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�is paper proposes a novel test generation algorithm based on extreme learning machine (ELM), and such algorithm is cost-
e�ective and low-risk for analog device under test (DUT).�ismethod uses test patterns derived from the test generation algorithm
to stimulate DUT, and then samples output responses of the DUT for fault classication and detection. �e novel ELM-based
test generation algorithm proposed in this paper contains mainly three aspects of innovation. Firstly, this algorithm saves time
e�ciently by classifying response space with ELM. Secondly, this algorithm can avoid reduced test precision e�ciently in case of
reduction of the number of impulse-response samples. �irdly, a new process of test signal generator and a test structure in test
generation algorithm are presented, and both of them are very simple. Finally, the abovementioned improvement and functioning
are conrmed in experiments.

1. Introduction

For testing of integrated circuits (ICs) and system on chips
(SoCs), both test accuracy and costs are important. On the
one hand, it is not cost-e�ective to classify analog circuits sub-
ject to parametric faults if test application takes a long time
alongwith increasingly rapid application of ICs and SoCs. On
the other hand, it is di�cult to apply traditional functional
testing to ICs mixed with SOCs, as functions of which are too
complex to test. �us, this test generation algorithm is
proposed as a new test strategy [1–5]. Previously, this method
is used to classify faults based on signal response by inputting
di�erent sine waves. Balivada et al. propose using some iden-
tied signals to obtain indexes such as delay and rise time,
in order to calculate di�erent parameters for signal classi-
cation in 1996 [3]. Hamida et al. put forward and developed
methodology and so�ware for sensitive testing for ICs in 1996
[4]. However, it hardly becomes automatic due to limitations.
In 1995, Devarayanadurg and Soma put forward a methodol-
ogy of minimum/maximum testing for ICs which functioned
well [5] and required establishment of a response space
of device under test (DUT) for simulation. However, such
requirement is of too high time cost for large circuits. �ere
are a countless number of these kinds of methods. Analog

test generation di�ers from classical digital test generation.
�is classical digital test generation shall only consider fault
models such as 0-1 faults, delay faults, and bridge faults. Test
generation algorithms for analog circuits are alwaysmore dif-
cult than classical digital test generation algorithms, due to a
lot of problems such as continuous-time waveforms and tol-
erance for parameters.

Analog test technology mainly includes two parts: test
generation and fault diagnosis. �ere are many researches on
fault diagnosis [6–16]. Yang et al. propose a fault dictionary
method about analog circuits in 2009 [7, 8]. �is method is
simple, but it is relatively complicated for establishment of
this dictionary. In 2011, Ting proposes an analog circuit fault
diagnosis method based on component connection model
(CCM) [6], which can properly realize fault location. How-
ever, the scale of CCMwill become larger with the increase of
circuit complexity. Li et al. put forward a test method for the
optimal noise estimation throughKalman lter in 2013 [9]. In
this method, various noise interferences in the test are taken
into full account, but the process of noise estimation is com-
paratively complex. Nowadays, to introduce machine learn-
ing into analog circuit test served as a hotspot of fault
diagnosis researches, especially for wide application of sup-
port vector machine (SVM) as an e�ective classier [10–16].
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�esemethods are characterizedwith classication of various
fault features through classier for the purpose of fault diag-
nosis. �is category of methods is always of favourable test
e�ects. However, the research emphasis of these methods is
centred on fault diagnosis. As a result, test generation is
neglected.

Analog test generation algorithm is mainly to introduce
the concept of digital test generation into analog circuit test.
�e di�erence lies on the said analog circuit fault diagnosis
method. �e main purpose of analog test generation algo-
rithm is to generate test signals necessary for fault diagnosis.
Test signals here must be able to motivate fault. In other
words, fault should bemade to be detectable, so as to structure
a fast and convenient online test platform. In recent years,
fewer researches are engaged in analog circuit test generation.
Pan and Cheng propose a cost-e�ective method to detect
parametric faults in linear time-invariant (LTI) analog cir-
cuits in 1999 [1]. �is method di�ers from traditional tech-
niques and uses a limited number of derived test patterns as
input stimuli and unprocessed DUT outputs for fault detec-
tion and classication by using perceptron. �is method has
good classication performance, but inadequate testing accu-
racy. Long et al. propose a test generation algorithm for ana-
log systems based on support vector machine (SVM) in 2011
[2]. �is algorithm with high testing accuracy uses SVM to
map the lower-dimensional nonlinear response space into the
higher-dimensional feature space for e�ective classication.
However, this algorithm has much higher time cost because
of complex computation of SVM, processes of test signal gen-
erator and test structure, and has unstable testing accuracy
because of reduced precision in case of compressing the
sampled space.

