
Test Generation with Inputs,
Outputs, and Quiescence

Jan Tretmans*

ABSTRACT This paper studies testing based on labelled transition sys-

tems, using the assumption that implementations communicate with their

environment via inputs and outputs. Such implementations are formalized

by restricting the class of transition systems to those systems that can al-

ways accept input actions, as in input/output automata. Implementation

relations, formalizing the notion of conformance of these implementations

with respect to labelled transition system specifications, are defined anal-
ogous to the theory of testing equivalence and preorder. A test generation

algorithm is given, which is proved to produce a sound and exhaustive test

suite from a specification, i.e., a test suite that fully characterizes the set
of correct implementations.

1 Introduction

Testing is an operat ional way to check the correctness of a system im-

plementat ion by means of experimenting with it. Tests are applied to the

implementa t ion under test, and based on observations made during the

execution of the tests a verdict about the correct functioning of the imple-

menta t ion is given. The correctness criterion tha t is to be tested is given in

the system specification, preferably in some formal language. The specifica-

t ion is the basis for the derivation of test cases, when possible automatically,

using a test generation algorithm.

Testing and verification are complementary techniques for analysis and

checking of correctness of systems. While verification aims at proving prop-

erties about systems by formal manipulat ion on a mathemat ica l model of

the system, testing is performed by exercising the real, executing implemen-

ta t ion (or an executable simulation model). Verification can give certainty

about satisfaction of a required property, but this certainty only applies to

the model of the system: any verification is only as good as the validity of

the system model. Testing, being based on observing only a small subset of

all possible instances of system behaviour, can never be complete: testing

can only show the presence of errors, not their absence. But since testing

can be applied to the real implementat ion, it is useful in those cases when a

*University of Twente, PO Box 217, NL-7500 AE Enschede, tretmansOcs.utwente.nl

128

valid and reliable model of the system is dii~cult to build due to complexity,

when the complete system is a combination of formal parts and parts which

cannot be formally modelled (e.g., physical devices), when the model is pro-

prietary (e.g., third party testing), or when the validity of a constructed

model is to be checked with respect to the physical implementation.

Many different aspects of a system can be tested: does the system do

what it should do, i.e., does its behaviour comply with its functional spec-

ification (conformance testing), how fast can the system perform its tasks

(performance testing), how does the system react if its environment does

not behave as expected (robustness testing), and how long can we rely on

the correct functioning of the system (reliability testing). This paper fo-

cuses on conformance testing based on formal specifications, in particular

it aims at giving an algorithm for the generation of conformance test cases

from transition system-based specifications.

The ingredients for defining such an algorithm comprise, apart from a

formal specification, a class of implementations. An implementation under

test, however, is a physical, real object, that is in principle not amenable

to formal reasoning. It is treated as a black box, exhibiting behaviour, and

interacting with its environment. We can only deal with implementations in

a formal way, if we make the assumption that any real implementation has

a formal model, with which we could reason formally. This formal model is

only assumed to exist, but it is not known a priori. This assumption is re-

ferred to as the test hypothesis [1, 10, 151. Thus the test hypothesis allows to

reason about implementations as if they were formal objects, and to express

the correctness of implementations with respect to specifications by a for-

real relation between such models of implementations and specifications.

This relation is called the implementation relation [3, 10 I. Conformance

testing now consists of performing experiments to decide how the unknown

model of the implementation relates to the specification. The experiments

are specified in test cases. Given a specification, a test generation algorithm

must produce a set of such test cases (a test suite), which must be sound,

i.e., which give a negative verdict only if the implementation is not correct,

and which, if the implementation is not correct, have a high probability to

give a negative verdict.

One of the formalisms studied in the realm of conformance testing is that

of labelled transition systems. A labelled transition system is a structure

consisting of states with transitions, labelled with actions, between them.

The formalism of labelled transition systems can be used for modelling

the behaviour of processes, such as specifications, implementations, and

tests, and it serves as a semantic model for various, well-known formal

languages, e.g., ACP, CCS, and CSP. Also (most parts of) the semantics

of standardized languages like LOTOS [91, SDL [41, and Estelle [81 can be

expressed in labelled transition systems.

Traditionally, for labelled transition systems the term testing theory does

not refer to conformance testing. Instead of starting with a specification to

129

find a test suite to characterize the class of its conforming implementations,

these testing theories aim at defining implementation relations, given a

class of tests: a transition systems p is equivalent to a system q if any test

case leads to the same observations with p as with q (or more generally, p

relates to q if for all possible tests, the observations made o fp are related in

some sense to the observations made of q). Different relations are defined

by variations of the class of tests, the way they are executed, and the

required relation between observations, see e.g., [5, 7]. Conformance testing

for labelled transition systems has been studied especially in the context of

testing communication protocols with the language LOTOS, e.g., [2, 11, 15,

19]. This paper uses both kinds of testing theories: first an implementation

relation is defined by using a class of tests, and, once defined, test generation

fTom specifications for this particular relation is investigated.

Almost all of the testing theory mentioned above is based on synchro-

nous, symmetric communication between different processes: communica-

tion between two processes occurs if both processes offer to interact on a

part icular action, and if the interaction takes place it occurs synchronously

in both participating processes. Both processes can propose and block the

occurrence of an interaction; there is no distinction between input and

output actions. For testing, a particular case where such communication

occurs, is the modelling of the interaction between a tester and an imple-

mentat ion under test during the execution of a test. We will refer to above

theories as testing with symmetric interactions.

