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Abstract

This paper studies testing based on labelled transition systems, using the assumption that
implementations communicate with their environment via inputs and outputs. Such imple-
mentations are formalized by restricting the class of transition systems to those systems that
can always accept input actions, as in Input/Output Automata. Implementation relations,
formalizing the notion of correctness of these implementations with respect to labelled tran-
sition system specifications, are defined analogous to the theories of testing equivalence and
preorder, and refusal testing. A test generation algorithm is given which is proved to produce
a sound and exhaustive test suite from a specification, i.e., a test suite that fully characterizes
the set of correct implementations.
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1 Introduction

Testing is an operational way to check the correctness of a system implementation by means
of experimenting with it. Tests are applied to the implementation under test, and, based on
observations made during the execution of the tests, a verdict about the correct functioning of
the implementation is given. The correctness criterion that is to be tested is given in the system
specification, preferably in some formal language. The specification is the basis for the derivation
of test cases – when possible automatic derivation using a test generation algorithm.

Testing and verification are complementary techniques for analysis and checking of correctness of
systems. While verification aims at proving properties about systems by formal manipulation on
a mathematical model of the system, testing is performed by exercising the real, executing imple-
mentation (or an executable simulation model). Verification can give certainty about satisfaction
of a required property, but this certainty only applies to the model of the system: any verification
is only as good as the validity of the system model. Testing, being based on observing only a
small subset of all possible instances of system behaviour, can never be complete: testing can
only show the presence of errors, not their absence. But since testing can be applied to the real
implementation, it is useful in those cases when a valid and reliable model of the system is difficult
to build due to complexity, when the complete system is a combination of formal parts and parts
which cannot be formally modelled (e.g., physical devices), when the model is proprietary (e.g.,
third party testing), or when the validity of a constructed model is to be checked with respect to
the physical implementation.

Many different aspects of a system can be tested: Does the system do what it should do; i.e.,
does its behaviour comply with its functional specification (conformance testing)? How fast can
the system perform its tasks (performance testing)? How does the system react if its environment
does not behave as expected (robustness testing)? How long can we rely on the correct functioning
of the system (reliability testing)? This paper focuses on conformance testing based on formal
specifications; in particular, it aims at giving an algorithm for the generation of conformance test
cases from transition system-based specifications.

The ingredients for defining such an algorithm comprise, apart from a formal specification, a class
of implementations. An implementation under test, however, is a physical, real object that is
in principle not amenable to formal reasoning. It is treated as a black box exhibiting behaviour
and interacting with its environment. We can only deal with implementations in a formal way, if
we make the assumption that any real implementation has a formal model with which we could
reason formally. This formal model is only assumed to exist, but it is not known a priori. This
assumption is referred to as the test hypothesis [Ber91, Tre92, ISO96]. Thus the test hypothesis
allows to reason about implementations as if they were formal objects, and, consequently, to express
the correctness of implementations with respect to specifications by a formal relation between
such models of implementations and specifications. Such a relation is called an implementation
relation [BAL+90, ISO96]. Conformance testing now consists of performing experiments to decide
whether the unknown model of the implementation relates to the specification according to the
implementation relation. The experiments are specified in test cases. Given a specification, a test
generation algorithm must produce a set of such test cases (a test suite). The test suite must
be sound, i.e., it must give a negative verdict only if the implementation is incorrect and, if the
implementation is incorrect, it must have a high probability to give a negative verdict.

One of the formalisms studied in the realm of conformance testing is that of labelled transition
systems. A labelled transition system is a structure consisting of states with transitions, labelled
with actions, between them. The formalism of labelled transition systems can be used for modelling
the behaviour of processes, such as specifications, implementations and tests, and it serves as a
semantic model for various formal languages, e.g., ACP [BK85], CCS [Mil89], and CSP [Hoa85].
Also (most parts of) the semantics of standardized languages like LOTOS [ISO89b], SDL [CCI92],
and Estelle [ISO89a] can be expressed in labelled transition systems.
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Traditionally, for labelled transition systems the term testing theory does not refer to conformance
testing. Instead of starting with a specification to find a test suite to characterize the class of
its conforming implementations, these testing theories aim at defining implementation relations,
given a class of tests: a transition system p is equivalent to a system q if any test case in the class
leads to the same observations with p as with q (or more generally, p relates to q if for all possible
tests, the observations made of p are related in some sense to the observations made of q). Such
a definition of an implementation relation by explicit use of the tests and observations that can
discern them is referred to as an extensional definition. Many different relations can be defined
by variations of the class of tests, the way they are executed, and the required relation between
observations [DNH84, Abr87, DN87, Phi87, Gla90, Gla93].

Once an implementation relation has been defined, conformance testing involves finding a set of
tests for one particular specification, that is in some sense minimal, and that can discriminate
between correct and erroneous implementations of that specification. Conformance testing for
labelled transition systems has been studied especially in the context of testing communication
protocols with the language LOTOS, e.g., [BSS87, Bri88, PF90, Wez90, Led92, Tre92]. This paper
uses both kinds of testing theories: first an implementation relation is defined extensionally, and
then test generation from specifications for this particular relation is investigated.

Almost all of the testing theory for labelled transition systems mentioned above is based on syn-
chronous, symmetric communication between processes: communication between two processes
occurs if both processes offer to interact on a particular action and, if the interaction takes place
it occurs synchronously in both participating processes. Both processes can propose and block the
occurrence of an interaction; there is no distinction between input and output actions. For testing,
a particular case where such communication occurs is the modelling of the interaction between a
tester and an implementation under test during the execution of a test. We will refer to above
theories as testing with symmetric interactions.

This paper approaches communication in a different manner by distinguishing explicitly between
the inputs and the outputs of a system. Such a distinction is made, for example, in Input/Output
Automata [LT89], Input-Output State Machines [Pha94], and Queue Contexts [TV92]. Outputs
are actions that are initiated by and under control of the system, while input actions are initiated
by and under control of the system’s environment. A system can never refuse to perform its input
actions, while its output actions cannot be blocked by the environment. Communication takes
place between inputs of the system and outputs of the environment, or the other way around. It
implies that an interaction is not symmetric anymore with respect to the communicating processes.
Many real-life implementations allow such a classification of their actions in inputs and outputs,
so it can be argued that such models have a closer link to reality. On the other hand, the input-
output paradigm lacks some of the possibilities for abstraction, which can be a disadvantage when
designing and specifying systems at a high level of abstraction. In an attempt to use the best
of both worlds, this paper assumes that implementations communicate via inputs and outputs
(as part of the test hypothesis), whereas specifications, although interpreting the same actions as
inputs or outputs, are allowed to refuse their inputs, which implies that technically specifications
are just transition systems.

The aim of this paper is to study implementation relations, conformance testing and test gener-
ation algorithms for labelled transition systems that communicate via inputs and outputs. The
implementations are modelled by input-output transition systems, a special kind of labelled transi-
tion systems, where inputs are always enabled, and specifications are described as normal labelled
transition systems. Input-output transition systems differ only marginally from the Input/Output
Automata of [LT89]. These models are introduced in section 2. Implementation relations with
inputs and outputs are defined extensionally following the ideas of testing equivalence and refusal
testing [DNH84, DN87, Phi87, Lan90]. First, these existing relations, which are based on sym-
metric interactions, are recalled in section 3, and then their input-output versions are discussed in
section 4. The first input-output relation, called input-output testing relation, is defined following
a testing scenario à la [DNH84, DN87]. It is analogous to the scenario used in [Seg93] to ob-
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tain a testing characterization of the relation quiescent trace preorder on Input/Output Automata
[Vaa91], and analogous results are obtained. The second relation, which is called input-output
refusal relation, is defined with the testing scenario for refusal testing [Phi87, Lan90]. Weaker
variants of both input-output relations are defined to allow for partial specifications. It will be
shown that all defined relations can be simply and intuitively characterized in terms of only traces
if a special action explicitly modelling the absence of outputs (repetitive quiescence, cf. [Vaa91])
is added. This special action has all the properties of, and can be considered as, a normal output
action. The current paper generalizes [Seg93, Tre96], which considered only testing preorder with
inputs and outputs, by also considering refusal testing and by showing that all relations can be
expressed as special instances of a class of refusal-like implementation relations.

After having discussed the relevant implementation relations in section 4, section 5 starts formaliz-
ing conformance testing by introducing test cases, test suites, and how to run, execute and pass a
test case. Finally, a test generation algorithm that produces provably correct test cases for any of
the implementation relations of section 4 is developed in section 6. Analogous to the generalization
of implementation relations, the algorithm of section 6 generalizes the one given in [Tre96] for re-
fusal testing. Some concluding remarks and open problems are discussed in section 7. Elaborated
proofs of theorems and propositions can be found in appendix A.
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2 Models

The formalism of labelled transition systems is used as the basis for describing the behaviour of
processes, such as specifications, implementations and tests.

Definition 2.1
A labelled transition system is a 4-tuple 〈S,L, T, s0〉 where

◦ S is a countable, non-empty set of states ;

◦ L is a countable set of labels;

◦ T ⊆ S × (L ∪ {τ}) × S is the transition relation;

◦ s0 ∈ S is the initial state. 2
The labels in L represent the observable actions of a system; the special label τ 6∈ L represents an
unobservable, internal action. A transition (s, µ, s′) ∈ T is denoted as s µ−→ s′. A computation is
a (finite) composition of transitions:

s0
µ1−−→ s1

µ2−−→ s2
µ3−−→ . . .

µn−1−−−−→ sn−1
µn−−→ sn

A trace captures the observable aspects of a computation; it is the sequence of observable actions
of a computation. The set of all finite sequences of actions over L is denoted by L∗, with ǫ denoting
the empty sequence. If σ1, σ2 ∈ L∗, then σ1·σ2 is the concatenation of σ1 and σ2.

We denote the class of all labelled transition systems over L by LTS(L). For technical reasons we
restrict LTS(L) to labelled transition systems that are strongly convergent, i.e., ones that do not
have infinite compositions of transitions with only internal actions. Some additional notations and
properties are introduced in definitions 2.2 and 2.3.

Definition 2.2
Let p = 〈S,L, T, s0〉 be a labelled transition system with s, s′ ∈ S, and let µ(i) ∈ L∪ {τ}, a(i) ∈ L,
and σ ∈ L∗.

s µ1·...·µn−−−−−−→ s′ =def ∃s0, . . . , sn : s = s0
µ1−−→ s1

µ2−−→ . . . µn−−→ sn = s′

s µ1·...·µn−−−−−−→ =def ∃s′ : s µ1·...·µn−−−−−−→ s′

s
µ1·...·µn−−−−−−−→/ =def not ∃s′ : s µ1·...·µn−−−−−−→ s′

s
ǫ

=⇒ s′ =def s = s′ or s τ ·...·τ−−−−→ s′

s
a

=⇒ s′ =def ∃s1, s2 : s
ǫ

=⇒ s1
a−→ s2

ǫ
=⇒ s′

s
a1·...·an======⇒ s′ =def ∃s0 . . . sn : s = s0

a1==⇒ s1
a2==⇒ . . .

an==⇒ sn = s′

s
σ

=⇒ =def ∃s′ : s
σ

=⇒ s′

s
σ

=6⇒ =def not ∃s′ : s
σ

=⇒ s′ 2
We will not always distinguish between a transition system and its initial state: if p = 〈S,L, T, s0〉,

we will identify the process p with its initial state s0, e.g., we write p
σ

=⇒ instead of s0
σ

=⇒ .

Definition 2.3

1. init(p) =def { µ ∈ L ∪ {τ} | p µ−→ }

2. traces(p) =def { σ ∈ L∗ | p
σ

=⇒ }

3. p after σ =def { p′ | p
σ

=⇒ p′ }

4. p has finite behaviour if there is a natural number n such that all traces in traces(p) have
length smaller than n.
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5. p is deterministic if, for all σ ∈ L∗, p after σ has at most one element. If σ ∈ traces(p), then
p after σ is overloaded to denote this element. 2

We represent a labelled transition system in the standard way, either by a tree or a graph, where
nodes represent states and edges represent transitions (e.g., figure 1), or by a process-algebraic
behaviour expression, with a syntax inspired by LOTOS [ISO89b]:

B =def stop | a ;B | i ;B | B 2 B | B ‖B | Σ B | P

Here a ∈ L, B is a countable set of behaviour expressions, and P ∈ P is a process variable. The
operational semantics of a behaviour expression with respect to an environment {P := BP |P ∈ P}
of process definitions is given in the standard way by the following axioms and inference rules,
which define for each behaviour expression, in finitely many steps, all its possible transitions (stop
has no transitions, and note that not every behaviour expression represents a transition system in
LTS(L), e.g., the transition system defined by P := i;P is not strongly convergent):

⊢ a;B a−→B
⊢ i;B τ−→B

B1
µ−→B′

1, µ ∈ L ∪ {τ} ⊢ B12B2
µ−→B′

1

B2
µ−→B′

2, µ ∈ L ∪ {τ} ⊢ B12B2
µ−→B′

2

B1
τ−→B′

1 ⊢ B1 ‖B2
τ−→B′

1 ‖B2

B2
τ−→B′

2 ⊢ B1 ‖B2
τ−→B1 ‖B′

2

B1
a−→B′

1, B2
a−→B′

2, a ∈ L ⊢ B1 ‖B2
a−→B′

1 ‖B
′
2

B µ−→B′, B ∈ B, µ ∈ L ∪ {τ} ⊢ Σ B µ−→B′

BP
µ−→B′, P := BP , µ ∈ L ∪ {τ} ⊢ P µ−→B′

Communication between a process and its environment, both modelled as labelled transition sys-
tems, is based on symmetric interaction, as expressed by the composition operator ‖ . An inter-
action can occur if both the process and its environment are able to perform that interaction,
implying that they can also both block the occurrence of an interaction. If both offer more than
one interaction then it is assumed that by some mysterious negotiation mechanism they will agree
on a common interaction. There is no notion of input or output, nor of initiative or direction. All
actions are treated in the same way for both communicating partners.

Many real systems, however, communicate in a different manner. They do make a distinction
between inputs and outputs, and one can clearly distinguish whether the initiative for a particular
interaction is with the system or with its environment. There is a direction in the flow of information
from the initiating communicating process to the other. The initiating process determines which
interaction will take place. Even if the other one decides not to accept the interaction, this is
usually implemented by first accepting it, and then initiating a new interaction in the opposite
direction explicitly signalling the non-acceptance. One could say that the mysterious negotiation
mechanism is made explicit by exchanging two messages: one to propose an interaction and a next
one to inform the initiating process about the (non-)acceptance of the proposed interaction.

We use input-output transition systems, analogous to Input/Output Automata [LT89], to model
systems for which the set of actions can be partitioned into output actions, for which the initiative to
perform them is with the system, and input actions, for which the initiative is with the environment.
If an input action is initiated by the environment, the system is always prepared to participate
in such an interaction: all the inputs of a system are always enabled; they can never be refused.
Naturally an input action of the system can only interact with an output of the environment, and
vice versa, implying that output actions can never be blocked by the environment. Although the
initiative for any interaction is in exactly one of the communicating processes, the communication
is still synchronous: if an interaction occurs, it occurs at exactly the same time in both processes.
The communication, however, is not symmetric: the communicating processes have different roles
in an interaction.
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Definition 2.4
An input-output transition system p is a labelled transition system in which the set of actions L
is partitioned into input actions LI and output actions LU (LI ∪ LU = L, LI ∩ LU = ∅), and for
which all input actions are always enabled in any state:

whenever p
σ

=⇒ p′ then ∀a ∈ LI : p′
a

=⇒

The class of input-output transition systems with input actions in LI and output actions in LU is
denoted by IOTS(LI , LU) ⊆ LTS(LI ∪ LU ). 2

liqu

but i

q1

but i

chocu

q2

but i

liqu

s0

q3

s1

s3

but i

but i

liqu

but i

liqu

s2

s4

s5

but i

Figure 1: Input-output transition systems

Example 2.5
Figure 1 gives some input-output transition systems with LI = {but i} and LU = {liqu, chocu}. In
q1 we can push the button, which is an input for the candy machine, and then the machine outputs
liquorice. After the button has been pushed once, and also after the machine has released liquorice,
any more pushing of the button has no effect: the machine makes a self-loop. In this paper we use
the convention that a self-loop of a state that is not explicitly labelled is labelled with all inputs
that cannot occur in that state (and also not via τ -transitions, cf. definition 2.4). 2
In the notational convention of input-output transition systems a, b, c . . . will denote input actions
and z, y, x, . . . will denote output actions. Since input-output transition systems are labelled tran-
sition systems, all definitions for labelled transition systems apply. In particular, synchronous
parallel communication can be expressed by ‖ , but now care should be taken that the outputs of
one process interact with the inputs of the other.

Note that input-output transition systems differ marginally from Input/Output Automata [LT89]:
instead of requiring strong input enabling as in [LT89] (∀a ∈ LI : p′ a−→ ), input-output transition

systems allow input enabling via internal transitions (weak input enabling, ∀a ∈ LI : p′
a

=⇒ ).
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3 Implementation Relations with Symmetric Interactions

Before going to the test hypothesis that all implementations can be modelled by input-output
transition systems in sections 4, 5, and 6, this section will briefly recall implementation relations
and conformance testing based on the weaker hypothesis that implementations can be modelled
as labelled transition systems. In this case correctness of an implementation with respect to
a specification is expressed by an implementation relation imp ⊆ LTS(L) × LTS(L). Many
different relations have been studied in the literature, e.g., bisimulation equivalence [Mil89], failure
equivalence and preorder [Hoa85], testing equivalence and preorder [DNH84, DN87], refusal testing
[Phi87], and many others [Gla90, Gla93]. A straightforward example is trace preorder ≤tr , which
requires inclusion of sets of traces. The intuition behind this relation is that an implementation
i ∈ LTS(L) may show only behaviour (in terms of traces of observable actions) which is specified
in the specification s ∈ LTS(L).

Definition 3.1
Let i, s ∈ LTS(L), then i ≤tr s =def traces(i) ⊆ traces(s) 2
Many implementation relations can be defined in an extensional way, which means that they are
defined by explicitly comparing an implementation with a specification in terms of comparing
the observations that an external observer can make [DNH84, DN87]. The intuition is that an
implementation i correctly implements a specification s if any observation that can be made of i
in any possible environment can be related to, or explained from, an observation of s in the same
environment:

i imp s =def ∀u ∈ U : obs(u, i) ∗ obs(u, s) (1)

By varying the class of external observers U , the observations obs that an observer can make of i
and s, and the relation ∗ between observations of i and s, many different implementation relations
can be defined.

One of the relations that can be expressed following (1) is testing preorder ≤te , which we formalize
in a slightly different setting from the one in [DNH84, DN87]. It is obtained if labelled transition
systems are chosen as observers U , the relation between observations is set inclusion, and the
observations are traces. These traces are obtained from computations of i or s, in parallel with an
observer u, where a distinction is made between normal traces and completed traces, i.e., traces
which correspond to a computation after which no more actions are possible.

