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TEST IDEALS IN LOCAL RINGS

KAREN E. SMITH

Abstract. It is shown that certain aspects of the theory of tight closure are
well behaved under localization. Let / be the parameter test ideal for R , a
complete local Cohen-Macaulay ring of positive prime characteristic. For any
multiplicative system U c R, it is shown that JU~XR is the parameter test
ideal for U~lR. This is proved by proving more general localization results
for the here-introduced classes of "F-ideals" of R and "F-submodules of the
canonical module" of R , which are annihilators of R modules with an action
of Frobenius. It also follows that the parameter test ideal cannot be contained
in any parameter ideal of R .

Tight closure has produced surprising new results (for instance, that the ab-
solute integral closure of a complete local domain R of prime characteristic is
a Cohen-Macaulay algebra for R ) as well as tremendously simple proofs for
otherwise difficult theorems (such as the fact that the ring of invariants of a
linearly reductive group acting on a regular ring is Cohen-Macaulay). The def-
inition of tight closure is recalled in Section 1, but we refer the reader to the
papers of Höchster and Huneke listed in the bibliography for more about its
applications. While primarily a prime characteristic notion, tight closure of-
fers insight into arbitrary commutative rings containing Q by fairly standard
"reduction to characteristic p " techniques.

Despite its successes, the tight closure operation, which in its principal setting
is a closure operation performed on ideals in a commutative Noetherian ring
of prime characteristic, remains poorly understood. For example, tight closure
is not known to behave well under localization; given an ideal / of a ring R,
letting /* denote the tight closure of /, it is not known whether or not

FRp = (IRp)*

where Rp is the localization of R at some prime ideal P. Even the simpler
question "If all ideals of R are tightly closed, is the same true of Rp ?" remains
unsolved. Each of these questions has been affirmatively answered in some
special cases, but a general proof remains elusive, even when R is a complete
local ring. One of the goals of this paper is to show that at least certain significant
aspects of the tight closure theory are well behaved with respect to localization.
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Test elements, which are annihilators of tight closure relations (see Definition
4.1), are central to the study of tight closure and its applications. For instance,
test elements lie at the heart of C. Huneke's proof of the Uniform Artin-Rees
Theorem [Hu]. Test elements and test ideals were introduced by Höchster and
Huneke in [HH1], and their further study has been pursued for instance in
[HH3] and [HH4]. Ultimately, one would like a theorem which states that if
/ is the test ideal of R, then IRp is the test ideal of the localization Rp of
R. In this case, it would follow that the test ideal defines precisely the (Zariski)
closed set of all prime ideals P in Spec R such that Rp fails to have all ideals
tightly closed.

Restricting attention to the important class of parameter ideals of R, one is
naturally led to develop a theory of parameter test elements (see Definition 4.3).
First introduced in [HH4], parameter test elements were also studied by Velez
in his thesis [V], as well as in this author's thesis, where some of the results of
this paper first appeared.

This paper presents a theory of parameter test elements by placing the pa-
rameter test ideal into the broader context of F-ideals (Definition 3.4). The
F-ideals are an interesting class of ideals of a (prime characteristic) ring which
by definition are annihilators of submodules of local cohomology modules sta-
ble under the action of Frobenius. The parameter test ideal is just one example
from the class of F-ideals, a natural class of ideals arising quite independently
of specific tight closure questions. The germ of the idea of F-ideals appeared in
[SI], where some special cases of the results of the present paper first appeared.
This present paper goes further, introducing the related, but somewhat more
subtle, idea of an F-submodule of the canonical module for R (see Definition
3.3). Through an understanding of the F-submodules of the canonical module
of R, we can eventually prove the main results on localization of the parameter
test ideal in Section 5.

In Sections 4 and 5, we interpret our results on F-ideals in the specific context
of parameter ideals. First in Section 4, we define and develop some basic facts
about parameter test ideals, placing them nicely into a framework with the
(usual) test ideals. In Section 5, we prove the following localization result.

Theorem 5.2. If R is a complete local Cohen-Macaulay reduced ring with pa-
rameter test ideal J, the ideal JU~XR will be the parameter test ideal for the
ring U~XR, where U is any multiplicative system in R.

