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ABSTRACT This paper studies testing based on labelled transition sys- 

tems, using the assumption that implementations communicate with their 

environment via inputs and outputs. Such implementations are formalized 

by restricting the class of transition systems to those systems that can al- 

ways accept input actions, as in input/output automata. Implementation 

relations, formalizing the notion of conformance of these implementations 

with respect to labelled transition system specifications, are defined anal- 
ogous to the theory of testing equivalence and preorder. A test generation 

algorithm is given, which is proved to produce a sound and exhaustive test 

suite from a specification, i.e., a test suite that fully characterizes the set 
of correct implementations. 

1 Introduction 

Testing is an operat ional  way to check the correctness of a system im- 

plementat ion by means of experimenting with it. Tests are applied to the 

implementa t ion under test, and based on observations made during the 

execution of the tests a verdict about  the correct functioning of the imple- 

menta t ion  is given. The correctness criterion tha t  is to be tested is given in 

the system specification, preferably in some formal language. The specifica- 

t ion is the basis for the derivation of test cases, when possible automatically,  

using a test  generation algorithm. 

Testing and verification are complementary techniques for analysis and 

checking of correctness of systems. While verification aims at proving prop- 

erties about  systems by formal manipulat ion on a mathemat ica l  model of 

the system, testing is performed by exercising the real, executing implemen- 

ta t ion  (or an executable simulation model).  Verification can give certainty 

about  satisfaction of a required property, but this certainty only applies to 

the model of the system: any verification is only as good as the validity of 

the system model. Testing, being based on observing only a small subset of 

all possible instances of system behaviour, can never be complete: testing 

can only show the presence of errors, not their absence. But since testing 

can be applied to the real implementat ion,  it is useful in those cases when a 

*University of Twente, PO Box 217, NL-7500 AE Enschede, tretmansOcs.utwente.nl  



128 

valid and reliable model of the system is dii~cult to build due to complexity, 

when the complete system is a combination of formal parts and parts which 

cannot be formally modelled (e.g., physical devices), when the model is pro- 

prietary (e.g., third party testing), or when the validity of a constructed 

model is to be checked with respect to the physical implementation. 

Many different aspects of a system can be tested: does the system do 

what it should do, i.e., does its behaviour comply with its functional spec- 

ification (conformance testing), how fast can the system perform its tasks 

(performance testing), how does the system react if its environment does 

not behave as expected (robustness testing), and how long can we rely on 

the correct functioning of the system (reliability testing). This paper fo- 

cuses on conformance testing based on formal specifications, in particular 

it aims at giving an algorithm for the generation of conformance test cases 

from transition system-based specifications. 

The ingredients for defining such an algorithm comprise, apart from a 

formal specification, a class of implementations. An implementation under 

test, however, is a physical, real object, that is in principle not amenable 

to formal reasoning. It is treated as a black box, exhibiting behaviour, and 

interacting with its environment. We can only deal with implementations in 

a formal way, if we make the assumption that any real implementation has 

a formal model, with which we could reason formally. This formal model is 

only assumed to exist, but it is not known a priori. This assumption is re- 

ferred to as the test hypothesis [1, 10, 151. Thus the test hypothesis allows to 

reason about implementations as if they were formal objects, and to express 

the correctness of implementations with respect to specifications by a for- 

real relation between such models of implementations and specifications. 

This relation is called the implementation relation [3, 10 I. Conformance 

testing now consists of performing experiments to decide how the unknown 

model of the implementation relates to the specification. The experiments 

are specified in test cases. Given a specification, a test generation algorithm 

must produce a set of such test cases (a test suite), which must be sound, 

i.e., which give a negative verdict only if the implementation is not correct, 

and which, if the implementation is not correct, have a high probability to 

give a negative verdict. 

One of the formalisms studied in the realm of conformance testing is that 

of labelled transition systems. A labelled transition system is a structure 

consisting of states with transitions, labelled with actions, between them. 

The formalism of labelled transition systems can be used for modelling 

the behaviour of processes, such as specifications, implementations, and 

tests, and it serves as a semantic model for various, well-known formal 

languages, e.g., ACP, CCS, and CSP. Also (most parts of) the semantics 

of standardized languages like LOTOS [91, SDL [41, and Estelle [81 can be 

expressed in labelled transition systems. 

Traditionally, for labelled transition systems the term testing theory does 

not refer to conformance testing. Instead of starting with a specification to 
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find a test suite to characterize the class of its conforming implementations, 

these testing theories aim at defining implementation relations, given a 

class of tests: a transition systems p is equivalent to a system q if any test 

case leads to the same observations with p as with q (or more generally, p 

relates to q if for all possible tests, the observations made o fp  are related in 

some sense to the observations made of q). Different relations are defined 

by variations of the class of tests, the way they are executed, and the 

required relation between observations, see e.g., [5, 7]. Conformance testing 

for labelled transition systems has been studied especially in the context of 

testing communication protocols with the language LOTOS, e.g., [2, 11, 15, 

19]. This paper uses both  kinds of testing theories: first an implementation 

relation is defined by using a class of tests, and, once defined, test generation 

fTom specifications for this particular relation is investigated. 

Almost all of the testing theory mentioned above is based on synchro- 

nous, symmetric communication between different processes: communica- 

tion between two processes occurs if both processes offer to interact on a 

part icular  action, and if the interaction takes place it occurs synchronously 

in both participating processes. Both processes can propose and block the 

occurrence of an interaction; there is no distinction between input and 

output  actions. For testing, a particular case where such communication 

occurs, is the modelling of the interaction between a tester and an imple- 

mentat ion under test during the execution of a test. We will refer to above 

theories as testing with symmetric interactions. 