Definition 3.2
Let p, i, s ∈ LTS(L), σ ∈ L∗, and A ⊆ L, then

1. p after σ refusesA =def ∃p′ : p
σ

=⇒ p′ and ∀a ∈ A : p′
a

=6⇒

2. p after σ deadlocks =def p after σ refuses L

3. The sets of observations obsc and obs t that an observer u ∈ LTS(L) can make of process p ∈
LTS(L) are given by the completed traces and the traces, respectively, of their synchronized
parallel communication u ‖ p:

obsc(u, p) =def { σ ∈ L∗ | (u ‖ p) after σ deadlocks }

obst(u, p) =def { σ ∈ L∗ | (u ‖ p)
σ

=⇒}

4. i ≤te s =def ∀u ∈ LTS(L) : obsc(u, i) ⊆ obsc(u, s) and obst(u, i) ⊆ obst(u, s) 2
The definitions in 3.2 are based on the occurrence, or absence, of observable actions. It is straight-
forward to show that on our class of strongly convergent transition systems these definitions cor-
respond to those sometimes found in the literature, which also take internal actions into account:

p after σ refusesA iff ∃p′ : p
σ

=⇒ p′ and ∀µ ∈ A ∪ {τ} : p′
µ

−−→/ (2)
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The extensional definition of ≤te in definition 3.2 can be rewritten into an intensional characteri-
zation, i.e., a characterization in terms of properties of the labelled transition systems themselves.
This characterization, given in terms of failure pairs, is known to coincide with failure preorder for
strongly convergent transition systems [DN87, Tre92].

Proposition 3.3
i ≤te s iff ∀σ ∈ L∗, ∀A ⊆ L : i after σ refusesA implies s after σ refusesA 2
A weaker implementation relation that is strongly related to ≤te is the relation conf [BSS87]. It
is a modification of ≤te by restricting all observations to only those traces that are contained in
the specification s. This restriction is in particular used in conformance testing. It makes testing a
lot easier: only traces of the specification have to be considered, not the huge complement of this
set, i.e., the traces not explicitly specified. In other words, conf requires that an implementation
does what it should do, not that it does not do what it is not allowed to do. So a specification
only partially prescribes the required behaviour of the implementation. Several test generation
algorithms have been developed for the relation conf [Bri88, PF90, Wez90, Tre92].

Definition 3.4
i conf s =def ∀u ∈ LTS(L) : (obsc(u, i) ∩ traces(s)) ⊆ obsc(u, s)

and (obst(u, i) ∩ traces(s)) ⊆ obst(u, s) 2
Proposition 3.5
i conf s iff ∀σ ∈ traces(s), ∀A ⊆ L : i after σ refusesA implies s after σ refusesA 2
A relation with more discriminating power than testing preorder is obtained, following (1), by
having more powerful observers that can detect not only the occurrence of actions but also the
absence of actions, i.e., refusals [Phi87]. We follow [Lan90] in modelling the observation of a refusal
by adding a special label θ 6∈ L to observers: U = LTS(Lθ), where we write Lθ for L∪ {θ}. While
observing a process, a transition labelled with θ can only occur if no other transition is possible. In
this way the observer knows that the process under observation cannot perform the other actions
it offers. A parallel synchronization operator ⌉| is introduced, which models the communication
between an observer with θ-transitions and a normal process, i.e., a transition system without
θ-transitions. The implementation relation defined in this way is called refusal preorder ≤rf .

Definition 3.6

1. The operator ⌉| : LTS(Lθ)×LTS(L) → LTS(Lθ) is defined by the following inference rules:

u τ−→u′ ⊢ u⌉| p τ−→u′⌉| p
p τ−→ p′ ⊢ u⌉| p τ−→u⌉| p′

u a−→u′, p a−→ p′, a ∈ L ⊢ u⌉| p a−→u′⌉| p′

u θ−→u′, u
τ

−−→/ , p
τ

−−→/ , ∀a ∈ L : u
a

−−→/ or p
a

−−→/ ⊢ u⌉| p θ−→u′⌉| p

2. The sets of observations obsθc and obsθt that an observer u ∈ LTS(Lθ) can make of process
p ∈ LTS(L) are given by the completed traces and the traces, respectively, of the synchronized
parallel communication ⌉| of u and p:

obsθc(u, p) =def { σ ∈ L∗
θ | (u⌉| p) after σ deadlocks }

obsθt (u, p) =def { σ ∈ L∗
θ | (u⌉| p)

σ
=⇒ }

3. i ≤rf s =def ∀u ∈ LTS(Lθ) : obsθc(u, i) ⊆ obsθc(u, s) and obsθt (u, i) ⊆ obsθt (u, s) 2
A corresponding intensional characterization of refusal preorder can be given in terms of failure
traces [Gla90, Lan90]. A failure trace is a trace in which both actions and refusals, represented by
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sets of refused actions, occur. To express this, the transition relation −→ is extended with refusal
transitions: self-loop transitions labelled with a set of actions A ⊆ L, expressing that all actions
in A can be refused. The transition relation =⇒ (definition 2.2) is then extended analogously to
ϕ

=⇒ with ϕ ∈ (L ∪ P(L))∗.

Definition 3.7
Let p ∈ LTS(L) and A ⊆ L.

1. p A−−→ p′ =def p = p′ and ∀µ ∈ A ∪ {τ} : p
µ

−−→/

2. The failure traces of p are: Ftraces(p) =def { ϕ ∈ (L ∪ P(L))∗ | p
ϕ

=⇒} 2
Proposition 3.8
i ≤rf s iff Ftraces(i) ⊆ Ftraces(s) 2
We conclude this section by relating the implementation relations based on symmetric interactions
and illustrating them using the candy machines over L = {but, choc, liq , bang} in figure 2. These
examples also illustrate the inequalities of proposition 3.9.

liq chocliq

butbut

bang

choc

but

liq

liq

but but

6≤tr

but

≤rf

6≤tr

6≤tr

6≤tr

but

/conf
≤tr

conf

/conf

conf

/conf

liq

liq

≤te , 6≤rf

choc
bang

liq

bang

but

bang liq

choc

but

choc

Figure 2: Implementation relations with symmetric interactions

Proposition 3.9

1. ≤tr , ≤te , ≤rf are preorders; conf is reflexive, but not transitive.

2. ≤rf ⊂ ≤te = ≤tr ∩ conf 2
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4 Implementation Relations with Inputs and Outputs

We now make the test assumption that implementations can be modelled by input-output transition
systems: we consider implementation relations imp ⊆ IOTS(LI , LU) × LTS(LI ∪ LU). Like the
relations based on symmetric interactions in section 3, we define them extensionally following (1).

4.1 Input-output testing relation

The implementation relations ≤te and conf were defined by relating the observations made of the
implementation by a symmetrically interacting observer u ∈ LTS(L) to the observations made of
the specification (definitions 3.2 and 3.4). An analogous testing scenario can be defined for input-
output transition systems using the fact that communication takes place along the lines explained
in section 2: the input actions of the observer synchronize with the output actions of the imple-
mentation, and vice versa, so an input-output implementation in IOTS(LI , LU) communicates
with an ‘output-input’ observer in IOTS(LU , LI). In this way the input-output testing relation
≤iot is defined between i ∈ IOTS(LI , LU) and s ∈ LTS(LI ∪ LU ) by requiring that any possible
observation made of i by any ‘output-input’ transition system is a possible observation of s by the
same observer (cf. definition 3.2).

Definition 4.1
Let i ∈ IOTS(LI , LU), s ∈ LTS(LI ∪ LU), then

i ≤iot s =def ∀u ∈ IOTS(LU , LI) : obsc(u, i) ⊆ obsc(u, s) and obst(u, i) ⊆ obst(u, s) 2
Note that, despite what was said above about the communication between the implementation and
the observer, the observations made of s are based on the communication between an input-output
transition system and a standard labelled transition system, since s need not be an input-output
system. Technically there is no problem in making such observations: the definitions of obsc,
obs t, ‖ , and . after . deadlocks apply to labelled transition systems, not only to input-output
transition systems. Below we will elaborate on this possibility to have s 6∈ IOTS .

In [Seg93] the testing scenario of testing preorder [DNH84, DN87] was applied to define a relation
on Input/Output Automata completely analogous to definition 4.1. It was shown to yield the
implementation relation quiescent trace preorder introduced in [Vaa91]. Although we are more
liberal with respect to the specification, s ∈ LTS(LI ∪ LU), and input-output transition systems
differ marginally from Input/Output Automata, exactly the same intensional characterization is
obtained: ≤iot is fully characterized by trace inclusion and inclusion of quiescent traces. A trace is
quiescent if it may lead to a state from which the system cannot proceed autonomously, without
inputs from its environment, i.e., a state from which no outputs or internal actions are possible.

Definition 4.2
Let p ∈ LTS(LI ∪ LU).

1. A state s of p is quiescent, denoted by δ(s), if ∀µ ∈ LU ∪ {τ} : s
µ

−−→/

2. A quiescent trace of p is a trace σ that may lead to a quiescent state: ∃p′ ∈ ( p after σ ) : δ(p′)

3. The set of quiescent traces of p is denoted by Qtraces(p). 2
Proposition 4.3
i ≤iot s iff traces(i) ⊆ traces(s) and Qtraces(i) ⊆ Qtraces(s) 2
Sketch of the proof
Comparing with the analogous definition and proposition for ≤te (definition 3.2 and proposi-
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tion 3.3), we see that the observation of deadlock of u ‖ i can only occur if i is in a state where
it cannot produce any output (a quiescent state) and u is in a state where it cannot produce any
input (input with respect to i). It follows then that for inclusion of obsc it suffices to consider only
quiescent traces. Inclusion of obs t corresponds to inclusion of traces. 2
Comparing the intensional characterization of ≤iot in proposition 4.3 with the one for ≤te (propo-
sition 3.3), we see that the restriction to input-output systems simplifies the corresponding inten-
sional characterization. Instead of sets of pairs consisting of a trace and a set of actions (failure
pairs), it suffices to look at just two sets of traces.

Another characterization of ≤iot can be given by collecting for each trace all possible outputs that a
process may produce after that trace, including a special action δ that indicates possible quiescence.
The special label δ 6∈ L indicates the absence of output actions in a state, i.e., it makes the
observation of absence of outputs (quiescence) into an explicitly observable event. Proposition 4.5
then states that an implementation is correct according to ≤iot if all outputs it can produce after
any trace σ can also be produced by the specification. Since this also holds for δ, the implementation
may show no outputs only if the specification can do so.

Definition 4.4
Let p be a state in a transition system, and let P be a set of states, then

1. out(p) =def { x ∈ LU | p x−→ } ∪ { δ | δ(p) }

2. out(P ) =def

⋃

{ out(p) | p ∈ P } 2
Proposition 4.5
i ≤iot s iff ∀σ ∈ L∗ : out( i after σ ) ⊆ out( s after σ ) 2
Sketch of the proof
Using the facts that σ ∈ Qtraces(p) iff δ ∈ out( p after σ ) and σ ∈ traces(p) iff out( p after σ ) 6= ∅,
the proposition follows immediately from proposition 4.3. 2

but i

liqu

but i

chocu

s1 s2

liqu

Figure 3: Two non-input-output specifications

Example 4.6
Using proposition 4.5, it follows that q1 ≤iot q2 (figure 1): an implementation capable of only pro-
ducing liquorice conforms to a specification that prescribes to produce either liquorice or chocolate.
Although q2 looks deterministic, in fact it specifies that after button there is a nondeterministic
choice between supplying liquorice or chocolate. It also implies that for this kind of testing q2
is equivalent to but i; liqu; stop 2 but i; chocu; stop (omitting the input self-loops), an equivalence
which does not hold for ≤te in the symmetric case. If we want to specify a machine that produces
both liquorice and chocolate, then two buttons are needed to select the respective candies:

liq-button ; liqu ; stop 2 choc-button ; chocu ; stop
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On the other hand, q2 6≤iot q1, q3: if the specification prescribes to produce only liquorice, then an
implementation should not have the possibility to produce chocolate: chocu ∈ out( q2 after but i ),
while chocu 6∈ out( q1 after but i ), chocu 6∈ out( q3 after but i ). We have q1 ≤iot q3, but q3 6≤iot

q1, q2, since q3 may refuse to produce anything after the button has been pushed once, while
both q1 and q2 will always output something. Formally: δ ∈ out( q3 after but i ), while δ 6∈
out( q1 after but i ), out( q2 after but i ).

Figure 3 presents two non-input-output transition system specifications, but none of q1, q2, q3
correctly implements s1 or s2; the problem occurs with non-specified input traces of the specifica-
tion: out( q1 after but i·but i ), out( q2 after but i·but i ), out( q3 after but i·but i ) 6= ∅, while but i·but i
6∈ traces(s1), traces(s2), so out( s1 after but i·but i ), out( s2 after but i·but i ) = ∅. 2
The relation ≤iot does not require the specification to be an input-output transition system: a
specification may have states that can refuse input actions. Such a specification is interpreted
as an incompletely specified input-output transition system, i.e., a transition system where a
distinction is made between inputs and outputs, but where some inputs are not specified in some
states. The intention of such specifications often is that the specifier does not care about the
responses of an implementation to such non-specified inputs. If a candy machine is specified to
deliver liquorice after a button is pushed as in s1 in figure 3, then it is intentionally left open
what an implementation may do after the button is pushed twice: perhaps ignoring it, supplying
one of the candies, or responding with an error message. Intuitively, q1 would conform to s1;
however, q1 6≤iot s1, as was shown in example 4.6. The implementation freedom, intended with
non-specified inputs, cannot be expressed with the relation ≤iot . From proposition 4.5 the reason
can be deduced: since any implementation can always perform any sequence of input actions, and
since from definition 4.4 it is easily deduced that out( p after σ ) 6= ∅ iff p

σ
=⇒ , we have that an

≤iot -implementable specification must at least be able to perform any sequence of input actions. So
the specification must be an input-output transition system, too, otherwise no ≤iot -implementation
can exist.

For Input/Output Automata a solution to this problem is given in [DNS95], using the so-called
demonic semantics for process expressions. In this semantics a transition to a demonic process
Ω is added for each non-specified input. Since Ω exhibits any behaviour, the behaviour of the
implementation is not prescribed after such a non-specified input. We choose another solution
to allow for non-input-output transition system specifications to express implementation freedom
for non-enabled inputs: we introduce a weaker implementation relation. The discussion above
immediately suggests how such a relation can be defined: instead of requiring inclusion of out-sets
for all traces in L∗ (proposition 4.5), the weaker relation requires only inclusion of out-sets for
traces that are explicitly specified in the specification. This relation is called i/o-conformance
ioconf , and, analogously to conf , it allows partial specifications which only state requirements for
traces explicitly specified in the specification (cf. the relation between ≤te and conf , definitions 3.2
and 3.4, and propositions 3.3 and 3.5).

Definition 4.7
Let i ∈ IOTS(LI , LU), s ∈ LTS(LI ∪ LU), then

i ioconf s =def ∀σ ∈ traces(s) : out( i after σ ) ⊆ out( s after σ ) 2
Example 4.8
Consider again figures 1 and 3. Indeed, we have q1 ioconf s1, whereas we had q1 6≤iot s1. According
to ioconf , s1 specifies only that after one button, liquorice must be produced; with ioconf , s1
does not care what happens if the button is pushed twice, as was the case with ≤iot .

On the other hand, q2 /ioconf s1, since q2 can produce more than liquorice after the button
has been pushed: out( q2 after but i ) = {liqu, chocu} 6⊆ {liqu} = out( s1 after but i ). Moreover,
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q1, q2 ioconf s2, but q3 /ioconf s1, s2, since δ ∈ out( q3 after but i ), while δ 6∈ out( s1 after but i ),
out( s2 after but i ). 2
4.2 Input-output refusal relation

We have seen implementation relations with symmetric interactions based on observers without
and with θ-label, which resulted in the relations ≤te and ≤rf , respectively, and we have seen an
implementation relation with inputs and outputs based on observers without θ-label. Naturally,
the next step is an implementation relation with inputs and outputs based on observers with the
power of the θ-label. The resulting relation is called the input-output refusal relation ≤ior .

Definition 4.9
Let i ∈ IOTS(LI , LU), s ∈ LTS(LI ∪ LU), then

i ≤ior s =def ∀u ∈ IOTS(LU , LI ∪ {θ}) : obsθc(u, i) ⊆ obsθc(u, s) and obsθt (u, i) ⊆ obsθt (u, s)2
A quiescent trace was introduced as a trace ending in the absence of outputs. Taking the special
action δ, which was used in out-sets to indicate the absence of outputs, a quiescent trace σ ∈ L∗

can be written as a δ-ending trace σ·δ ∈ (L ∪ {δ})∗. Here, the special action δ appears always
as the last action in the trace. If this special action δ is now treated as a completely normal
action which can occur at any place in a trace, we obtain traces with repetitive quiescence. For
example, the trace δ·a·δ·b·x would mean intuitively that initially no outputs can be observed, then
after input action a there is again no output, and then after input b is performed the output x
can be observed. We write Lδ for L ∪ {δ}, and we call traces over Lδ suspension traces. The
implementation relation ≤ior turns out to be characterized by inclusion of these suspension traces
(and hence it could also be called repetitive quiescence relation). Since quiescence corresponds to
a refusal of LU (definition 3.7), it follows that suspension traces are exactly the failure traces in
which only LU occurs as refusal set, i.e., failure traces restricted to (L ∪ {LU})∗, and where δ is
written for the refusal LU .

Definition 4.10
The suspension traces of process p ∈ LTS(L) are: Straces(p) =def Ftraces(p) ∩ (L ∪ {LU})∗.
For LU occurring in a suspension trace, we write δ, so that a suspension trace σ ∈ L∗

δ. 2
Proposition 4.11
i ≤ior s iff Straces(i) ⊆ Straces(s) 2
Sketch of the proof
Analogous to the proof of proposition 4.3, and comparing with the corresponding situation for
≤rf (definition 3.6 and proposition 3.8), a refusal can only be observed if i is in a state where it
cannot produce any output (a quiescent state) and u is in a state where it cannot produce any
input (input with respect to i). So the only refusals of i that can be observed are LU . As opposed
to proposition 4.3, the normal traces are included in the suspension traces, so they need not be
mentioned separately in the proposition. 2
An intensional characterization of ≤ior in terms of out-sets, analogous to proposition 4.5, is easily
given by generalizing the definition of after (definition 2.3) in a straightforward way to suspension
traces.

Proposition 4.12
i ≤ior s iff ∀σ ∈ L∗

δ : out( i after σ ) ⊆ out( s after σ ) 2
14



Again, completely analogous to the definitions of conf and of ioconf , an implementation relation,
called ioco, is defined by restricting inclusion of out-sets to suspension traces of the specification.

Definition 4.13
i ioco s =def ∀σ ∈ Straces(s) : out( i after σ ) ⊆ out( s after σ ) 2

but i

but i
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but i
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but i
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but i
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Figure 4: The difference between ≤iot and ≤ior

Example 4.14
Examples 4.6 and 4.8 illustrated the implementation relations ≤iot and ioconf , respectively, using
the processes in figures 1 and 3. Replacing ≤iot by ≤ior and ioconf by ioco, the same results are
obtained for the processes in figures 1 and 3.

The difference between ≤iot and ≤ior , and between ioconf and ioco is illustrated with the pro-
cesses r1 and r2 in figure 4: r1 ≤iot r2, but r1 6≤ior r2; out( r1 after but i·δ·but i ) = {liqu, chocu}
and out( r2 after but i·δ·but i ) = {chocu}. Intuitively, after pushing the button, we observe that
nothing is produced by the machine, so we push the button again. Machine r1 may then pro-
duce either liquorice or chocolate, while machine r2 will always produce chocolate. When we use
the relation ≤iot , the observation always terminates after observing that nothing is produced.
Hence, there is no way to distinguish between entering the left or the right branch of r1 or
r2; after the button is pushed twice, both machines may produce either liquorice or chocolate:
out( r1,2 after but i·but i ) = {liqu, chocu}. 2
4.3 Relating relations with inputs and outputs

Two kinds of observations were used in the extensional definitions of testing preorder ≤te (def-
inition 3.2), refusal preorder ≤rf (definition 3.6), the input-output testing relation ≤iot (defini-
tion 4.1), and the input-output refusal relation ≤ior (definition 4.9): the traces and the completed
traces of the composition of a process and an observer, expressed by obst(u, p) and obsc(u, p),
respectively. The varying parameters in defining these four relations were the distinction between
inputs and outputs (and associated input-enabledness) and the ability to observe refusals by adding
the θ-label to the class of observers.