This paper approaches communication in a different manner by distin-

guishing explicitly between the inputs and the outputs of a system. Such a

distinction is made, for example, in Inpu t /Outpu t Automata [12], Input-

Output State Machines [13], and Queue Contexts [17]. Outputs are actions

that are initiated by, and under control of the system, while input actions

are initiated by, and under control of the system's environment. A sys-

tem can never refuse to perform its input actions, while its output actions

cannot be blocked by the environment. Communication takes place be-

tween inputs of the system and outputs of the environment, or the other

way around. It implies that an interaction is not symmetric anymore with

respect to the communicating processes. Many reai-life implementations

allow such a classification of their actions, communicating with their en-

vironment via inputs and outputs, so it can be argued that such models

have a closer link to reality. On the other hand, the input-output paradigm

lacks some of the possibilities for abstraction, which can be a disadvantage

when designing and specifying systems at a high level of abstraction. In

an a t tempt to use the best of both worlds, this paper assumes that im-

plementations communicate via inputs and outputs (as part of the test

hypothesis), whereas specifications, although interpreting the same actions

as inputs, respectively outputs, are allowed to refuse their inputs, which

implies tha t technically specifications are just normal transition systems.

The aim of this paper is to study conformance testing and test gen-

130

eration algorithms for implementations that communicate via inputs and

outputs, based on specifications that are labelled transition systems. The

implementations are modelled by input-output transition systems, a spe-

cial kind of labelled transition systems, where inputs are always enabled.

These are introduced in section 2. Input-output transition systems differ

only marginally from the input/output automata of [12]. Section 3 recalls

some of the testing theory for symmetric interactions, in particular the

definition of some often used implementation relations. Implementation re-

lations with inputs and outputs are discussed in section 4. The first relation

is defined following a testing scenario & la [5]. It is analogous to the scenario

used in [14] to obtain a testing characterization of the relation quiescent

trace preorder on input/output automata [18], and analogous results are

obtained. However, it is shown that this relation does not make full use of

the freedom to have specifications which are not input-enabled. A class of

weaker implementation relations is defined, of which quiescent trace pre-

order is a special case. These relations allow to use the abstractness made

possible by non-input-enabled specifications. A fully abstract model with

respect to these relations is presented. Section 5 formalizes conformance

testing by introducing test cases, test suites, and how to run, execute, and

pass a test case. Finally, a test generation algorithm that produces prov-

ably correct test cases for any of the implementation relations of section 4

is developed in section 6. Some concluding remarks are given in section 7;

for complete proofs we refer to [16].

2 Models

The formalism of labelled transition systems is used for describing the

behaviour of processes, such as specifications, implementations, and tests.

Def in i t ion 2.1

A labelled transition system is a 4-tuple IS, L, T, so), consisting of a count-

able, non-empty set S of states, a countable set L of labels, a transition

relation T C_ S • (L U {T}) • S, and an initial state So E S. []

The labels in L represent the observable interactions of a system; the

special label r ~ L represents an unobservable, internal action. We denote

the class of all labelled transition systems over L by s For technical

reasons we restrict/:7"~q(L) to labelled transition systems that are strongly

converging, i.e., ones that do not have infinite compositions of transitions

with internal actions.

A trace is a finite sequence of observable actions. The set of all traces

over L is denoted by L*, with e denoting the empty sequence. If erl, ~ E L*,

then ~ . ~ is the concatenation of ~1 and er2.

131

Let p = (S, L, T, so) be a labelled transit ion system with s, s t E S, P(0 E

L U {r}, a(0 E L, and a E L*, then the following s tandard notat ions are

used. Note tha t we identify the process p with its initial s tate so.

s ~ ~ s' =def (S, #, s t) E T

8 p l ' . . . ' p ,) S t : d e f ~ 8 0 ~ . . . , 8 n : 8 = S 0

8 p l ' . . . ' pn) = d e f ~8 t : 8 P l " . . . ' D n) 8 t

8 ~ 8 t = d e f 8 = 8 t o r 8 r r) 8 t

s = ~ s' =dq 3s l , s2 : s A , sl --% s~ A , s t
a l ' a n a l

8) 'St : d e f ~ S O . . . S n : 8 : 80 ~ S l a2), . . .

s ~ =d~ 3st : s ~ s'

s = ~ =aef not 3st : s =g=~ s t

traces(p) = d e f { ~ E L* [p ~ }

i n i t (p) : d e f { a e L I p ~ }

I.~1) 81 la~.), . . . p,~ > 8n ..~ St

an t, : St
�9 8r t

A process p has finite behaviour if there is a natural number n, such tha t

all t races in traces(p) have length smaller than n; p is deterministic if for

all ~ E L*, there is at most one p ' such tha t p=g=vp'. I f a E traces(p), then

this pt is denoted by p a f t e r a .

We represent a labelled transit ion system in the s tandard way, either by

a tree or a graph, or by a process-algebraic behaviour expression, with a

syntax inspired by LOTOS [9]:

B :def s t o p I a ; S I i ; B I B D B I BI IB I ~ B

Here a E L, and B is a countable set of behaviour expressions. The oper-

ational semantics are given in the s tandard way by the following axioms

and inference rules:
F a ; B - - % B
~- i; B---~ B

B1 - -~ BI, p C n U {r} ~- B1 [~B2 - ~ B~

B 2 ~ B ~ , # e L U { T } F BI[]B:--~B~

B1 -% BI, B2 --% B~, a 6 L }- B1 I[B2 - -~ B~ [I B~
B - - ~ B t, B E B , # E L U { 7 } F E B " > B '

Communicat ion between processes modelled as labelled transit ion sys-

tems is based on symmetr ic interaction, as expressed by the composition

operator II- An interaction can occur if both the process and its environment

are able to perform tha t interaction, implying that both processes can also

block the occurrence of an interaction. If both processes offer more than

one interaction then it is assumed tha t by some mysterious negotiation

mechanism they will agree on a common interaction. There is no notion of

input or output , nor of initiative or direction. All actions are t reated in the

same way for both communicating partners.