In order to solve the abovementioned problems, a new
test generation algorithmbased on extreme learningmachine
(ELM) [17, 18] with much lower time cost and simpler pro-
cesses has been proposed in this paper. Furthermore, trade-
o� parameters are not sensitive to the accuracy of classica-
tion [19, 20] due to the necessity of being specied by users,
and so ELM has good classication performance without
optimization of trade-o� parameters in case of compressing
sampled space.

�e rest of this paper is organized as follows. Section 2 is
about overview of test generation algorithms. Section 3
introduces the novel test generation method based on ELM.
Section 4 elaborates structure and analysis of this algorithm.
Section 5 describes the performance of the proposed method
through simulation. Section 6 includes conclusions.

2. Overview of the Test Generation Algorithm

Basic structure of the test generation algorithm is to trans-
form analog circuit test into digital eld for analysis through
digital-analogy and analog-digital converter. Normal state
and various fault states of circuits can be regarded as an
isolated state circuit. Circuits in di�erent isolated states are
sampled, so as to obtain abundant impulse response vectors.
�en, impulse response vectors in normal state and fault state
are separately identied, so as to establish di�erent impulse
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Figure 1: Test generation framework.

response spaces. At last, a classier is used to divide di�erent
sampling spaces. Test signals are obtained through calcula-
tion from trained classication hyperplane expression, so as
to stimulate tested circuits. A comparison is made between
output voltage and threshold value through a comparer, so as
to realize fault diagnosis.

An overview of the test generation framework for LTI
analog circuits is shown in Figure 1.

Core steps of the test generation algorithm include two
aspects: the one is to work out various classication hyper-
planes and to gure out proper test signals as input of tested
circuits according to classication features of state of various
circuits (normal state and fault state); the other one is to
analyze output of tested circuits a�er being stimulated by test
signals and then judge any fault of such circuits. As shown in
Figure 1, the test generation method contains mainly four
steps as follows.

Step 1 (extract response space constructed by sampled
impulse responses for classication). �e rst step is to build
a response space constructed by many response vectors,
which are constructed for each instance by sampling the
analog circuit output signal. As the bandwidth (BW) is much
smaller than the sampling frequency, there are a large number
of impulse-response samples. In order to reduce costs, a new
space of impulse-response is constructed by extracting the
original space of sampled impulse-response [1]. A decreased
number of samples may lead to loss of classication informa-
tion. To solve this problem and keep classication accurate in
the case of compressing, a lot of time shall be spent on opti-
mization algorithms.

Step 2 (execute classication). As test generation for LTI
analog can be viewed as one of several two-class classica-
tion problems, accuracy is important for each classication
method. �e SVM-based test generation algorithm has good
classication accuracy [2].

In test generation, two-class classication shall be exe-
cuted for � times for the sake of calculating � hyperplanes
in order to classify � circuit instances with parametric faults
into normal circuit instances. �en, linear hyperplane is
found by training sets, and test e�cacy depends on classica-
tion precision through test sets.�erefore, for test generation,
the whole time cost of classication is an important factor.

Step 3 (generate test signals). Test signals are obtained from
classication hyperplane. �e nonlinear classication algo-
rithm is adopted for test generation in order to improve
classication accuracy [2], but this algorithm deals with
classication problems by mapping the original space to a
higher dimension of feature space; that is to say, it obtains
a linear classication hyperplane in a higher dimension of
space. �erefore, in order to generate test signals, we need
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to calculate the classication hyperplane in linear dimension
from the linear classication hyperplane in a higher dimen-
sion of space, which is a very complex process.

Step 4 (execute test). In order to determine whether circuit
under test (CUT) passes or fails, we need an impulse as a
threshold to compare test signals generated in Step 3 through
CUT, analog-to-digital converter (ADC), and digital-to-
analog converter (DAC). �erefore, � instances need �
thresholds. If it is hard to compare by this threshold, test
process would be more complex.

To solve the abovementioned problems that have been
ignored in previous test generation methods, a new test gen-
eration algorithm based on ELM has been proposed in this
paper.