This paper approaches communication in a different manner by distin- 

guishing explicitly between the inputs and the outputs of a system. Such a 

distinction is made, for example, in Inpu t /Outpu t  Automata  [12], Input- 

Output  State Machines [13], and Queue Contexts [17]. Outputs  are actions 

that  are initiated by, and under control of the system, while input actions 

are initiated by, and under control of the system's environment. A sys- 

tem can never refuse to perform its input actions, while its output  actions 

cannot be blocked by the environment. Communication takes place be- 

tween inputs of the system and outputs of the environment, or the other 

way around. It implies that  an interaction is not symmetric anymore with 

respect to the communicating processes. Many reai-life implementations 

allow such a classification of their actions, communicating with their en- 

vironment via inputs and outputs,  so it can be argued that  such models 

have a closer link to reality. On the other hand, the input-output paradigm 

lacks some of the possibilities for abstraction, which can be a disadvantage 

when designing and specifying systems at a high level of abstraction. In 

an a t tempt  to use the best of both worlds, this paper assumes that  im- 

plementations communicate via inputs and outputs (as part  of the test 

hypothesis), whereas specifications, although interpreting the same actions 

as inputs, respectively outputs, are allowed to refuse their inputs, which 

implies tha t  technically specifications are just normal transition systems. 

The aim of this paper is to study conformance testing and test gen- 
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eration algorithms for implementations that communicate via inputs and 

outputs, based on specifications that are labelled transition systems. The 

implementations are modelled by input-output transition systems, a spe- 

cial kind of labelled transition systems, where inputs are always enabled. 

These are introduced in section 2. Input-output transition systems differ 

only marginally from the input/output automata of [12]. Section 3 recalls 

some of the testing theory for symmetric interactions, in particular the 

definition of some often used implementation relations. Implementation re- 

lations with inputs and outputs are discussed in section 4. The first relation 

is defined following a testing scenario & la [5]. It is analogous to the scenario 

used in [14] to obtain a testing characterization of the relation quiescent 

trace preorder on input/output automata [18], and analogous results are 

obtained. However, it is shown that this relation does not make full use of 

the freedom to have specifications which are not input-enabled. A class of 

weaker implementation relations is defined, of which quiescent trace pre- 

order is a special case. These relations allow to use the abstractness made 

possible by non-input-enabled specifications. A fully abstract model with 

respect to these relations is presented. Section 5 formalizes conformance 

testing by introducing test cases, test suites, and how to run, execute, and 

pass a test case. Finally, a test generation algorithm that produces prov- 

ably correct test cases for any of the implementation relations of section 4 

is developed in section 6. Some concluding remarks are given in section 7; 

for complete proofs we refer to [16]. 

2 Models 

The formalism of labelled transition systems is used for describing the 

behaviour of processes, such as specifications, implementations, and tests. 

Def in i t ion  2.1 

A labelled transition system is a 4-tuple IS, L, T, so), consisting of a count- 

able, non-empty set S of states, a countable set L of labels, a transition 

relation T C_ S • (L U {T}) • S, and an initial state So E S. [] 

The labels in L represent the observable interactions of a system; the 

special label r ~ L represents an unobservable, internal action. We denote 

the class of all labelled transition systems over L by s For technical 

reasons we restrict/:7"~q(L) to labelled transition systems that are strongly 

converging, i.e., ones that do not have infinite compositions of transitions 

with internal actions. 

A trace is a finite sequence of observable actions. The set of all traces 

over L is denoted by L*, with e denoting the empty sequence. If erl, ~ E L*, 

then ~ . ~  is the concatenation of ~1 and er2. 
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Let p = (S, L, T, so) be a labelled transit ion system with s, s t E S, P(0 E 

L U {r},  a(0 E L, and a E L*, then the following s tandard notat ions are 

used. Note tha t  we identify the process p with its initial s tate so. 

s ~ ~ s' =def (S, #, s t) E T 

8 p l ' . . . ' p ,  ) S t  : d e f  ~ 8 0 ~ . . . ,  8 n : 8 = S 0 

8 p l ' . . . ' pn  ) = d e f  ~8  t : 8 P l " . . . ' D n  ) 8  t 

8 ~ 8 t = d e f  8 = 8 t o r  8 r . . . . . r ) 8  t 

s = ~  s' =dq 3s l ,  s2 : s A ,  sl  --% s~ A ,  s t 
a l . . . . ' a n  a l  

8 ) 'St  : d e f  ~ S O . . . S n  : 8 : 80 ~ S l  a2), . . .  

s ~ =d~ 3st : s ~ s' 

s = ~  =aef not 3st : s =g=~ s t 

traces(p) = d e f  { ~ E L* [ p ~ } 

i n i t ( p )  : d e f  { a e L I p ~  } 

I.~1) 81 la~.), . . .  p,~ > 8n ..~ St 

an  t, : St  
�9 8r t  

A process p has finite behaviour if there is a natural  number  n, such tha t  

all t races in traces(p) have length smaller than n; p is deterministic if for 

all ~ E L*, there is at most  one p '  such tha t  p=g=vp'. I f a  E traces(p), then 

this pt is denoted by p a f t e r  a .  

