
Test Generation for Designs with Multiple Clocks

Xijiang Lin and Rob Thompson

Mentor Graphics Corp.
8005 SW Boeckman Rd.

Wilsonville, OR 97070

39.1
Abstract
To improve the system performance, designs with multi-

ple clocks have become more and more popular. In this

paper, several novel test generation procedures are proposed

to utilize multiple clocks in the design effectively and effi-

ciently in order to dramatically reduce test pattern count

without sacrificing fault coverage or causing clock skew

problem. This is achieved by pulsing multiple non-interac-

tive clocks simultaneously and applying a clock concatena-

tion technique. Experimental results on several industrial

circuits show significant test pattern count reduction by

using the proposed test generation procedures.

Categories and Subject Descriptors
B.8.1 Reliability, Testing, and Fault-Tolerance

General Terms
Algorithms, Design

Keywords
ATPG, Clock Domain, Scan Design

1 Introduction
To test full scan designs, traditional Automatic Test Pat-

tern Generation (ATPG) tools will generate basic test pat-

terns which only allow to pulse one clock between scan

loading and unloading in order to avoid clock skew problem

caused by pulsing several clocks simultaneously. In today’s

VLSI designs, multiple clocks have been extensively used to

improve the system’s performance. Therefore, if the basic

test patterns generated by the traditional ATPG tool are still

used to test these designs, the number of test patterns

required to achieve the desired fault coverage will increase

significantly. As the test pattern count has great impact on

both the test application time and the memory requirement of

the tester, it is desired that the ATPG tool can take the multi-

ple clocks in the design into account and use them in an

effective way to reduce the test pattern count dramatically as

well as to avoid any clock skew problem.
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006...$5.00.

66
In order to reduce the test pattern count in designs with

multiple clocks, there exist two approaches[1]:

• Clock domain analysis: This approach utilizes the non-

interactive relations among different clocks by analyz-

ing clock domains in the design. A group of clocks

belongs to the same clock domain if there is no func-

tional path among the state elements captured by the dif-

ferent clocks in the group. Since the clocks in the same

clock domain can be pulsed simultaneously without

causing clock skew problem, the traditional ATPG tool

can apply all of those clocks together during the test

generation after defining them as equivalent clocks.

Because faults needed to be captured by the different

clocks are possibly tested by the same test pattern, the

test pattern count can be reduced. Since the clocks in the

same clock domain are defined as equivalent, this

approach does not utilize the non-interactive relations

among the clocks effectively. Consider a design with

three clocks, {clk1, clk2, clk3}. If any pair of clocks can

be pulsed simultaneously without causing clock skew

problem, defining clk1 and clk2 as equivalent will forbid

pulsing clocks clk1 and clk3 together as well as clk2 and

clk3 together during test generation. As a result, it may

increase the test pattern count.

• Clock concatenation: In this approach, different clocks

are pulsed sequentially between scan loading and

unloading such that the generated test pattern will

include more than one cycle and only one clock is

pulsed in each cycle. Since no overlap exists between

the applied clocks, there is no risk of clock skew during

data captures. Because the test data volume is domi-

nated by the scan data, and the test application time is

dominated by the scan loading and unloading operation,

the cost of storing and applying one multiple cycle test

pattern is very close to that spent applying a test pattern

with single cycle. Compared with pulsing one clock per

test pattern, the observation points in the different clock

domains are used more efficiently, such that the gener-

ated test pattern count can be reduced. The drawbacks of

this approach are that both sequential test generator and

sequential fault simulator are required and the test gen-

eration time will be much longer than that taken by the
2

first approach. However, if all the clocks in the design

interact with each other, this approach is the only way to

reduce the test pattern count without requiring to mask

out control points and observation points.

To reduce the test generation time in the second

approach, the combinational test generator and the fault sim-

ulator are enhanced in [3] to generate test patterns that pulse

clocks sequentially. To guarantee a safe capture behavior, the

state elements that have potential clock skew problem are

masked out as neither control point nor observation point.