Given the difficulties understanding the behavior of tight closure under lo-
calization, Theorem 5.2, which says that parameter test ideals behave well, is
an encouraging step. Because the parameter test ideal for a Gorenstein ring
turns out to be the same as the test ideal as defined originally by Höchster and
Huneke in [HH1], (see the remarks preceding Proposition 4.3), we can deduce
some corollaries for test ideals in Gorenstein rings. The result for Gorenstein
rings has already been proven in [SI]; the reader is cautioned, however, that
in general many results about tight closure that are easy to prove for Goren-
stein rings become much harder (and in many cases are still unknown) for an
arbitrary Cohen-Macaulay ring.

From Theorem 5.2 we may deduce several corollaries about the local behavior
of F-rationality. In particular, it follows that the parameter test ideal defines
the locus of non-F-rational points in any complete local ring R (Corollary 5.4),
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so that any element c £ R not in any minimal prime of R has a power which
is a parameter test element for R if and only if Rc is F-rational (Corollary
5.5). For Gorenstein rings, this says that any any element of R such that Rc is
F-rational has a power which is a test element for R. These corollaries can been
proved by different methods (the first results along these lines for Gorenstein
rings appear in [HH3], see [V] for more general results). Theorem 5.2 gives
insight into why such results should be true.

Section 6 indicates a few more properties of the parameter test ideal (and
more generally, any F-ideal) of a Cohen-Macaulay local ring. One notable fact
proven here is that the parameter test ideal can never be contained in any ideal
generated by a system of parameters. Also, because the actual computation of
the test ideal can be difficult, we give a simple example of the computation of
a test ideal for a specific ring.

In order to accomplish the goals laid out here concerning the behavior of the
F-ideals and F-submodules under localization, we are led to the study of a cer-
tain functor "dual to localization" in Section 2 of this paper. This functor is the
composition of the functor Hom/?(-, E(R/m)) followed by Hom/?(-, E(R/P))
where E(R/P) denotes an injective hull of the R module R/P and P c m
are prime ideals of R . This covariant exact functor takes submodules of local
cohomology modules with supports in m to submodules of local cohomology
modules with supports in P. While this form of "colocalization" is interesting
in its own right (see, for instance, [Y] or [MS]), its main use for us here is that
in prime characteristics, this functor is compatible with the Frobenius map.
A study of this compatibility leads to the results on localization of F-ideals,
F-submodules, and ultimately, parameter test ideals.

All rings in this paper are commutative, Noetherian rings with unit and are
assumed to have prime characteristic p .

The author thanks Mel Höchster for many stimulating discussions and Jürgen
Herzog whose careful reading and insightful questions exposed mis-statements
in an earlier version of parts of this paper.

1.   Preliminaries

Tight Closure. We first review the definition of tight closure; the reader is
referred to [HH1 ] for more information.

Let R be a commutative Noetherian ring of prime characteristic p . Tight
closure is a closure operation performed on ideals of R, or more generally,
on submodules of R modules. For an ideal / of R, the tight closure of /,
denoted /*, is the ideal of all elements z for which there exists some c not in
any minimal prime of R and some n £N such that czq c /[iI for all q = pe
with e > n , where fiqX denotes the ideal of R generated by the q'h powers of
the elements of /.

The definition of the tight closure of a module A in an overmodule M,
while completely analogous, is somewhat more technical. For any eeFf,we
denote by eR the ring R viewed as an R module via the e'h iterate of the
Frobenius map R —► eR sending r i—> rp'. The eth Peskine-Szpiro functor
Fe(*) is a covariant functor from the category of R modules to the category
of eR modules defined by

Fe(M) = eR®RM.
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We have a canonical map M —► Fe(M) sending m \—» 1 <8> m. For conve-
nience, we denote the image of m under this map by mPe or mq , where q is
understood to be a power of p. When M — R, this notation agrees with the
natural notation arising from the Frobenius endomorphism. For R modules
A c M, we write N$ for the the R submodule of Fe(M)

Kernel(Fe(M) —► Fe(M/N)) = lm(Fe(N) -^ Fe(M)).

Equivalently, N$ is the R span in Fe(M) of xg where x £ N. When M is
clear from the context, we often drop the subscript M from the notation AJ^1.
We now recall the definition of tight closure from [HH1].

1.1. Definition. Let N c M be modules over a Noetherian ring R of prime
characteristic p ^ 0. The element z c M is in the tight closure of N in M,
denoted Nl¡, if there exists c not in any minimal prime of R and a nonnegative
integer q0 = pe° such that

cz" £ AJ#] for all q=pe>q0.