We represent a labelled transit ion system in the s tandard way, either by 

a tree or a graph, or by a process-algebraic behaviour expression, with a 

syntax inspired by LOTOS [9]: 

B :def s t o p  I a ; S  I i ; B  I B D B  I BI IB  I ~ B  

Here a E L, and B is a countable set of behaviour expressions. The oper- 

ational semantics are given in the s tandard way by the following axioms 

and inference rules: 
F a ; B - - % B  
~- i; B---~ B 

B1 - -~  BI, p C n U {r}  ~- B1 [~B2 - ~  B~ 

B 2 ~ B ~ ,  # e L U { T }  F BI[]B:--~B~ 

B1 -% BI, B2 --% B~, a 6 L }- B1 I[ B2 - -~  B~ [I B~ 
B - - ~ B  t, B E B ,  # E L U { 7 }  F E B  " > B '  

Communicat ion between processes modelled as labelled transit ion sys- 

tems is based on symmetr ic  interaction, as expressed by the composition 

operator  II- An interaction can occur if both  the process and its environment 

are able to perform tha t  interaction, implying that  both  processes can also 

block the occurrence of an interaction. If  both  processes offer more than  

one interaction then it is assumed tha t  by some mysterious negotiation 

mechanism they will agree on a common interaction. There is no notion of 

input  or output ,  nor of initiative or direction. All actions are t reated in the 

same way for both  communicating partners.  
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Many real systems, however, communicate in a different manner. They 

do make a distinction between inputs and outputs, and one can clearly 

distinguish whether the initiative for a particular interaction is with the 

system or with its environment. There is a direction in the flow of informa- 

tion from the initiating communicating process to the other. The initiating 

process determines which interaction will take place. Even if the other one 

decides not to accept the interaction, this is usually implemented by first 

accepting it, and then initiating a new interaction in the opposite direction 

explicitly signalling the non-acceptance. One could say that the mysterious 

negotiation mechanism is made explicit by exchanging two messages: one 

to propose an interaction and a next one to inform the initiating process 

about the (non-)acceptance of the proposed interaction. 

We use input-output transition systems, analogous to input/output au- 

tomata [12], to model systems for which the set of actions can be partitioned 

into output actions, for which the initiative to perform them is with the 

system, and input actions, for which the initiative is with the environment. 

If an input action is initiated by the environment, the system is always 

prepared to participate in such an interaction: all the inputs of a system 

are always enabled; they can never be refused. Naturally an input action 

of the system can only interact with an output of the environment, and 

vice versa, implying that output actions can never be blocked by the en- 

vironment. Although the initiative for any interaction is in exactly one of 

the communicating processes, the communication is still synchronous: if an 

interaction occurs it occurs at exactly the same time in both processes. The 

communication, however, is not symmetric: the communicating processes 

have different roles in an interaction. 

Def in i t i on  2.2 

An input-output transition system p is a labelled transition system in which 

the set of actions L is partitioned into input actions Lx and output actions 

Lu (LI U L~r = L, L~ N L~ = 0), and for which all inputs are always 

enabled in any state: 

whenever p ~ p '  then V a E L I :  p' 

The class of input-output transition systems with input actions in LI and 

output actions in Lu is denoted by ZOTS(LI ,  Lu) C_ s U L~). [] 

Example  2.3 

Figure 1 gives some input-output transition systems with LI = {butin} 

and L~ = {liqout , chOCout}. In ql we can push the button, which is an input 

for the candy machine, and then the machine outputs liquorice. After the 

button has been pushed once, and also after having obtained liquorice, any 
more pushing of the button does not make anything happen: the machine 

makes a self-loop. In the sequel we use the convention that a self-loop of a 

state that is not explicitly labelled, is labelled with all inputs that cannot 

occur in that state (and also not via r-transitions, cf. definition 2.2). [] 
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~b~tin 
b~t in~ l iqou  t 

b u t i n ~  

ql 

~ in 

q2 q3 s ~ _ j  

FIGURE 1. Input-output transition systems 

When studying input-output transition systems the notational conven- 

tion will be that a, b, c . . .  denote input actions, and z, y, x , . . .  denote output 

actions. Since input-output transition systems are labelled transition sys- 

tems all definitions for labelled transition systems apply. In particular, the 

synchronous parallel communication can be expressed by [[, but now care 

should be taken that the outputs of one process interact with the inputs of 

the other. 

Note that input-output transition systems differ marginally from in- 

put/output  automata [12]: instead of requiring strong input enabling as 
in [12] (Va E Lx : p ' - %  ), input-output transition systems allow input 

enabling via internal transitions (weak input enabling, Va E Lz : p~ ~ ). 

3 Testing with Symmetric Interactions 

Before going to the test hypothesis that all implementations can be mod- 

elled by input-output transition systems in sections 4, 5, and 6, this sec- 

tion will briefly review the conformance testing theory that is based on the 

weaker hypothesis that implementations can be modelled as labelled transi- 

tion systems. In this case correctness of an implementation with respect to a 

specification is expressed by an implementation relation on s Many 

different relations have been studied, e.g., bisimuiation equivalence, fail- 

ure equivalence and preorder, testing equivalence and preorder, and many 

others [7]. A straightforward example is trace preorder _<tr, which requires 

inclusion of trace sets. The intuition behind this relation is that an im- 

plementation i E I:7"S(L) may show only behaviour, in terms of traces of 

observable actions, which is specified in the specification s E ET"S(L). 

D e f i n i t i o n  3.1 

Let i, s E s then i <~tr 8 :dc f  traces(i) C traces(s) [] 

Another, more sophisticated relation is testing preorder <re. In addition 

to requiring that the traces observed with the implementation are con- 

tained in those observed with the specification, testing preorder requires 
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that  any possible observer, or tester, encountering a deadlock with the 

implementation will experience the same deadlock when interacting with 

the specification. We formalize it using a testing scenario that  is slightly 

different from the one in [5]. 