132

Many real systems, however, communicate in a different manner. They

do make a distinction between inputs and outputs, and one can clearly

distinguish whether the initiative for a particular interaction is with the

system or with its environment. There is a direction in the flow of informa-

tion from the initiating communicating process to the other. The initiating

process determines which interaction will take place. Even if the other one

decides not to accept the interaction, this is usually implemented by first

accepting it, and then initiating a new interaction in the opposite direction

explicitly signalling the non-acceptance. One could say that the mysterious

negotiation mechanism is made explicit by exchanging two messages: one

to propose an interaction and a next one to inform the initiating process

about the (non-)acceptance of the proposed interaction.

We use input-output transition systems, analogous to input/output au-

tomata [12], to model systems for which the set of actions can be partitioned

into output actions, for which the initiative to perform them is with the

system, and input actions, for which the initiative is with the environment.

If an input action is initiated by the environment, the system is always

prepared to participate in such an interaction: all the inputs of a system

are always enabled; they can never be refused. Naturally an input action

of the system can only interact with an output of the environment, and

vice versa, implying that output actions can never be blocked by the en-

vironment. Although the initiative for any interaction is in exactly one of

the communicating processes, the communication is still synchronous: if an

interaction occurs it occurs at exactly the same time in both processes. The

communication, however, is not symmetric: the communicating processes

have different roles in an interaction.

Def in i t i on 2.2

An input-output transition system p is a labelled transition system in which

the set of actions L is partitioned into input actions Lx and output actions

Lu (LI U L~r = L, L~ N L~ = 0), and for which all inputs are always

enabled in any state:

whenever p ~ p ' then V a E L I : p'

The class of input-output transition systems with input actions in LI and

output actions in Lu is denoted by ZOTS(LI , Lu) C_ s U L~). []

Example 2.3

Figure 1 gives some input-output transition systems with LI = {butin}

and L~ = {liqout , chOCout}. In ql we can push the button, which is an input

for the candy machine, and then the machine outputs liquorice. After the

button has been pushed once, and also after having obtained liquorice, any
more pushing of the button does not make anything happen: the machine

makes a self-loop. In the sequel we use the convention that a self-loop of a

state that is not explicitly labelled, is labelled with all inputs that cannot

occur in that state (and also not via r-transitions, cf. definition 2.2). []

133

~b~tin
b~t in~ l iqou t

b u t i n ~

ql

~ in

q2 q3 s ~ _ j

FIGURE 1. Input-output transition systems

When studying input-output transition systems the notational conven-

tion will be that a, b, c . . . denote input actions, and z, y, x , . . . denote output

actions. Since input-output transition systems are labelled transition sys-

tems all definitions for labelled transition systems apply. In particular, the

synchronous parallel communication can be expressed by [[, but now care

should be taken that the outputs of one process interact with the inputs of

the other.

Note that input-output transition systems differ marginally from in-

put/output automata [12]: instead of requiring strong input enabling as
in [12] (Va E Lx : p ' - %), input-output transition systems allow input

enabling via internal transitions (weak input enabling, Va E Lz : p~ ~).

3 Testing with Symmetric Interactions

Before going to the test hypothesis that all implementations can be mod-

elled by input-output transition systems in sections 4, 5, and 6, this sec-

tion will briefly review the conformance testing theory that is based on the

weaker hypothesis that implementations can be modelled as labelled transi-

tion systems. In this case correctness of an implementation with respect to a

specification is expressed by an implementation relation on s Many

different relations have been studied, e.g., bisimuiation equivalence, fail-

ure equivalence and preorder, testing equivalence and preorder, and many

others [7]. A straightforward example is trace preorder _<tr, which requires

inclusion of trace sets. The intuition behind this relation is that an im-

plementation i E I:7"S(L) may show only behaviour, in terms of traces of

observable actions, which is specified in the specification s E ET"S(L).

D e f i n i t i o n 3.1

Let i, s E s then i <~tr 8 :dc f traces(i) C traces(s) []

Another, more sophisticated relation is testing preorder <re. In addition

to requiring that the traces observed with the implementation are con-

tained in those observed with the specification, testing preorder requires

134

that any possible observer, or tester, encountering a deadlock with the

implementation will experience the same deadlock when interacting with

the specification. We formalize it using a testing scenario that is slightly

different from the one in [5].

Def in i t ion 3.2

Let p , i , s E s ~ E L*, and A C L, then

1. p a f t e r ~ r e f A =de/ 3pt: p ~ p l and V a E A : pl=f~

2. p a f t e r ~ dead locks =dry p a f te r a r e f L

3. The sets of observations, obs and obs ~ respectively, that an observer

u E f-TS(L) can make of process p E C T,~(L) are given by the dead-

locks, respectively the traces of their synchronization u HP:

obs(u,p) -:def { ~r E L* [(u]]p) af te r a dead locks }

obsl(u,P) =dr! { ~ E L* I ullp:g~}

4. i <-~e s :dry Vu E s : obs(u,i) C obs(u,s)
and obs'(u,i) C_ obs'(u,s) []

The definition of _<re in definition 3.2 is extensional, i.e., in terms of how

the environment (i.c. the observers u) perceives a system. It can be rewrit-

ten into an intensional characterization, i.e., a characterization in terms

of properties of the transition systems themselves. This characterization,

given in terms of failure pairs is known to coincide with failure preorder on

our class of strongly converging transition systems [5].