Due to losing controllability and observability of some scan

cells, this approach can achieve better performance when the

interaction among different clocks in the design is minimum.

In this paper, we focus on a test generation processes

that efficiently generate highly compact test pattern sets for

designs with multiple clocks based on the two approaches

described above. When utilizing clock domain analysis, the

proposed test generation procedure does not require defining

clocks in the same domain as equivalent. Instead, we create a

clock interaction table to guide the test generator to avoid

clock skew problem among the different clocks dynamically.

As a result, we could implicitly enumerate all the possible

combinations of non-interactive clocks and maximize the

number of clocks to be pulsed together, as well as eliminate

unnecessary clock pulsing. When generating a compact test

pattern set by applying clock concatenation, the fault effects

captured by previous clocks must not be disturbed by the

clocks applied subsequently. Besides enhancing test genera-

tor to achieve this goal, we also use design rule checking to

determine which group of clocks can be applied sequentially

and identify the scan cells that could be disturbed by more

than one clock in advance, in order to reduce test generation

complexity.

The paper is organized as follows. In Section 2, we

describe the criteria to identify the interaction among the dif-

ferent clocks in the design and give the test generation proce-

dure by applying the clock interaction table derived from the

clock domain analysis. In Section 3, we show an efficient

test generation procedure based on the clock concatenation

technique. To reduce test pattern count further, the clock

concatenation based approach is combined with the clock

domain analysis based approach. The enhanced procedure is

described in Section 4. Experimental results for several

industrial circuits are given in Section 5. Section 6 concludes

the paper.

2 Test Generation Based on Clock Domain
Analysis

2.1 Clock Classification Criteria
In order to avoid clock skew problems, the basic rule to

allow to pulse two clocks simultaneously is given below.

Basic rule: Two clocks, clk1 and clk2, cannot be pulsed

simultaneously if there exists any combinational data path

between the state elements controlled by this two clocks, i.e.,

if the state elements updated by clk1 can reach the data port

of any state element updated by clk2 through combinational

logic or vice versa, they cannot be applied together.

As an example, no combinational data path exists
66
between the flip-flops DFF1 and DFF2 in Figure 1(a).

Applying clk1 and clk2 simultaneously will not cause any

clock skew problem. In Figure 1(b), the output of DFF3 can

reach the data input of DFF4 through an AND gate. If the

rising edge of clk4 reaches DFF4 later than the rising edge

of clk3 due to clock skew, the new data captured into DFF3
may be captured by clk4 to DFF4. As a result, we should not

allow clk3 and clk4 to be pulsed simultaneously during test-

ing.

Fig. 1: Examples for basic rule
Based on the basic rule, we could build a data transfer

graph[3] to describe the data transfers across different clocks

and this graph is used to identify the group of clocks that can

be pulsed together without causing clock skew problem.

However, in modern designs, the relationship among the dif-

ferent clocks becomes more and more complex. The data

transfer graph itself is not sufficient to describe the interac-

tion among the clocks. Considering the circuit in Figure 2(a),

both clk1 and clk2 can reach the clock port of DFF1. The

data captured into DFF1 will be determined by the earlier

rising edge between clk1 and clk2 when both sel1 and sel2
have logic value 1. As a result, race condition exists between

these two clocks. During test generation, we must avoid to

pulse them simultaneously even if they satisfy the basic rule.

Fig. 2: Examples for extra rules
We propose several extra rules to check the interaction

among clocks. During the test generation, two or more

clocks can be applied together only when they pass both the

basic rule and the extra rules. The proposed extra rules are

described below.

Extra rule 1: Two clocks clk1 and clk2 cannot be pulsed

simultaneously if both clocks can reach to the same clock

port of any state element through any combinational logic.

clk1

DFF2

clk2

DFF1

clk3 clk4

DFF3 DFF4

(b)(a)

clk1

clk2

sel1

sel2

DFF1

data1
clk6

clk7

clk8
clk9

data2

DFF3

clk3
clk4

clk5

DFF2

DFF4
DFF5

clk10

clk11

(a) Extra rule 1

(d) Extra rule 4(c) Extra rule 3

(b) Extra rule 2
3

An example circuit that violates the extra rule 1 is

shown in Figure 2(a).