Def in i t ion  3.2 

Let p , i , s  E s ~ E L*, and A C L, then 

1. p a f t e r ~ r e f A  =de/ 3pt: p ~ p l  and V a E A :  pl=f~ 

2. p a f t e r  ~ dead locks  =dry p a f te r  a r e f  L 

3. The sets of observations, obs and obs ~ respectively, that  an observer 

u E f-TS(L) can make of process p E C T,~(L) are given by the dead- 

locks, respectively the traces of their synchronization u HP: 

obs(u,p) -:def { ~r E L* [ (u]]p) af te r  a dead locks  } 

obsl(u,P) =dr! { ~ E L* I ullp:g~} 

4. i <-~e s :dry Vu E s : obs(u,i) C obs(u,s) 
and obs'(u,i) C_ obs'(u,s) [] 

The definition of _<re in definition 3.2 is extensional, i.e., in terms of how 

the environment (i.c. the observers u) perceives a system. It  can be rewrit- 

ten into an intensional characterization, i.e., a characterization in terms 

of properties of the transition systems themselves. This characterization, 

given in terms of failure pairs is known to coincide with failure preorder on 

our class of strongly converging transition systems [5]. 

Propos i t ion  3.3 

i<__tes iff V c r E L * , A C _ L :  i a f t e r ~ r e f A  implies s a f t e r ~ r e f A  O 

An implementation relation that  is strongly related to _~te is the relation 

con f  [2]. I t  is a modification of ~ e  by restricting all observations to only 

those traces that  are contained in the specification s. This restriction makes 

testing a lot easier: only traces of the specification have to be considered, 

not the huge complement of this set, i.e., the traces not explicitly specified. 

Saying it in other words, c o n f  requires that  an implementation does what 

it should do, not that  it does not do what it is not allowed to do. It is for the 

relation e o n f  tha t  several test generation algorithms have been developed 

and implemented, that  generate provably correct test cases, e.g., [2, 15, 191 . 

Definit ion 3.4 

i c o n f  s ----de! Yu E s  : (obs(u,i)N traces(s)) C_ obs(u,s) 
and (obs'(u, i) N traces(s)) C_ obs'(u, s) [] 

Propos i t ion  3.5 

i c o n f  s iff 

V~r E traces(s),A C_ L : i a f t e r  cr r e f  A implies s a f te r  ~ r e f  A [] 
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4 Relations with Inputs and Outputs 

We now make the test assumption that  implementations can be modelled 

by input-output  transition systems: we consider implementation relations 

C_ ZOTS(LI, Lu) • f-TS(Lx U Lu). 

The implementation relations _<re and conf were defined by relating 

the observations, made of the implementation by a symmetrically inter- 

acting observer u E ETa(L), to the observations made of the specification 

(definitions 3.2 and 3.4). An analogous testing scenario can be defined 

for input-output  transition systems, using the fact that  communication 

takes place along the lines explained in section 2: the input actions of the 

observer synchronize with the output  actions of the implementation, and 

vice versa, so an input-output  implementation in ZOTS(Lx,  Lu) commu- 

nicates with an 'output-input' observer in T.OT~S(Lu, LI). In this way the 
input-output testin9 relation <ioe is defined between i E ZOTS(LI ,  Lu) 
and s E f.T~q(Lx U Lu) by requiring that  any possible observation made of 

i by any 'output- input '  transition system is a possible observation of s by 

the same observer (cf. definition 3.2). 

D e f i n i t i o n  4.1 

For i 6 IOT,  S(L1, Lu) and s 6 s U Lu): 

i <_iots =de/ Vu 6 ZOT, S(Lu, LI) : obs(u,i) C_ obs(u,s) 
and obs'(u,i) C_ obs'(u,s) [] 

Note that ,  despite what was said above about the communication be- 

tween the implementation and the observer, the observations made of s 

are based on the communication between an input-output transition sys- 

tem and a standard labelled transition system, since s need not be an 

input-output  system. Technically there is no problem in making such ob- 

servations: the definitions of obs, obs', H, and . a f t e r  . d e a d l o c k s  apply 

to labelled transition systems, not only to input-output transition systems. 

Below we will elaborate on this possibility to have s E s  

In [14] the testing scenario of testing preorder [5] was applied to define a 

relation on input /ou tput  automata,  completely analogous to definition 4.1. 

It  was shown to yield the implementation relation quiescent trace preorder 
introduced in [18]. Although we are more liberal with respect to the speci- 

fication, s E f~T~q(LI U Lu), exactly the same intensional characterization 

is obtained: _<iot is fully characterized by trace inclusion and inclusion 

of (weakly) quiescent traces. A weakly quiescent trace (output-suspension 

trace in [16]) is a trace after which no more outputs are possible. Note 

again the marginal difference with the original definition of quiescence on 

inpu t /ou tpu t  automata  [18]: there quiescence requires the absence of out- 

puts  and internal actions. We will refer to the latter as strong quiescence. 

It  is easy to see that  on our class of strongly converging transition systems 

both definitions coincide, but  for diverging processes strong quiescence has 
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some counter-intuitive properties. For example, let d be a divergent loop, 

d := r; d, then the trace a is not a strongly quiescent trace of a; d, which 

results in some counter-intuitive implementations following strongly quies- 

cent trace preorder (cf. [14]). 

Definition 4.2 

Let p E s A trace ~ E L* is weakly quiescent, if p a f t e r  ~ r e f  Lu  �9 

The set of weakly quiescent traces of p is denoted by 6-traces(p). [] 

Proposition 4.3 

i <_lot S iff traces(i) C_ traces(s) and 6-traces(i) C_ 6-traces(s) [] 

Comparing the intensional characterization of _<Jot in proposition 4.3 

with the one for _<re (proposition 3.3), we see that  the restriction to input- 

output systems simplifies the corresponding intensional characterization. 