Although all four relations were defined by requiring inclusion of both obsc and of obst, some
of the relations only need observations of one kind. This is indicated in table 1 by mentioning
the necessary and sufficient observations. Adding the ability to observe refusals to observers,
using the θ-action, makes observation of completed traces with obsc superfluous: for ≤rf and
≤ior it suffices to consider observations of the kind obs t. If no distinction between inputs and
outputs is made, any observation of a trace in obst can always be simulated in obsc with an
observer which can perform only this particular trace and then terminates: for ≤te and ≤rf it
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u ∈ LTS(L) u ∈ LTS(Lθ)
no inputs ≤te ≤rf

and no outputs obsc obsθc or obsθt

inputs and ≤iot ≤ior

outputs obsc and obst obsθt

Table 1: Observations obsc and obs t

suffices to consider observations of the kind obsc. Only for ≤iot both kinds of observations are
necessary, as shows the example in figure 5. Let LI = ∅ and LU = {x, y}; then, to define both
intuitively incorrect implementations i1 and i2 as not ≤iot -related, we need both obsc and obs t:
∀u ∈ IOTS(LU , LI) : obst(u, i1) ⊆ obst(u, s), while ∀u ∈ IOTS(LU , LI) : obsc(u, i2) ⊆ obsc(u, s).

i1: i2:

x

s:

y

IOTS({x, y}, ∅) = {u}:

yx

Figure 5: Observations for ≤iot

The input-output implementation relations defined so far, viz. ≤iot , ioconf , ≤ior and ioco, are
easily related using their characterizations in terms of out-sets. The only difference between the
relations is the set of (suspension) traces for which the out-sets are compared (cf. propositions 4.5
(≤iot ) and 4.12 (≤ior ), and definitions 4.7 (ioconf) and 4.13 (ioco)). So if we introduce the
following class of relations iocoF with F ⊆ L∗

δ:

i iocoF s =def ∀σ ∈ F : out( i after σ ) ⊆ out( s after σ ) (3)

then they can all be expressed as instances of iocoF :

≤iot = iocoL∗

≤ior = iocoL∗

δ

ioconf = iocotraces(s)

ioco = iocoStraces(s)

(4)

Using (3) and (4) the input-output implementation relations are easily related by relating their re-
spective sets F (proposition 4.15). The inequalities follow from the candy machines in examples 4.8
and 4.14. The generalized implementation relation iocoF is the relation for which conformance
testing and test derivation will be studied in section 6.

Proposition 4.15

≤ior ⊂

{

≤iot

ioco

}

⊂ ioconf 2
4.4 Suspension automata

The characterizations of ≤iot in proposition 4.3 and of ≤ior in proposition 4.11 in terms of traces
suggest to transform a labelled transition system into another one representing exactly the respec-
tive sets of traces, so that the relations can be characterized by trace preorder ≤tr (definition 3.1)
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on the results of this transformation. Such a transformed transition system can be obtained by
taking the deterministic transition system representing exactly these sets of traces, if care is taken
to correctly include possible quiescence. For ≤ior such a transition system is referred to as the
suspension automaton Γ, and it is obtained from a transition system by adding loops s δ−→ s for
all quiescent states and then determinizing the resulting automaton. It is easily seen that the
implementation relation ≤ior reduces to trace preorder ≤tr on suspension automata. Moreover,
out-sets can be directly transposed to suspension automata.

Definition 4.16
Let L be partitioned into LI and LU , and let p = 〈S,L, T, s0〉 ∈ LTS(L) be a labelled transition
system; then the suspension automaton of p, Γp, is the labelled transition system 〈Sδ, Lδ, Tδ, q0〉 ∈
LTS(Lδ), where

◦ Sδ =def P(S)\{∅} (P(S) is the powerset of S, i.e., the set of its subsets)

◦ Tδ =def { q a−→ q′ | a ∈ LI ∪ LU , q, q′ ∈ Sδ, q
′ = {s′ ∈ S | ∃s ∈ q : s

a
=⇒ s′} }

∪ { q δ−→ q′ | q, q′ ∈ Sδ, q′ = {s ∈ q | δ(s)} }

◦ q0 =def { s′ ∈ S | s0
ǫ

=⇒ s′ } 2
Proposition 4.17
Let p ∈ LTS(L) with inputs in LI and outputs in LU , let σ ∈ L∗

δ , and consider δ as an output
action of Γp; i.e., Γp has inputs in LI and outputs in LU ∪ {δ}; then

1. Γp is deterministic.

2. traces(Γp) = Straces(p)

3. out( Γp after σ ) = out( p after σ )

4. σ ∈ traces(Γp) iff out( Γp after σ ) 6= ∅ 2
Sketch of the proof
The first term of Tδ in definition 4.16 corresponds to the standard algorithm for determinization
of automata. The second term adds δ-transitions for states in Sδ containing a quiescent state,
thus precisely creating the suspension traces of p, while not affecting determinism. The third part
follows from the fact that Γp after σ = p after σ , and the last part is clear from the construction
of Γp: if there is no transition labelled with an output from q ∈ Sδ, then there must be at least
one quiescent state in q, so a δ-transition is added. 2
Corollary 4.18
i ≤ior s iff Γi ≤tr Γs 2
So ≤ior is completely characterized by ≤tr on the corresponding suspension automata. Using (3)
and (4) the other implementation relations can also be expressed in suspension automata restricting
to suitable sets of traces, e.g., to L∗·{ǫ, δ} for ≤iot . In [Tre96] a variant of the suspension automaton
(called δ-trace automaton) was defined to characterize ≤iot directly. In that automaton, transitions

of the form q δ−→ stop were added for quiescent states, so that its traces are automatically restricted
to L∗·{ǫ, δ}.

Suspension automata are deterministic transition systems so that the transition relations σ−→ and
σ

=⇒ coincide, and each trace σ always goes to a unique state, denoted by Γp after σ . The action δ,
modelling quiescence, occurs as an explicit action in suspension automata. The action δ has all the
properties of an output action. This leads us to the conclusion that input-output transition systems
can be considered modulo trace equivalence if quiescence is added as an additional, observable
output action. Because of these properties, the suspension automaton of a specification will be the
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Figure 6: Suspension automata for figure 1

basis for the derivation of tests in section 6.

Example 4.19
Figures 6 and 7 show the suspension automata for the processes of figures 1 and 4, respectively.
For Γq3 the states, subsets of states of q3, have been added. Note that the nondeterminism of q3
is removed and that state {s1, s2} has a δ-transition, since there is a state in {s1, s2}, i.c. s2, that
refuses all outputs. Using corollary 4.18 we can now easily check that r2 ≤ior r1, but r1 6≤ior r2
(example 4.14). 2
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Figure 7: Suspension automata for figure 4
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5 Testing Input-Output Transition Systems

Now that we have formal specifications (expressed as labelled transition systems), implementations
(modelled by input-output transition systems), and a formal definition of conformance (expressed
by one of the implementation relations iocoF ), we can start the discussion of conformance testing.
This means that the statement of (1) is reversed: instead of defining an implementation relation
by choosing a set of observers, we look for a minimal (or at least reduced) set of observers or test
cases which fully characterizes all iocoF -correct implementations of a given specification. The first
point of discussion is what these test cases look like, how they are executed, and when they are
successful.

A test case is a specification of the behaviour of a tester in an experiment to be carried out
with an implementation under test. Such behaviour, like other behaviours, can be described by
a labelled transition system. In particular, since we consider the relations iocoF , tests will be
processes in LTS(LI ∪ LU ∪ {θ}). But to guarantee that the experiment lasts for a finite time,
a test case should have finite behaviour. Moreover, a tester executing a test case would like to
have control over the testing process as much as possible, so a test case should be specified in
such a way that unnecessary nondeterminism is avoided. First of all, this implies that the test
case itself must be deterministic. But also we will not allow test cases with a choice between an
input action and an output action, nor a choice between multiple input actions (input and output
from the perspective of the implementation). Both introduce unnecessary nondeterminism in the
test run: if a test case can offer multiple input actions, or a choice between input and output,
then the continuation of the test run is unnecessarily nondeterministic, since any input-output
implementation can always accept any input action. This implies that a state of a test case either
is a terminal state, or offers one particular input to the implementation, or accepts all possible
outputs from the implementation, including the δ-action which is accepted by a θ-action in the
test case. Finally, to be able to decide about the success of a test, the terminal states of a test
case are labelled with the verdict pass or fail. Altogether, we come to the following definition of
a test case.

Definition 5.1

1. A test case t is a labelled transition system 〈S,LI ∪ LU ∪ {θ}, T, s0〉 such that

◦ t is deterministic and has finite behaviour;

◦ S contains the terminal states pass and fail, with init(pass) = init(fail) = ∅;

◦ for any state t′ ∈ S of the test case, t′ 6= pass, fail, either init(t′) = {a} for some a ∈ LI ,
or init(t′) = LU ∪ {θ}.

The class of test cases over LU and LI is denoted as TEST (LU , LI).

2. A test suite T is a set of test cases: T ⊆ TEST (LU , LI). 2
Note that LI and LU refer to the inputs and outputs from the point of view of the implementation
under test, so LI denotes the outputs, and LU denotes the inputs of the test case.

A test run of an implementation with a test case is modelled by the synchronous parallel execution
⌉| of the test case with the implementation under test, which continues until no more interactions
are possible, i.e., until a deadlock occurs (definition 3.2). Since for each state t′ 6= pass, fail of a
test case either init(t′) = {a} for some a ∈ LI , in which case no deadlock can occur because of
input-enabledness of implementations, or init(t′) = LU ∪{θ}, in which case no deadlock can occur
because of the θ-transition, it follows that deadlock can only occur in the terminal states pass
and fail. An implementation passes a test run if and only if the test run deadlocks in pass. Since
an implementation can behave nondeterministically, different test runs of the same test case with
the same implementation may lead to different terminal states and hence to different verdicts. An
implementation passes a test case if and only if all possible test runs lead to the verdict pass.
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This means that each test case must be executed several times in order to give a final verdict,
theoretically even infinitely many times.

Definition 5.2

1. A test run of a test case t ∈ TEST (LU , LI) with an implementation i ∈ IOTS(LI , LU) is a
trace of the synchronous parallel composition t⌉| i leading to a terminal state of t:

σ is a test run of t and i =def ∃i′ : t⌉| i
σ

=⇒pass⌉| i′ or t⌉| i
σ

=⇒ fail⌉| i′

2. An implementation i passes a test case t if all their test runs lead to the pass-state of t:

i passes t =def ∀σ ∈ L∗
θ, ∀i

′ : t⌉| i
σ

=6⇒ fail⌉| i′

3. An implementation i passes a test suite T if it passes all test cases in T :

i passes T =def ∀t ∈ T : i passes t

If i does not pass the test suite, it fails: i fails T =def ∃t ∈ T : i /passes t. 2
but i
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but i
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Figure 8: A test case

Example 5.3
For r1 (figure 4) there are three test runs with t in figure 8:

t⌉| r1
buti·liqu======⇒pass⌉| r′1

t⌉| r1
buti·θ·buti·liqu==========⇒ fail⌉| r′′1

t⌉| r1
buti·θ·buti·chocu·θ============⇒pass⌉| r′′′1

where r′1, r
′′
1 , and r′′′1 are the leaves of r1 from left to right. Since the terminal state of t for the

second run is fail, we have r1 fails t. Similarly, it can be checked that r2 passes t. 2
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6 Test Generation for Input-Output Transition Systems

Now all ingredients are there to present an algorithm to generate test suites from labelled transition
system specifications for implementation relations of the form iocoF . A generated test suite must
test implementations for conformance with respect to s and iocoF . Ideally, an implementation
should pass the test suite if and only if it conforms. In this case the test suite is called complete
[ISO96]. Unfortunately, in almost all practical cases such a test suite would be infinitely large;
hence for practical testing we have to restrict to test suites that can only detect non-conformance,
but that cannot assure conformance. Such test suites are called sound. Test suites that can only
assure conformance but that may also reject conforming implementations are called exhaustive.

Definition 6.1
Let s be a specification and T a test suite; then for an implementation relation iocoF :

T is complete =def ∀i : i iocoF s iff i passes T
T is sound =def ∀i : i iocoF s implies i passes T
T is exhaustive =def ∀i : i iocoF s if i passes T 2

We aim at producing sound test suites from a specification s, and for that purpose we use the
suspension automaton Γs. To get some idea what such test cases will look like, we consider the
definition of ioco in terms of suspension automata (definition 4.13 with proposition 4.17.3). We
see that to test for ioco we have to check for each σ ∈ traces(Γs) whether out( Γi after σ ) ⊆
out( Γs after σ ). Basically, this can be done by having a test case t that executes σ:

t⌉| i
σ

=⇒ t′⌉| i′

and then checks out( Γi after σ ) by having transitions to pass-states for all allowed outputs
(those in out( Γs after σ )) and transitions to fail-states for all erroneous outputs (those not in
out( Γs after σ )). Special care should be taken for the special output δ: δ actually models the
absence of any output, so no transition will be made by the implementation if i′ ‘outputs’ δ. This
matches a θ-transition in the test case, which exactly occurs if nothing else can happen. This θ-
transition will go the pass-state if quiescence is allowed (δ ∈ out( Γs after σ )) and to the fail-state
if the specification does not allow quiescence at that point. All this is reflected in the following
recursive algorithm for test generation for relations iocoF with F ⊆ Straces(s). The algorithm is
nondeterministic in the sense that in each recursive step it can be continued in many different ways:
termination of the test case in choice 1, any input action satisfying the requirement of choice 2, or
checking the allowed outputs in choice 3. Each continuation will result in another sound test case
(theorem 6.3.1), and all possible test cases together form an exhaustive (and thus complete) test
suite (theorem 6.3.2), so there are no errors in an implementation that are principally undetectable
with test suites generated with the algorithm. However, if the behaviour of the specification is
infinite, the algorithm allows construction of infinitely many different test cases, which can be
arbitrarily long, but which all have finite behaviour.

In the algorithm we use the notation σ for a trace in which all δ-actions have been replaced by θ-
actions (and others left unchanged), or vice versa, depending on the domain of σ. The interchange
of δ- and θ-actions is natural since they are in a certain sense complementary: δ models the absence
of outputs (the refusal LU) which can be observed with θ and which is the only refusal which can
be observed when dealing with input-output transition systems (cf. complementary actions a and
a in CCS [Mil89]).
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Algorithm 6.2
Let Γ be the suspension automaton of a specification, and let F ⊆ traces(Γ); then a test case
t ∈ TEST (LU , LI) is obtained by a finite number of recursive applications of one of the following
three nondeterministic choices:

1. (∗ terminate the test case ∗)
t := pass

2. (∗ give a next input to the implementation ∗)
t := a ; t′

where a ∈ LI , such that F ′ = {σ ∈ L∗
δ | a·σ ∈ F} 6= ∅, and t′ is obtained by recursively

applying the algorithm for F ′ and Γ′, with Γ a−→Γ′.

3. (∗ check the next output of the implementation ∗)
t := Σ { x ; fail | x ∈ LU ∪ {θ}, x 6∈ out(Γ), ǫ ∈ F}2 Σ { x ; pass | x ∈ LU ∪ {θ}, x 6∈ out(Γ), ǫ 6∈ F}2 Σ { x ; tx | x ∈ LU ∪ {θ}, x ∈ out(Γ) }

where tx is obtained by recursively applying the algorithm for {σ ∈ L∗
δ | x·σ ∈ F} and Γ′,

with Γ x−→Γ′. 2
Theorem 6.3
Let s ∈ LTS(LI ∪ LU) and F ⊆ Straces(s); then

1. a test case obtained with algorithm 6.2 from Γs and F is sound for s with respect to iocoF ;

2. the set of all possible test cases that can be obtained with algorithm 6.2 is exhaustive. 2
Sketch of the proof

1. Soundness can be proved using the following sufficient condition for soundness of a test case
t ∈ TEST (LU , LI) for a specification s with respect to iocoF :

∀σ ∈ L∗
θ : t σ−→ fail implies

∃σ′ ∈ F , x ∈ LU ∪ {δ} : σ = σ′·x and x 6∈ out( Γs after σ′ )
(5)

This property is proved by contradiction: let t be not sound, then ∃i: i iocoF s, and

t⌉| i
σ

=⇒ fail⌉| i′. It follows that t σ−→ fail and i
σ

=⇒ i′, so from the premiss: ∃σ′ ∈ F , x ∈

LU ∪ {δ}: σ = σ′·x and x /∈ out( Γs after σ′ ). But since i
σ′·x

===⇒ i′ and i iocoF s, we have
x ∈ out( Γs after σ′ ), so a contradiction.

By straightforward induction on the structure of t, it is then proved that each t generated
with algorithm 6.2 from Γs and F satisfies property (5).

2. For exhaustiveness we have to show that the set of all test cases T generated with al-
gorithm 6.2 satisfies ∀i : i /iocoF s implies ∃t ∈ T : i fails t. So let σ ∈ F such that
out( i after σ ) 6⊆ out( s after σ ), so ∃z ∈ out( i after σ ) with z 6∈ out( s after σ ). A test
case t[σ] can be constructed with algorithm 6.2 from Γs and F as follows:

◦ t[ǫ] is obtained with the third choice in algorithm 6.2, followed by the first choice for
each tx;

◦ t[b·σ] (b ∈ LI) is obtained with the second choice in algorithm 6.2, choosing a = b, and
followed by recursive application to obtain t′ = t[σ];

◦ t[y·σ] (y ∈ LU ∪ {θ}) is obtained with the third choice in algorithm 6.2, followed by the
first choice for each tx with x 6= y, and recursive application to obtain ty = t[σ].

Now it can be shown that t[σ]⌉| i
σ

=⇒ t[ǫ]⌉| i
′ z−→ fail⌉| i′′, so i fails t[σ]. 2
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Example 6.4
Consider the candy machines r1 and r2 in figure 4. We use algorithm 6.2 to derive a test case from
r2 with respect to ioco = iocoStraces(s) = iocotraces(Γs). In the derivation we use the suspension
automaton of figure 7. The successive choices for the recursive steps of the algorithm are:

1. First choice 2 (giving an input to the implementation) is taken: t := but i; t1

2. To obtain t1, the next output of the implementation is checked (choice 3):
t1 := liqu; t21 2 chocu; fail 2 θ; t22

3. If the output was liqu, then we stop with the test case (choice 1): t21 := pass

4. If no output was produced (output θ; we know that we are in the right branch of r2), then
we give a next input to the implementation (choice 2): t22 := but i; t3

5. To obtain t3 we again check the outputs (choice 3): t3 := chocu; t4 2 liqu; fail 2 θ; fail

6. After the output chocu we check again the outputs (choice 3) to be sure that nothing more
is produced: t4 := chocu; fail 2 liqu; fail 2 θ; t5

7. For t5 we stop with the test case (choice 1): t5 := pass

After putting together all pieces, we obtain t of figure 8 as a sound test case for r2, which is consis-
tent with the results in examples 4.14 and 5.3: r1 /ioco r2, r2 ioco r2, and indeed r1 fails t, and
r2 passes t. So test case t will detect that r1 is not ioco-correct with respect to r2. 2
Algorithm 6.2 is restricted to implementation relations iocoF and specifications s such that F ⊆
traces(Γs). This looks more restrictive than it is. First, proposition 6.5 below shows that in the
case of F being prefix-closed (for each σ ∈ F also all its prefixes are in F) it suffices to consider
only the suspension traces of s and the suspension traces of s concatenated with one input action.
If an implementation contains an error (i.e., out( i after σ ) 6⊆ out( s after σ )) for a trace σ which
is not a suspension trace or a suspension trace concatenated with one input action, then there is
always a prefix of σ which is such a trace and which leads to an error, too.