Extra rule 2: Two clocks clk1 and clk2 cannot be pulsed

simultaneously if clk1 can reach the data port of a state ele-

ment controlled by clk2 through any combinational logic.

In Figure 2(b), both clk3 and clk4 reach the flip-flop

DFF2’s data port through an OR gate. If clk3 is at its off

state, logic 0, and clk4 and clk5 are pulsed simultaneously,

the data captured into DFF2 is undetermined due to data

holding time may be violated. However, clk3 and clk4 in this

example can be pulsed together if they satisfy all checking

rules.

Extra rule 3: Two clocks clk1 and clk2 cannot be pulsed

simultaneously if they can reach to the different clock ports

of the same state element through any combinational logic.

A flip-flop with two ports is shown in Figure 2(c). When

clk7 and clk9 are pulsed together, the data captured into the

flip-flop is undermined if different logic values exist at the

inputs of the different data ports. Based on the extra rule 2,

we should not pulse the clocks {clk6, clk7} and {clk8, clk9}

simultaneously. However, pulsing the clocks {clk6, clk9}

and {clk7, clk8} will not create any problem.

Extra rule 4: Two clocks clk1 and clk2 cannot be pulsed

simultaneously if both clk2 and the data captured by clk1 can

reach to the clock port of the same state element through any

combinational logic.

In Figure 2(d), the data captured by clk10 is used to gate

the clock clk11. If clk11 is later due to the clock skew prob-

lem, the new capture value rather than the old value in DFF4
is incorrectly used to gate clk11.

2.2 Clock Interaction Table
By applying the clock classification criteria described in

the above section, we can classify the clocks into several

non-interaction groups, i.e., all clocks in the same group are

potential candidates to be pulsed together during test genera-

tion in order to reduce the test pattern count. Since a clock

may be included in more than one group, to enumerate all

possible clock groups explicitly is not an efficient way to

guide the test generation. In our implementation, we use a n-

by-n symmetric matrix I to record the analysis results for the

interaction among the clocks, where n is number of clocks in

the design. A data item I(i, j) in the matrix I is set to be 1 if

the i-th clock cannot be applied together with the j-th clock

because they do not pass the basic rule and the extra rules.

Otherwise, the value 0 will be assign to the data item I(i, j).

As an example, the clock interaction table for the circuit

shown in Figure 2(c) is given in Table 1. Both I(clk6, clk7)

Table 1: Clock interaction table for the circuit shown in
Figure 2(c)

I clk6 clk7 clk8 clk9

clk6 0 1 0 0

clk7 1 0 0 1

clk8 0 0 0 1

clk9 0 1 1 0
66
and I(clk8, clk9) are set to be 1 due to the extra rule 2 is vio-

lated, and I(clk7, clk9) is set to be 1 due to the extra rule 3 is

violated.

When applying the clock interaction table during test

generation, the procedure ckeck_interaction_clocks()

described below is used to avoid generating test patterns with

any clock skew problem. This procedure is called when the

test generator requires to turn a clock clkon on in order to

detect the fault currently targeted by ATPG.

Procedure: check_interaction_clocks(clkon)

/* clkon is the clock required to be turned on now */

1. Check potential clock skew:

(a) For each clock clki in the design: If clki is already

turned on and I(clkon, clki) is equal to 1, return FAIL.

2. Avoid clock skew:

(a) For each clock clki in the design: If clki has not been

turned off and I(clkon, clki) is equal to 1, turn it off.

3. Turn clkon on and return PASS.

In above procedure, we first check if clkon can be

applied together with any already on-clocks. If the check

fails, the procedure returns FAIL to ask the ATPG to back-

track. The second step in the procedure will turn off all

clocks which cannot be applied together with clkon in order

to avoid clock skew problem.