Propos i t ion 3.3

i<__tes iff V c r E L * , A C _ L : i a f t e r ~ r e f A implies s a f t e r ~ r e f A O

An implementation relation that is strongly related to _~te is the relation

con f [2]. I t is a modification of ~ e by restricting all observations to only

those traces that are contained in the specification s. This restriction makes

testing a lot easier: only traces of the specification have to be considered,

not the huge complement of this set, i.e., the traces not explicitly specified.

Saying it in other words, c o n f requires that an implementation does what

it should do, not that it does not do what it is not allowed to do. It is for the

relation e o n f tha t several test generation algorithms have been developed

and implemented, that generate provably correct test cases, e.g., [2, 15, 191 .

Definit ion 3.4

i c o n f s ----de! Yu E s : (obs(u,i)N traces(s)) C_ obs(u,s)
and (obs'(u, i) N traces(s)) C_ obs'(u, s) []

Propos i t ion 3.5

i c o n f s iff

V~r E traces(s),A C_ L : i a f t e r cr r e f A implies s a f te r ~ r e f A []

135

4 Relations with Inputs and Outputs

We now make the test assumption that implementations can be modelled

by input-output transition systems: we consider implementation relations

C_ ZOTS(LI, Lu) • f-TS(Lx U Lu).

The implementation relations _<re and conf were defined by relating

the observations, made of the implementation by a symmetrically inter-

acting observer u E ETa(L), to the observations made of the specification

(definitions 3.2 and 3.4). An analogous testing scenario can be defined

for input-output transition systems, using the fact that communication

takes place along the lines explained in section 2: the input actions of the

observer synchronize with the output actions of the implementation, and

vice versa, so an input-output implementation in ZOTS(Lx, Lu) commu-

nicates with an 'output-input' observer in T.OT~S(Lu, LI). In this way the
input-output testin9 relation <ioe is defined between i E ZOTS(LI , Lu)
and s E f.T~q(Lx U Lu) by requiring that any possible observation made of

i by any 'output- input ' transition system is a possible observation of s by

the same observer (cf. definition 3.2).

D e f i n i t i o n 4.1

For i 6 IOT, S(L1, Lu) and s 6 s U Lu):

i <_iots =de/ Vu 6 ZOT, S(Lu, LI) : obs(u,i) C_ obs(u,s)
and obs'(u,i) C_ obs'(u,s) []

Note that , despite what was said above about the communication be-

tween the implementation and the observer, the observations made of s

are based on the communication between an input-output transition sys-

tem and a standard labelled transition system, since s need not be an

input-output system. Technically there is no problem in making such ob-

servations: the definitions of obs, obs', H, and . a f t e r . d e a d l o c k s apply

to labelled transition systems, not only to input-output transition systems.

Below we will elaborate on this possibility to have s E s

In [14] the testing scenario of testing preorder [5] was applied to define a

relation on input /ou tput automata, completely analogous to definition 4.1.

It was shown to yield the implementation relation quiescent trace preorder
introduced in [18]. Although we are more liberal with respect to the speci-

fication, s E f~T~q(LI U Lu), exactly the same intensional characterization

is obtained: _<iot is fully characterized by trace inclusion and inclusion

of (weakly) quiescent traces. A weakly quiescent trace (output-suspension

trace in [16]) is a trace after which no more outputs are possible. Note

again the marginal difference with the original definition of quiescence on

inpu t /ou tpu t automata [18]: there quiescence requires the absence of out-

puts and internal actions. We will refer to the latter as strong quiescence.

It is easy to see that on our class of strongly converging transition systems

both definitions coincide, but for diverging processes strong quiescence has

136

some counter-intuitive properties. For example, let d be a divergent loop,

d := r; d, then the trace a is not a strongly quiescent trace of a; d, which

results in some counter-intuitive implementations following strongly quies-

cent trace preorder (cf. [14]).

Definition 4.2

Let p E s A trace ~ E L* is weakly quiescent, if p a f t e r ~ r e f Lu �9

The set of weakly quiescent traces of p is denoted by 6-traces(p). []

Proposition 4.3

i <_lot S iff traces(i) C_ traces(s) and 6-traces(i) C_ 6-traces(s) []

Comparing the intensional characterization of _<Jot in proposition 4.3

with the one for _<re (proposition 3.3), we see that the restriction to input-

output systems simplifies the corresponding intensional characterization.

Instead of sets of pairs consisting of a trace and a set of actions (failure

pairs), it suffices to look at just two sets of traces. This relatively simple

characterization suggests to transform a labelled transition system into an-

other one representing exactly these two sets of traces, so that the relation

can be characterized by trace preorder <tr (definition 3.1) on the results of

this transformation. Such a transformation on a labelled transition system

p can be defined, and the result is called the 6-trace automaton A r. To

obtain Ap a special transition is attached to each state where quiescence

is possible. Then the resulting transition system is determinized. The spe-

cial transition indicating output quiescence has label 6, and goes to a state

stop, from where no other transitions can be made. The label 6 indicates

the absence of output actions in a state, i.e., it makes the absence of output

actions to an explicit observable action.