The set of all such z clearly forms a submodule N^ containing N. When M
is clear from the context, we write simply A.* If N* = N, we say that N is
tightly closed in M.
1.2. Remark. Virtually all of the theory of tight closure reduces to the case
where R is a reduced ring. In particular, if J denotes the nilradical of R, then
z € Nlf if and only if z e N^ where z is the image of z in M = M/JM
and Ñ = (A + JM)/JM. This tight closure is the same whether computed as
an R module or as an R/J module.

When R is reduced, we may assume that qo = 1 (see Proposition 4.1 [HH1 ]
for an easy argument). Of course, if R is a domain, the condition that c not
be in any minimal prime of R is simply the condition that c be non-zero.

Some problems arise when we attempt to develop the theory of tight closure
of a submodule A in a non-finitely generated module M. Some of these
problems can be remedied by considering the finitistic tight closure:

NMfg = {J(NnM'rMI
M'

as M' ranges over all finitely generated submodules of M. Clearly N*J8 c
N*M, although in general this containment may be strict.

Rings in which all ideals are tightly closed are called weakly F-regular. Be-
cause of the unfortunate gap in understanding regarding the closure of this class
of rings under localization, we reserve the term F-regular for rings in which all
ideals are tightly closed and all of whose local rings also have this property.
However, many of the interesting applications of the theory of tight closure
can be carried over to rings in which only certain ideals are assumed to be
tightly closed. In general, the parameter ideals ( / is a parameter ideal if it is
generated by height / elements) stand out as a particularly important class of
ideals with respect to tight closure. The rings in which all parameter ideals are
tightly closed, dubbed the F-rational rings in [FW], have distinguished them-
selves as a particularly interesting class. For instance, they are always normal
and Cohen-Macaulay ([HH1]) and even have rational singularities ([S2]).
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Local Cohomology and Matlis Duality. We now recall some standard facts
while setting up the notation to be used throughout this paper. A good source
for more details on these facts is [BH].

We will be concerned with the "highest" local cohomology of a local ring with
support in the maximal ideal, denoted Hm(R), where d is the dimension of
(R, m). Local cohomology modules may be described as direct limits of Koszul
cohomology. In particular, we recall that for any fixed system of parameters
xx, ... ,xd for the d dimensional local ring (R,m),

HÍ(R) ^  lim   .  ,    R-T- ,m V   (x{,...,x'd)

where successive maps in this limit system are given by multiplication by x —

R R
nLxi

(x[,...,x'd)R (x[+x,...,xd+x)R

r + (x[,...,x'd)R i—♦ xr + (x[+x, ... ,x'd+x)R.

It will be convenient to denote an element n £ H„\(R) by the equivalence class
[z + (x\, ... , x'd)R], where z is an element of R. Note that n is equally well
represented by [xz + (x[+x, ... , x'd+x)R].

Although the limit system   lim    r-r-^—p-  defining Hm(R)  is not injective
-y t   \x\ < — <x,j)

in general, the reader may easily verify that it is injective when R is Cohen-
Macaulay.

Let P be any prime ideal of the Noetherian ring R , and Er(j) an injective
hull of the R module R/P in the category of R modules. The functor

HomÄ(*, ER(-)) ,

denoted also by *Vp , is an exact contravariant functor. For any R module M,
MVp has a unique Rp module structure, so that we may view *Vp as a functor
from R modules to Rp modules.

When (R, m) is local with maximal ideal m, we often consider the case
where P = m. In this situation, we write *v for * m and use E to denote
Er(^¡) . Recall that *v provides an antiequivalence of the category of Artinian
(R, m) modules with the category of Noetherian R modules and vice versa.
When M is an Artinian (R, m) module, the obvious map M —► (A/V)v is
an isomorphism; likewise, if M is a Noetherian R module, then the map
M —y (Afv)v is isomorphic to the map M —► M. In particular, Ev can be
identified with R.

We recall that a canonical module of a local ring (R, m) is defined as any
finitely generated R module cür whose Matlis dual HomR(coR,E) is iso-
morphic to Hm(R). The canonical module for a local ring, when it exists,
is uniquely determined up to (non-unique) isomorphism. When (R, m) is a
complete local ring, we may clearly let

cor = Hdm(R)   = HomR(Hm(R), E).