2.3 Test Generation Procedure
In order to apply clock domain analysis to generate

more compact test set, dynamic compaction needs to be used

during the test generation. In this section, we describe how to

integrate the results from clock domain analysis into

dynamic compaction. The proposed test generation proce-

dure is given below. For simplicity, test patterns with single

cycle are generated in this procedure. We will consider test

generation for multiple cycle test patterns in Section 4.

Procedure: ATPG_for_clock_domain()

1. Apply clock classification criteria to identify the interac-

tion among all the clocks in the design and create clock

interaction table.

2. Create fault list and set test pattern set T equal to NULL.

3. While there exist undetected faults in the fault list, do

(a) Randomly pick an undetected fault f from the fault

list.

(b) Set all the bits in the test cube C with one cycle to be

X.

(c) Set num_fails=0 and primary_fault_flag=1.

(d) Apply deterministic test generator to specify unspec-

ified bits in C in order to detect the fault f. During the

test generation, if any clock is required to be turned

on, call the procedure check_interaction_clocks() to

turn off the clocks that will cause skew problem, but

keep all other clocks’ value as X if they are not spec-

ified yet.

(e) If test generation successes, update C by the new

expanded test cube, set primary_fault_flag=0, and

go to Step (i).

(f) If primary_fault_flag is 1, go to Step (a).

(g) Set primary_fault_flag=0 and increase num_fails by

1.
4

(h) If num_fails is greater than maximum number of

allowed failures, go to Step (j).

(i) Randomly pick next undetected fault f from the fault

list such that the fault effect of f will not be captured

by the clocks with off-state in C. Then, go to Step

(d).

(j) Set all clocks in C with unspecified value to have

their off-state value and then randomly fill all

unspecified bits in C.

(k) Fault simulate C for all undetected faults and drop

the detected faults from the fault list.

(l) Add C to the test set T.

4. Return the generated test pattern set T.

The above procedure is similar to traditional dynamic

compaction except for the differences listed below:

• After test generation for the primary target fault suc-

ceeds, the traditional dynamic compaction will force all

unspecified clocks to at their off-state in order to avoid

clock skew problem. In our procedure, we use the clock

interaction table to determine the clocks needing to be

turned off. All other clocks are left as unspecified in

order to increase the chance to detect the faults in those

clock domains by expanding the test cube.

• The proposed procedure is more flexible in selecting

the clocks to be pulsed together. It implicitly enumerates

all possible combinations of the non-interactive clocks

by using the clock interaction table and only applies as

many clocks together as necessary. For example, if clk1,

clk2, and clk3 can be pulsed simultaneously, the proce-

dure may only turn both clk1 and clk2 on, but turn clk3
off if turning clk3 on cannot detect extra faults. Thus, it

avoids the shortcoming of the strategy of grouping the

clocks first and defining the clocks in each group as

equivalent, as mentioned in Section 1. As a result, it

improves the performance of the test generator to gener-

ate more compact test set.

• Traditional test generation typically targets faults

according to a predetermined order. In the proposed pro-

cedure, we randomly pick the fault to be targeted next

since we found that this strategy generates more com-

pact test set than using a fixed fault order. Furthermore,

when we select the secondary target faults in Step (i),

we will use clock values to filter the number of second-

ary target faults to be considered next. This is based on

the observation that a fault in the design may require to

turn a specific clock on in order to detect it. The analysis

to determine the relations between faults and clocks can

be done before the test generation. We will not discuss it

in this paper.

3 Test Generation Based on Clock Concatena-
tion

When all clocks in the design are interact with each

other, clock domain analysis is unable to group the clocks to

be pulsed simultaneously. Thus, only one clock can be

pulsed in each cycle. If we still generate single cycle test pat-
66
tern, many state elements controlled by non-pulsed clocks do

not have the opportunity to observe fault effects in anything

other than the logic already tested by a scan chain test. As a

result, test pattern count will be increased significantly

because observation points are not used effectively in each

test pattern.

