariates (X1, X2), the causal genetic markers (SNP1 and
SNP2) and the 26 typed SNPs used for SNP-set and environmental interaction test are obtained as before.
However, now we generated the binary environmental factor E to depend on the causal SNPs as

logit[P(Ei = 1|SNP1i , SNP2i )] = ρ1SNP1i + ρ2SNP2i .

Thus ρ1 and ρ2 control the association between the causal genetic markers (SNP1 and SNP2) and E . We
calculated GESAT and min test using X1, X2, E , and the 26 typed SNPs. Since the typed SNPs are in
LD with the causal genetic markers (SNP1 and SNP2), ρ1 and ρ2 also control the association between
E and the typed SNPs used for fitting model (2.1). We examined two distinct scenarios: (a) ρ1 = ρ2 and
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Fig. 2. Empirical power curves at α = 0.05 level of significance for GESAT (dashed line) and min test (solid line)
assuming G and E are independent. Top panel: Environmental factor is Bernoulli with probability 0.87; Middle panel:
Environmental factor is Bernoulli with probability 0.5; Bottom panel: Environmental factor is standard normal. Left
panel: SNPs have no main effect (αSNP1 = αSNP2 = 0); Right panel: SNPs have main effects (αSNP1 = αSNP2 = 0.4).

(b) ρ1 = −ρ2. In all cases, we set β1 = β2 and had sample size n = 2000 (1000 cases, 1000 controls). To
investigate the Type 1 error rate, we set β1 = β2 = 0. To study power of GESAT, we varied β1 = β2 from
0 to 0.6 in a step of 0.05. We varied ρ1 to investigate how the Type 1 error rate and power depend on
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Fig. 3. Type 1 error of GESAT is robust to the dependence of G and E but min test can give inflated Type 1 error
rate—Empirical Type 1 error rates at 0.05 level for GESAT (dashed line) and min test (solid line) when G and E are
dependent, are given in the top panel. In the left panel, ρ1 = ρ2. In the right panel, ρ1 = −ρ2. Power of GESAT is
robust to association between G and E—Dashed, dotted, dashed-and-dotted lines give power of GESAT at 0.05 level
when ρ1 = 0, 0.5, 1, respectively, in the bottom panel. The models for generating the data are given in Section 5.2.
The parameters ρ1, ρ2 control the association between G and E.

the association between G and E. Empirical Type 1 error and power are evaluated using 5000 and 500
simulations, respectively.

The empirical Type 1 error rate at 0.05 level for the two scenarios (a) ρ1 = ρ2 and (b) ρ1 = −ρ2 are
plotted in the top panel of Figure 3. For (a) ρ1 = ρ2 (left figure), we varied ρ1 from 0 to 1 in a step of 0.05,
while for (b) ρ1 = −ρ2 (right figure), we varied ρ1 from 0 to 2 in a step of 0.05. Note that the left and
right figures in the top panel of Figure 3 have the same scale and range on the vertical axis, but not the
same scale and range on the horizontal axis. In both scenarios, Type 1 error rate of min test increases with
increasing ρ1. At low values of ρ1, the min test is conservative, while at high values of ρ1, the Type 1 error
rate is inflated. Thus as expected, when G and E are dependent, min test can have an incorrect Type 1 error
rate. In comparison, GESAT maintains the nominal Type 1 error rate even when G and E are dependent.

The power of GESAT for the two scenarios are plotted in the bottom panel of Figure 3. We do not report
power of min test as the min test can have inflated Type 1 error rates when G and E are dependent. For
each setting/figure, we used three different values of ρ1 = 0, 0.5, 1 and varied β1 = β2 from 0 to 0.6 in
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a step of 0.05. Our simulations suggest that the power of GESAT seems fairly robust to the dependence
between G and E. More detailed discussions of the results can be found in Section C.6 (supplementary
material available at Biostatistics online). Additional simulation results using different values of ρ1, ρ2

provide similar results (Section C.6, supplementary material available at Biostatistics online).