Definition 4.4

Let p = (S, LI U Lty, T, so) E s L x U Lu), then the 6-trace automaton of

p, Ap, is the transition system (S~, L6, T6, qo) E s L: U Lu U {6}), where

o Sj =de] ~(S) U {stop}, with s top a unique state;

(~v(S) is the powerset of S)

o L6 =dey L I O L u U { 6 } , w i t h 6 ~ L I U L u ;

o T~ =deI { q - ~ q ' I a E L I U L ~ , q,q'ES~,

q' = {s' E S [3 s E q: s = ~ s ' } # ~ }

U { q - A + s t o p I ~ s E q , V z e L v : s : : ~ }

0 q0 =def { S' E S [S O:=~s' }

Proposition 4.5

1. traces(p) = traces(Ap) M L*

3. Ap is deterministic.

4. V~ E traces(Ap) n L*, 3~c E Lrl U {6} : (Ap a f t e r ~) z)

[]

[]

137

�9

butin in
i

Aql Aq,

 {s0)

I~ /~N~ liq~
" k l{s3, s5}

Aqs

FIGURE 2. J-trace automata for figure 1

E x a m p l e 4.6

Figure 2 gives the J-trace automata for ql, q2, and q3 of figure 1. For

Ar the states, subsets of states of q3, have been added. Note that the

nondeterminism of q3 is removed, and that state {sl, s2} has a J-transition,

since there is a state in {Sl,S2}, i.c. s2, that refuses all outputs. []

An immediate corollary of propositions 4.3 and 4.5 is that the input-

output testing relation is completely characterized by trace preorder <_tr on

the corresponding J-trace automata: they serve as a fully abstract model

modulo _<iot. The J-trace automaton of a specification is sufficient and

necessary to define the class of <iot-conforming implementations, and it

will be the basis for the discussion of testing in section 6.

T h e o r e m 4.7

i<iotS iff A~<trA8 []

Ibutin ~~tin

8 1 8 2

•
butin ~ U t i n

As I

FIGURE 3. Two specifications and their S-trace automata

Example 4.8
From Aql , Aq2 , and Aqs (figures 1 and 2), using theorem 4.7, it follows

that ql <_lot q2: an implementation capable of only producing liquorice
conforms to a specification that prescribes to produce either liquorice or

138

chocolate. Although q2 looks deterministic, it in fact specifies that after

button there is a nondeterministic choice between supplying liquorice or

chocolate. It also implies that for this kind of testing q2 is equivalent to

butln; liqout; stop O butin; chocout; stop (omitting the input self-loops), an

equivalence which does not hold for _<re in the symmetric case. If we want

to specify a machine that produces both liquorice and chocolate, then two

buttons are needed to select the respective candies:

liq-button; liqout ; stop C3 choc-bu~on; chocout ; stop

On the other hand, q2 ~iot ql,q3: if the specification prescribes to pro-

duce only liquorice, then an implementation should not have the possibil-

ity to produce chocolate. We have ql <_iot q3, but qs ~iot ql, q2, since q3

may refuse to produce anything after the button has been pushed once,

while both ql and q2 will always output something. Formally: butin" ~ E

traces(Aqs), while butin'6 ~ traces(Aq~), traees(Aq2).
Figure 3 presents two non-input-output transition system specifications

with their 6-trace automata, but none of ql, q2, q3 correctly implements sl

or s2; the problem occurs with non-specified input traces of the specifica-

tion: bl~tin'butin E tT'acea(Aql), trace$(Aq2), tracea(Aqs), while butin'bUtin

~raees(A,~), traces(A,~). []

For the relation _<Jot it is allowed that the specification is not an input-

output transition system: a specification may have states that can refuse

input actions. Such a specification is interpreted as a not-completely spec-

ified input-output transition system, i.e., a transition system where a dis-

tinction is made between inputs and outputs, but where some inputs are

not specified in some states. The intention of such specifications often is

that the specifyer does not care about the responses of an implementa-

tion on such non-specified inputs. If a candy machine is specified to deliver

liquorice after pushing a button as in sl in figure 3, then it is intentionally

left open what an implementation may do after pushing the button twice:

perhaps ignoring it, supplying one of the candies, or responding with an

error message. Intuitively, ql would conform to 81, however, ql ~iot sl,

as was shown in example 4.8. The implementation freedom, intended with

non-specified inputs, cannot be expressed with the relation _<iot. From the-

orem 4.7 the reason can be deduced: since the implementation can always

perform input actions, all inputs must always be enabled in any state of the

specification in order to satisfy trace inclusion, so the specification must be

an input-output transition system, too, otherwise no implementation can

exist.

For input/output automata a solution to this problem is given in [6], us-

ing the so-called demonic semantics for process expressions. In this seman-

tics a transition to a demonic process N is added for each non-specified in-

put. Since 1~ exhibits any behaviour, the behaviour of the implementation is

not prescribed after such a non-specified input. We choose another solution

to allow for non-input-output transition system specifications to express

139

implementat ion freedom for non-enabled inputs: we introduce a weaker

implementation relation. To define this relation, i/o-conformance ioconf,

we first give an alternative characterization of _<io~ (proposition 4.10) to

see where the problem occurs, and how it might be solved. For this char-

acterization the output actions out(A) of a J-trace automaton are defined,

where J occurs as a special output action as explained above.

Def in i t ion 4.9

For A be a J-trace automaton, out(A) =def init(A) M (Lu U {J}) []

The set out(A) will be used particularly in expressions of the form

out(A a f t e r a) to denote the set of outputs (possibly including J) of the

state reached after a. if a • traces(A), then we define out(A after a) = @.

P r o p o s i t i o n 4.10

i_~io~ s iff Va E L* : ou t (A ia f t e ra) C out(As a f t e r a) []

In proposition 4.10 we see that ~iot requires tha t the outputs of the

implementation are included in the outputs of the specification after any

trace: traces of the specification, and traces that are not in the specifi-

cation. A weaker implementation relation is obtained if this requirement

is relaxed to inclusion for those traces that are explicitly specified in the

specification (cf. the relation between <~, and conf, definitions 3.2 and 3.4,

and propositions 3.3 and 3.5).