To reduce the test pattern count while not risking clock

skew, we can generate test patterns with multiple cycles

where different clocks are applied sequentially in different

cycles, i.e., turn one clock on in each cycle. If the fault

effects captured into scan cells during any cycle in a test pat-

tern are not disturbed by the clocks applied subsequently in

the same test pattern, the faults in the different clock

domains can be detected by one test pattern through pulsing

those clocks sequentially.

Fig. 3: Example for applying clocks sequentially
Considering the circuit shown in Figure 3, two clocks,

clk1 and clk2, are included in this circuit. Due to violating

the basic rule, they cannot be pulsed simultaneously. It will

require two test patterns to detect the faults c stuck-at-0 and f
stuck-at-0 if one cycle per test pattern. However, if we apply

the test vector {a,b,si,se,clk1,clk2}={1,1,X,0,pulse,0} first,

the fault effect of c stuck-at-0 will be captured into scan cell

DFF1 and the fault-free machine value of DFF1 will be set

to 1. Before doing scan unloading, we apply another test vec-

tor {a,b,si,se,clk1,clk2}={1,X,X,0,0,pulse} and it will cap-

ture the fault effect of f stuck-at-0 into DFF2. Since clk1 is at

its off-state in the second vector, the fault effect of c stuck-at-

0 captured into DFF1 is not disturbed by pulsing clk2. Thus,

we can detect both faults in a test pattern including two

cycles after doing scan unloading.

To generate multiple cycle test patterns as described

above, we propose the procedure shown below. In the pro-

posed procedure, we assume only one clock is pulsed in each

cycle and the design is a full scan design.

Procedure: ATPG_with_clock_concatenation()

1. Classify clocks into two groups, i.e., master clock group

Mclk and slave clock group Sclk.

2. Mark scan cells which can be disturbed by more than

one clock.

3. Create fault list and set test pattern set T to be NULL.

4. While there exist undetected faults in the fault list, do

(a) Set both disturbed observation scan cell set Dcell and

off-clock set Oclk to be NULL.

(b) Set initial test cube C to be NULL and number of

cycles Ncycle in C to be 0.

(c) While Ncycle is less than maximal number of cycles

allowed:

(i) Append one additional cycle at the end of C.

(ii) In the added cycle, force all clocks in Oclk to

DFF1 DFF2

clk1 clk2
si

a

se

b d e g
fc

s-a-0 s-a-0 so
5

their off-state and all other primary inputs to
have unspecified value initially.

(iii)Imply all the clock inputs for each scan cells in
Dcell to be off in the added cycle in order to avoid

disturbance of these scan cells.

(iv)Randomly pick an undetected fault f from the
fault list such that its fault effect can be captured
by a clock not in Oclk. If no such kind fault left,

go to Step (d).

(v) Activate f in the last cycle and apply the deter-
ministic test generation to specify unspecified
bits in C to detect f.

(vi)If the test generation for f fails, go to Step (iv).

(vii)Increase Ncycle by 1.

(viii)Let clkf in the last cycle be the capture clock to

observe f in the scan cell cellf. Set all clocks

except clkf to their off-state in the last cycle of C
in order to avoid clock skew. Moreover, if cellf is

marked in Step 2, add it to Dcell.

(ix)Apply dynamic compaction to specify as many
unspecified bits in C in order to detect additional
undetected faults. During the dynamic compac-
tion, all faults are activated in the last cycle only.
For each new observation scan cell, add it to
Dcell if it is marked in Step 2.

(x) If (), add all clocks in

Sclk(Mclk) to Oclk.

(xi)If all clocks are included in Oclk, go to Step (d).

(d) Randomly fill all unspecified bits in C.

(e) Fault simulate C for all undetected faults and drop

the detected faults from fault list.

(f) Add C to the test pattern set T.

5. Return the generated test pattern set T.

The first step in the above procedure is typically used for

LSSD designs. LSSD designs includes two types of clocks,

master clock and slave clock. Since it is impossible to unload

both the master and slave elements of a single scan cell in a

test pattern, there is no benefit in pulsing the master clock

and slave clock sequentially. In the proposed procedure, we

will give freedom to chose any type of clock in the first cycle

of the test pattern. However, only the clocks with the same

type as the clock in the first cycle are allowed to be pulsed in

the subsequent cycles. This is achieved in Step (x) by adding

all the clocks in the different group to Oclk. For non-LSSD

designs, all clocks belong to master clock and Sclk is NULL.