It is easy to check that if cor is a canonical module for R, then cor® R is
a canonical module for R. The reader is warned, however, that there do exist
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rings which do not possess a canonical module. In fact, a Cohen-Macaulay local
ring (R, m) possesses a canonical module if and only if R is a homomorphic
image of a Gorenstein ring.

The theory of canonical modules is nicest when one restricts attention to the
case of a Cohen-Macaulay local ring (R, m). Fix a canonical module cúr for
such R. Then coR is a Cohen-Macaulay R module and for any prime ideal P
of R, the Rp module cur ®r Rp is a canonical module for RP . The map

R —► HomÄ(wÄ , coR)

given by multiplication by elements of R is an isomorphism. Moreover, coR is
isomorphic to a pure height 1 ideal of R, which is principal if and only if R is
Gorenstein. In particular, for a Gorenstein local ring R , R itself is a canonical
module.

Fix a canonical module co for the Cohen-Macaulay local ring (R, m) of
dimension d. Grothendieck's local duality ensures that

Hm(coR)^HomR(coR,coR)V ^Rv 3 E.

This gives us a specific injective hull of the residue field with which to work; we
will henceforth make the identification

E^Hdm(coR)^Hm(R)®coR

s Hm ,  .    R- ® (Or = lim
(x[, ... ,xd) -¡+ (x[, ... ,x'd)œR '

where xx, ... , xd are a fixed system of parameters for R and the maps in the
direct limit system are given by multiplication by x - JJd=i x¡. Using the fact
that cor is Cohen-Macaulay, one may check that the maps in this limit system
are all injective. We denote an element p £ E by [w + (x{, ... , xd)coR],
where w c cor . Note that under the equivalence relation induced by the direct
limit system, p may be represented equally well by [xw + (x[+x, ... , x'd+x)cjjR].

Actually, the theory of canonical modules can be developed for rings that
are not assumed to be Cohen-Macaulay and many of the above statements hold
with mild hypothesis [HK]. See also [Ao] or [HH5]. We chose not to pursue
this level of generality here.

2.   Some duality lemmas

This section contains some duality lemmas that will be crucial to our study
of the behavior of F-ideals and F-submodules of the canonical module under
localization. We study an exact, covariant functor "dual to localization" which,
when restricted to submodules of the highest local cohomology module Hm(R)
of (R, m), always produces a submodule of the highest local cohomology mod-

, V p
ule Hp1^ (Rp) of the localization RP . This functor is (-)m   , a "double Matlis
dual."

We assume throughout that (R, m) is a Cohen-Macaulay local ring possess-
ing fixed a canonical module co (e.g. R is complete). We approach the module
Hm(R) by considering an action of coR on Hm(R) and the annihilator modules
that thus arise.
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Fix an injective hull of the residue field of R as described above

E s Hm   —,-C^-T-— .
-¡+   (x\,... ,xd)cûR

Using the natural pairing

cor® Hdm(R)-+E= hm *V        ,
f     \XX, ... , xd)coR

we may think of coR as "acting on" Hm(R): if w £ coR and n — [z +
(x[°, ... , xd°)R] £ Hm(R), then wr¡ will be the image (in E ) of the element
w <g> n under this map, namely [zw + (x[°, ... , x'd°)coR] £ E. Note that when
R is Gorenstein, so that coR may be identified with R, this action is the same
as the usual R module action of R on Hm(R).

Using this action, we associate to every submodule A of Hm (R) its annihi-
lator submodule W of cor :

W = Ann^ A = {w £ coR such that wn — 0 for all n £ Hm(R)}.

Likewise, given any submodule W c cor , we define an associated annihilator
submodule of Hm(R), namely

AnnH^R)W = {n = [z + (x{, ... , xd)] such that w n = 0 for all w £ W} .

We now prove a crucial lemma. Although stated here for Cohen-Macaulay
rings, it actually holds for any ring whose completion satisfies Serre's S2 con-
dition.

2.1. Lemma. Let (R,m) be a Cohen-Macaulay local ring. Let N be any
submodule of Hm(R) and let W be any submodule of coR . The symbol -p"
denotes the dual Hom«(-, E(R/P)) where E(R/P) is an injective hull of the
R module R/P ; if the P is omitted, it is assumed to be the maximal ideal m.