3. Test Generation Algorithm Based on ELM

3.1. ELM Algorithm. �e test generation algorithm proposed
in this paper is based on the ELM, which is introduced as
follows.

�e ELM [17, 18] proposed by Huang et al. is a novel
learning method for single-hidden layer feed-forward neural
networks (SLFNs). According to the theory of ELM, in the
case of activated activation function which is innitely di�er-
entiable, if the number of samples is equal to that of hidden

nodes, that is, � = �̃, matrix � is square and invertible and
SLFNs can approximate these samples with zero error. How-
ever, the number of hidden nodes is much less than that of
samples in most cases. According to Huang’s theory, � is a

nonsquare matrix, �̃ ≪ �, and the smallest norm least-
squares solution is

�̂ = �+�, (1)

where�+ is theMoore-Penrose generalized inverse ofmatrix�. According to the above derivation, the output function of
ELM is

	 (
) = �∑
�=1

��� (��, ��, 
) = � ⋅ ℎ (
) , (2)

where � is the output weight vector between hidden layer and
output layer and ℎ(
) is an activation function. Here, ℎ(
)
actually maps the data from the �-dimensional input space to
the �-dimensional hidden-layer feature space (ELM feature
space). For binary classication application, the decision
function of ELM is

	 (
) = sign( �∑
�=1

��� (��, ��, 
)) = sign (� ⋅ ℎ (
)) . (3)

According to the above theories, ELM is di�erent from
other algorithms based on SLFNs, such as back propagation
(BP) algorithm which contains ve limitations: (1) di�erent
learning algorithms for di�erent SLFNs; (2) being time-
consuming; (3) gradient-descent/iterative approaches; (4)
over tting; and (5) local minima.

For ELM, parameters of input layers are randomly cho-
sen, while output weight vectors are obtained by calculating
output matrix of the hidden layer, which is the Moore-
Penrose generalized inverse of hidden layer output matrix.
�erefore, only hidden nodes shall be assigned. Compared to
SVM, ELM is advantageous from three aspects: (1) being less
time-consuming, (2) having higher generalization perfor-
mance, and (3) having milder constraint to parameters.

3.2. Extract Response Space. When classication accuracy is
maintained, we need to build the new impulse-response space
by sampling impulse responses for classication and then
compress the original impulse response.

�e main idea of [1] is about cost e�ciency to save time
and space. In this theory, the selected impulse sampled space
is recompressed by selecting parts of elements equally from
response impulse vector space ℎ to form new sampled vector
space. For example, (ℎ[0], ℎ[4], ℎ[8], ℎ[12], . . .) is a new sam-
pled vector a�er extracting samples with a distance interval of
4, and these vectors can then be rewritten as (ℎ0, ℎ1, ℎ2,ℎ3, . . .). �is method makes the accuracy of test performance
uncertain although it can be applied easily. �erefore, it is
important to keep high test accuracy under compressing.

Considering that there is an ideally selected impulse
sampled space, select parts of elements equally from it. As
shown in Figure 2, comparison is made between mapping
linear spaces a�er element selection and the originalmapping
linear space.

As shown in Figure 2(a), the lower-dimensional nonlinear
response space is mapped into the higher-dimensional fea-
ture space for the sake of e�ective classication. Some dots
may drop into new supporting planes in higher-dimensional
linear feature space. According to Figure 2(b), trade-o�
parameters such as the trade-o� factor � and cost factor � in
SVM are introduced for rightful classication, in order to
evaluate introduction error of outliers experientially [19–22].
As shown in Figure 2(c), outliers on classication may have
greater in�uence when samples of the feature space are
compressed.

Based on the above analysis, in order to obtain better
classication accuracy for di�erent features, di�erent trade-
o� parameters shall be introduced under relaxed conditions.
For the sake of accuracy of the entire algorithm, contradiction
between compressed samples and changed supporting planes
can be eased more e�ciently through experienced trade-o�,
by introducing di�erent trade-o� parameters under relaxed
conditions.

Let us further discuss the changed trade-o� parameters.
�e in�uence on trade-o� parameters mainly comes from
information loss because of compressing the sampled space.
�erefore, methods can be applied to select sampled vectors
with more information [23] and optimize parameters into
trade-o� ones [24]. However, these methods increase com-
plexity of the algorithm.