Secondly, a form of inconsistency between the specification s and the set of traces F occurs if
Straces(s) 6= Straces(s)·LI . Suppose there is a trace σ·x·a ∈ F such that σ·x is a suspension
trace of s but σ·x·a is not. Then Γs

σ·x−−−→Γ′ where Γ′ is not input enabled: ∃a ∈ LI : Γ′ a
−−→/ .

The consequence is that we have x ∈ out( s after σ ), so a conforming implementation may also

perform x after σ: x ∈ out( i after σ ). However, then i
σ·x

===⇒ and since i is an input-output

transition system, also i
σ·x·a

====⇒ . So we have out( i after σ·x·a ) 6= ∅, while out( s after σ·x·a ) = ∅,
so i cannot be a conforming implementation of s (cf. the discussion on input-enabledness and
non-implementability of specifications in section 4.1). Combinations of s and F leading to this
problem do not make sense and, if really needed, can always be replaced by modified s and F not
having this problem and defining the same class of implementations. Consequently, since usually
F is prefix-closed, it can be replaced by G ⊆ Straces(s), so, algorithm 6.2 has a useful and broad
range of applicability.

Proposition 6.5
Let F be prefix-closed and let G = F ∩ (Straces(s) ∪ Straces(s)·LI); then iocoF = iocoG 2
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7 Concluding Remarks

This paper has presented implementation relations, conformance testing and test generation for
implementations that communicate via inputs and outputs. The implementation relations were
defined by applying the theory of testing equivalences and refusal testing to systems in which inputs
and outputs can be distinguished and in which inputs are always enabled. The defined relations
≤iot , ≤ior , ioconf and ioco are particular instances of a class of implementation relations iocoF ,
which are most easily characterized if the refusal of outputs, i.e., quiescence, is considered as an
explicitly observable event represented by a special output action δ. Traces over input actions,
outputs actions and δ are called suspension traces, and the parameter F in iocoF is a set of them.
Processes modulo these input-output implementation relations are fully characterized by (a subset
of) their suspension traces. The action δ is no different from a normal output action. This means
that the addition of δ to represent quiescence makes it possible to reason about systems using only
linear properties, i.e., traces.

The characterization in terms of suspension traces formed the basis for a test generation algorithm
which was proved to derive test cases from a specification, which can detect, by means of confor-
mance testing, all and only implementations which are incorrect for that specification with respect
to any of the implementation relations ioconfF . The resulting theory and algorithm are somewhat
simpler than the corresponding theory and algorithms for testing with symmetric interactions (e.g.,
compare proposition 4.3 with 3.3, and compare algorithm 6.2 with the conf -based test generation
algorithm in [Tre92]). The theory and the algorithm can form the basis for the development of test
generation tools. They can be applied to those domains where implementations can be assumed to
communicate via inputs and outputs, which is the case for many realistic systems, and where spec-
ifications can be expressed in labelled transition systems, which also holds for many specification
formalisms.

It was indicated that input-output transition systems only marginally differ from Input/Output
Automata [LT89] in that the former has a weaker requirement on input-enabling. This allows
for some systems that are IOTS but not IOA (e.g., communication with systems via explicitly
modelled bounded buffers: when the buffer is full, no input actions are possible anymore without
first performing an internal event. Such a system is IOTS .).

Another model which is very much related to input-output transition systems, is that of Input-
Output State Machines (IOSM) [Pha94]. Our suspension automaton was inspired by the way
the absence of output is treated in [Pha94]. Like IOA, IOSMs have strong input-enabling (called
completeness). Absence of outputs (‘blocage de sortie’) is also considered observable, and an
implementation relation R1 is defined which strongly resembles ioco.

The interesting point about the relation R1 is that it was defined without reference to an underlying
theory of testing equivalence or refusal testing, but that it was defined as the result of formalizing
existing protocol testing practice with an existing testing tool (TVEDA [CGPT96]) based on formal
specifications in Estelle and SDL. This may be an indication that relations like ioco have not only
a nice theoretical basis but also have practical applicability. A first trial to apply the theory of
ioconf to conformance testing of a very simple protocol looks promising [TFPHT96].

The implementation relations and algorithm in this paper generalize those for queue systems
[TV92]. Queue systems are transition systems in a queue context, i.e., to which two unbounded
queues are attached to model asynchronous communication, one queue for inputs and one for
outputs. An unbounded queue clearly has the property that input can never be refused, while the
output queue determines that from the system’s point of view output actions can never be refused
by the environment.

An open issue is the atomicity of actions. Although we allow specifications to be labelled transition
systems, the actions are classified as inputs and outputs, and they have a one-to-one correspondence
to those of the implementation. An interesting area for further investigation occurs if implemen-
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tation relations are combined with action refinement, so that one abstract symmetric interaction
of the specification is implemented using multiple inputs and outputs, e.g., implementing an ab-
stract interaction by means of a handshake protocol. Tests could be derived from the specification
using symmetric algorithms (section 3) and then refined, or the specification could be refined after
which the input-output-based algorithm is used. The precise relation between testing, inputs and
outputs, and action refinement needs further investigation.

Adding the absence of outputs as a special observable event makes it easier to compare transition
systems with other models in which the absence of outputs is treated in the same way, such as
in the realm of Mealy Machines (Finite State Machines FSM). FSMs are often used in the area
of communication protocol conformance testing [BU91, YL95], where the absence of outputs is
usually denoted by a special null-output. The precise relation between the testing theories based
on labelled transition systems and those based on FSMs is left for further study.

More attention is also needed to the topic of efficiently and effectively obtaining suspension au-
tomata and test cases. In particular, a compositional method for deriving them from process-
algebraic specifications would be helpful. Also, equational and congruence properties and axiom-
atization are left for further study.

Among the more practically oriented problems are the well-known test selection problem (test-suite
size reduction [ISO96]). Algorithm 6.2 can generate infinitely many sound test cases, but which
ones shall be really executed? Solutions can be sought by defining coverage measures, fault models,
stronger test hypotheses, etc. [Ber91, ISO96, Pha94, Tre92]. Another aspect is the incorporation
of data in the test generation procedure. The state explosion caused by the data in specifications
needs to be handled in a symbolic way; otherwise automation of the test generation algorithm
in test tools will probably not be feasible. A last practical problem is the implementation of the
observation of quiescence. In practical test execution tools, timers will have to be used for which
the time-out values need to be chosen carefully in order not to observe quiescence where there is
none.
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A.1 Proofs of Section 3 (Implementation relations with symmetric in-
teractions)

We start with proving the claim of equation (2). Then some lemmata are presented for the proofs
of propositions 3.3 and 3.5: lemma A.1 investigates the behaviour of the parallel operator ‖ ,
lemma A.2.1 relates observations to failure pairs, lemma A.2.2 defines a special observer which
can observe a particular failure pair, lemma A.3 shows that observations of the kind obst are not
necessary, and finally, lemma A.4 relates observations of kind obsc to failure pairs. Propositions 3.3
and 3.5 are then direct consequences of these lemmata.

Claim (2)

p after σ refusesA iff ∃p′ : p
σ

=⇒ p′ and ∀µ ∈ A ∪ {τ} : p′
µ

−−→/ 2
Proof (claim (2))

only if :
p after σ refusesA

implies (∗ definition 3.2.1 ∗)

∃p′ : p
σ

=⇒ p′ and ∀a ∈ A : p′
a

=6⇒
implies (∗ strong convergence ∗)

∃p′ : p
σ

=⇒ p′ and ∀a ∈ A : p′
a

=6⇒ and ∃p′′ : p′
ǫ

=⇒ p′′
τ

−−→/
implies (∗ definition 2.2 ∗)

∃p′, p′′ : p
σ

=⇒ p′
ǫ

=⇒ p′′ and ∀a ∈ A : p′′
a

−−→/ and p′′
τ

−−→/
implies (∗ definition 2.2 ∗)

∃p′′ : p
σ

=⇒ p′′ and ∀µ ∈ A ∪ {τ} : p′′
µ

−−→/

if :
∃p′ : p

σ
=⇒ p′ and ∀µ ∈ A ∪ {τ} : p′

µ
−−→/

implies (∗ definition 2.2 ∗)

∃p′ : p
σ

=⇒ p′ and ∀a ∈ A : p′
a

=6⇒
implies (∗ definition 3.2.1 ∗)

p after σ refusesA 2
Lemma A.1
Let p, q, r ∈ LTS(L), σ ∈ L∗, then

1. p ‖ q
σ

=⇒ r implies ∃p′, q′ : p
σ

=⇒ p′ and q
σ

=⇒ q′ and r = p′ ‖ q′

2. p
σ

=⇒ p′ and q
σ

=⇒ q′ imply p ‖ q
σ

=⇒ p′ ‖ q′ 2
Proof (lemma A.1)

1. By induction on the structure of σ:

σ = ǫ: The lemma reduces to

p ‖ q
ǫ

=⇒ r implies ∃p′, q′ : p
ǫ

=⇒ p′ and q
ǫ

=⇒ q′ and r = p′ ‖ q′ (6)

Using p τ0

−−→ p′ iff p = p′:

p ‖ q
ǫ

=⇒ r
implies (∗ definition 2.2 ∗)

∃n ≥ 0 : p ‖ q τn

−−→ r
implies (∗ definition ‖ ∗)

∃n ≥ 0, ∃n1, n2 ≥ 0 : n = n1 + n2

and ∃p′, q′ : p τn1
−−−→ p′ and q τn2

−−−→ q′ and r = p′ ‖ q′
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implies (∗ definition 2.2 ∗)

∃p′, q′ : p
ǫ

=⇒ p′ and q
ǫ

=⇒ q′ and r = p′ ‖ q′

σ = a·σ′:

p ‖ q
a·σ′

===⇒ r
implies (∗ definition 2.2 ∗)

∃r1, r2 : p ‖ q
ǫ

=⇒ r1
a−→ r2

σ′

==⇒ r
implies (∗ equation (6) ∗)

∃p1, q1, r2 : p
ǫ

=⇒ p1 and q
ǫ

=⇒ q1 and p1 ‖ q1
a−→ r2

σ′

==⇒ r
implies (∗ definition ‖ ∗)

∃p1, q1, p2, q2 : p
ǫ

=⇒ p1 and q
ǫ

=⇒ q1

and p1
a−→ p2 and q1

a−→ q2 and p2 ‖ q2
σ′

==⇒ r
implies (∗ induction ∗)

∃p1, q1, p2, q2, p
′, q′ : p

ǫ
=⇒ p1 and q

ǫ
=⇒ q1 and

p1
a−→ p2 and q1

a−→ q2 and p2
σ′

==⇒ p′ and q2
σ′

==⇒ q′ and r = p′ ‖ q′

implies (∗ definition 2.2 ∗)

∃p′, q′ : p
a·σ′

===⇒ p′ and q
a·σ′

===⇒ q′ and r = p′ ‖ q′

2. By induction on the structure of σ:

σ = ǫ: The lemma reduces to:

p
ǫ

=⇒ p′ and q
ǫ

=⇒ q′ imply p ‖ q
ǫ

=⇒ p′ ‖ q′ (7)

which is straightforward:

p
ǫ

=⇒ q′ and q
ǫ

=⇒ q′

implies (∗ definition 2.2 ∗)

∃n1, n2 ≥ 0 : p τn1
−−−→ q′ and q τn2

−−−→ q′

implies (∗ definition ‖ ∗)

∃n1, n2 ≥ 0 : p ‖ q τn1+n2
−−−−−→ p′ ‖ q′

implies (∗ definition 2.2 ∗)

p ‖ q
ǫ

=⇒ p′ ‖ q′

σ = a·σ′:

p
a·σ′

===⇒ q′ and q
a·σ′

===⇒ q′

implies (∗ definition 2.2 ∗)

∃p1, p2, q1, q2 : p
ǫ

=⇒ p1
a−→ p2

σ′

==⇒ p′ and q
ǫ

=⇒ q1
a−→ q2

σ′

==⇒ q′

implies (∗ equation (7), definition ‖ and induction ∗)

p ‖ q
ǫ

=⇒ p1 ‖ q1
a−→ p2 ‖ q2

σ′

==⇒ p′ ‖ q′

implies (∗ definition 2.2 ∗)

p ‖ q
a·σ′

===⇒ p′ ‖ q′ 2
Lemma A.2

1. Let p, u ∈ LTS(L), σ ∈ L∗, then

σ ∈ obsc(u, p) iff ∃u′ : u
σ

=⇒u′ and p after σ refuses {b ∈ L | u′
b

=⇒}

2. Let σ ∈ L∗ and σ = b1·b2· . . . ·bm, let A ⊆ L, and let u[σ,A] ∈ LTS(L) be defined as:

u[σ,A] =def b1 ; b2 ; . . . ; bm ; Σ{a; stop | a ∈ A}

then
σ ∈ obsc(u[σ,A], p) iff p after σ refusesA 2
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Proof (lemma A.2)

1. σ ∈ obsc(u, p)
iff (∗ definition 3.2.3 ∗)

u ‖ p after σ deadlocks
iff (∗ definitions 3.2.2 and 3.2.1, lemmata A.1.1 and A.1.2 ∗)

∃u′, p′ : u
σ

=⇒u′ and p
σ

=⇒ p′ and ∀a ∈ L : u′ ‖ p′
a

=6⇒
iff (∗ lemmata A.1.2 and A.1.1 ∗)

∃u′, p′ : u
σ

=⇒u′ and p
σ

=⇒ p′ and ∀a ∈ L : u′
a

=6⇒ or p′
a

=6⇒
iff (∗ standard set theory ∗)

∃u′, p′ : u
σ

=⇒u′ and p
σ

=⇒ p′ and ∀a ∈ {b ∈ L | u′
b

=⇒} : p′
a

=6⇒
iff (∗ definition 3.2.1 ∗)

∃u′ : u
σ

=⇒u′ and p after σ refuses {b ∈ L | u′
b

=⇒}

2. Using lemma A.2.1 with

◦ u[σ,A]
σ

=⇒u′ implies u′ = Σ{a; stop | a ∈ A}

◦ u[σ,A]
σ

=⇒Σ{a; stop | a ∈ A}

◦ {b ∈ L | Σ{a; stop | a ∈ A}
b

=⇒} = A 2
Lemma A.3
( ∀u ∈ LTS(L) : obsc(u, i) ⊆ obsc(u, s) ) implies ( ∀u ∈ LTS(L) : obs t(u, i) ⊆ obs t(u, s) ) 2
Proof (lemma A.3)
Let u ∈ LTS(L), σ ∈ obst(u, i), then

σ ∈ obs t(u, i)
implies (∗ definition 3.2.3 ∗)

u ‖ i
σ

=⇒
implies (∗ lemma A.1.1 ∗)

∃u′, i′ : i
σ

=⇒ i′ and u
σ

=⇒u′

Now, let σ = b1·b2· . . . ·bm and define uσ ∈ LTS(L) as uσ =def b1; b2; . . . ; bm; stop, then

uσ
σ

=⇒ stop and ∃i′ : i
σ

=⇒ i′

implies (∗ lemma A.1.2 and A.1.1 ∗)

∃i′ : uσ ‖ i
σ

=⇒ stop ‖ i′ and ∀a ∈ L : stop ‖ i′
a

=6⇒
implies (∗ definitions 3.2.2 and 3.2.1 ∗)

uσ ‖ i after σ deadlocks
implies (∗ definition 3.2.3 ∗)

σ ∈ obsc(uσ, i)
implies (∗ premiss ∗)

σ ∈ obsc(uσ, s)
implies (∗ definition 3.2.3 ∗)

uσ ‖ s after σ deadlocks
implies (∗ definitions 3.2.2 and 3.2.1 ∗)

uσ ‖ s
σ

=⇒
implies (∗ lemma A.1.1 ∗)

s
σ

=⇒

implies (∗ u
σ

=⇒u′ from above and lemma A.1.2 ∗)

u ‖ s
σ

=⇒
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implies (∗ definition 3.2.3 ∗)
σ ∈ obs t(u, s) 2

Lemma A.4
∀u ∈ LTS(L) : obsc(u, i) ⊆ obsc(u, s)

iff ∀σ ∈ L∗,∀A ⊆ L : i after σ refusesA implies s after σ refusesA 2
Proof (lemma A.4)

only if : Let σ ∈ L∗, A ⊆ L, then

i after σ refusesA
iff (∗ lemma A.2.2 ∗)

σ ∈ obsc(u[σ,A], i)
implies (∗ premiss ∗)

σ ∈ obsc(u[σ,A], s)
iff (∗ lemma A.2.2 ∗)

s after σ refusesA

if : Let u ∈ LTS(L), σ ∈ L∗, then

σ ∈ obsc(u, i)
iff (∗ lemma A.2.1 ∗)

∃u′ : u
σ

=⇒u′ and i after σ refuses {b ∈ L | u′
b

=⇒}
implies (∗ premiss ∗)

∃u′ : u
σ

=⇒u′ and s after σ refuses {b ∈ L | u′
b

=⇒}
iff (∗ lemma A.2.1 ∗)

σ ∈ obsc(u, s) 2
Proposition 3.3
i ≤te s iff ∀σ ∈ L∗, ∀A ⊆ L : i after σ refusesA implies s after σ refusesA 2
Proof (proposition 3.3)

i ≤te s
iff (∗ definition 3.2.4 ∗)

∀u ∈ LTS(L) : obsc(u, i) ⊆ obsc(u, s) and obs t(u, i) ⊆ obs t(u, s)
iff (∗ lemma A.3 ∗)

∀u ∈ LTS(L) : obsc(u, i) ⊆ obsc(u, s)
iff (∗ lemma A.4 ∗)

∀σ ∈ L∗,∀A ⊆ L : i after σ refusesA implies s after σ refusesA 2
Proposition 3.5
i conf s iff ∀σ ∈ traces(s), ∀A ⊆ L : i after σ refusesA implies s after σ refusesA 2
Proof (proposition 3.5)

only if : Let σ ∈ traces(s), A ⊆ L, then

σ ∈ traces(s) and i after σ refusesA
iff (∗ lemma A.2.2 ∗)

σ ∈ traces(s) and σ ∈ obsc(u[σ,A], i)
implies (∗ premiss, definition 3.4 ∗)

σ ∈ obsc(u[σ,A], s)
iff (∗ lemma A.2.2 ∗)

s after σ refusesA
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if : Let u ∈ LTS(L), σ ∈ L∗, then

σ ∈ obsc(u, i) ∩ traces(s)
iff (∗ lemma A.2.1 ∗)

∃u′ : u
σ

=⇒u′ and i after σ refuses {b ∈ L | u′
b

=⇒} and σ ∈ traces(s)
implies (∗ premiss ∗)

∃u′ : u
σ

=⇒u′ and s after σ refuses {b ∈ L | u′
b

=⇒}
iff (∗ lemma A.2.1 ∗)

σ ∈ obsc(u, s)

Moreover

σ ∈ obst(u, i) ∩ traces(s)
implies (∗ definitions 3.2.3 and 2.3 and lemma A.1.1 ∗)

u
σ

=⇒ and i
σ

=⇒ and s
σ

=⇒
implies (∗ lemma A.1.2 ∗)

u ‖ s
σ

=⇒
implies (∗ definition 3.2.3 ∗)

σ ∈ obst(u, s) 2
For the proof of proposition 3.8, we first introduce the notion of observing a refusal A ⊆ L.