/•\     ,,v                CO h
1     W     = T-^-T7 •

AnnWAN
/A\V      Ann^.Af

(ii) If McN, then    —      *  }      R AT .
\M )       Ann^.A

(iii) When R is complete, W — Ann^A if and only if AnnHä^RAV — A.
(iv) If R is complete and W = Ann^ A, then

vvP

N =AnnHp«rf(Rr)(W®RP)-

vvP ,
In particular, the exact covariant functor (-) takes submodules of Hm(R)
to submodules of H^'R (Rp).

V p

This says that the functor (*) is an exact covariant functor from sub-
modules of Hm(R) to submodules of HpR (RP). We can think of it as "dual
to localization" (cf. the remarks following Lemma 2.2).

Proof, (i) Note that (Hm(R))v = coR . By dualizing the exact sequence

0 _ N -^ Hdm(R) -^ I^P- —. 0 ,
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we see that

(V .

(Hm^)   —kor®R*(or\ .

On the other hand, because Homs((*), E) is exact,
V

(t&l)   s kernel (lIdm(R)   — A^

which consists precisely of those maps in HomR(Hm(R), E) = coR which an-
nihilate A. Thus

Hdm(R)\   ^A        Nt
N    ) w*     '

so that from 2.1.1
A   S

coR
Ann    ?v

(ii) Dualizing the exact sequence

0 —y M —y N —► (N/M) —► 0 ,
-   V

we see that (N/M)    is the kernel of either of the isomorphic surjective maps

(ATV  _^ M") S (        *"*-y -^Â-) .Ann^A        Ann^AT

Thus
V

/ A \       Ann^.M
|_   I       ~ WR

M )        Ann^A
(iii) Assume that R is complete. In the proof of (i), we showed that

v
'Hd(R)\^J   -Ann^A.

If we denote AnnWÄA by W, we therefore have an exact sequence

0 —* A —* Hm(R) —+WV^0.
Any map n = [z + (xx, ... , xd)] £ Hm(R) = HomÄ(<yÄ, E) gives rise to a
map from W to E by restriction:

n : cor —y E

w i—y [zw + (xx, ... , xd)coR].
The kernel of this map restricted to   W  is precisely Ann^¿ (Ä) W, which is
isomorphic to A by the exact sequence above.

A similar argument shows the converse.
(iv) We observed in the proof of (i) that we have an exact sequence

0 —♦ A —► Hdm(R) —*WV—+0.

Thus we have an exact sequence
0 <— Av<— coR<— W <— 0.
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Applying Homs((*), E(R/P)) is the same as tensoring with RP and then ap-
plying Y{omRp((*), E(Rp/PRP)), so we have

0 ^ NvVp -^ HomRl,(coRp, E(R/P)) -^(W®RP)Vp -^0.
v v P

Consequently, A       is the kernel of the map

HomRp(coRp , E(R/P)) —y HomRp(W ® RP, E(R/P))

arising from restriction. As discussed in part (iii), this kernel is

AnnH¡¡R iRp)(W®RP).    a

Lemma 2.1 can be interpreted as an analog of the following lemma from [SI]:

2.2. Lemma. Let (R, m) be a local ring and M an arbitrary R module.
(i) If M has ACC or DCC, then AnnRM = AnnÄ(Mv).

(ii)   (AnnRM) C)R = Ann^Af when M is an R-module.
(iii)  When R is complete and M has DCC, AnnRp((Mv)Vp) = (AnnRM)RP .

Û
(iv)   When M c E, Mv £-— .
^   ' AnnôM

(v) //Ac McE, then (M v ^ Ann^A
A Ann ¿A/ '

For Gorenstein rings, the two lemmas are essentially the same. They differ
for an arbitrary (Cohen-Macaulay) ring, however. These lemmas underscore
the idea that the functor (*v)Vp accomplishes for Artinian modules what lo-
calization accomplishes for Noetherian modules; we may think of it as "dual
to localization". For Artinian M, the functor (*v) p vanishes for all non-
maximal P if and only if M has finite length, whereas for Noetherian M, the
localization functor vanishes for all non-maximal P exactly when M is finite
length. For complete R, Lemma 2.2(v) says that composition functor (*v)V/>
applied to M c E amounts to taking the annihilator in an injective hull of
the residue field of the local ring Rp of the localization (at P ) of the ideal
which annihilates M. When M c Hm(R), the same remark applies, but the
annihilator of M is interpreted in coR .