6. APPLICATION TO THE HARVARD LUNG CANCER GENETIC DATA

The 15q24–25.1 region was previously found to be associated with lung cancer and nicotine dependence
(Hung and others, 2008; Furberg and others, 2010). This region contains many genes, including the nico-
tinic receptor subunit gene cluster. Initially it was unclear whether the effect of the genetic variant(s) in
this region on lung cancer was restricted to smokers (Hung and others, 2008). However, subsequent studies
confirmed that the lung cancer associated variant(s) identified in GWAS in this region only had an effect
on lung cancer among smokers (Truong and others, 2010), suggesting a potential GE interaction.

Our study consists of Caucasian subjects drawn from a lung cancer case–control study at Mas-
sachusetts General Hospital (VanderWeele and others, 2012). There are 26 typed SNPs in the 15q24–25.1
region (Section D, supplementary material available at Biostatistics online for more details). Lung cancer
case/control status, age, sex, and smoking status of the subjects are also available. We applied both GESAT
and min test to study whether there is a GE interaction in this region, using smoking status (ever smokers
vs. never smokers) as an environmental factor. The data analysis used 1941 samples, including 980 cases
with 92 never smokers and 961 controls with 159 never smokers.

We applied GESAT to test the interaction between the SNP-set in the 15q24–25.1 region and smok-
ing, adjusting for age, sex, smoking status, and four principal components under model (2.1), and test
for H0 : β = 0. Here G consists of p = 26 typed SNPs in this region. GESAT gave a p-value of 0.0434,
which indicates a significant interaction between the 15q24–25.1 region and smoking. For comparison, we
also report results using the min test (Table S12, supplementary material available at Biostatistics online),
adjusting for age, sex, smoking status, four principal components, and the main SNP effect. The min test
had a p-value of 0.0103 × 16 = 0.165, which is not significant. See Section D (supplementary material
available at Biostatistics online) for more details. We note also that the regular logistic regression model
including the 26 SNP main effects and 26 SNP-smoking interaction terms (in addition to covariates) did
not converge, thus a conventional multi-marker p DF test could not be conducted. Our results show the
presence of a GE interaction in the region, i.e. the effect of variant(s) in 15q24–25.1 region on lung cancer
risk is modified by smoking status.

7. DISCUSSIONS

In this paper, we first studied the asymptotic bias of the traditional single genetic marker-based GE inter-
action test. We showed that when multiple genetic markers are associated with an outcome in their main
effects, the classical single genetic marker-based GE interaction test is generally biased. As a consequence,
the simple min test is generally biased. Besides power loss due to large DF, as illustrated in our data exam-
ple, the traditional p DF test for testing GE interactions faces numerical difficulties due to high LD among
some markers.

We proposed GESAT, a variance component score test for testing for the interactions between a genetic
marker set and an environmental variable, and showed it is powerful in a wide range of settings. Unlike
the existing main effect genetic marker set tests, given a possibly large number of correlated genetic mark-
ers in a set whose main effects need to be estimated under the null model, we fit the null model using
ridge regression. We demonstrated via simulation studies and a real data application that our approach is
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robust and performs well with attractive power. GESAT is also computationally efficient, has meaningful
biological interpretation and allows easy adjustment of covariates.

We used all the SNPs in a SNP-set in our test for GE interactions. Variable selection methods can be
developed, which might improve the test power, e.g. by extending the cocktail method for testing for GE
interaction for single SNP analysis (Hsu and others, 2012).

We considered in this paper interactions between SNPs in a genetic marker set and an environmental
variable. The same approach can be applied to investigating various other biological problems. For exam-
ple, we can test for the interactions between gene expressions in a pathway or network and an environmen-
tal variable by simply replacing G by gene expressions in a gene-set. We can also test for the interactions
between a genetic marker set and treatment by simply replacing E by treatment. The latter application
is particularly useful for research in personalized medicine. The same approach can be used to test for
gene–gene interactions by replacing E by a SNP in another gene or a gene expression. Furthermore, the
proposed method can also be used to test for the effects of two sets of genetic markers adjusting for each
other. For example, if the genetic markers G in gene 1 is known to be associated with disease risk, we can
then set S to be the genetic markers in gene 2 to test for the second gene effect by simply applying GESAT.

8. SOFTWARE

Software is available on request from the author (xinyilin@mail.harvard.edu).

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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