Defini t ion 4.11

i i o c o n f s --~def ~o'E traces(As) M L*: out(A i after a) C out(As a f t e r a)[]

E x a m p l e 4.12
Consider again figures 1, 2, and 3. Indeed we have ql i o c o n f sa. On the

other hand, q2 i o c ~ n f Sl, since q2 can produce more than liquorice after

the button has been pushed: out(Aq2 a f t e r buti,) = { liq, choc} (L { liq} =
out(As1 a f t e r butin). Moreover, ql, q2 ioconf s2 , but q3 i o c ~ n f s l , s2, since

J E out(Aq3 a f t e r butin), while J r out(As1 afterbuti,), out(A~ 2 afterbutin).
[]

The form of the characterizations of <_io~ in proposition 4.10 and of

io conf in definition 4.11 suggests to generalize them into a class of relations

ioconfy for any set of traces ~ . Implementation relations of the form

ioconfy will be the basis for test generation in section 6.

Defini t ion 4.13

Let ~ C_ L*, i E ZOTiq(Lz, Lu), s E s U Lu), then

i i o c o n f 3 : s :clef V a E J : : out(A~aftera) C out(As a f t e r a) O

140

5 Testing Input-Output Transition Systems

Now tha t we have formal specifications, expressed as labelled transit ion

systems, implementat ions, modelled by input-output transit ion systems,

and a formal definition of conformance, expressed by one of the implemen-

ta t ion relations i ocon fy , the next point of discussion is how tests look like,

and how tests are executed.

A test case is a specification of the behaviour of a tester in an experiment

to be carried out with an implementat ion under test. Such behaviour, like

other behaviours, can be described by a labelled transit ion system. But to

guarantee tha t the experiment lasts for a finite time, a test case should have

finite behaviour. Moreover, a tester executing a test case would like to have

control over the testing process as much as possible, so a test case should

be specified in such a way tha t unnecessary nondeterminism is avoided.

First of all, this implies tha t the test case itseff must be deterministic. But

also we will not allow test cases with a choice between an input action and

an output action, nor a choice between multiple input actions (input and

output with respect to the implementat ion). Both introduce unnecessary

nondeterminism in the test run: if a test case can offer multiple input ac-

tions, or a choice between input and output , then the continuation of the

test run is unnecessarily nondeterministic, since any input-output imple-

mentat ion can always accept any input action. This implies tha t in any

state of a test case either one part icular input is offered to the implemen-

tation, or all possible outputs are accepted. Finally, to be able to decide

about the success of a test, a verdict (pass or fail) is a t tached to each state

of the test. Altogether, we come to the following definition of a test case.

Def in i t ion 5.1

1. A test case t is a 6-tuple iS, Lu, Lj, T, v, so), such that:

o ~S, Lu U LI, T, 80) is a deterministic labelled transit ion system

with finite behaviour;

o for any state t ~ of the test case, either init(t') = {a} for some

a e LI,, or init(t') = Lu, or init(t') = r
o v : S -~ {fail, p a s s } is a verdict function.

The class of test eases over Lu and LI is denoted as ZOTSt(Ltr, LI).

2. A test suite T is a set of test cases: T C TOTSt (Lu , LI). 0

Note tha t L I and L u refer the inputs and outputs from the point of

view of the implementat ion under test, so L I denotes the outputs, and L u

denotes the inputs of the test ease. The definitions of s are extended

to TOT~qt (Lv, LI) by defining them over the underlying transit ion system.

A test run of an implementat ion with a test case is modelled by the

synchronous parallel execution of the test case with the implementat ion

under test, which continues until no more interactions are possible, i.e.,

141

until a deadlock occurs (definition 3.2). This deadlock may occur when the

(finite) test case reaches a final state, or when the combination reaches

a s tate where the test case expects an output from the implementat ion

which is not produced. An implementat ion passes a test run if and only if

the verdict of the test case in the state where the deadlock is reached is

pass . Since an implementat ion can behave nondeterministically different

test runs of the same test case with the same implementat ion may lead to

different final states, and hence to different verdicts. An implementat ion

passes a test case if and only if all possible test runs lead to the verdict

pass. This means tha t each test case must be executed several t imes in

order to give a final verdict, theoretically even infinitely many times.

Def in i t ion 5.2

1. A test run of a test case t 6 I O T S t (L u , LI) with an implementat ion

i E T.OTS(LI, Lu) is a trace of the synchronous parallel composit ion

of t and i, till, leading to deadlock.

2. An implementat ion i passes a test case t, if all the test runs of t and

i lead to a pass - s t a t e of t:

i p a s s e s t =clef Va E L* : (tlli) after a deadlocks
implies v (t a f t e r a) = p a s s

3. An implementat ion i passes a test suite T, if it passes all test cases

i n T : i p a s s e s T =de! Vt E T : i p a s s e s t . I f i d o e s n o t pass the

test suite, it fails: i fails T =def St E T : i pas~es t. []

pass ?to

I b~tin

p a s s / ~ fail ~ t3

liqouF/ ~chocout
t4~" ~ t s

fai l fai l

FIGURE 4. A test case

E x a m p l e 5.3
For q2 (figure 1) there are two test runs with t in figure 4:

tllq= buti":liq~ and Va e L: t2ilq'2=~

tllq2 buti"'eh~176 and Va r L: t311qh' ::#
where q~ and q~' are the final states of q2 after the liqo.t- and chocout-
actions, respectively. Although u(t2) = pass , we have tha t q2 fails t, since

v(t3) = fail. Similarly, ql p a s s e s t and qs fails t . []

142

6 Test Generation for Inputs and Outputs

Now all ingredients are there to present an algorithm genlo�9 ~ to gener-

ate test suites from labelled transition system specifications for any of the

implementation relations i o c o n f y . A generated test suite genlo�9 ~ (s)
must test implementations for conformance with respect to s and i o co n fy .