We will use these observations to compare certain submodules of Hm(R)
with submodules of the highest local cohomology modules for local rings of R .
The point is that the tight closure of the zero module in Hm(R) is a canonically
defined submodule of Hm(R) whose annihilator is the parameter test ideal.

The study of functor "dual to localization" is an interesting undertaking in
it own right. "Co-localization" has recently been explored for instance in [MS]
and [Y].

3.   The Frobenius action on Hm(R) and dual concepts

We now wish to develop the theory of F-ideals and F-submodules of the
canonical module. We first recall how Frobenius acts on Hm (R). The action of
Frobenius on local cohomology was first considered by Peskine and Szpiro, who
successfully exploited this action to prove some the "Intersection Conjectures"
which had grown out of Serre's work on multiplicities.
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Consider the canonical map

Hm(R)^Fe(Hm(R))=eR®Hm(R)

n *—► 1 <8> n
described in Section 1. Representing Hd(R) as  lim    , , R   ,. , we see that

-► (    (x¡ ,... ,xd)

F*(Hdm(R)) = lim <R ® ( R ) ¿ Um R 2 Hdm(R).
t v*I , ... , Xd)K t      (X{   , ... ,Xd )K

Under the canonical map Hm(R) —> Fe(Hm(R)), the element n = [z +
(jc{ ,..., x¿)] is sent to

*»'(if)-'![rl + «,..., xf)],
This provides a natural action of Frobenius on Hm(R).

3.1. Definition. A submodule M of Hm(R) is F-stable if F(M) c M.
We denote by (F(M)) the submodule of Hm(R) spanned by the elements

of F(M) in Hm(R). Note that when M is F-stable, the fact that Hm(R) has
DCC ensures that the descending chain of submodules of Hm(R)

M D (F(M)) D (F2(M)) D (F3(M)) D...

eventually stabilizes. Thus there is some e such that the R submodules of
Hi(R) generated by Fe'(M) and Fe(M) are identical for all e'> e.

3.2. Remark. We can interpret the F-stable submodules of Hm(R) in a slightly
different way: they are simply the (left) submodules of H„\(R) as a module over
the subring R[F] of Endcrp-K generated by R (acting by left multiplication)
and by the Frobenius map F .

Because F-stable submodules of Hm(R) play an important role in the the-
ory of tight closure (see [SI], [S2]), we are led to consider their duals. Assume
throughout that (R, m) is a Cohen-Macaulay local ring of dimension d pos-
sessing a canonical module cor .

By taking annihilators with respect to the pairing coR x Hm(R) —» E de-
scribed in Section 2, we define

3.3. Definition. A module W c cor is an F-submodule of cor if AnnHd^W is
an F-stable submodule of Hm(R).

This can be thought of as an analog of the concept of F-ideals introduced in
[SI], which we recall here.

3.4. Definition. An ideal J of R is an F-ideal of R if Ann Hd^J is an F-stable
submodule of Hm(R).

Note that F-submodules of cor and F-ideals of R can be identified for
Gorenstein rings, using the identification of cor with R. It is this special
situation that was exploited in [SI] to prove Theorem 5.2 for Gorenstein rings.
However, in order to prove the localization theorem of Section 5, it is the
F-submodules of cor that are the "right" gadgets to look at. Their study is
somewhat more subtle than the study of F-ideals begun in [SI], although many
of the ideas are similar.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TEST IDEALS IN LOCAL RINGS 3463

3.5.   Lemma. For a submodule  W of the canonical module cor for a local
Cohen-Macaulay ring (R, m), the following are equivalent:

(i)   W is an F-submodule.
(ii) For all systems of parameters xx, ... , xd, if any z £ R has the property

that Wz c (xx, ... , xd)oiR, then Wzp c (xp , ... , xpd)o)R .
(iii) For some fixed system of parameters xx, ... , xd, if there exists z and

ieN with the property that Wz c (x[, ... , xd)coR, then

Wzpc(xp',...,xp')cor. d

Proof, (i) => (ii): Assume that W is an F-submodule of cor and that for
some system of parameters xx, ... , xd for R, we have

Wz c(xx, ... , xd)coR .