According to Huang’s theory, trade-o� parameters are
more sensitive to classication accuracy in SVM, lest squares
support vector machine (LS-SVM), and ELM based on
Gaussian kernel function, but are less sensitive to ELM
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Figure 2: (a) Normal hyperplane classication; (b) hyperplane classication with supporting planes; (c) hyperplane classication with
supporting planes in the case of compressing.

based on both Sigmoid andmultiquadric activation functions
[19, 20]. Based on the above analysis, classication risk
may be reduced by applying an algorithm with a lower
sensitive relationship between testing generation accuracy
and trade-o� parameters under compressed sample space.
�erefore, comparedwith other algorithmsmentioned above,
classicationmethod of ELMwhich is based on both Sigmoid
and multiquadric activation functions is a better choice in
the case of compressing in order to maintain classication
accuracy.

3.3. Execute Classi�cation by ELM

3.3.1. Time Cost. In the test generation, two-class classica-
tion shall be executed for� times for the sake of calculating�
hyperplanes in order to classify� circuit instances with para-
metric faults to normal circuit instances. �en, each linear
hyperplane is found by training sets, and test e�cacy depends
on classication precision through test sets. �erefore, for
test generation, the whole time cost of classication is an
important factor. In order to reduce time cost, the method
of compressed sampled space is applied to test genera-
tion. However, time cost of classication methods has been
ignored in previous algorithms. �is paper applies a recently
found fast-speed learning method called ELM to classica-
tion.

Time cost of classication algorithm is mainly caused by
computational complexity. �e number of impulse samples
for classication is assumed to be �. Usual activation func-
tion ℎ(
) can be used to calculate ELM directly. �erefore,
computational complexity mainly comes from linear equa-

tions, the size of which is �̃ × �̃ (�̃ ≪ �) [19].
Computational cost of SVM mainly comes from calcu-

lation of the Lagrange multipliers �, while that of which for
SVMmainly comes from the solution with convex quadratic
programming to a matrix of sampled space with a size of� × � × 2 [21]. If � is large, the computational costs mainly

come from solution to the matrix with a size of (2� + 1) ×(2�+1)×2. �erefore, classication of SVMmay have much
greater computational complexity.

�erefore, in terms of computational complexity of learn-
ing algorithm, ELM-based classication algorithm is less
time-consuming than SVM.

3.3.2. Choice of Activation Function and Kernel Function of
ELM for Proposed Algorithm. ELM includes two kinds of
output functions, namely, the non-kernel based output func-
tion whichmaps ℎ(
) and is known to users and kernel based
output function which maps ℎ(
) and is unknown to users.
�is paper puts forward an ELM-based algorithm for LTI
analog circuits, and traditional activation functions such as
Sigmoid and Gaussian functions can be easily used to mapℎ(
). Furthermore, trade-o� parameters of ELM, which has
kernel based output functions, such as Gaussian kernel
function, are more sensitive to classication accuracy under
compressed sample space. So, the non-kernel based ELM
(described in Section 3.1) is a better choice.

ELM is one of the best classication algorithms based
on activation functions. Normal activation functions include
Sigmoid function, hard-limit function, Gaussian function,
and multiquadric function. According to analysis of com-
pressing sample space, ELM based on both Sigmoid andmul-
tiquadric activation function is better than others. However,
ELM based on Sigmoid activation function is better than that
based on multiquadric activation function in terms of clas-
sication accuracy in circuit test. �erefore, the Sigmoid
activation function suits ELM in circuit test.

In general, the non-kernel based ELM with Sigmoid
activation function is suitable for algorithm proposed in this
paper.

3.4.	e Novel Method of Test Signal Generator Based on ELM.
Considering input stimulation 
 and impulse response ℎ[�]
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in the analog test generation algorithm, the output response
of LTI can be expressed as follows:

� [�] = ∞∑
�=0


 [� − �] ⋅ ℎ [�]

≈ �−1∑
�=0


 [� − �] ⋅ ℎ [�] � = 0, 1, . . . ,∞.
(4)

ℎ = ℎ[0], ℎ[1], . . . stands for the sampling vector of a
circuit impulse response. It can be known from the circuit
theory that output response �[�] is mainly in�uenced byℎ[0], ℎ[1], . . . , ℎ[� − 1], in which � = ��/BW. BW stands for
bandwidth. �erefore, ℎ[0], ℎ[1], . . . , ℎ[� − 1] can be used to
replace response vector ℎ. A large number of response vectorsℎ constitute a response space ℎ1, ℎ2, ℎ3, . . .. �e most impor-
tant part in the test generation algorithm is to nd out the
function of linear classication hyperplane. �erefore, here
suppose that the expression of a linear classication hyper-
plane is as follows:

	 (�) = �−1∑
�=0

�� ⋅ ℎ [�] − �� = 0. (5)

In Formula (5), � = (��−1, ��−2, . . . , �0) and �� can be
obtained from the classication algorithm, respectively. Here,� is used to replace stimulation vector 
. �en, Formula (5)
can be rewritten into

	 (�) = � [� − 1] − �� = 0. (6)

�erefore, the coe�cient of linear classication hyper-
plane � = (��−1, ��−2, . . . , �0) is taken as test sequence. �� repre-
sents di�erent voltage and �� is taken as threshold value.�us,
whether the circuit is fault can be judged by comparison of
these values.

�e ELM algorithm is not a linear classication algo-
rithm. �erefore, test signal � and threshold value �� cannot
be directly obtained through classier training. To this end,
the authors put forward a test signal and threshold value
calculation method based on ELM.

We suppose that

 ELM (ℎ) = � ⋅ ℎ (
) . (7)

If � is available to make

� × ℎ =  ELM (ℎ) , (8)

then

� =  ELM (ℎ) × ℎ−1. (9)

Consider  ELM(ℎ) = � ⋅ ℎ(
). Here, ℎ stands for impulse
response sampling vector. As ℎ is response impulse (i.e., ℎ
is not zero), generalized inverse certainly exists, because �
can be obtained through ELM training. At the same time,
the following formula can be obtained according to Huang’s
denition:

ℎ (
) = [[
[

$ (%1 ⋅ 
1 + �1) ⋅ ⋅ ⋅ $ (%	̃ ⋅ 
1 + �	̃)... ⋅ ⋅ ⋅ ...$ (%1 ⋅ 
	 + �1) ⋅ ⋅ ⋅ $ (%	̃ ⋅ 
	 + �	̃)
]]
]	×	̃

.
(10)

According to the theorem in ELM, the learning process ofℎ(
) is di�erent from the previous neural network algorithm.
Input weight %� and implicit threshold value �� in Formula
(10) can be obtained by random distribution. Once learning
starts, the learning process of ℎ(
) is unnecessary for parame-
ter adjustment. Moreover, all parameters remain unchanged.
At the same time, activation function $(
) is known, and thus
it becomes a given parameter a�er the completion of learning.
�us, the coe�cient � of linear classication hyperplane can
be worked out according to (9) and (10).�us, test signals are
obtained. At last, the following formula can be obtained by
combining Formulas (3), (6), and (9):

�� = 0. (11)

Formulas (9) and (11) aremathematical expressions based
on the ELM test generation algorithm in this paper.

Based on the abovementioned analysis, learning algo-
rithm proposed for test signal generation has obviously less
computational complexity. And, in [2], coe�cients � and ��
will be calculated. Computational costs of this processmainly
come from calculation of Lagrangemultiplier �, while the cal-
culating process is equivalent to solving matrix with a size of(2�+1) × (2�+1) × 2. Solution to linear equationswith a size
of �̃×�̃ (�̃ ≪ �) is the main cause of computational cost of
algorithm proposed in this paper. Moreover, in algorithm
proposed in this paper, only one group of coe�cient � will
be calculated.

3.5. Novel Test Structure. As Section 3.4 proposes a novel
process of coe�cient calculation, a novel test process is also
proposed as shown in Figure 3.

In general, one hyperplane is used to tell between one
kind of parameter fault circuit and normal circuit. Multiple
hyperplanes are required for discrimination in order to satisfy
di�erent kinds of parameters fault. �erefore, the simplied
case of using one hyperplane for discrimination, which corre-
sponds to one kind of parameters, can be easily extended to a
case of using multiple hyperplanes which correspond to dif-
ferent kinds of parameter faults. In Figure 3(a), test structure
is shown by one test set. Test set ��−1, ��−2, . . . , �0 can be
calculated with (9) and prestored in test equipment, and the
output response �[� − 1] is at time instance � = � − 1 to the
test set. As the output of ADC is based on signed binary
arithmetic operation, the condition �[� − 1] > 0 (�� = 0) can
bemodied into a condition in which sign-bit of �[�−1] is 0.
As shown in Figure 3(b), a novel test structure that uses mul-
tiple test sets and corresponds to di�erent parameter faults
is shown.