Instead of sets of pairs consisting of a trace and a set of actions (failure 

pairs), it suffices to look at just two sets of traces. This relatively simple 

characterization suggests to transform a labelled transition system into an- 

other one representing exactly these two sets of traces, so that  the relation 

can be characterized by trace preorder <tr (definition 3.1) on the results of 

this transformation. Such a transformation on a labelled transition system 

p can be defined, and the result is called the 6-trace automaton A r. To 

obtain Ap a special transition is attached to each state where quiescence 

is possible. Then the resulting transition system is determinized. The spe- 

cial transition indicating output  quiescence has label 6, and goes to a state 

stop, from where no other transitions can be made. The label 6 indicates 

the absence of output actions in a state, i.e., it makes the absence of output 

actions to an explicit observable action. 

Definition 4.4 

Let p = (S, LI U Lty, T, so) E s L x U Lu  ), then the 6-trace automaton of 

p, Ap, is the transition system (S~, L6, T6, qo) E s L:  U Lu U {6}), where 

o Sj =de] ~(S)  U {stop}, with s top  a unique state; 

(~v(S) is the powerset of S) 

o L6 =dey L I O L u U { 6 } ,  w i t h 6 ~ L I U L u ;  

o T~ =deI  { q - ~ q '  I a E L I U L ~ ,  q,q'ES~, 

q' = {s' E S [ 3 s  E q: s = ~ s ' }  # ~  } 

U { q - A + s t o p  I ~ s E q ,  V z e L v :  s : : ~ }  

0 q0 =def { S' E S [S  O:=~s' } 

Proposition 4.5 

1. traces(p) = traces(Ap) M L* 

3. Ap is deterministic. 

4. V~ E traces(Ap) n L*, 3~c E Lrl U {6} : ( Ap a f t e r  ~)  z) 

[] 

[] 
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�9 

butin in 
i 

Aql Aq, 

 {s0) 

I~ /~N~ liq~ 
" k l{s3,  s5} 

Aqs 

FIGURE 2. J-trace automata for figure 1 

E x a m p l e  4.6 

Figure 2 gives the J-trace automata  for ql, q2, and q3 of figure 1. For 

Ar the states, subsets of states of q3, have been added. Note that  the 

nondeterminism of q3 is removed, and that  state {sl, s2} has a J-transition, 

since there is a state in {Sl,S2}, i.c. s2, that  refuses all outputs. [] 

An immediate corollary of propositions 4.3 and 4.5 is that  the input- 

output  testing relation is completely characterized by trace preorder <_tr on 

the corresponding J-trace automata: they serve as a fully abstract model 

modulo _<iot. The J-trace automaton of a specification is sufficient and 

necessary to define the class of <iot-conforming implementations, and it 

will be the basis for the discussion of testing in section 6. 

T h e o r e m  4.7 

i<iotS iff A~<trA8 [] 

Ibutin ~~tin 

8 1  8 2  

• 
butin ~ U t i n  

As I 

FIGURE 3. Two specifications and their S-trace automata 

Example 4.8 
From Aql , Aq2 , and Aqs (figures 1 and 2), using theorem 4.7, it follows 

that  ql <_lot q2: an implementation capable of only producing liquorice 
conforms to a specification that  prescribes to produce either liquorice or 
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chocolate. Although q2 looks deterministic, it in fact specifies that after 

button there is a nondeterministic choice between supplying liquorice or 

chocolate. It also implies that for this kind of testing q2 is equivalent to 

butln; liqout; stop O butin; chocout; stop (omitting the input self-loops), an 

equivalence which does not hold for _<re in the symmetric case. If we want 

to specify a machine that produces both liquorice and chocolate, then two 

buttons are needed to select the respective candies: 

liq-button; liqout ; stop C3 choc-bu~on; chocout ; stop 

On the other hand, q2 ~iot ql,q3: if the specification prescribes to pro- 

duce only liquorice, then an implementation should not have the possibil- 

ity to produce chocolate. We have ql <_iot q3, but qs ~iot ql, q2, since q3 

may refuse to produce anything after the button has been pushed once, 

while both ql and q2 will always output something. Formally: butin" ~ E 

traces(Aqs), while butin'6 ~ traces( Aq~ ), traees(Aq2 ). 
Figure 3 presents two non-input-output transition system specifications 

with their 6-trace automata, but none of ql, q2, q3 correctly implements sl 

or s2; the problem occurs with non-specified input traces of the specifica- 

tion: bl~tin'butin E tT'acea(Aql), trace$( Aq2 ), tracea(Aqs), while butin'bUtin 

~raees(A,~), traces(A,~). [] 

For the relation _<Jot it is allowed that the specification is not an input- 

output transition system: a specification may have states that can refuse 

input actions. Such a specification is interpreted as a not-completely spec- 

ified input-output transition system, i.e., a transition system where a dis- 

tinction is made between inputs and outputs, but where some inputs are 

not specified in some states. The intention of such specifications often is 

that the specifyer does not care about the responses of an implementa- 

tion on such non-specified inputs. If a candy machine is specified to deliver 

liquorice after pushing a button as in sl in figure 3, then it is intentionally 

left open what an implementation may do after pushing the button twice: 

perhaps ignoring it, supplying one of the candies, or responding with an 

error message. Intuitively, ql would conform to 81, however, ql ~iot sl, 

as was shown in example 4.8. The implementation freedom, intended with 

non-specified inputs, cannot be expressed with the relation _<iot. From the- 

orem 4.7 the reason can be deduced: since the implementation can always 

perform input actions, all inputs must always be enabled in any state of the 

specification in order to satisfy trace inclusion, so the specification must be 

an input-output transition system, too, otherwise no implementation can 

exist. 