This inclusion forces the element n = [z + (xx, ... , xd)] to be in Ann^^ W .
The fact that W is an F-submodule of cor means that Ann^ (Ä) W is an

F-stable submodule of Hm(R). Thus F(n) = [zp + (xf, ... , xd)] is also in
AnnHd(R}W. Hence we see that W kills F(n), which is equivalent to Wzp c
(xf, ... , xd)coR , as the direct limit system for E = Hm(cúR) is injective.

(ii) =>  (iii); Clear.
(iii) =>   (i):  Fix a system of parameters xx, ... ,xd  for R.   Represent

Hd(R) as   lim    -¡-r--—rr .   In order to show that  W is an F-submodule of
m\ ->t    (xx,...,xd)

cor, we must show that  AnnHä(R)W  is F-stable.    Choose any   n = [z  +
(x\, ... , x'd)] £ Ann^^j W . This means that Wz c (x{, ... , x'd)coR , whence
our hypothesis implies that Wzp c (xp', ... , x^')cor. But then

F(n) = [zp + (xpt,...,xpdt)]£AnnHd{R)W

so that Ann^d ,R-, W is F-stable.   D

A similar statement holds for F-ideals.   Because we will need it later, we
record it here although it first appeared in [SI].

3.6. Lemma. For an ideal J in a Cohen-Macaulay local ring (R, m), the
following are equivalent:

(i) J is an F-ideal.
(ii) For all systems of parameters xx, ... , xd, if any z c R has the property

that Jz c(xx, ... , xd)R, then Jzp c(xp , ... , xpd)R.
(iii) For some fixed system of parameters xx, ... ,xd, if there exists z and

t £ N with the property that Jz c(x[, ... , x'd)R, then Jzp c (xf, ... , xpd')R.

We now show that the property of being an F-submodule of cûr  is well
behaved under localization.

3.7. Proposition. Let P be any prime ideal of a local Cohen-Macaulay ring
R possessing a canonical module cor. If W is an F-submodule of cor, then
W ® RP is an F-submodule of cor® Rp, the canonical module for RP.
Proof. Fix W c cor , an F-submodule of cor . We know that given any system
of parameters xx, ... ,xd for R and z £ R such that zW c (xx, ... , xd)ojR ,
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then zpW c (xp, ... , xd)coR . We wish to show that the submodule W ® RP
of the canonical module (Or®Rp = (Orp has the same property with respect to
some system of parameters for Rp . Choose a system of parameters xx, ... , xd
for R such that the image of the subsequence xx, ... x, in Rp is a system of
parameters for RP.

Now suppose that \(W ® RP) c (^, ... , f)(0Rp. There exists some u £
R - P such that (uz)W c (xx, ... , x¡)(oR . Thus for all nonnegative integers
H, we have

whence

so

(UZ)W C(XX, ... ,Xj, xf*+l, ... , X%)(Or

(uz)pW c (xf, ... , xf , xPZ , ... , xf)coR

(uz)pWc f)(xp,...,xp,xPZ,...,xpH)coR
H>0

and thus
(uz)pWc(xp,...,xf)coR.

Tensoring again with Rp we see that

zp xf xpT(W®Rp)c(-^,...,-{-)coRp.

Therefore, by an application of Lemma 3.5,   W ® RP is an F-submodule of
cor®Rp.   a

Using Lemma 3.6, one can prove along similar lines that if J is an F-ideal in
a Cohen-Macaulay local ring (R, m), then JRp is an F-ideal in the localization
Rp (cf. Proposition 4.8 of [SI]).
3.8. Remark. For a complete local Cohen-Macaulay ring, Lemma 2.1 can be
interpreted as saying that the lattice of F-stable submodules of Hm(R) is anti-
isomorphic to the lattice of F-submodules of (Or . That is, we can attempt
to understand the R[F] module structure of Hm(R) by looking at the the F-
submodules of (Or . Lemma 3.6 gives us a way to study these F-submodules
without referring back to Hm(R).

4.   Test elements
In this section we define parameter test elements and the parameter test ideal,

realizing the parameter test ideal as a special kind of F-ideal. We first review the
definition of and basic facts about test elements from [HH1 ] and then develop
analogs for parameter test elements.

The element "c" that is used in Definition 1.1 of tight closure to "test" for
tight closure is allowed to depend on the ideal / and even on the element z
we are "testing" for inclusion in /*. It is often useful to know that there exist
"test elements" c which will work in any tight closure test for R.