The analysis carried out in Step 2 is used to mark the

scan cells which can be disturbed by more than one clock.

Considering the circuit in Figure 2(a), if clk1 is used to cap-

ture the fault effect in the first cycle of the test pattern, we

cannot apply clk2 in the subsequent cycles since it will dis-

turb the value captured earlier. In the proposed procedure,

we will add the scan cell to the disturbed observation scan

cell set Dcell if it is marked as a disturbed cell and is used to

observe certain fault during the test generation. As shown in

Step (iii), all chosen observation scan cells are prevented

from being disturbed by implying all the clock inputs of the

scan cells in Dcell to their off-value. For the scan cells not

marked in Step 2, it is unnecessary to explicitly imply all the

clk f Mclk∈ clk f Sclk∈
66
clock inputs to their off-value since our procedure uses each

capture clock only once in each test pattern. This is achieved

by adding all used capture clocks to the off-clock set Oclk.

Step (ii) will force all the clocks in Oclk to their off-state

when appending a new cycle. In this way, we can minimize

the test generation effort to avoid disturbing the observation

scan cells.

All other steps in the proposed procedure are straight-

forward. During the test generation, one additional cycle is

appended to the end of the previous test cube and dynamic

compaction is applied to maximize the number of faults

detected in the additional cycle by activating the faults in the

new added cycle only. The test generation is finished when

all possible clocks are used in the generated test pattern or

the predefined cycle limit for the test pattern is reached.

4 Mixed Test Generation Procedure
In Section 3, we assume one clock pulse each cycle in

order to avoid the risk of clock skew. To reduce the number

of cycles in each test pattern further, we can mix the clock

domain analysis based approach with the clock concatena-

tion based approach. In the mixed approach, more than one

clock is allowed to be pulsed in each cycle of the test pattern.

To ach i eve th i s goa l , t he p rocedu re

ATPG_with_clock_concatenation() proposed in Section 3 is

modified in the following ways:

• During test generation for the fault f in Step (v), the pro-

cedure check_interaction_clocks() needs to be called to

turn off all the clocks that will cause clock skew with

current on-clocks in the same cycle. All non-interactive

clocks will keep their values as unknown if possible.

• In Step (viii), it is unnecessary to force all unspecified

clocks to their off state in the last cycle first. This opera-

tion is carried out after the dynamic compaction is fin-

ished in the last cycle in order to maximize the number

of clocks to be pulsed in the same cycle.

• All clocks with on-value in the last cycle will be added

to Oclk after the dynamic compaction in Step (ix) in

order to use a clock at most once.

5 Experimental Results
All proposed test generation procedures were integrated

into a commercial test generation tool. Several industrial cir-

cuits were used to evaluate the number of generated test pat-

terns by applying three proposed test generation procedures.

The test generation times reported in this section are

obtained on a LINUX workstation with 2.4GHz Pentium 4

processor.

In Table 2, we show the test generation results for 4 dif-

ferent industrial circuits by applying four different test gen-

eration procedures: the procedure for generating test patterns

with single cycle and single clock pulse under column Single
Clock, the procedure for generating test patterns with single

cycle and clock domain analysis under column Clock
Domain, the procedure for generating test patterns with two

cycles and clock concatenation under column Clock Concat-
enation, and the procedure for generating test patterns with
6

Table 2: Test generation results by applying proposed test generation procedures for stuck-at fault model