This is done by defining the transition relation
ϕ

=⇒≻ on observers in definition A.5, which is

complementary to
ϕ

=⇒ (definition 3.7). Whereas p
ϕ

=⇒ expresses that ϕ is a failure trace of p,

the transition relation u
ϕ

=⇒≻ expresses that the observer u can observe the failure trace ϕ in a
system under observation. The failure trace ϕ is observed by performing the trace Θ(ϕ), which is
ϕ in which all occurrences of refusal sets have been replaced by θ (definition A.6). The rest of the
proof of proposition 3.8 is analogous to the proof of proposition 3.3: lemma A.8 investigates the
behaviour of the parallel operator ⌉| , definition A.9 defines a special observer, for which it is shown
in lemma A.10 that it can observe a particular failure trace. Using these special observers it is
straightforward to prove that inclusion of failure-traces corresponds to inclusion of observations of
the kind obsθc (lemma A.11), as well as to inclusion of observations of the kind obsθt (lemma A.12).
Proposition 3.8 is then a direct consequence of these lemmata.

Definition A.5
Let u ∈ LTS(Lθ), a ∈ L, A ⊆ L, α(i) ∈ L ∪ P(L), and ϕ ∈ (L ∪ P(L))∗.

u A−−→≻ u′ =def init(u) = A ∪ {θ} and u θ−→u′

u
ǫ

=⇒≻ u′ =def u
ǫ

=⇒u′

u
a

=⇒≻ u′ =def u
a

=⇒u′

u
A

==⇒≻ u′ =def ∃u1, u2 : u
ǫ

=⇒≻ u1
A−−→≻ u2

ǫ
=⇒≻ u′

u
α1·α2·...·αn========⇒≻ u′ =def ∃u0 . . . un : u = u0

α1==⇒≻ u1
α2==⇒≻ . . .

an==⇒≻ un = u′

u
ϕ

=⇒≻ =def ∃u′ : u
ϕ

=⇒≻ u′

u
ϕ

=6⇒≻ =def not ∃u′ : u
ϕ

=⇒≻ u′ 2
Definition A.6
Let ϕ ∈ (L ∪ P(L))∗, then Θ(ϕ) ∈ L∗

θ is defined by (a ∈ L, A ⊆ L):

Θ(ǫ) =def ǫ
Θ(a·ϕ) =def a·Θ(ϕ)
Θ(A·ϕ) =def θ·Θ(ϕ) 2
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Lemma A.7

Let u ∈ LTS(Lθ), ϕ ∈ (L ∪ P(L))∗, then u
ϕ

=⇒≻ u′ implies u
Θ(ϕ)

====⇒u′ 2
Proof (lemma A.7)
By induction of the length of ϕ:

ϕ = ǫ:
u

ǫ
=⇒≻ u′ iff u

ǫ
=⇒u′, and Θ(ǫ) = ǫ

ϕ = a·ϕ′:

u
a·ϕ′

===⇒≻ u′

implies ∃u1 : u
a

=⇒≻ u1 and u1
ϕ′

==⇒≻ u′

implies (∗ definition A.5 and induction ∗)

∃u1 : u
a

=⇒u1 and u1
Θ(ϕ′)

====⇒u′

implies (∗ definition A.6 ∗)

u
Θ(a·ϕ′)

=====⇒u′

ϕ = A·ϕ′:

u
A·ϕ′

===⇒≻ u′

implies ∃u1, u2 : u
ǫ

=⇒≻ u1
A−−→≻ u2

ϕ′

==⇒≻ u′

implies (∗ definitions A.5 and 2.3, and induction ∗)

∃u1, u2 : u
ǫ

=⇒u1
θ−→u2

Θ(ϕ′)
====⇒u′

implies (∗ definition A.6 ∗)

u
Θ(A·ϕ′)

======⇒u′ 2
Lemma A.8
Let u, r ∈ LTS(Lθ), p ∈ LTS(L), σ ∈ L∗

θ, and ϕ ∈ (L ∪ P(L))∗, then

1. u⌉| p
σ

=⇒ r implies ∃u′, p′, ∃ϕ ∈ (L ∪ P(L))∗ :

u
ϕ

=⇒≻ u′ and p
ϕ

=⇒ p′ and r = u′⌉| p′ and Θ(ϕ) = σ

2. u
ϕ

=⇒≻ u′ and p
ϕ

=⇒ p′ imply u⌉| p
Θ(ϕ)

====⇒u′⌉| p′ 2
Proof (lemma A.8)

1. By induction on the structure of σ, with a ∈ L:

σ = ǫ: Using definition A.6, the lemma reduces to

u⌉| p
ǫ

=⇒ r implies ∃u′, p′ : u
ǫ

=⇒≻ u′ and p
ǫ

=⇒ p′ and r = u′⌉| p′ (8)

which, using p τ0

−−→ p′ iff p = p′, is equivalent to

u⌉| p τn

−−→ r implies ∃u′, p′ : u
ǫ

=⇒≻ u′ and p
ǫ

=⇒ p′ and r = u′⌉| p′ (9)

which is proved by induction on n:

n = 0: Take u′ = u, p′ = p, then (9) is fulfilled.

n = n′ + 1:

u⌉| p τ (n′+1)

−−−−−→ r
implies (∗ definition 2.2 ∗)

∃r1 : u⌉| p τ−→ r1 and r1
τn

′

−−−→ r
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implies (∗ definition 3.6.1 ∗)

∃r1 : ( ∃u1 : u τ−→u1 and r1 = u1⌉| p and r1
τn

′

−−−→ r ) or

( ∃p1 : p τ−→ p1 and r1 = u⌉| p1 and r1
τn

′

−−−→ r )
implies (∗ induction ∗)

( ∃u1, u
′, p′ : u τ−→u1

ǫ
=⇒≻ u′ and p

ǫ
=⇒ p′ and r = u′⌉| p′ ) or

( ∃p1, u
′, p′ : u

ǫ
=⇒≻ u′ and p τ−→ p1

ǫ
=⇒ p′ and r = u′⌉| p′ )

implies (∗ definition A.5 ∗)

∃u′, p′ : u
ǫ

=⇒≻ u′ and p
ǫ

=⇒ p′ and r = u′⌉| p′

σ = a·σ′:

u⌉| p
a·σ′

===⇒ r
implies (∗ definition 2.2 ∗)

∃r1, r2 : u⌉| p
ǫ

=⇒ r1
a−→ r2

σ′

==⇒ r
implies (∗ equation (8) ∗)

∃u1, p1, r2 : u
ǫ

=⇒≻ u1 and p
ǫ

=⇒ p1 and u1⌉| p1
a−→ r2

σ′

==⇒ r
implies (∗ definition 3.6.1 ∗)

∃u1, p1, u2, p2 : u
ǫ

=⇒≻ u1 and p
ǫ

=⇒ p1

and u1
a−→u2 and p1

a−→ p2 and u2⌉| p2
σ′

==⇒ r
implies (∗ definition A.5, induction ∗)

∃u2, p2, u
′, p′, ∃ϕ′ ∈ (L ∪ P(L))∗ : u

a
=⇒≻ u2 and p

a
=⇒ p2

and u2
ϕ′

==⇒≻ u′ and p2
ϕ′

==⇒ p′ and r = u′⌉| p′ and Θ(ϕ′) = σ′

implies (∗ definitions A.5, A.6; take ϕ = a·ϕ′ ∗)
∃u′, p′, ∃ϕ ∈ (L ∪ P(L))∗ :

u
ϕ

=⇒≻ u′ and p
ϕ

=⇒ p′ and r = u′⌉| p′ and Θ(ϕ) = a·σ′

σ = θ·σ′:

u⌉| p
θ·σ′

===⇒ r
implies (∗ definition 2.2 ∗)

∃r1, r2 : u⌉| p
ǫ

=⇒ r1
θ−→ r2

σ′

==⇒ r
implies (∗ equation (8) ∗)

∃u1, p1, r2 : u
ǫ

=⇒≻ u1 and p
ǫ

=⇒ p1 and u1⌉| p1
θ−→ r2

σ′

==⇒ r
implies (∗ definition 3.6.1 ∗)

∃u1, p1, u2 : u
ǫ

=⇒≻ u1 and p
ǫ

=⇒ p1 and u1
θ−→u2 and

u1
τ

−−→/ and p1
τ

−−→/ and ∀a ∈ L : u1
a

−−→/ or p1
a

−−→/ and u2⌉| p1
σ′

==⇒ r
implies (∗ definitions 3.7, A.5; induction ∗)

∃u1, p1, u2, u
′, p′, ∃ϕ′ ∈ (L ∪ P(L))∗ : u

ǫ
=⇒≻ u1 and p

ǫ
=⇒ p1

and u1
init(u1)\{θ}−−−−−−−−→≻ u2 and p1

init(u1)\{θ}−−−−−−−−→p1

and u2
ϕ′

==⇒≻ u′ and p1
ϕ′

==⇒ p′ and r = u′⌉| p′ and Θ(ϕ′) = σ′

implies (∗ definitions A.5, A.6; take ϕ = (init(u1)\{θ})·ϕ′ ∗)
∃u′, p′, ∃ϕ ∈ (L ∪ P(L))∗ :

u
ϕ

=⇒≻ u′ and p
ϕ

=⇒ p′ and r = u′⌉| p′ and Θ(ϕ) = θ·σ′

2. By induction on the structure of ϕ, with a ∈ L, A ⊆ L:

ϕ = ǫ:
u

ǫ
=⇒≻ u′ and p

ǫ
=⇒ p′

implies (∗ definition A.5 ∗)

u
ǫ

=⇒u′ and p
ǫ

=⇒ p′

implies (∗ definition 2.2 ∗)

∃n,m : u τn

−−→u′ and p τm

−−→ p′
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implies (∗ definition 3.6.1 ∗)

∃n,m : u⌉| p τn+m

−−−−→u′⌉| p′

implies (∗ definition 2.2 ∗)

u⌉| p
ǫ

=⇒u′⌉| p′

implies (∗ definition A.6 ∗)

u⌉| p
Θ(ǫ)

===⇒u′⌉| p′

ϕ = a·ϕ′:

u
a·ϕ′

===⇒≻ u′ and p
a·ϕ′

===⇒ p′

implies (∗ definitions 2.2, A.5 ∗)

∃u1, u2, p1, p2 : u
ǫ

=⇒u1
a−→u2

ϕ′

==⇒≻ u′ and p
ǫ

=⇒ p1
a−→ p2

ϕ′

==⇒ p′

implies (∗ case for σ = ǫ, definition 3.6.1, induction ∗)

u⌉| p
ǫ

=⇒u1⌉| p1
a−→u2⌉| p2

Θ(ϕ′)
====⇒u′⌉| p′

implies (∗ definition A.6 ∗)

u⌉| p
Θ(a·ϕ′)

=====⇒u′⌉| p′

ϕ = A·ϕ′:

u
A·ϕ′

===⇒≻ u′ and p
A·ϕ′

===⇒ p′

implies (∗ definitions 2.2, A.5 ∗)

∃u1, u2, p1, p2 : u
ǫ

=⇒u1
A−−→≻ u2

ϕ′

==⇒≻ u′ and p
ǫ

=⇒ p1
A−−→ p2

ϕ′

==⇒ p′

implies (∗ case for σ = ǫ, definitions 3.7 and A.5 ∗)

∃u1, u2, p1, p2 : u⌉| p
ǫ

=⇒u1⌉| p1 and u1
θ−→u2 and init(u1) = A ∪ {θ}

and p1 = p2 and ∀µ ∈ A ∪ {τ} : p1
µ

−−→/ and u2
ϕ′

==⇒≻ u′ and p2
ϕ′

==⇒ p′

implies (∗ definition 3.6.1, induction ∗)

∃u1, u2, p1 : u⌉| p
ǫ

=⇒u1⌉| p1
θ−→u2⌉| p1

Θ(ϕ′)
====⇒u′⌉| p′

implies (∗ definition A.6 ∗)

u⌉| p
Θ(A·ϕ′)

======⇒u′⌉| p′ 2
Definition A.9
Let ϕ ∈ (L ∪ P(L))∗ be a failure trace, then u[ϕ] ∈ LTS(Lθ) is defined as follows, where a ∈ L,
and A ⊆ L:

u[ǫ] =def stop
u[a·ϕ] =def a ; u[ϕ]

u[A·ϕ] =def Σ{a; stop | a ∈ A} 2 θ;u[ϕ] 2
Lemma A.10
Let p ∈ LTS(L), ϕ,ψ ∈ (L ∪ P(L))∗.

1. u[ϕ]
ϕ

=⇒≻ stop

2. u[ϕ]
ψ

=⇒≻ and Θ(ϕ) = Θ(ψ) implies ϕ = ψ

3. ϕ ∈ Ftraces(p) iff Θ(ϕ) ∈ obsθc(u[ϕ], p) iff Θ(ϕ) ∈ obsθt (u[ϕ], p) 2
Proof (lemma A.10)

1. By induction on the structure of ϕ, with a ∈ L, A ⊆ L:

ϕ = ǫ: u[ǫ] = stop
ǫ

=⇒≻ stop

ϕ = a·ϕ′: u[a·ϕ′] = a;u[ϕ′]
a−→u[ϕ′], and by induction u[ϕ′]

ϕ′

==⇒≻ stop, so u[a·ϕ′]
a·ϕ′

===⇒≻ stop.
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ϕ = A·ϕ′: u[A·ϕ′] = Σ{a; stop | a ∈ A} 2 θ;u[ϕ′]
A−−→≻ u[ϕ′], and by induction:

u[ϕ′]
ϕ′

==⇒≻ stop, so u[A·ϕ′]
A·ϕ′

===⇒≻ stop.

2. By induction on the structure of ψ, with a ∈ L, A ⊆ L:

ψ = ǫ: Θ(ψ) = Θ(ǫ) = ǫ, so Θ(ϕ) = ǫ, hence ϕ = ǫ.

ψ = a·ψ′:

u[ϕ]
a·ψ′

===⇒≻ and Θ(ϕ) = Θ(a·ψ′)
implies (∗ definition A.6: Θ(a·ψ′) = a·Θ(ψ′) = Θ(ϕ), hence ∃ϕ′ : ϕ = a·ϕ′

so that Θ(ϕ) = a·Θ(ϕ′) and Θ(ϕ′) = Θ(ψ′) ∗)

∃ϕ′ : ϕ = a·ϕ′ and u[a·ϕ′]
a·ψ′

===⇒≻ and Θ(ϕ′) = Θ(ψ′)
implies (∗ definition A.9 ∗)

∃ϕ′ : ϕ = a·ϕ′ and u[ϕ′]
ψ′

==⇒≻ and Θ(ϕ′) = Θ(ψ′)
implies (∗ induction ∗)

∃ϕ′ : ϕ = a·ϕ′ and ϕ′ = ψ′

implies ϕ = ψ

ψ = A·ψ′:

u[ϕ]
A·ψ′

===⇒≻ and Θ(ϕ) = Θ(A·ψ′)
implies (∗ definitions A.6 and A.9 ∗)

∃ϕ′ : ϕ = A·ϕ′ and u[ϕ′]
ψ′

==⇒≻ and Θ(ϕ′) = Θ(ψ′)
implies (∗ induction ∗)

∃ϕ′ : ϕ = A·ϕ′ and ϕ′ = ψ′

implies ϕ = ψ

3. ◦ ϕ ∈ Ftraces(p) implies Θ(ϕ) ∈ obsθc(u[ϕ], p):

ϕ ∈ Ftraces(p)
implies (∗ definition 3.7 and lemma A.10.1 ∗)

∃p′ : p
ϕ

=⇒ p′ and u[ϕ]
ϕ

=⇒≻ stop
implies (∗ lemma A.8.2 and definition 3.6.1 ∗)

∃p′ : u[ϕ]⌉| p
Θ(ϕ)

====⇒ stop⌉| p′ and ∀a ∈ Lθ : stop⌉| p′
a

=6⇒
implies (∗ definition 3.2.2 ∗)

(u[ϕ]⌉| p) after Θ(ϕ) deadlocks
implies (∗ definition 3.6.2 ∗)

Θ(ϕ) ∈ obsθc(u[ϕ], p)

◦ Θ(ϕ) ∈ obsθc(u[ϕ], p) implies Θ(ϕ) ∈ obsθt (u[ϕ], p):

Θ(ϕ) ∈ obsθc(u[ϕ], p)
implies (∗ definitions 3.6.2, 3.2.2 ∗)

∃r : u[ϕ]⌉| p
Θ(ϕ)

====⇒ r and ∀a ∈ Lθ : r
a

=6⇒
implies (∗ definition 2.2 ∗)

u[ϕ]⌉| p
Θ(ϕ)

====⇒
implies (∗ definition 3.6.2 ∗)

Θ(ϕ) ∈ obsθt (u[ϕ], p)

◦ Θ(ϕ) ∈ obsθt (u[ϕ], p) implies ϕ ∈ Ftraces(p):

Θ(ϕ) ∈ obsθt (u[ϕ], p)
implies (∗ definition 3.6.2, lemma A.8.1 ∗)

∃ψ ∈ (L ∪ P(L))∗ : u[ϕ]
ψ

=⇒≻ and p
ψ

=⇒ and Θ(ψ) = Θ(ϕ)
implies (∗ lemma A.10.2 ∗)

p
ϕ

=⇒
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implies (∗ definition 3.7 ∗)
ϕ ∈ Ftraces(p) 2

Lemma A.11
Let i, s ∈ LTS(L), then

Ftraces(i) ⊆ Ftraces(s) iff ∀u ∈ LTS(Lθ) : obsθc(u, i) ⊆ obsθc(u, s) 2
Proof (lemma A.11)

only if : Let u ∈ LTS(Lθ), σ ∈ L∗
θ, then

σ ∈ obsθc(u, i)
implies (∗ definitions 3.6.2 and 3.2.2 ∗)

(u⌉| i) after σ refuses Lθ
implies (∗ claim (2) ∗)

∃r : u⌉| i
σ

=⇒ r and ∀µ ∈ Lθ ∪ {τ} : r
µ

−−→/
implies (∗ lemma A.8.1 ∗)

∃u′, i′, ∃ϕ ∈ (L ∪ P(L))∗ : u
ϕ

=⇒≻ u′ and i
ϕ

=⇒ i′

and ∀µ ∈ Lθ ∪ {τ} : u′⌉| i′
µ

−−→/ and Θ(ϕ) = σ
implies (∗ definition 3.6.1 ∗)

∃u′, i′, ∃ϕ ∈ (L ∪ P(L))∗ : u
ϕ

=⇒≻ u′ and i
ϕ

=⇒ i′

and u′
θ

−−→/ and u′
τ

−−→/ and i′
τ

−−→/ and ∀a ∈ L : u′
a

−−→/ or i′
a

−−→/
and Θ(ϕ) = σ

implies (∗ definition 3.7 ∗)