4. Structure and Steps of the Algorithm

Upon a summary of above paragraphs, various parts and
structural diagrams of the test generation algorithm based on
ELM proposed in this paper are shown in Figures 4 and 5. Its
operational steps are given as follows.

Step 1. Sample CUT with sampling frequency �� including
normal state and various fault states of circuits and obtain
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Figure 3: (a) Application of test sequence to DUT for classication. (b) Test structure of our proposed scheme. �e entire test consists of -
test sessions and subscript 6 = (1, . . . , -) denotes the 6th session.

DAC DUT

DUT

ADC

Extract impulse
response vectors

Construct response space

Compressing sampled space

Each circuit
instances

Sampling frequency-Fs

Pass/fail

Calculated by
(9)

Classi�cation by ELM

· · ·

1/Fs

c0

cd−1

cd−2

Sign-bit of
Y[d − 1] is 0/1?

Figure 4: Single fault structural diagram of the test generation algorithm based on ELM.

abundant impulse response vectors and thus obtain impulse
response spaces in di�erent states; on the premise of guaran-
teed precision, impulse response spaces in di�erent states can
be subject to isometric compression.

Step 2. Introduce ELM classier and perform classication
training for impulse response spaces in various states, so as to
obtain various known parameters required, namely ℎ(
) and�; then, work out � according to Formula (9). Here, � =(��−1, ��−2, . . . , �0) stands for test sequence.
Step 3. Use DAC to stimulate CUT with the test sequence
obtained in Step 2; then, judge whether this state is satised

and work out �� = 0 according to Formula (11); it is only
necessary for this algorithm to through a binary ADC with
sign bit. Judge whether the sign bit of this output sequence is
0 or 1, namely, whether it meets the state of this circuit.

Step 4. Circuits always havemultiple states, including normal
state andmultiple fault states.�erefore, there are always sev-
eral values for � obtained fromStep 2, as shown in Figure 5. To
judge whether the circuit is normal or not, this needs to out-
put several test sequences from tested circuits through DAC.
Upon judgment for several times in Step 3, whether the circuit
is normal or not can be judged. If it is abnormal, the type of
fault state can be judged.
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DAC DUT

DUT
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Compressing sampled space
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(9)

Figure 5: Multifault structural diagram of the test generation algorithm based on ELM.

Circuit fault judgment via the analog circuit test genera-
tion algorithm always needs to operate Steps 2 and 3 formany
times. �erefore, the e�ciency of the whole algorithm will
be directly in�uenced by the classier’s training test speed
and parameter calculation speed as well as the parameter
conguration speed of Step 3. According to the analysis in
Section 3.3.1, the classication speed is relatively fast for ELM
itself. According to the contents of Sections 3.4 and 3.5, there
is only a need to work out the solution to � in the test gen-
eration algorithm in this paper. It is unnecessary to work out
the solution to ��. �erefore, it is only necessary to calculate
and congure a group of parameters in the process of signal
generation and test. For the rst two algorithms, however, two
groups of parameters need to be calculated and congured.
�erefore, certain improvement is made to the speed of
the algorithm in this paper. In terms of precision, trade-o�
parameters of ELM have smaller in�uence on test precision
against trade-o� parameters of SVM during compression of
sample space according to the analysis in Section 3.2. �ere-
fore, the test generation algorithm based on ELM has some
advantages in terms of precision during signal generation
when compared with the algorithm based on SVM. Due to
reduction of parameter calculations in the test generation
process in terms of the algorithm in this paper, the deviation
of calculation of parameters introduced into the test process
from the classication process is decreased. As a result, the
precision is improved to some extent. �e performance of
the algorithm will be veried in the experiment in the next
section.

5. Examples

�is section illustrates ideas of this paper by simulation. �e
entire simulation is completed on a personal computer with

a 3-GHz processor and 2-GBRAM. Programs used in simu-
lation are developed by authors in MATLAB 7.1 and OrCAD
10.5.