Ideally, an implementation should pass the test suite if and only if it is con-

forming. In this case the test suite is called complete [10]. Unfortunately,

in almost all practical cases such a test suite would be infinitely large,

hence for practical testing we have to restrict to test suites tha t can only

detect non-conformance, but tha t cannot assure conformance. Such test

suites are called sound. Test suites that can only assure conformance, but

not non-conformance are called exhaustive.

D e f i n i t i o n 6.1

Let s be a specification, and T a test suite, then for an implementation

relation i o c o n f y :

T is complete =d~f Vi : i i o c o n f ~ s if[i p a s s e s T

T is sound ~--dey Vi : i i o c o n f y s impl ies i pa s se s T

T is exhaustive =d~f Vi : i i o c o n f ~ s if i p a s s e s T []

We aim at producing sound test suites. To get some idea how such test

cases will look like we consider the definition of ioconf . In definition 4.11

we see that to test for i o c o n f w e have to check for each a E traces(As) N L*
whether out(Ai a f t e r a) C out(As a f t e r a). Basically, this can be done

by having a test case t that executes a:

t l l i~ t ' l l i '
and then checks out (Ai a f t e r a) by having transitions to pass-states for all

allowed outputs (those in out(A s a f t e r a)), and transitions to fail-states for

all erroneous outputs (those not in out(As a f t e r a)). Special care should

be taken for the special output & ~ actually models the absence of any

output, so no transition will be made at all if i ~ 'outputs ' 6; the test run

will deadlock in t ~ II i'. This can be checked by having the verdict p a s s

in the state t' if ~ is allowed (6 e out(As a f t e r a)) , and by having the

verdict fail in t ~, if the specification does not allow to have quiescence at

tha t point. All this is reflected in the following recursive algorithm. The

algorithm is nondeterministic in the sense that in each recursive step it

can be continued in many different ways: termination of the test case in

choice 1, any input action satisfying the requirement of choice 2, or checking

the allowed outputs in choice 3. Each continuation will result in another

sound test case (theorem 6.4.1), and all possible test cases together form an

exhaustive (and thus complete) test suite (theorem 6.4.2), so there are no

errors in implementations that are principally undetectable with test suites

generated with the algorithm. However, if the behaviour of the specification

is infinite, the algorithm allows to construct infinitely many different test

143

cases, which can be arbitrarily long, but which all have finite behaviour.

To define the algorithm one additional definition is needed.

D e f i n i t i o n 6 . 2

Let Y C L* and a �9 L, then Y a f t e r a : & f (~ E L* { a.a E Y:}. []

A l g o r i t h m 6.3

Let A be the 8-trace automaton of a specification, and let ~" C L*, then

a test case t �9 ~07"St(Lv, LI) is obtained by a finite number of recursive

applications of one of the following three nondeterministic choices:

1. (* terminate the test case ,)

t : = s t o p ;

v(t) :---- pas s ;

2. (, give a next input to the implementation ,)

t : = a ; t ' ;

v (t) : = p a s s ;

where a �9 L~, such that Y a f t e r a ~ 0, and t ' is obtained by recur-

sively applying the algorithm for Y a f t e r a and A', with A --% A'.

3. (* check the next output of the implementation .)

t := ~ { x ; s t o p] x �9 Lu, x r out(A))
[] E { x ; t ~ { z e L u , z e o u t (A) } ;

~,(t) := if (~ � 9 out(A) o r e C Y :) then pass else f a i l ;

where v (s top) := if e �9 Y then fall else pass for all x in the first

operand, and t~ is obtained by recursively applying the algorithm for

~" a f t e r x and A', with A x ~ A I. []

T h e o r e m 6.4

1. A test case obtained with algorithm 6.3 from As and Y is sound for

s with respect to ioconfj : .

2. The set containing all possible test cases that can be obtained with

algorithm 6.3 is exhaustive. []

Example 6.5

We generate a test case for sl from /~01 for the implementation relation
ioconf = ioconftraceKs) (figure 3). We start with giving an input:

butln G init(A,1) n LI, so t := butln; t ' and v(t) : p a s s .

In the next step we generate the test case t ' from A' = liqout; •; s top , where

we check the outputs:

t' := ~,{z;stop I z �9 Lu, x ~ {liqout) } D E{z;tz l z �9 Lu, x �9 {liqout))

= chocout; s t o p [] liqout; tliqout.
Since J ~ out(A') , we have v(t ') = fail. Moreover, v (s top) = fail.

Now generating tliqo~t from A" = dl s t op we again check the outputs:

tuq.~ := E{z; s t o p I z �9 Lu, x ~ {~}} [] r~{z; t= I z �9 Lu, x �9 {J}}

144

= chocout; stop [~/iqout; stop,
with for both branches p(stop) = fail, and ~(tZ~o.t) = pass.

Combining tZiqo., and t ~ into t we obtain the test case t of figure 4 as a

sound test case for sz, which is consistent with the results found in exam-

ples 4.12 and 5.3: qz ioconfsz, q2 ioc~Inf sl, and q3 ioc~nfsz, and indeed

ql passes t, q2 fails t, and q3 fails t. []

7 Concluding Remarks

This paper presented a theory for conformance testing of implementations

that communicate via inputs and outputs. The main ingredients of this

theory are the implementation relations _<ion, ioconf, and ioconfy, and

a sound and exhaustive test generation algorithm. The resulting theory

and algorithm are somewhat simpler than the corresponding theory and

algorithms for testing with symmetric interactions (e.g., compare propo-

sition 4.3 with 3.3, and compare algorithm 6.3 with the conf-based test

generation algorithm in [151). The theory and the algorithm can form the

basis for the development of test generation tools. They can be applied to

those domains where implementations can be assumed to communicate via

inputs and outputs, which is the case for many realistic systems, and where

specifications can be expressed in labelled transition systems, which also

holds for many specification formalisms.