For input/output automata a solution to this problem is given in [6], us- 

ing the so-called demonic semantics for process expressions. In this seman- 

tics a transition to a demonic process N is added for each non-specified in- 

put. Since 1~ exhibits any behaviour, the behaviour of the implementation is 

not prescribed after such a non-specified input. We choose another solution 

to allow for non-input-output transition system specifications to express 



139 

implementat ion freedom for non-enabled inputs: we introduce a weaker 

implementation relation. To define this relation, i/o-conformance ioconf,  

we first give an alternative characterization of _<io~ (proposition 4.10) to 

see where the problem occurs, and how it might be solved. For this char- 

acterization the output  actions out(A) of a J-trace automaton are defined, 

where J occurs as a special output  action as explained above. 

Def in i t ion  4.9 

For A be a J-trace automaton,  out(A) =def init(A) M (Lu U {J}) [] 

The set out(A) will be used particularly in expressions of the form 

out( A a f t e r  a )  to denote the set of outputs (possibly including J) of the 

state reached after a. if  a • traces(A), then we define out( A after a ) = @. 

P r o p o s i t i o n  4.10 

i_~io~ s iff Va E L* : ou t (A ia f t e ra )  C out(As a f t e r a )  [] 

In proposition 4.10 we see that  ~iot requires tha t  the outputs of the 

implementation are included in the outputs of the specification after any 

trace: traces of the specification, and traces that  are not in the specifi- 

cation. A weaker implementation relation is obtained if this requirement 

is relaxed to inclusion for those traces that  are explicitly specified in the 

specification (cf. the relation between <~, and conf,  definitions 3.2 and 3.4, 

and propositions 3.3 and 3.5). 

Defini t ion  4.11 

i i o c o n f  s --~def ~o'E traces(As) M L*: out(A i after a) C out(As a f t e r  a)[] 

E x a m p l e  4.12 
Consider again figures 1, 2, and 3. Indeed we have ql i o c o n f  sa. On the 

other hand, q2 i o c ~ n f  Sl, since q2 can produce more than liquorice after 

the button has been pushed: out( Aq2 a f t e r  buti,) = { liq, choc} (L { liq} = 
out(As1 a f t e r  butin). Moreover, ql, q2 ioconf s2 ,  but q3 i o c ~ n f s l ,  s2, since 

J E out(Aq3 a f t e r  butin), while J r out(As1 afterbuti,), out(A~ 2 afterbutin). 
[] 

The form of the characterizations of <_io~ in proposition 4.10 and of 

io conf  in definition 4.11 suggests to generalize them into a class of relations 

ioconfy  for any set of traces ~ .  Implementation relations of the form 

ioconfy  will be the basis for test generation in section 6. 

Defini t ion  4.13 

Let ~ C_ L*, i E ZOTiq(Lz, Lu), s E s U Lu), then 

i i o c o n f 3 : s  :clef V a E J : :  out(A~aftera)  C out( As a f t e r a )  O 
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5 Testing Input-Output Transition Systems 

Now tha t  we have formal specifications, expressed as labelled transit ion 

systems, implementat ions,  modelled by input-output  transit ion systems, 

and a formal definition of conformance, expressed by one of the implemen- 

ta t ion relations i ocon fy ,  the next  point of discussion is how tests look like, 

and how tests are executed. 

A test  case is a specification of the behaviour of a tester in an experiment  

to be carried out with an implementat ion under test. Such behaviour,  like 

other behaviours, can be described by a labelled transit ion system. But to 

guarantee tha t  the experiment lasts for a finite time, a test  case should have 

finite behaviour.  Moreover, a tester  executing a test  case would like to have 

control over the testing process as much as possible, so a test  case should 

be specified in such a way tha t  unnecessary nondeterminism is avoided. 

First  of all, this implies tha t  the test  case itseff must  be deterministic. But  

also we will not allow test cases with a choice between an input action and 

an output  action, nor a choice between multiple input actions (input and 

output  with respect to the implementat ion).  Both introduce unnecessary 

nondeterminism in the test  run: if a test case can offer multiple input ac- 

tions, or a choice between input and output ,  then the continuation of the 

test  run is unnecessarily nondeterministic,  since any input-output  imple- 

mentat ion can always accept any input action. This implies tha t  in any 

state of a test  case either one part icular  input  is offered to the implemen- 

tation, or all possible outputs  are accepted. Finally, to be able to decide 

about  the success of a test, a verdict (pass  or fail) is a t tached to each state 

of the test. Altogether, we come to the following definition of a test  case. 

Def in i t ion  5.1 

1. A test case t is a 6-tuple iS, Lu, Lj,  T, v, so), such that:  

o ~S, Lu U LI, T, 80) is a deterministic labelled transit ion system 

with finite behaviour; 

o for any state t ~ of the test case, either init(t') = {a} for some  

a e LI,, or init(t') = Lu, or init(t') = r 
o v : S -~ {fail, p a s s }  is a verdict function. 

The class of test  eases over Lu and LI is denoted as ZOTSt(Ltr,  LI). 

2. A test suite T is a set of test  cases: T C TOTSt (Lu ,  LI). 0 

Note tha t  L I  and L u  refer the inputs and outputs  from the point of 

view of the implementat ion under test, so L I  denotes the outputs,  and L u  

denotes the inputs of the test  ease. The definitions of s  are extended 

to TOT~qt (Lv,  LI) by defining them over the underlying transit ion system. 