5.1. Example 1. ELM is one of the best classication algo-
rithms based on activation functions.Without loss of general-
ity, testing set misclassication of the test generation method
is shown by circuits in Figure 6(a) corresponding to di�erent
mapping functions as shown in Figure 7(a). For a normal
circuit, tolerance range of all parameters is [−10%, 10%]. For
fault circuits, parameters of components are beyond the tol-
erance range [10%, 50%]∪[−50%, −10%]. Many sampled vec-
tors can be acquired from circuit shown in Figure 6(a), and an
impulse-response space is constructed. Each sampled vector
is obtained by sampling the impulse response of a circuit
instance. �e amount of each sample is set to be 30, and
impulse-response space can be divided into training or
testing sets.

Each sampled vector of training sets is labelled as “passed”
or “failed” according to circuit specications. Testing set clas-
sication can be derived by setting the sign-bit of output
response as zero. Furthermore, to determine e�ects of aver-
agely compressed sample space, sampled vectors are estab-
lished by averagely compressing previous impulse-response
space, in which numbers of each sample and new impulse-
response space are set to be 30 and 5, respectively.Here, trade-
o� parameters in di�erent mapping functions are of default
assignment. Figure 7(b) shows the testing set misclassi-
cation of test generation method compared with di�erent
mapping functions.

Figure 7(a) shows rates of testing set misclassication
of various mapping functions a�er applying ELM-based
algorithm proposed in this paper to circuit in Figure 6(a).
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Figure 6: (a) A three-pole active lter. (b) A two-pole active lter. (c) A ve-pole active lter.
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Figure 7: (a) Misclassication rates of ELM-based algorithm with di�erent mapping functions for circuit in Figure 6(a), when the number of
impulse-response samples is 30. (b)Misclassication rates of ELM-based algorithmwith di�erentmapping functions for circuit in Figure 6(a),
when the number of impulse-response samples is 5.

Misclassication rates include the ratio of the number of
misclassied passed instances to the number of instances
labelled as passed and the ratio of the number ofmisclassied
failed instances to the number of instances labelled as failed
instances. As shown in Figure 7(a), compared with ELMwith
multiquadric function, ELMwith both Gaussian kernel func-
tion and Sigmoid activation function performs better in mis-
classication for the total population (%)which includes both
passed instances and failed instances, when the number of
impulse-response samples is 30. However, according to Fig-
ure 7(b), in the case of compressing (the number of impulse-
response samples is 5), ELMwith Sigmoid activation function
has better misclassication than that with both Gaussian ker-
nel function and multiquadric function. �erefore, Sigmoid

activation function is a mapping function that suits ELM-
based algorithm proposed in this paper.

5.2. Example 2. To compare with previous algorithms conve-
niently without loss of generality, three kinds of circuits are
used in Figures 6(a), 6(b), and 6(c) to show the performance
including misclassication rates and time cost, between
SVM-based and ELM-based algorithms. Normal and fault
circuit instances can be built by assigning parameters to com-
ponents, and all normal parameters fall in their respective
tolerance ranges. Parameter ranges of normal and fault
circuits are assigned by the same way as in Example 1. �e
number of impulse-response samples is set to be 30, and
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Figure 8: (a) Misclassication rates of SVM- and ELM-based algorithms for circuits in Figures 6(a), 6(b), and 6(c), when the number of
impulse-response samples is 30. (b) Time cost of SVM- and ELM-based algorithms for circuits in Figures 6(a), 6(b), and 6(c), when the
number of impulse-response samples is 30.

simulation processes are implemented the same as in Exam-
ple 1. Here, trade-o� parameters in both ELM and SVM are
assigned by default.

Figures 8(a) and 8(b) show time cost of circuits in Figures
6(a), 6(b), and 6(c) between SVM-based and ELM-based
algorithms and misclassication rates including both passed
and failed testing and training sets. Results show that ELM-
based algorithm proposed in this paper as shown in Fig-
ure 8(a) can enhance the precision slightly, compared with
SVM-based algorithm. Furthermore, as described in Sec-
tion 3, the process of signal generator and test in ELM-based
algorithm proposed in this paper are much simpler because
of the computational complexity and classication theory of
methods, and ELM-based algorithm can reduce time cost
greatly as shown in Figure 8(b).

5.3. Example 3. In order to facilitate comparison with pre-
vious algorithms in the case of compressing sampled space,
two kinds of circuits are used in Figures 6(b) and 6(c) to
show misclassication rates between SVM-based and ELM-
based algorithmswith di�erent numbers of impulse-response
samples. Parameter ranges of normal and fault circuits are
assigned by the same way as in Example 1, and simulation
processes are also implemented the same as in Example 1.