Ckt #Flts #Clks #Doms

Maximum Number of Allowed Test Cycles in Each Test Pattern

One Cycle Two Cycles

Single Clock Clock Domain Clock Concatenation Mixed

#Pats CPU #Pats CPU %Red #Pats CPU %Red #Pats CPU %Red

ckt1 1209815 36 5 5476 329 2691 251 50.9 2765 861 49.5 1621 589 70.4

ckt2 2131449 11 5 6661 3349 5461 3134 18 3959 8446 40.6 3219 7682 51.7

ckt3 2558092 8 5 2480 1584 2264 1562 8.7 1389 2575 44 1289 2493 48

ckt4 4394833 24 13 10186 6060 7271 5196 28.6 5573 18646 45.3 5008 13286 50.8
two cycles and the mixing of clock domain analysis and

clock concatenation under column Mixed. Dynamic compac-

tion is applied in all four procedures. The number of gener-

ated test patterns and the test generation time in seconds for

each test generation procedure is given under the columns

#Pat and CPU, respectively. For the last three test generation

procedures, we also show the percentage of test pattern

reduction compared with the first test generation procedure

under the column %Red. The total number of collapsed

faults and number of clocks in each circuit are shown under

columns #Flts and #Clks. After the clock interaction table is

created by doing clock domain analysis, we use greedy algo-

rithm to classify clocks that can be pulsed simultaneously

into groups. However, each clock can only be included in

one group. The total number of clock groups created in this

way are reported under the column #Doms.

From Table 2, it can be seen that the test generation pro-

cedure based on clock domain analysis not only effectively

reduces the number of test patterns with single cycle from

8.7% to 50.9%, but also reduces the test generation time

when comparing with the traditional test generation proce-

dure that generates test patterns with single cycle and single

clock pulse. If we consider the relation between the number

of clocks and the number of clock domains in the design, the

test generation results show that the more non-interactive

clocks in the design, the more effective the clock domain

analysis based approach is to reduce the test pattern count.

When we apply clock concatenation technique alone to

generate compact test set, it can be seen from Table 2 that

significant reduction of the number of test patterns is

achieved even if the maximum number of allowed test cycles

is only set to be 2. On average, 44.9% test pattern count

reduction is obtained when compared with the test pattern

count under the column Single Clock. Moreover, the clock

concatenation technique is more effective in terms of test

pattern count than the clock domain analysis in general. For

example, we can reduce the test pattern count by 44% when

using the clock concatenation technique for ckt3. But only

8% test pattern count reduction is achieved for the same cir-

cuit when using the clock domain analysis. When consider-

ing the test generation time, the clock concatenation based

test generation requires 2 to 3 times longer than the tradi-

tional test generation procedure.

When mixing the clock domain analysis with the clock
66
concatenation, we can reduce the test pattern count further as

shown under the column Mixed. On average, the mixed

method generates 10.8% fewer test patterns when compared

with using the clock concatenation technique alone. More-

over, the CPU time in the mixed method is reduced as well.

6 Conclusions
Utilizing the clocks in designs with multiple clocks

effectively and efficiently will dramatically reduce the test

pattern count without losing fault coverage. The test genera-

tion based on clock domain analysis is more effective in

reducing the test pattern count for the designs with large

number of non-interactive clocks and it avoids generating

test patterns with the risk of clock skew. The clock concate-

nation based approach can be used for the design even if all

clocks are interactive with each other. This approach typi-

cally generate more compact test set than the clock domain

analysis based approach. However, when we combining

these two approach, significantly extra test pattern reduction

can be achieved for all the industrial circuits under the exper-

imentation.

References
[1] “Designs with Multiple Clock Domains: Avoiding

Clock Skew and Reducing Pattern Count Using DFTAd-

visorTM and FastScanTM,” Technical White Paper, in

http://www.mentor.com/dft.

[2] R. Press and R. Illman, “ATPG Pattern Compaction: The

Next Wave,” Technical White Paper, in http://www.men-

tor.com/dft.

[3] V. Jain and J. Waicukauski, “Scan Test Data Volume

Reduction in Multi-Clocked Designs with Safe Capture

Technique”, in Proc. of ITC, pp. 148-153, 2002.

[4] “ATPG Tools Reference Manual - FastScan, FlexTest,

and TestKompress,” Mentor Graphics Corp., 2002.
7