It was indicated that input-output transition systems only marginally

differ from input/output automata [121, having weaker requirements on

input-enabling and on quiescence. We think that in a few cases these weaker

requirements are easier and more intuitive. This was indicated for quies-

cence with the example in section 4, just above definition 4.2, but it was

also indicated that for str0ngly-converging systems the two coincide. For a

precise comparison a more elaborate investigation of divergence in input-

output transition systems is necessary. The weaker requirement on input

enabling allows some systems that are 2:OT~q but not IOA. For example,

when the communication between an IOA system and a bounded input

buffer is hidden, then the whole system is not IOA anymore: when the

buffer is full, no input actions are possible anymore without first perform-

ing an internal event. Such a system is IOT~q.

The model of input-output transition systems is also very much related

to the model of input-output state machines [131. The idea for the ~-trace

automaton is inspired by the way the absence of output is treated in [131,

but there are subtle differences in the way the ~-transitions are added.

The implementation relations and algorithm in this paper generalize

those for queue systems [17]. Queue systems are transition systems in a

queue context, i.e., to which two unbounded queues are attached to model

asynchronous communication, one queue for inputs, and one for outputs.

145

An unbounded queue clearly has the property that input can never be re-

fused, while the output queue makes that from the system's point of view

output actions can never be refused by the environment.

Another open issue is the atomicity of actions. Although we allow spec-

ifications to be labelled transition systems, the actions are classified as

inputs and outputs, and they have a one-to-one correspondence to those

of the implementation. An interesting area for further investigation occurs

if implementation relations are combined with action refinement, so that

one abstract symmetric interaction of the specification is implemented us-

ing multiple inputs and outputs, e.g., implementing an abstract interaction

by means of a hand-shake protocol. Tests could be derived from the spec-

ification using symmetric algorithms (section 3) and then refined, or the

specification could be refined after which the input-output based algorithm

is used. The precise relation between testing, inputs and outputs, and ac-

tion refinement needs further investigation.

A second open problem is the well-known test selection problem (test-

suite size reduction [10]). Algorithm 6.3 can generate infinitely many sound

test cases, but which ones shall be really executed? Solutions can be sought

by defining coverage measures, fault models, stronger test hypotheses, etc.

[1, 10, 13, 15]. Another aspect is the incorporation of data in the test gen-

eration procedure. The state explosion caused by the data in specifications

needs to be handled in a symbolic way, otherwise automation of the test

generation algorithm in test tools will probably not be feasible. A last, more

practical problem is the implementation of the observation of quiescence.

In practical test execution tools, timers will have to be used, for which

the time-out values need to be chosen carefully, in order not to observe

quiescence where there is none.

8 REFERENCES

[1] G. Bernot. Testing against formal specifications: A theoretical view.

In S. Abramsky and T. S. E. Maibaum, eds., TAPSOFT'91, 99-119.

LNCS 494, Springer-Verlag, 1991.

[2] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal

and K. Sabnani, eds., Prof. Spec., Test., and Vet. VIII, 63-74. North-

Holland, 1988.

[3] E. Brinksma, R. Alderden, R. Langerak, 3. van de Lagemaat, and

J. Tretmans. A formal approach to conformance testing. In J. de Meet,

et al., eds., Protocol Test Systems II, 349-363. North-Holland, 1990.

[4] ITU-T. SDL. Recommendation Z.100, 1992.

[5] R. De Nicola. Extensional equivalences for transition systems. Aeta
Informatica, 24:211-237, 1987.

146

[6] R. De Nicola and R. Segala. A process algebraic view of input/output

automata. TCS, 138:391-423, 1995.

[71 R.J. van Glabbeek. The linear time - branching time spectrum. In

J.C.M. Baeten and J.W. Klop, eds., CONCUR'go, LNCS 458, 278-

297. Springer-Verlag, 1990.

[81 ISO. Estelle - International Standard IS-9074, 1989.

[9] I S O . L O T O S - International Standard IS-8807, 1989.

[10] ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8. Formal Methods in
Conformance Testing, working draft. September 1995.

[11] G. Leduc. A framework based on implementation relations for imple-

menting LOTOS specifications. Computer Ne#works and ISDN Sys-
tems, 25(1):23-41, 1992.

[12] N.A. Lynch and M.R. Turtle. An introduction to input/output au-

tomata. CWI Quarterly, 2(3):219-246, 1989.

[13] M. Phalippou. Relations d'Implantation et Hypotheses de Test sur des
Automates & Entrges et Sorties. PhD thesis, L'Universit~ de Bordeaux

I (F), 1994.

[14] R. Segala. Quiescence, fairness, testing, and the notion of implemen-

tation. In E. Best, ed., CONCUR'93, 324-338. LNCS 715, Springer-

Verlag, 1993.

[15] J. Tretmans. A Formal Approach to Conformance Testing. PhD the-

sis, University of Twente (NL), 1992.

[16] J. Tretmans. Testing labelled transition systems with inputs and out-

puts. Memorandum INF-95-26, University of Twente (NL), 1995.

[17] J. Tretmans and L. Verhaard. A queue model relating., synchronous

and asynchronous communication. In R.J. Linn and M.U. Uyar, eds.,
Prot. Spec., Test., and Vet. XII, 131-145. North-Holland, 1992.

[18] F. Vaandrager. On the relationship between process algebra and in-

put/output automata. In Logic in Computer Science, 387-398. Sixth

Annual IEEE Symposium, 1991.

[19] C. D. Wezeman. The CO-OP method for compositional derivation of

conformance testers. In E. Brinksma, et al., eds., Prof. Spee., Test.,
and Vet. IX, 145-158. North-Holland, 199(}.