�e sampled vector can be written as (ℎ1, ℎ2, . . . , ℎ30), as
the number of impulse-response samples is set as 30 under no
compressing. Numbers of impulse-response samples are set
to be 15, 10, and 5 respectively, and new sampled vectors
are constructed by extracting samples equidistantly from the
impulse-response sampled space without compressing. Here,
trade-o� parameters in both ELM and SVM are of default
assignment.

Figures 9(a) and 9(b) showmisclassication rates of both
passed and failed testing and training sets for circuits as in
Figures 6(b) and 6(c) between SVM-based and ELM-based
algorithms. According to results, the ELM-based algorithm
proposed in this paper can enhance the precision both

for training and testing sets when the number of impulse
response samples is reduced, because its trade-o� parameters
are less sensitive to classication accuracy than those of SVM-
based algorithm in the case of compressing as described in
Section 3.

5.4. Example 4. In the case of compressing sampled space, for
circuit in Figure 6(a),misclassication rates increase themost
as the number of impulse-response samples decreases to 5. So,
circuit in Figure 6(a) is used to compare the misclassication
in the case of compressing sampled space. With 5 impulse-
response samples, we can construct 6 di�erent sets of sampled
vectors, namely, 91(ℎ1, ℎ7, ℎ13, ℎ19, ℎ25), 92(ℎ2, ℎ8, ℎ14, ℎ20,ℎ26), 93(ℎ3, ℎ9, ℎ15, ℎ21, ℎ27), 94(ℎ4, ℎ10, ℎ16, ℎ22, ℎ28), 95(ℎ5,ℎ11, ℎ17, ℎ23, ℎ29), and 96(ℎ6, ℎ12, ℎ18, ℎ24, ℎ30), respectively.
For di�erent sets of sampled vectors in the case of com-
pressing, Figure 10(a) compares misclassication rates and
time cost among ELM-based, SVM-based, and chaos particle
swarm optimization- (CPSO-) SVM-based [24] algorithms,
in which parameter optimization is applied to trade-o� para-
meters of � and ; in SVM. Here, trade-o� parameters in
both ELM and SVM are also of default assignment, and
CPSO-SVM is a SVM algorithm based on parameters opti-
mized to trade-o� parameters.

�e ELM-based, SVM-based, and CPSO-SVM-based
algorithms are compared in Figures 10(a) and 10(b) in terms
of misclassication rates and time cost for di�erent sets of
sampled vectors, in the case of compressing sampled space
with default trade-o� parameters. Results of Figure 10(a)
show that ELM-based and CPSO-SVM-based algorithms
with default trade-o� parameters can better enhance the sta-
bility and misclassication rates than SVM-based algorithm.
However, as shown in Figure 10(b), ELM-based algorithm
proposed in this paper takes the least time among these three
algorithms, as optimization of trade-o� parameters would
take about 10 seconds. In general, the ELM-based algorithm
proposed in this paper can enhance precision and stability
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Figure 9: (a)Misclassication rates of SVM- andELM-based algorithms for circuit in Figure 6(b), with di�erent numbers of impulse-response
samples. (b)Misclassication rates of SVM- and ELM-based algorithms for circuit in Figure 6(c), with di�erent numbers of impulse-response
samples.
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Figure 10: (a) Misclassication rates of di�erent algorithms for circuit in Figure 6(a), when the number of impulse-response samples is 5. (b)
Time cost of di�erent algorithms for circuit in Figure 6(a), when the number of impulse-response samples is 5.

and reduce time cost with a decreased number of impulse-
response samples.

6. Conclusions

�is paper puts forward an advanced test generation algo-
rithm for analog circuits. As described in Section 3, the
proposed algorithm classies response space based on ELM,

and a novel process of test generation algorithm including
test signal generator and test is proposed. Existing test gen-
eration algorithms cannot save time or stabilize the accuracy
e�ciently when the number of impulse-response samples
decreases although groups can be separated e�ciently. Due to
computational complexity and classication theory of meth-
ods, ELM-based algorithm proposed in this paper has much
simpler processes of signal generator and test and trade-
o� parameters not sensitive to classication accuracy in the
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case of compressing. �is algorithm can not only avoid
precision reduction under compressing, but also save time
e�ciently. Furthermore, this algorithm is conrmed to have
good performance through experiments.
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