A test  run of an implementat ion with a test  case is modelled by the 

synchronous parallel execution of the test  case with the implementat ion 

under test,  which continues until no more interactions are possible, i.e., 
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until  a deadlock occurs (definition 3.2). This deadlock may  occur when the 

(finite) test  case reaches a final state, or when the combination reaches 

a s tate  where the test  case expects an output  from the implementat ion 

which is not produced. An implementat ion passes a test  run if and only if 

the verdict  of the test  case in the state where the deadlock is reached is 

pass .  Since an implementat ion can behave nondeterministically different 

test  runs of the same test  case with the same implementat ion may  lead to 

different final states, and hence to different verdicts. An implementat ion 

passes a test  case if and only if all possible test runs lead to the verdict 

pass. This means tha t  each test  case must  be executed several t imes in 

order to give a final verdict,  theoretically even infinitely many  times. 

Def in i t ion  5.2 

1. A test run of a test  case t 6 I O T S t ( L u ,  LI) with an implementat ion 

i E T.OTS(LI, Lu) is a trace of the synchronous parallel composit ion 

of t and i, till,  leading to deadlock. 

2. An implementat ion i passes a test  case t, if all the test  runs of t and 

i lead to a pass - s t a t e  of t: 

i p a s s e s t  =clef Va E L* : (tlli) after a deadlocks  
implies v ( t  a f t e r  a )  = p a s s  

3. An implementat ion i passes a test  suite T, if it passes all test  cases 

i n T :  i p a s s e s T  =de! Vt E T : i p a s s e s t .  I f i d o e s n o t  pass the 

test  suite, it fails: i fails T =def St E T : i pas~es  t. [] 

pass ?to 

I b~tin 

p a s s / ~  fail ~ t3 

liqouF/ ~chocout 
t4~" ~ t s  

fai l  fai l  

FIGURE 4. A test case 

E x a m p l e  5.3 
For q2 (figure 1) there are two test  runs with t in figure 4: 

tllq= buti":liq~ and Va e L:  t2ilq'2=~ 

tllq2 buti"'eh~176 and Va r L:  t311qh' ::# 
where q~ and q~' are the final states of q2 after the liqo.t- and chocout- 
actions, respectively. Although u(t2) = pass ,  we have tha t  q2 fails  t, since 

v(t3) = fail. Similarly, ql p a s s e s  t and qs fails t . [] 
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6 Test Generation for Inputs and Outputs 

Now all ingredients are there to present an algorithm genlo�9 ~ to gener- 

ate test suites from labelled transition system specifications for any of the 

implementation relations i o c o n f y .  A generated test suite genlo�9 ~ (s) 
must test implementations for conformance with respect to s and i o co n fy .  

Ideally, an implementation should pass the test suite if and only if it is con- 

forming. In this case the test suite is called complete [10]. Unfortunately, 

in almost all practical cases such a test suite would be infinitely large, 

hence for practical testing we have to restrict to test suites tha t  can only 

detect non-conformance, but  tha t  cannot assure conformance. Such test 

suites are called sound. Test suites that  can only assure conformance, but  

not non-conformance are called exhaustive. 

D e f i n i t i o n  6.1 

Let s be a specification, and T a test suite, then for an implementation 

relation i o c o n f y :  

T is complete =d~f Vi : i i o c o n f ~  s if[ i p a s s e s  T 

T is sound ~--dey Vi : i i o c o n f y  s impl ies  i pa s se s  T 

T is exhaustive =d~f Vi : i i o c o n f ~  s if i p a s s e s  T [] 

We aim at producing sound test suites. To get some idea how such test 

cases will look like we consider the definition of ioconf .  In definition 4.11 

we see that  to test for i o c o n f w e  have to check for each a E traces(As) N L* 
whether out( Ai  a f t e r  a ) C out( As a f t e r  a ). Basically, this can be done 

by having a test case t that  executes a: 

t l l i~ t ' l l i '  
and then checks out ( Ai a f t e r  a )  by having transitions to pass-states for all 

allowed outputs  (those in out( A s a f t e r a  )), and transitions to fail-states for 

all erroneous outputs (those not in out( As a f t e r  a )). Special care should 

be taken for the special output  & ~ actually models the absence of any 

output,  so no transition will be made at all if i ~ 'outputs '  6; the test run 

will deadlock in t ~ II i'. This can be checked by having the verdict p a s s  

in the state t' if ~ is allowed (6 e out(As a f t e r  a ) ) ,  and by having the 

verdict fail  in t ~, if the specification does not allow to have quiescence at 

tha t  point. All this is reflected in the following recursive algorithm. The 

algorithm is nondeterministic in the sense that  in each recursive step it 

can be continued in many different ways: termination of the test case in 

choice 1, any input action satisfying the requirement of choice 2, or checking 

the allowed outputs  in choice 3. Each continuation will result in another  

sound test case (theorem 6.4.1), and all possible test cases together form an 

exhaustive (and thus complete) test suite (theorem 6.4.2), so there are no 

errors in implementations that  are principally undetectable with test suites 

generated with the algorithm. However, if the behaviour of the specification 

is infinite, the algorithm allows to construct infinitely many different test 
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cases, which can be arbitrarily long, but which all have finite behaviour. 

To define the algorithm one additional definition is needed. 

D e f i n i t i o n  6 . 2  

Let Y C L* and a �9 L, then Y a f t e r a  : & f  (~ E L* { a.a E Y:}. [] 

A l g o r i t h m  6.3 

Let A be the 8-trace automaton of a specification, and let ~" C L*, then 

a test  case t �9 ~07"St(Lv,  LI) is obtained by a finite number of recursive 

applications of one of the following three nondeterministic choices: 

1. (* terminate the test case , )  

t : =  s t o p  ; 

v(t) :---- pas s  ; 

2. ( ,  give a next  input to the implementation , )  

t : =  a ;  t ' ;  

v ( t )  : =  p a s s  ; 

where a �9 L~, such that  Y a f t e r  a ~ 0, and t '  is obtained by recur- 

sively applying the algorithm for Y a f t e r  a and A', with A --% A'. 