∃u′, i′, ∃ϕ ∈ (L ∪ P(L))∗ : u
ϕ

=⇒≻ u′
θ

−−→/ and u′
τ

−−→/

and i
ϕ

=⇒ i′
init(u′)−−−−−→ i′ and Θ(ϕ) = σ

implies (∗ definition 3.7 ∗)

∃u′, ∃ϕ ∈ (L ∪ P(L))∗ : u
ϕ

=⇒≻ u′
θ

−−→/ and u′
τ

−−→/
and ϕ·init(u′) ∈ Ftraces(i) and Θ(ϕ) = σ

implies (∗ premiss ∗)

∃u′, ∃ϕ ∈ (L ∪ P(L))∗ : u
ϕ

=⇒≻ u′
θ

−−→/ and u′
τ

−−→/
and ϕ·init(u′) ∈ Ftraces(s) and Θ(ϕ) = σ

implies (∗ definition 3.7 ∗)

∃u′, ∃ϕ ∈ (L ∪ P(L))∗ : u
ϕ

=⇒≻ u′
θ

−−→/ and u′
τ

−−→/

and ∃s′ : s
ϕ

=⇒ s′ and ∀µ ∈ init(u′) ∪ {τ} : s′
µ

−−→/ and Θ(ϕ) = σ
implies (∗ lemma A.8.2 and definition 3.6.1 ∗)

∃u′, s′, ∃ϕ ∈ (L ∪ P(L))∗ : u⌉| s
Θ(ϕ)

====⇒u′⌉| s′

and ∀µ ∈ Lθ ∪ {τ} : u′⌉| s′
µ

−−→/ and Θ(ϕ) = σ
implies (∗ claim (2) ∗)

∃ϕ ∈ (L ∪ P(L))∗ : (u⌉| s) after Θ(ϕ) refuses Lθ and Θ(ϕ) = σ
implies (∗ definitions 3.2.2 and 3.6.2 ∗)

σ ∈ obsθc(u, s)

if :
ϕ ∈ Ftraces(i)

implies (∗ lemma A.10.3 ∗)

Θ(ϕ) ∈ obsθc(u[ϕ], i)
implies (∗ premiss ∗)

Θ(ϕ) ∈ obsθc(u[ϕ], s)
implies (∗ lemma A.10.3 ∗)

ϕ ∈ Ftraces(s) 2
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Lemma A.12
Let i, s ∈ LTS(L), then

Ftraces(i) ⊆ Ftraces(s) iff ∀u ∈ LTS(Lθ) : obsθt (u, i) ⊆ obsθt (u, s) 2
Proof (lemma A.12)

only if : Let u ∈ LTS(Lθ), σ ∈ L∗
θ, then

σ ∈ obsθt (u, i)
implies (∗ definition 3.6.2 ∗)

u⌉| i
σ

=⇒
implies (∗ lemma A.8.1 ∗)

∃ϕ ∈ (L ∪ P(L))∗ : u
ϕ

=⇒≻ and i
ϕ

=⇒ and Θ(ϕ) = σ
implies (∗ definition 3.7, premiss ∗)

∃ϕ ∈ (L ∪ P(L))∗ : u
ϕ

=⇒≻ and s
ϕ

=⇒ and Θ(ϕ) = σ
implies (∗ lemma A.8.2 ∗)

∃ϕ ∈ (L ∪ P(L))∗ : u⌉| s
Θ(ϕ)

====⇒ and Θ(ϕ) = σ
implies (∗ definition 3.6.2 ∗)

σ ∈ obsθt (u, s)

if :
ϕ ∈ Ftraces(i)

implies (∗ lemma A.10.3 ∗)

Θ(ϕ) ∈ obsθt (u[ϕ], i)
implies (∗ premiss ∗)

Θ(ϕ) ∈ obsθt (u[ϕ], s)
implies (∗ lemma A.10.3 ∗)

ϕ ∈ Ftraces(s) 2
Proposition 3.8
i ≤rf s iff Ftraces(i) ⊆ Ftraces(s) 2
Proof (proposition 3.8)

i ≤rf s
iff (∗ definition 3.6.3 ∗)

∀u ∈ LTS(Lθ) : obsθc(u, i) ⊆ obsθc(u, s) and obsθt (u, i) ⊆ obsθt (u, s)
iff (∗ lemmata A.11 and A.12 ∗)

Ftraces(i) ⊆ Ftraces(s) 2
Proposition 3.9

1. ≤tr , ≤te , ≤rf are preorders; conf is reflexive, but not transitive.

2. ≤rf ⊂ ≤te = ≤tr ∩ conf 2
Proof (proposition 3.9)

1. Reflexivity and transitivity of ≤tr , ≤te and ≤rf follow directly from their respective defini-
tions (definitions 3.1, 3.2.4, 3.6.3) using reflexivity and transitivity of ⊆. Reflexivity of conf
follows also directly from its definition (definition 3.4). Intransitivity of conf follows from,
e.g., p1 = a; stop 2 c; stop, p2 = c; stop, and p3 = a; b; stop 2 i; c; stop, then p1 conf p2

and p2 conf p3, but p1 /conf p3.
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2. ≤rf ⊆ ≤te follows from the fact that any failure pair can be expressed as a failure trace:

p after σ refusesA
iff (∗ claim (2) ∗)

∃p′ : p
σ

=⇒ p′ and ∀µ ∈ A ∪ {τ} : p′
µ

−−→/
iff (∗ definition 3.7.1 ∗)

∃p′ : p
σ

=⇒ p′ A−−→ p′

iff (∗ definition 3.7.2 ∗)
σ·A ∈ Ftraces(p)

≤rf 6= ≤te follows from figure 2 in section 3.

≤te = ≤tr ∩ conf can be deduced from propositions 3.3 and 3.5, together with the following
characterization of ≤tr :

i ≤tr s
iff (∗ definition 3.1 ∗)

∀σ 6∈ traces(s) : σ 6∈ traces(i)
iff (∗ definition 3.2.1 ∗)

∀σ 6∈ traces(s) : ∀A ⊆ L : not ( i after σ refusesA )
iff (∗ standard logic;

σ 6∈ traces(s) implies not ( s after σ refusesA ) for any A ⊆ L ∗)
∀σ 6∈ traces(s), ∀A ⊆ L : i after σ refusesA implies s after σ refusesA 2
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A.2 Proofs of Section 4.1 (Implementation relations with inputs and
outputs — Input-output testing relation)

Proposition 4.3
i ≤iot s iff traces(i) ⊆ traces(s) and Qtraces(i) ⊆ Qtraces(s) 2
Proof (proposition 4.3)

only if : Let σ ∈ traces(i), and define uσ ∈ IOTS(LU , LI), such that ∃u′ : uσ
σ−→u′, then

i
σ

=⇒ and uσ
σ−→u′

implies (∗ lemma A.1.2 ∗)

uσ ‖ i
σ

=⇒
implies (∗ definition 3.2.2 ∗)

σ ∈ obst(uσ, i)
implies (∗ premiss, definition 4.1 ∗)

σ ∈ obst(uσ, s)
implies (∗ definition 3.2.2 ∗)

uσ ‖ s
σ

=⇒
implies (∗ lemma A.1.1 ∗)

s
σ

=⇒
implies (∗ definition 2.3 ∗)

σ ∈ traces(s)

Let σ ∈ Qtraces(i), and define uσ as above, with additionally init(u′) = LU , then

σ ∈ Qtraces(i) and ∃u′ : uσ
σ−→u′ and init(u′) = LU

implies (∗ definition 4.2 ∗)

( ∃i′ : i
σ

=⇒ i′ and ∀µ ∈ LU ∪ {τ} : i′
µ

−−→/ ) and

( ∃u′ : uσ
σ

=⇒u′ and ∀µ ∈ LI ∪ {τ} : u′
µ

−−→/ )
implies (∗ lemma A.1.2 and definition ‖ ∗)

∃i′, u′ : uσ ‖ i
σ

=⇒u′ ‖ i′ and ∀µ ∈ L ∪ {τ} : u′ ‖ i′
µ

−−→/
implies (∗ claim (2) and definition 3.2.2 ∗)

uσ ‖ i after σ deadlocks
implies (∗ definition 3.2.3 ∗)

σ ∈ obsc(uσ, i)
implies (∗ premiss, definition 4.1 ∗)

σ ∈ obsc(uσ, s)
implies (∗ definition 3.2.3 ∗)

uσ ‖ s after σ deadlocks
implies (∗ definition 3.2.2 and claim (2) ∗)

∃r : uσ ‖ s
σ

=⇒ r and ∀µ ∈ L ∪ {τ} : r
µ

−−→/
implies (∗ lemma A.1.1 ∗)

∃u′, s′ : uσ
σ

=⇒u′ and s
σ

=⇒ s′ and ∀µ ∈ L ∪ {τ} : u′ ‖ s′
µ

−−→/

implies (∗ definition ‖ , and u ∈ IOTS(LU , LI), so u′
x

=⇒ for all x ∈ LU ∗)

∃s′ : s
σ

=⇒ s′ and ∀x ∈ LU ∪ {τ} : s′
µ

−−→/
implies (∗ definition 4.2 ∗)

σ ∈ Qtraces(s)

if : Let u ∈ IOTS(LU , LI), then

σ ∈ obsc(u, i)
implies (∗ definition 3.2.3 ∗)

u ‖ i after σ deadlocks
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implies (∗ definition 3.2.2 and claim (2) ∗)

∃r : u ‖ i
σ

=⇒ r and ∀µ ∈ L ∪ {τ} : r
µ

−−→/
implies (∗ lemma A.1.1 ∗)

∃u′, i′ : u
σ

=⇒u′ and i
σ

=⇒ i′ and ∀µ ∈ L ∪ {τ} : u′ ‖ i′
µ

−−→/
implies (∗ definition ‖ ;

u′ ∈ IOTS(LU , LI), so ∀x ∈ LU : u′
x

=⇒ ;

i′ ∈ IOTS(LI , LU), so ∀a ∈ LI : i′
a

=⇒ ∗)

∃u′, i′ : u
σ

=⇒u′ and i
σ

=⇒ i′ and init(u′) = LU and init(i′) = LI
implies (∗ definition 4.2.1 ∗)

∃u′ : u
σ

=⇒u′ and init(u′) = LU and ∃i′ : i
σ

=⇒ i′ and δ(i′)
implies (∗ definition 4.2.3 ∗)

∃u′ : u
σ

=⇒u′ and init(u′) = LU and σ ∈ Qtraces(i)
implies (∗ premiss ∗)

∃u′ : u
σ

=⇒u′ and init(u′) = LU and σ ∈ Qtraces(s)
implies (∗ definition 4.2.3 ∗)

∃u′ : u
σ

=⇒u′ and init(u′) = LU and ∃s′ : s
σ

=⇒ s′ and δ(s′)
implies (∗ definition 4.2.1 ∗)

∃u′ : u
σ

=⇒u′ and init(u′) = LU and

∃s′ : s
σ

=⇒ s′ and ∀µ ∈ LU ∪ {τ} : s′
µ

−−→/
implies (∗ lemma A.1.2 and definition ‖ ∗)

∃u′, s′ : u ‖ s
σ

=⇒u′ ‖ s′ and ∀µ ∈ L ∪ {τ} : u′ ‖ s′
µ

−−→/
implies (∗ claim (2) and definition 3.2.2 ∗)

u ‖ s after σ deadlocks
implies (∗ definition 3.2.3 ∗)

σ ∈ obsc(u, s)

Let u ∈ IOTS(LU , LI), then

σ ∈ obst(u, i)
implies (∗ definition 3.2.3 ∗)

u ‖ i
σ

=⇒
implies (∗ lemma A.1.1 ∗)

u
σ

=⇒ and i
σ

=⇒
implies (∗ definition 2.3 ∗)

u
σ

=⇒ and σ ∈ traces(i)
implies (∗ premiss ∗)

u
σ

=⇒ and σ ∈ traces(s)
implies (∗ definition 2.3 ∗)

u
σ

=⇒ and s
σ

=⇒
implies (∗ lemma A.1.2 ∗)

u ‖ s
σ

=⇒
implies (∗ definition 3.2.3 ∗)

σ ∈ obst(u, s) 2
Lemma A.13
Let p ∈ LTS(L), σ ∈ L∗, x ∈ LU , then

1. x ∈ out( p after σ ) iff σ·x ∈ traces(p)

2. δ ∈ out( p after σ ) iff σ ∈ Qtraces(p)

3. out( p after σ ) 6= ∅ iff σ ∈ traces(p) 2
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Proof (lemma A.13)

1. x ∈ out( p after σ )
iff (∗ definition 4.4.2 ∗)

∃p′ ∈ ( p after σ ) : x ∈ out(p′)
iff (∗ definitions 4.4.1 and 2.3 ∗)

∃p′ : p
σ

=⇒ p′ and p′ x−→
iff (∗ definitions 2.2 and 2.3 ∗)

σ·x ∈ traces(p)

2. δ ∈ out( p after σ )
iff (∗ definition 4.4.2 ∗)

∃p′ ∈ ( p after σ ) : δ ∈ out(p′)
iff (∗ definition 4.4.1 ∗)

∃p′ ∈ ( p after σ ) : δ(p′)
iff (∗ definition 4.2 ∗)

σ ∈ Qtraces(p)

3. out( p after σ ) = ∅
iff (∗ definition 4.4.2 ∗)

∀p′ ∈ ( p after σ ) : out(p′) = ∅
iff (∗ definitions 4.4.1 and 4.2 ∗)

∀p′ ∈ ( p after σ ) : ∀x ∈ LU : p′
x

−−→/ and ∃µ ∈ LU ∪ {τ} : p′ µ−→
iff (∗ p is strongly convergent ∗)

p after σ = ∅
iff (∗ definition 2.3 ∗)

σ 6∈ traces(p) 2
Proposition 4.5
i ≤iot s iff ∀σ ∈ L∗ : out( i after σ ) ⊆ out( s after σ ) 2
Proof (proposition 4.5)

only if : Let σ ∈ L∗ and x ∈ LU ∪ {δ}, then

x ∈ out( i after σ )
implies (∗ lemmata A.13.1. and A.13.2 ∗)

( x ∈ LU and σ·x ∈ traces(i) ) or ( x = δ and σ ∈ Qtraces(i) )
implies (∗ premiss, proposition 4.3 ∗)

( x ∈ LU and σ·x ∈ traces(s) ) or ( x = δ and σ ∈ Qtraces(s) )
implies (∗ lemmata A.13.1. and A.13.2 ∗)

( x ∈ LU and x ∈ out( s after σ ) ) or ( x = δ and x ∈ out( s after σ ) )
implies (∗ definition 4.4 ∗)

x ∈ out( s after σ )

if : Using proposition 4.3, let σ ∈ traces(i), then

σ ∈ traces(i)
implies (∗ lemma A.13.3 ∗)

out( i after σ ) 6= ∅
implies (∗ premiss ∗)

out( s after σ ) 6= ∅
implies (∗ lemma A.13.3 ∗)

σ ∈ traces(s)
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Let σ ∈ Qtraces(i), then

σ ∈ Qtraces(i)
implies (∗ lemma A.13.2 ∗)

δ ∈ out( i after σ )
implies (∗ premiss ∗)

δ ∈ out( s after σ )
implies (∗ lemma A.13.2 ∗)

σ ∈ Qtraces(s) 2
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A.3 Proofs of Section 4.2 (Implementation relations with inputs and
outputs — Input-output refusal relation)

The proof of proposition 4.11 is analogous to the proof of proposition 3.8. We start with properties

of the transformation Θ (definition A.6) and of the transition relations
ϕ

=⇒ and
ϕ

=⇒≻ when applied
to input-output transition systems. Then the analogue of lemma A.8 for input-output transition
systems is given in lemma A.16. Definition A.17 defines a special observer which can observe
a particular suspension trace. Suspension traces and observations are related in lemma A.18.
Proposition 4.11 is then a straightforward consequence.

Lemma A.14
Let i ∈ IOTS(LI , LU), u ∈ IOTS(LU , LI ∪ {θ}), and ϕ ∈ (L ∪ P(L))∗.

1. If i
ϕ

=⇒ then ϕ ∈ (L ∪ P(LU))∗

2. If u
ϕ

=⇒≻ then ϕ ∈ (L ∪ {A | LU ⊆ A ⊆ L})∗ 2
Proof (lemma A.14)
Both proofs are by induction on the structure of ϕ, where the cases ϕ = ǫ and ϕ = a·ϕ′ (a ∈ L)
are trivial. The remaining cases are those with ϕ = A·ϕ′ (A ⊆ L).

1. Let i
A·ϕ′

===⇒ then ∃i1, i2 : i
ǫ

=⇒ i1
A−−→ i2

ϕ′

==⇒ . From definition 3.7: ∀µ ∈ A ∪ {τ} : i1
µ

−−→/ ,

and since i ∈ IOTS(LI , LU): ∀a ∈ LI : i1
a

=⇒ , so A ⊆ LU . Together with induction,
ϕ′ ∈ (L ∪ P(LU))∗, we have A·ϕ′ ∈ (L ∪ P(LU))∗ .

2. Let u
A·ϕ′

===⇒≻ then ∃u1, u2 : u
ǫ

=⇒u1
A−−→≻ u2

ϕ′

==⇒ . From definition A.5: init(u1) = A∪{θ},

and since u ∈ IOTS(LU , LI ∪ {θ}): ∀x ∈ LU : u1
x

=⇒ , so LU ⊆ A. Together with induction,
ϕ′ ∈ (L ∪ {A | LU ⊆ A ⊆ L})∗, we have A·ϕ′ ∈ (L ∪ {A | LU ⊆ A ⊆ L})∗ . 2

Lemma A.15
The transformation Θ, when restricted to the domain (L ∪ {LU})

∗, is a bijection. 2
Proof (lemma A.15)
Define Θ−1 : L∗

θ → (L ∪ {LU})∗ by Θ−1(ǫ) =def ǫ
Θ−1(a·σ) =def a·Θ−1(σ)
Θ−1(θ·σ) =def LU ·Θ(σ)

then for each σ ∈ Lθ, Θ−1(σ) is defined, and from definition A.6 it is clear that Θ−1(Θ(ϕ)) = ϕ
for each ϕ ∈ (L ∪ {LU})∗. 2
Lemma A.16
Let u ∈ IOTS(LU , LI ∪ {θ}), i ∈ IOTS(LI , LU), r ∈ LTS(Lθ), and σ ∈ L∗

θ, then

u⌉| i
σ

=⇒ r implies ∃u′, i′ : u
Θ−1(σ)

=====⇒≻ u′ and i
Θ−1(σ)

=====⇒ i′ and r = u′⌉| i′ 2
Proof (lemma A.16)
From lemma A.8.1:

u⌉| i
σ

=⇒ r implies ∃u′, i′, ∃ϕ ∈ (L ∪ P(L))∗ :

u
ϕ

=⇒≻ u′ and i
ϕ

=⇒ i′ and r = u′⌉| i′ and Θ(ϕ) = σ

Using lemmata A.14.1, and A.14.2: ϕ ∈ (L ∪ {LU})∗. Then, using lemma A.15: ϕ = Θ−1(σ) 2
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Definition A.17
Let ϕ ∈ (L ∪ {LU})∗ be a suspension trace, then u[ϕ] is defined as follows, where a ∈ LI , x ∈ LU ,
and the process CU is defined by CU := Σ{x;CU | x ∈ LU}:

u[ǫ] =def CU
u[a·ϕ] =def CU 2 a ; u[ϕ]

u[x·ϕ] =def Σ{x;CU | x ∈ LU\{x}} 2 x ; u[ϕ]

u[LU ·ϕ] =def CU 2 θ;u[ϕ] 2
Lemma A.18
Let i ∈ IOTS(LI , LU), ϕ ∈ (L ∪ {LU})∗, and ψ ∈ (L ∪ P(L))∗.

1. u[ϕ] ∈ IOTS(LU , LI ∪ {θ})

2. u[ϕ]
ϕ

=⇒≻

3. u[ϕ]
ψ

=⇒≻ and Θ(ϕ) = Θ(ψ) implies ϕ = ψ

4. ϕ ∈ Straces(i) iff Θ(ϕ) ∈ obsθt (u[ϕ], i) 2
Proof (lemma A.18)

1. First, observe that CU
x−→CU for all x ∈ LU , so CU ∈ IOTS(LU , LI ∪ {θ}). Then, by

induction on the structure of ϕ, with a ∈ LI and x ∈ LU :

ϕ = ǫ: u[ǫ] = CU ∈ IOTS(LU , LI ∪ {θ})

ϕ = a·ϕ′: u[a·ϕ′] = CU 2 a ; u[ϕ′] ∈ IOTS(LU , LI ∪ {θ}) if u[ϕ′] ∈ IOTS(LU , LI ∪ {θ})

ϕ = x·ϕ′: u[x·ϕ′] = Σ{x;CU | x ∈ LU\{x}} 2 x ; u[ϕ′] ∈ IOTS(LU , LI ∪ {θ})
if u[ϕ′] ∈ IOTS(LU , LI ∪ {θ})

ϕ = LU ·ϕ′: u[LU ·ϕ′] = CU 2 θ;u[ϕ′] ∈ IOTS(LU , LI ∪ {θ}) if u[ϕ′] ∈ IOTS(LU , LI ∪ {θ})

2. By induction on the structure of ϕ, with a ∈ LI and x ∈ LU :

ϕ = ǫ: u[ǫ] = CU
ǫ

=⇒≻

ϕ = a·ϕ′: u[a·ϕ′] = CU 2 a ; u[ϕ′]
a−→u[ϕ′] and u[ϕ′]

ϕ′

==⇒≻ by induction, so u[a·ϕ′]
a·ϕ′

===⇒≻

ϕ = x·ϕ′: u[x·ϕ′] = Σ{x;CU | x ∈ LU\{x}} 2 x ; u[ϕ′]
x−→u[ϕ′] and u[ϕ′]

ϕ′

==⇒≻ by

induction, so u[x·ϕ′]
x·ϕ′

===⇒≻

ϕ = LU ·ϕ′: u[LU ·ϕ′] = CU 2 θ;u[ϕ′]
LU−−−→≻ u[ϕ′] and u[ϕ′]

ϕ′

==⇒≻ by induction,

so u[LU ·ϕ′]
LU ·ϕ′

====⇒≻

3. By induction on the structure of ψ, with a ∈ L, A ⊆ L:

ψ = ǫ: Θ(ψ) = Θ(ǫ) = ǫ, so Θ(ϕ) = ǫ, hence ϕ = ǫ.

ψ = a·ψ′:

u[ϕ]
a·ψ′

===⇒≻ and Θ(ϕ) = Θ(a·ψ′)
implies (∗ definition A.17 ∗)

∃ϕ′ : ϕ = a·ϕ′ and u[ϕ] = u[a·ϕ′]
a·ψ′

===⇒≻ and Θ(a·ϕ′) = Θ(a·ψ′)
implies (∗ definitions A.17, A.6 ∗)

∃ϕ′ : ϕ = a·ϕ′ and u[ϕ′]
ψ′

==⇒≻ and Θ(ϕ′) = Θ(ψ′)
implies (∗ induction ∗)

∃ϕ′ : ϕ = a·ϕ′ and ϕ′ = ψ′

implies ϕ = a·ψ′ = ψ
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ψ = A·ψ′:

u[ϕ]
A·ψ′

===⇒≻ and Θ(ϕ) = Θ(A·ψ′)
implies (∗ definitions A.17 and A.5 ∗)

A = LU and ∃ϕ′ : ϕ = LU ·ϕ′ and

u[ϕ] = u[LU ·ϕ′]
LU ·ψ′

====⇒≻ and Θ(LU ·ϕ
′) = Θ(A·ψ′)

implies (∗ definitions A.17 and A.6 ∗)

∃ϕ′ : ϕ = LU ·ϕ′ and u[ϕ′]
ψ′

==⇒≻ and Θ(ϕ′) = Θ(ψ′) and A = LU
implies (∗ induction ∗)

∃ϕ′ : ϕ = LU ·ϕ′ and ϕ′ = ψ′ and A = LU
implies ϕ = A·ψ′ = ψ

4. ϕ ∈ Straces(i)
iff (∗ definition 4.10 and lemma A.18.2 ∗)

i
ϕ

=⇒ and ϕ ∈ (L ∪ {LU})∗ and u[ϕ]
ϕ

=⇒≻
iff (∗ lemmata A.16 and A.8.2 ∗)

u[ϕ]⌉| i
Θ(ϕ)

====⇒
iff (∗ definition 3.6.2 ∗)

Θ(ϕ) ∈ obsθt (u[ϕ], i) 2
Lemma A.19
Let i ∈ IOTS(LI , LU), s ∈ LTS(LI ∪ LU), then

Straces(i) ⊆ Straces(s) implies ∀u ∈ IOTS(LU , LI ∪ {θ}) : obsθc(u, i) ⊆ obsθc(u, s) 2
Proof (lemma A.19)
Let u ∈ IOTS(LU , LI ∪ {θ}), σ ∈ L∗

θ, then

σ ∈ obsθc(u, i)
implies (∗ definitions 3.6.2, 3.2.3 and claim (2) ∗)

∃r : u⌉| i
σ

=⇒ r and ∀µ ∈ Lθ ∪ {τ} : r
µ

−−→/
implies (∗ lemma A.16 ∗)

∃u′, i′ : u
Θ−1(σ)

=====⇒≻ u′ and i
Θ−1(σ)

=====⇒ i′ and ∀µ ∈ Lθ ∪ {τ} : u′⌉| i′
µ

−−→/
implies (∗ definitions 2.4 and 3.6.1 ∗)

∃u′, i′ : u
Θ−1(σ)

=====⇒≻ u′ and i
Θ−1(σ)

=====⇒ i′ and init(u′) = LU and init(i′) = LI
implies (∗ definition 3.7 ∗)

∃u′ : u
Θ−1(σ)

=====⇒≻ u′ and init(u′) = LU and i
Θ−1(σ)·LU

========⇒
implies (∗ definition 4.10, lemma A.15, premiss ∗)

∃u′ : u
Θ−1(σ)

=====⇒≻ u′ and init(u′) = LU and s
Θ−1(σ)·LU

========⇒
implies (∗ definition 3.7 ∗)

∃u′, s′ : u
Θ−1(σ)

=====⇒≻ u′ and init(u′) = LU and

s
Θ−1(σ)

=====⇒ s′ and ∀µ ∈ LU ∪ {τ} : s′
µ

−−→/
implies (∗ lemmata A.8.2 and A.15, definition 3.6.1 ∗)

∃u′, s′ : u⌉| s
σ

=⇒u′⌉| s′ and ∀µ ∈ Lθ ∪ {τ} : u′⌉| s′
µ

−−→/
implies (∗ definitions 3.2.2, 3.6.2, and claim (2) ∗)

σ ∈ obsθc(u, s) 2
Lemma A.20
Let i ∈ IOTS(LI , LU), s ∈ LTS(LI ∪ LU), then

Straces(i) ⊆ Straces(s) iff ∀u ∈ IOTS(LU , LI ∪ {θ}) : obsθt (u, i) ⊆ obsθt (u, s) 2
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Proof (lemma A.20)

only if : Let u ∈ IOTS(LU , LI ∪ {θ}), σ ∈ L∗
θ, then

σ ∈ obsθt (u, i)
implies (∗ definition 3.6.2 ∗)

u⌉| i
σ

=⇒
implies (∗ lemma A.16 ∗)

u
Θ−1(σ)

=====⇒≻ and i
Θ−1(σ)

=====⇒
implies (∗ definition 4.10, lemma A.15, premiss ∗)

u
Θ−1(σ)

=====⇒≻ and s
Θ−1(σ)

=====⇒
implies (∗ lemmata A.8.2 and A.15 ∗)

u⌉| s
σ

=⇒
implies (∗ definition 3.6.2 ∗)

σ ∈ obsθt (u, s)

if :
ϕ ∈ Straces(i)

implies (∗ lemma A.18.4 and definition 4.10 ∗)

Θ(ϕ) ∈ obsθt (u[ϕ], i) and ϕ ∈ (L ∪ {LU})
∗

implies (∗ premiss and lemma A.18.1 ∗)

Θ(ϕ) ∈ obsθt (u[ϕ], s) and ϕ ∈ (L ∪ {LU})
∗

implies (∗ definition 3.6.2 ∗)

u[ϕ]⌉| s
Θ(ϕ)

====⇒ and ϕ ∈ (L ∪ {LU})∗

implies (∗ lemma A.8.1 ∗)

∃ψ ∈ (L ∪ P(L))∗ : u[ϕ]
ψ

=⇒≻ and s
ψ

=⇒ and
Θ(ψ) = Θ(ϕ) and ϕ ∈ (L ∪ {LU})∗

implies (∗ lemma A.18.3 ∗)

s
ϕ

=⇒ and ϕ ∈ (L ∪ {LU})∗

implies (∗ definition 4.10 ∗)
ϕ ∈ Straces(s) 2

Proposition 4.11
i ≤ior s iff Straces(i) ⊆ Straces(s) 2
Proof (proposition 4.11)

i ≤ior s
iff (∗ definition 4.9 ∗)

∀u ∈ IOTS(LU , LI ∪ {θ}) : obsθc(u, i) ⊆ obsθc(u, s) and obsθt (u, i) ⊆ obsθt (u, s)
iff (∗ lemma A.20 ∗)

∀u ∈ IOTS(LU , LI ∪ {θ}) : obsθc(u, i) ⊆ obsθc(u, s) and Straces(i) ⊆ Straces(s)
iff (∗ lemma A.19 ∗)

Straces(i) ⊆ Straces(s) 2
Lemma A.21
Let p ∈ LTS(L), σ ∈ L∗

δ , x ∈ LU ∪ {δ}, then

1. x ∈ out( p after σ ) iff σ·x ∈ Straces(p)

2. out( p after σ ) 6= ∅ iff σ ∈ Straces(p) 2
49



Proof (lemma A.21)

1. x ∈ out( p after σ )
iff (∗ definition 4.4.2 ∗)

∃p′ ∈ ( p after σ ) : x ∈ out(p′)
iff (∗ definition 4.4.1 ∗)

∃p′ ∈ ( p after σ ) : ( x ∈ LU and p′ x−→ ) or ( x = δ and δ(p′) )
iff (∗ definitions 2.3 and 4.2.1 ∗)

( x ∈ LU and ∃p′ : p
σ

=⇒ p′ x−→ ) or

( x = δ and ∃p′ : p
σ

=⇒ p′ and ∀µ ∈ LU ∪ {τ} : p′
µ

−−→/ )
iff (∗ definitions 2.2 and 3.7 ∗)

( x ∈ LU and p
σ·x

===⇒ ) or ( x = δ and p
σ·LU====⇒ )

iff (∗ definition 4.10 ∗)
σ·x ∈ Straces(p)

2. only if :
out( p after σ ) 6= ∅

implies ∃x ∈ LU ∪ {δ} : x ∈ out( p after σ )
implies (∗ lemma A.21.1 ∗)

∃x ∈ LU ∪ {δ} : σ·x ∈ Straces(p)
implies (∗ definitions 2.2 and 2.3 ∗)

σ ∈ Straces(p)

if :
σ ∈ Straces(p)

implies (∗ definition 2.3 and standard logic ∗)

∃p′ : p
σ

=⇒ p′ and ( ∀x ∈ LU : p′
x

=6⇒ or ∃x ∈ LU : p′
x

=⇒ )
implies (∗ definition 3.2.1 and claim (2), definition 2.2 ∗)

( ∃p′ : p
σ

=⇒ p′ and ∀µ ∈ LU ∪ {τ} : p′
µ

−−→/ ) or

( ∃p′ : p
σ

=⇒ p′ and ∃x ∈ LU ,∃p′′ : p′
ǫ

=⇒ p′′ x−→ )
implies (∗ definitions 2.3, 4.2.1 and 2.2 ∗)

( ∃p′ ∈ ( p after σ ) : δ(p′) ) or
( ∃p′′ ∈ ( p after σ ) : ∃x ∈ LU : p′′ x−→ )

implies (∗ definition 4.4.1 ∗)
( ∃p′ ∈ ( p after σ ) : δ ∈ out(p′) ) or
( ∃p′′ ∈ ( p after σ ) : ∃x ∈ LU : x ∈ out(p′′))

implies (∗ definition 4.4.2 ∗)
out( p after σ ) 6= ∅ 2

Proposition 4.12
i ≤ior s iff ∀σ ∈ L∗

δ : out( i after σ ) ⊆ out( s after σ ) 2
Proof (proposition 4.12)

only if : Let σ ∈ L∗
δ , then

x ∈ out( i after σ )
implies (∗ lemma A.21.1 ∗)

σ·x ∈ Straces(i)
implies (∗ premiss, proposition 4.11 ∗)

σ·x ∈ Straces(s)
implies (∗ lemma A.21.1 ∗)

x ∈ out( s after σ )
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if : Using proposition 4.11, then

σ ∈ Straces(i)
implies (∗ lemma A.21.2 ∗)

out( i after σ ) 6= ∅
implies (∗ premiss ∗)

out( s after σ ) 6= ∅
implies (∗ lemma A.21.2 ∗)

σ ∈ Straces(s) 2
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A.4 Proofs of Section 4.3 (Implementation relations with inputs and
outputs — Relating relations with inputs and outputs)

Claim table 1
The claim expressed in table 1 is:

1. i ≤te s =def ∀u ∈ LTS(L) : obsc(u, i) ⊆ obsc(u, s) and obs t(u, i) ⊆ obs t(u, s)
iff ∀u ∈ LTS(L) : obsc(u, i) ⊆ obsc(u, s)

2. i ≤rf s =def ∀u ∈ LTS(Lθ) : obsθc(u, i) ⊆ obsθc(u, s) and obsθt (u, i) ⊆ obsθt (u, s)

iff ∀u ∈ LTS(Lθ) : obsθc(u, i) ⊆ obsθc(u, s)

iff ∀u ∈ LTS(Lθ) : obsθt (u, i) ⊆ obsθt (u, s)

3. i ≤ior s =def ∀u ∈ IOTS(LU , LI∪{θ}) : obsθc(u, i)⊆obsθc(u, s) and obsθt (u, i)⊆obsθt (u, s)

iff ∀u ∈ IOTS(LU , LI∪{θ}) : obsθt (u, i)⊆obsθt (u, s) 2
Proof (table 1)

1. Definition 3.2.4 and lemma A.3.

2. Definition 3.6.3, proposition 3.8 and lemmata A.11 and A.12.

3. Definition 4.9, proposition 4.11 and lemma A.20. 2
Claim (4)

1. ≤iot = iocoL∗

2. ≤ior = iocoL∗

δ

3. ioconf = iocotraces(s)

4. ioco = iocoStraces(s) 2
Proof (claim (4))

1. Proposition 4.5.

2. Proposition 4.12.

3. Definition 4.7.

4. Definition 4.13. 2
Proposition 4.15

≤ior ⊂

{

≤iot

ioco

}

⊂ ioconf 2
Proof (proposition 4.15)
The inclusions follow directly from (3) and (4) using

L∗
δ ⊇

{

L∗

Straces(s)

}

⊇ traces(s)

The inequalities follow from examples 4.8 and 4.14. 2
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A.5 Proofs of Section 4.4 (Implementation relations with inputs and
outputs — Suspension automata)

Lemma A.22
Let p ∈ LTS(L), σ ∈ L∗

δ and a ∈ L, then

1. p after σ·a = { p′′ | ∃p′ ∈ ( p after σ ) : p′
a

=⇒ p′′ }

2. p after σ·δ = { p′ | p′ ∈ ( p after σ ) and δ(p′) }

3. Γp
σ

=⇒Γ′ iff Γp
σ−→Γ′

4. Γp
σ

=⇒Γ′ iff Γ′ = p after σ 2
Proof (lemma A.22)

1. p after σ·a
= (∗ definition 2.3 ∗)

{p′′ | p
σ·a

===⇒ p′′}
= (∗ definition 2.2 ∗)

{p′′ | ∃p′ : p
σ

=⇒ p′
a

=⇒ p′′}
= (∗ definition 2.3 ∗)

{p′′ | ∃p′ ∈ ( p after σ ) : p′
a

=⇒ p′′}

2. p after σ·δ
= (∗ definition 2.3 ∗)

{p′ | p
σ·δ

===⇒ p′}
= (∗ definition 2.2 and 4.10 ∗)

{p′ | ∃p1, p2 : p
σ

=⇒ p1
LU−−−→ p2

ǫ
=⇒ p′}

= (∗ definition 3.7: p1 = p2 = p′ ∗)

{p′ | p
σ

=⇒ p′ and ∀µ ∈ LU ∪ {τ} : p′
µ

−−→/
= (∗ definitions 2.3 and 4.2 ∗)

{p′ | p′ ∈ ( p after σ ) and δ(p′)}

3. Directly from definition 4.16: Γp does not contain any τ -transition.

4. By induction on the length of σ, with σ′ ∈ L∗
δ , a ∈ L:

σ = ǫ:
Γp

ǫ
=⇒Γ′

iff (∗ lemma A.22.3 ∗)
Γp = Γ′

iff (∗ definition 4.16 ∗)

Γ′ = {s′ | p
ǫ

=⇒ s′}
iff (∗ definition 2.3 ∗)

Γ′ = p after ǫ

σ = σ′·a:

Γp
σ′·a

===⇒Γ′

iff (∗ lemma A.22.3 ∗)

Γp
σ′·a−−−→Γ′

iff (∗ definition 2.2 ∗)

∃Γ1 : Γp
σ′

−−→Γ1
a−→Γ′

iff (∗ lemma A.22.3 ∗)

∃Γ1 : Γp
σ′

==⇒Γ1 and Γ1
a−→Γ′
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iff (∗ induction and definition 4.16 ∗)

∃Γ1 : Γ1 = p after σ′ and Γ′ = {s′ | ∃s ∈ Γ1 : s
a

=⇒ s′}
iff (∗ lemma A.22.1 ∗)

Γ′ = p after σ′·a

σ = σ′·δ:

Γp
σ′·δ

===⇒Γ′

iff (∗ lemma A.22.3 ∗)

Γp
σ′·δ−−−→Γ′

iff (∗ definition 2.2 ∗)

∃Γ1 : Γp
σ′

−−→Γ1
δ−→Γ′

iff (∗ lemma A.22.3 ∗)

∃Γ1 : Γp
σ′

==⇒Γ1 and Γ1
δ−→Γ′

iff (∗ induction and definition 4.16 ∗)
∃Γ1 : Γ1 = p after σ′ and Γ′ = {s | s ∈ Γ1 and δ(s)}

iff (∗ lemma A.22.2 ∗)
Γ′ = p after σ′·δ 2

Proposition 4.17
Let p ∈ LTS(L) with inputs in LI and outputs in LU , let σ ∈ L∗

δ , and consider δ as an output
action of Γp; i.e., Γp has inputs in LI and outputs in LU ∪ {δ}; then

1. Γp is deterministic.