3. (* check the next output  of the implementation . )  

t := ~ { x ; s t o p  ] x �9 Lu, x r out(A) ) 
[] E { x ;  t ~ { z e L u ,  z e o u t ( A ) } ;  

~,(t) := if ( ~ � 9  out(A) o r e C Y : )  then pass  else f a i l ;  

where v ( s top)  := if e �9 Y then fall  else pass  for all x in the first 

operand, and t~ is obtained by recursively applying the algorithm for 

~" a f t e r  x and A', with A x ~ A I. [] 

T h e o r e m  6.4 

1. A test case obtained with algorithm 6.3 from As and Y is sound for 

s with respect to ioconfj : .  

2. The set containing all possible test cases that  can be obtained with 

algorithm 6.3 is exhaustive. [] 

Example 6.5 

We generate a test case for sl from /~01 for the implementation relation 
ioconf = ioconftraceKs) (figure 3). We start with giving an input: 

butln G init(A,1) n LI, so t := butln; t '  and v(t) : p a s s .  

In the next  step we generate the test case t '  from A' = liqout; •; s top ,  where 

we check the outputs: 

t' := ~,{z;stop I z �9 Lu, x ~ {liqout) } D E{z;tz l z �9 Lu, x �9 {liqout) ) 

= chocout; s t o p  [] liqout; tliqout. 
Since J ~ out(A') ,  we have v(t ')  = fail. Moreover, v (s top)  = fail. 

Now generating tliqo~t from A" = dl s t op  we again check the outputs: 

tuq.~ := E{z; s t o p  I z �9 Lu, x ~ {~}} [] r~{z; t= I z �9 Lu, x �9 {J}} 
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= chocout; stop [~/iqout; stop, 
with for both branches p(stop) = fail, and ~(tZ~o.t) = pass. 

Combining tZiqo., and t ~ into t we obtain the test case t of figure 4 as a 

sound test case for sz, which is consistent with the results found in exam- 

ples 4.12 and 5.3: qz ioconfsz,  q2 ioc~Inf sl, and q3 ioc~nfsz,  and indeed 

ql passes t, q2 fails t, and q3 fails t. [] 

7 Concluding Remarks 

This paper presented a theory for conformance testing of implementations 

that communicate via inputs and outputs. The main ingredients of this 

theory are the implementation relations _<ion, ioconf, and ioconfy,  and 

a sound and exhaustive test generation algorithm. The resulting theory 

and algorithm are somewhat simpler than the corresponding theory and 

algorithms for testing with symmetric interactions (e.g., compare propo- 

sition 4.3 with 3.3, and compare algorithm 6.3 with the conf-based test 

generation algorithm in [151). The theory and the algorithm can form the 

basis for the development of test generation tools. They can be applied to 

those domains where implementations can be assumed to communicate via 

inputs and outputs, which is the case for many realistic systems, and where 

specifications can be expressed in labelled transition systems, which also 

holds for many specification formalisms. 

It was indicated that input-output transition systems only marginally 

differ from input/output automata [121, having weaker requirements on 

input-enabling and on quiescence. We think that in a few cases these weaker 

requirements are easier and more intuitive. This was indicated for quies- 

cence with the example in section 4, just above definition 4.2, but it was 

also indicated that for str0ngly-converging systems the two coincide. For a 

precise comparison a more elaborate investigation of divergence in input- 

output transition systems is necessary. The weaker requirement on input 

enabling allows some systems that are 2:OT~q but not IOA. For example, 

when the communication between an IOA system and a bounded input 

buffer is hidden, then the whole system is not IOA anymore: when the 

buffer is full, no input actions are possible anymore without first perform- 

ing an internal event. Such a system is IOT~q. 

The model of input-output transition systems is also very much related 

to the model of input-output state machines [131. The idea for the ~-trace 

automaton is inspired by the way the absence of output is treated in [131, 

but there are subtle differences in the way the ~-transitions are added. 

The implementation relations and algorithm in this paper generalize 

those for queue systems [17]. Queue systems are transition systems in a 

queue context, i.e., to which two unbounded queues are attached to model 

asynchronous communication, one queue for inputs, and one for outputs. 
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An unbounded queue clearly has the property that input can never be re- 

fused, while the output queue makes that from the system's point of view 

output actions can never be refused by the environment. 

Another open issue is the atomicity of actions. Although we allow spec- 

ifications to be labelled transition systems, the actions are classified as 

inputs and outputs, and they have a one-to-one correspondence to those 

of the implementation. An interesting area for further investigation occurs 

if implementation relations are combined with action refinement, so that 

one abstract symmetric interaction of the specification is implemented us- 

ing multiple inputs and outputs, e.g., implementing an abstract interaction 

by means of a hand-shake protocol. Tests could be derived from the spec- 

ification using symmetric algorithms (section 3) and then refined, or the 

specification could be refined after which the input-output based algorithm 

is used. The precise relation between testing, inputs and outputs, and ac- 

tion refinement needs further investigation. 

A second open problem is the well-known test selection problem (test- 

suite size reduction [10]). Algorithm 6.3 can generate infinitely many sound 

test cases, but which ones shall be really executed? Solutions can be sought 

by defining coverage measures, fault models, stronger test hypotheses, etc. 

[1, 10, 13, 15]. Another aspect is the incorporation of data in the test gen- 

eration procedure. The state explosion caused by the data in specifications 

needs to be handled in a symbolic way, otherwise automation of the test 

generation algorithm in test tools will probably not be feasible. A last, more 

practical problem is the implementation of the observation of quiescence. 

In practical test execution tools, timers will have to be used, for which 

the time-out values need to be chosen carefully, in order not to observe 

quiescence where there is none. 
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