2. traces(Γp) = Straces(p)

3. out( Γp after σ ) = out( p after σ )

4. σ ∈ traces(Γp) iff out( Γp after σ ) 6= ∅ 2
Proof (proposition 4.17)

1. If σ 6∈ traces(Γp), then |Γp after σ | = 0. If σ ∈ traces(Γp), then

|Γp after σ |
= (∗ definition 2.3 ∗)

|{Γ′ | Γp
σ

=⇒Γ′}|
= (∗ lemma A.22.4 ∗)

|{ p after σ }|
= 1

2. Let σ ∈ L∗
δ, then

σ ∈ traces(Γp)
iff (∗ definition 2.3 ∗)

∃Γ′ : Γp
σ

=⇒Γ′

iff (∗ lemma A.22.4 and definition 4.16 ∗)
∃Γ′ : Γ′ = ( p after σ ) and Γ′ 6= ∅

iff (∗ standard set theory ∗)
∃p′ ∈ ( p after σ )

iff (∗ definition 2.3 ∗)

∃p′ : p
σ

=⇒ p′

iff (∗ definition 2.3 ∗)
σ ∈ Straces(p)
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3. out( Γp after σ )
= (∗ definition 4.4.2 ∗)

⋃

{out(Γ′) | Γ′ ∈ ( Γp after σ )}
= (∗ lemma A.22.4 ∗)

⋃

{out(Γ′) | Γ′ = ( p after σ )}
= out( p after σ )

4. Let σ ∈ L∗
δ, then

σ ∈ traces(Γp)
iff (∗ proposition 4.17.2 ∗)

σ ∈ Straces(p)
iff (∗ lemma A.21.2 ∗)

out( p after σ ) 6= ∅
iff (∗ lemma 4.17.3 ∗)

out( Γp after σ ) 6= ∅ 2
Corollary 4.18
i ≤ior s iff Γi ≤tr Γs 2
Proof (corollary 4.18)

i ≤ior s
iff (∗ proposition 4.11 ∗)

Straces(i) ⊆ Straces(s)
iff (∗ proposition 4.17.2 ∗)

traces(Γi) ⊆ traces(Γs)
iff (∗ definition 3.1 ∗)

Γi ≤tr Γs 2
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A.6 Proofs of Section 6 (Test generation for input-output transition
systems)

Note A.23
If σ ∈ L∗

δ then σ corresponds formally with Θ(σ); if σ ∈ L∗
θ then σ corresponds with Θ−1(σ). 2

Lemma A.24
Let t ∈ TEST (LU , LI), ϕ ∈ (L∪P(L))∗, then t

ϕ
=⇒≻ t′ implies t Θ(ϕ)−−−−→ t′ and ϕ ∈ (L∪{LU})∗2

Proof (lemma A.24)
By induction on the length of ϕ, with a ∈ L and A ⊆ L:

ϕ = ǫ:
If ϕ = ǫ then Θ(ϕ) = ǫ and t = t′ (t is deterministic; definition 5.1.1); hence trivially t ǫ−→ t′

and ǫ ∈ (L ∪ {LU})
∗.

ϕ = a·ϕ′:

t
a·ϕ′

===⇒≻ t′

implies (∗ definitions 5.1.1 (determinism) and 2.2 ∗)

∃t1 : t a−→≻ t1 and t1
ϕ′

==⇒≻ t′

implies (∗ definition A.5 and induction ∗)

∃t1 : t a−→ t1 and t1
Θ(ϕ′)−−−−→ t′ and ϕ′ ∈ (L ∪ {LU})∗

implies (∗ definition A.6 ∗)

t Θ(a·ϕ′)−−−−−→ t′ and a·ϕ′ ∈ (L ∪ {LU})∗

ϕ = A·ϕ′:

t
A·ϕ′

===⇒≻ t′

implies (∗ definitions 5.1.1 (determinism) and 2.2 ∗)

∃t1 : t A−−→≻ t1 and t1
ϕ′

==⇒≻ t′

implies (∗ definition A.5 and induction ∗)

∃t1 : init(t) = A ∪ {θ} and t θ−→ t1 and t1
Θ(ϕ′)−−−−→ t′ and ϕ′ ∈ (L ∪ {LU})∗

implies (∗ definition 5.1.1 ∗)

A = LU and t
θ·Θ(ϕ′)−−−−−→ t′ and ϕ′ ∈ (L ∪ {LU})∗

implies (∗ definition A.6 ∗)

t Θ(A·ϕ′)−−−−−−→ t′ and A·ϕ′ ∈ (L ∪ {LU})∗ 2
Claim (5)
A test case t ∈ TEST (LU , LI) is sound for a specification s with respect to iocoF if

∀σ ∈ L∗
θ : t σ−→ fail implies

∃σ′ ∈ F , x ∈ LU ∪ {δ} : σ = Θ(σ′·x) and x 6∈ out( Γs after σ′ ) 2
Proof (claim (5))
By contradiction: suppose that t is not sound and that the condition holds, then

t is not sound for s with respect to iocoF

implies (∗ definition 6.1 ∗)
∃i : i iocoF s and i fails t

implies (∗ definition 5.2 ∗)

∃i : i iocoF s and ∃σ ∈ L∗
θ, ∃i

′ : t⌉| i
σ

=⇒ fail⌉| i′
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implies (∗ lemma A.8.1 ∗)
∃i : i iocoF s and ∃σ ∈ L∗

θ, ∃i
′, ∃ϕ ∈ (L ∪ P(L))∗ :

t
ϕ

=⇒≻ fail and i
ϕ

=⇒ i′ and Θ(ϕ) = σ
implies (∗ lemmata A.24 and A.15 ∗)

∃i : i iocoF s and ∃σ ∈ L∗
θ : t σ−→ fail and i

Θ−1(σ)
=====⇒

implies (∗ condition ∗)

∃i : i iocoF s and ∃σ′ ∈ F , x ∈ LU ∪ {δ} : x 6∈ out( Γs after σ′ ) and i
σ′·x

===⇒
implies (∗ proposition 4.17.3 and lemma A.21.1 ∗)

∃i : i iocoF s and ∃σ′ ∈ F , x ∈ LU ∪ {δ} :
x 6∈ out( s after σ′ ) and x ∈ out( i after σ′ )

implies (∗ equation (3) ∗)
∃σ′ ∈ F , x ∈ LU ∪ {δ} : x 6∈ out( s after σ′ ) and x ∈ out( s after σ′ )

implies false 2
Lemma A.25
Let Γ be a suspension automaton, let F ⊆ traces(Γ), let σ ∈ F , and let t[σ,F ,Γ] be defined by:

t[ǫ,F ,Γ] =def Σ { x ; fail | x ∈ LU ∪ {θ}, x 6∈ out(Γ) }2 Σ { x ; pass | x ∈ LU ∪ {θ}, x ∈ out(Γ) }

t[b·σ,F ,Γ] (b ∈ LI) =def b ; t[σ,F ′,Γ′]

where F ′ = {σ′ ∈ L∗
δ | b·σ

′ ∈ F} and Γ b−→Γ′

t[y·σ,F ,Γ] (y ∈ LU ∪ {θ}) =def Σ { x ; fail | x ∈ LU ∪ {θ}, x 6∈ out(Γ), ǫ ∈ F }2 Σ { x ; pass | x ∈ LU ∪ {θ}, x 6∈ out(Γ), ǫ 6∈ F }2 Σ { x ; pass | x ∈ LU ∪ {θ}, x ∈ out(Γ), x 6= y }2 y ; t[σ,F ′,Γ′]

where F ′ = {σ′ ∈ L∗
δ | y·σ

′ ∈ F} and Γ y−→Γ′

then

1. t[σ,F ,Γ] can be obtained from F and Γ with algorithm 6.2;

2. x 6∈ out( Γ after σ ) implies t[σ,F ,Γ]
σ·x

===⇒≻ fail 2
Proof (lemma A.25)

1. t[σ,F ,Γ] can be obtained from F and Γ with algorithm 6.2 as follows:

◦ t[ǫ,F ,Γ] is obtained with the third choice in algorithm 6.2, followed by the first choice for
each tx, using that ǫ = σ ∈ F .

◦ t[b·σ,F ,Γ] (b ∈ LI) is obtained with the second choice in algorithm 6.2, choosing a = b,
and followed by recursive application to obtain t′ = t[σ,F ′,Γ′], using:
- σ ∈ F ′ = {σ′ ∈ L∗

δ | b·σ
′ ∈ F} 6= ∅ since b·σ ∈ F ;

- F ′ ⊆ traces(Γ′) if F ⊆ traces(Γ).

◦ t[y·σ,F ,Γ] (y ∈ LU ∪ {θ}) is obtained with the third choice in algorithm 6.2, followed by
the first choice for each tx with x 6= y, and recursive application to obtain ty = t[σ,F ′,Γ′],
using:
- y ∈ out(Γ) since y·σ ∈ F ⊆ traces(Γ);
- σ ∈ F ′ = {σ′ ∈ L∗

δ | y·σ
′ ∈ F} 6= ∅ since y·σ ∈ F ;

- F ′ ⊆ traces(Γ′) if F ⊆ traces(Γ).

2. By induction on σ:
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σ = ǫ:
x 6∈ out( Γ after ǫ )

implies (∗ proposition 4.17.1 ∗)
x 6∈ out(Γ)

implies (∗ definition t[ǫ,F ,Γ] ∗)

t[ǫ,F ,Γ]
x−→ fail and init(t[ǫ,F ,Γ]) = LU ∪ {θ}

implies (∗ definition A.5 ∗)

t[ǫ,F ,Γ]
ǫ·x

==⇒≻ fail

σ = b·σ′, b ∈ LI :
x 6∈ out( Γ after b·σ′ )

implies (∗ proposition 4.17.1, definition 2.3 and b·σ′ ∈ F ⊆ traces(Γ) ∗)

∃Γ′ : Γ b−→Γ′ and x 6∈ out( Γ′ after σ′ )
implies (∗ definition t[b·σ′,F ,Γ] ∗)

∃Γ′ : t[b·σ′,F ,Γ]
b−→ t[σ′,F ′,Γ′] and F ′ = {σ′′ ∈ L∗

δ | b·σ
′′ ∈ F}

and x 6∈ out( Γ′ after σ′ )
implies (∗ induction, since

b·σ′ ∈ F ⊆ traces(Γ) implies σ′ ∈ F ′ ⊆ traces(Γ′) ∗)

∃Γ′,F ′ : t[b·σ′,F ,Γ]
b−→ t[σ′,F ′,Γ′] and t[σ′,F ′,Γ′]

σ′·x
===⇒≻ fail

implies (∗ definition A.5 ∗)

t[b·σ′,F ,Γ]
b·σ′·x

====⇒≻ fail

σ = y·σ′, y ∈ LU ∪ {θ}:
x 6∈ out( Γ after y·σ′ )

implies (∗ proposition 4.17.1, definition 2.3 and y·σ ∈ F ⊆ traces(Γ) ∗)

∃Γ′ : Γ y−→Γ′ and x 6∈ out( Γ′ after σ′ )
implies (∗ definition t[y·σ′,F ,Γ] ∗)

∃Γ′ : t[y·σ′,F ,Γ]
y−→ t[σ′,F ′,Γ′] and F ′ = {σ′′ ∈ L∗

δ | y·σ
′′ ∈ F}

and x 6∈ out( Γ′ after σ′ )
implies (∗ induction, since

y·σ′ ∈ F ⊆ traces(Γ) implies σ′ ∈ F ′ ⊆ traces(Γ′) ∗)

∃Γ′,F ′ : t[y·σ′,F ,Γ]
y−→ t[σ′,F ′,Γ′] and t[σ′,F ′,Γ′]

σ′·x
===⇒≻ fail

implies (∗ definitions A.5 and init(t[y·σ′,F ,Γ] = LU ∪ {θ} ∗)

t[y·σ′,F ,Γ]
y·σ′·x

====⇒≻ fail 2
Theorem 6.3
Let s ∈ LTS(LI ∪ LU) and F ⊆ Straces(s); then

1. a test case obtained with algorithm 6.2 from Γs and F is sound for s with respect to iocoF ;

2. the set of all possible test cases that can be obtained with algorithm 6.2 is exhaustive. 2
Proof (theorem 6.3)

1. By induction on the structure of t it is proved that each t generated with algorithm 6.2 from
Γ and F satisfies the condition of claim (5):

◦ Let t = pass, then the condition is trivially fulfilled.

◦ Let t = a; t′ with a ∈ LI , such that F ′ = {σ ∈ L∗
δ | a·σ ∈ F} 6= ∅ and t′ is generated

from F ′ and Γ′, with Γ a−→Γ′. Let σ ∈ L∗
θ, such that t σ−→ fail, then it follows that

σ = a·σ′ (σ′ ∈ L∗
θ) and t a−→ t′ σ′

−−→ fail. According to the induction hypothesis the
condition can be assumed to hold for Γ′, F ′, and t′, hence

∃ρ ∈ F ′, ∃x ∈ LU ∪ {δ} : σ′ = Θ(ρ·x) and x 6∈ out( Γ′ after ρ )
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It follows that a·ρ ∈ F and
x ∈ LU ∪ {δ} and
σ = a·σ′ = Θ(a·ρ·x) and
x 6∈ out( Γ after a·ρ )

which fulfil (5).

◦ Let t = Σ { x ; fail | x ∈ LU ∪ {θ}, x 6∈ out(Γ), ǫ ∈ F}2 Σ { x ; pass | x ∈ LU ∪ {θ}, x 6∈ out(Γ), ǫ 6∈ F}2 Σ { x ; tx | x ∈ LU ∪ {θ}, x ∈ out(Γ) } ;

where tx is obtained recursively from F ′ = {σ ∈ L∗
δ | x·σ ∈ F} and Γ′, with Γ x−→Γ′.

Let σ ∈ L∗
θ, such that t σ−→ fail, then it follows that σ = y·σ′ (σ′ ∈ L∗

θ, y ∈ LU ∪ {θ})

and t y−→ t′ σ′

−−→ fail. Two cases are distinguished corresponding to the first summand
and third summand of t:

- First summand:
Now t y−→ fail and σ′ = ǫ, so y 6∈ out(Γ) and ǫ ∈ F ;
hence it follows that ǫ ∈ F and

y ∈ LU ∪ {δ} and
y = Θ(ǫ·y) and
y 6∈ out( Γ after ǫ )

which fulfil (5).

- Third summand:
According to the induction hypothesis the condition can be assumed to hold for Γ′,
F ′, and ty, hence

∃ρ ∈ F ′, ∃x ∈ LU ∪ {δ} : σ′ = Θ(ρ·x) and x 6∈ out( Γ′ after ρ )

It follows that y·ρ ∈ F and
x ∈ LU ∪ {δ} and
σ = Θ(y·ρ·x) and
x 6∈ out( Γ after y·ρ )

which fulfil (5).

2. For exhaustiveness it must be proved that (definitions 6.1 and 5.2.3):

∀i : i /iocoF s implies ∃t : t is obtained with algorithm 6.2 and i fails t

Let i ∈ IOTS(LI , LU), then

i /iocoF s
implies (∗ equation (3) ∗)

∃σ ∈ F : out( i after σ ) 6⊆ out( s after σ )
implies (∗ standard set theory ∗)

∃σ ∈ F , ∃x ∈ LU ∪ {δ} : x ∈ out( i after σ ) and x 6∈ out( s after σ )
implies (∗ lemma A.21.1, proposition 4.17.3 ∗)

∃σ ∈ F , ∃x ∈ LU ∪ {δ} : i
σ·x

===⇒ and x 6∈ out( Γs after σ )
implies (∗ lemma A.25.2 since σ ∈ F ⊆ Straces(s) = traces(Γs) ∗)

∃σ ∈ F , ∃x ∈ LU ∪ {δ} : i
σ·x

===⇒ and t[σ,F ,Γs]
σ·x

===⇒≻ fail
implies (∗ lemma A.8.2 ∗)

∃σ ∈ F , ∃x ∈ LU ∪ {δ}, ∃i′ : t[σ,F ,Γs]⌉| i
Θ(σ·x)

=====⇒ fail⌉| i′

implies (∗ definition 5.2.2 ∗)
∃σ ∈ F : i fails t[σ,F ,Γs]

implies (∗ lemma A.25.1 ∗)
∃t : t is obtained with algorithm 6.2 and i fails t 2

59



Proposition 6.5
Let F be prefix-closed and let G = F ∩ (Straces(s) ∪ Straces(s)·LI); then iocoF = iocoG 2
Proof (proposition 6.5)

⊆: Directly from G ⊆ F .

⊇: By contraposition:

∃σ ∈ F : out( i after σ ) 6⊆ out( s after σ )
implies ∃σ ∈ G : out( i after σ ) 6⊆ out( s after σ )

∃σ ∈ F : out( i after σ ) 6⊆ out( s after σ )
implies (∗ lemma A.21.1 ∗)

∃σ ∈ F , ∃x ∈ LU ∪ {δ} : i
σ·x

===⇒ and s
σ·x

==6⇒
implies (∗ definition 2.2: there is a maximum prefix σ1 of σ·x which s can perform;

σ1 ∈ F since F is prefix-closed ∗)

∃σ ∈ F , ∃x ∈ LU ∪ {δ} : i
σ·x

===⇒ and

∃σ1, σ2 ∈ L∗
δ , a ∈ L : σ1 ∈ F and σ·x = σ1·a·σ2 and s

σ1==⇒
a

=6⇒
implies (∗ substitution for σ;

distinguish between a ∈ LI and a ∈ LU ∪ {δ};
if a ∈ LI then σ1 6= σ so σ1·a is a prefix of σ, so σ1·a ∈ F ∗)

( ∃σ1 ∈ L∗
δ , a ∈ LI : σ1·a ∈ F and i

σ1·a===⇒ and s
σ1==⇒

a

=6⇒ )

or ( ∃σ1 ∈ L∗
δ , a ∈ LU ∪ {δ} : σ1 ∈ F and i

σ1·a===⇒ and s
σ1==⇒

a

=6⇒ )
implies (∗ definition G ∗)

( ∃σ1 ∈ L∗
δ , a ∈ LI : σ1·a ∈ G and i

σ1·a===⇒ and s
σ1·a

===6⇒ )

or ( ∃σ1 ∈ L∗
δ , a ∈ LU ∪ {δ} : σ1 ∈ G and i

σ1·a===⇒ and s
σ1·a

===6⇒ )
implies (∗ for a ∈ LI : lemma A.21.2; for a ∈ LU ∪ {δ}: lemma A.21.1 ∗)

( ∃σ1 ∈ L∗
δ , a ∈ LI : σ1·a ∈ G and

out( i after σ1·a ) 6= ∅ and out( s after σ1·a ) = ∅ )
or ( ∃σ1 ∈ L∗

δ , a ∈ LU ∪ {δ} : σ1 ∈ G and
a ∈ out( i after σ1 ) and a 6∈ out( s after σ1 ) )

implies (∗ let σ = σ1·a for a ∈ LI ; let σ = σ1 for a ∈ LU ∪ {δ} ∗)
∃σ ∈ G : out( i after σ ) 6⊆ out( s after σ ) 2
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