We record the precise definition of the test ideal and of a test element as in
[HH1].
4.1. Definition. The test ideal of R is the ideal of elements c of R such that
equivalently:

(1) czq c /t?l for all q = pe whenever z £ I* for any ideal I c R;
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or
(2) cz £ I whenever z £ I* for any ideal I c R.
An element c of R is said to be a test element if it is in the test ideal but not

in any minimal prime of R.

Note that in particular, all ideals of R are tightly closed ( R is weakly F-
regular) if and only if the test ideal is the unit ideal. Every excellent (e.g.
complete) local reduced ring has a test element (this is one of the main results
of [HH3]).

The following proposition gives an interesting description of the test ideal
for a local ring.
4.2. Proposition. Let (R, m) be a local ring of char p ^ 0. Then the test ideal
for R is AnnR(0*/g), where E — E(^) is an injective hull of the residue field
ofR.
Proof. See [HH1, Proposition 8.23]. D

Because of the key role that parameter ideals play in tight closure theory and
its applications, one may be interested in knowing what elements will work as
"test elements" for this slightly restricted class of ideals. Recall that a parameter
ideal is simply an ideal of height h which can be generated by h elements; for
excellent local equidimensional (e.g. complete local Cohen-Macaulay) rings,
parameter ideals are simply those generated by part of a system of parameters
for R. We are led naturally to the following definition.

4.3. Definition. The parameter test ideal of R is the ideal of all elements c £ R
such that cl* c I for all parameter ideals I of R (equivalently, czq £ TqX for
all q = pe, e = 0, 1, 2, ... ). We say that c is a parameter test element if c
is in the parameter test ideal but not in any minimal prime of R.

Note that all parameter ideals of R are tightly closed ( R is F-rational) if
and only if the parameter test ideal is the unit ideal. Of course the parameter
test ideal always contains the test ideal, although in general this containment
may be strict. The parameter test ideal was first defined in [HH4].

The next proposition is analogous to Höchster and Huneke's description of
the test ideal (Proposition 4.2), placing the theory of test ideals and of parameter
test ideals nicely into a similar context. Note that when R is Gorenstein, the
following proposition guarantees that the test ideal and the parameter test ideal
are one and the same ideal. This recovers the fact that F-regular and F-rational
agree for Gorenstein rings ([HH3]).

4.4. Proposition. Let (R, m) be an excellent local ring of dimension d > 0 and
let J be its parameter test ideal.

(i) J = {c £ R such that cl* c / for all I generated by a full system of
parameters for R}.

(ii)   When R is Cohen-Macaulay, J — AnnR(ff¿f   ) = Ann/{(0* d    ).
"m\**i **m\*^)

(iii) When R is Cohen-Macaulay, and xx, ... , xd is any fixed system of
parameters for R, J = {c £ R such that c(x\, ... , x'd)* c (x\, ... , x'd) for all
t£N}.
Proof.

(i) Denote the ideal  {c £ R such that cl* c / for all / generated by a
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full system of parameters for R} by J'. Clearly J c J'. Consider a pa-
rameter ideal generated by parameters xx, ... , x¡. We can extend these to a
full system of parameters xx, ... , xd for R. If z £ (xx, ... , x,)R*, then
z e (xi, ... , x,, x/f,, ... , xd)R* for all nonnegative integers H. Therefore,
for any c £ J' we have cz £ (xx, ... , x¡, x?+x, ... , xd)R, whence

cz £ f] (xi, ... , Xi, xfii, ... , x%)R = (x. , ... , x¡)R.
H>0

Because this holds for any parameter ideal (xi, ... , x¡)R and any

z £(xx, ... , Xj)R*,

it follows that c is in the parameter test ideal for R .
(ii) The point here is that n = [z + (x[, ... , xd)] £ Q*Hd(R) if and only

if z £ (x\, ... , x',)R*, so that  n £ 0*   «       C 0*Jf    .   This is proven in
(*;.*'d)        tim(K>

Proposition 3.3 of [SI], from this, it follows immediately that 0*Hd     = 0^£    .
We first demonstrate that / c AnnR(0* d    ), which requires only that R be

equidimensional.
Given any system of parameters xx, ... , xd for R, we may represent Hm(R)

as
lim

t
Now if c £ J, we wish to show that for any n = [z + (x{, ... , xf)] £
0*d     , we have  en = 0.    But by Proposition 3.3 of [SI], we know that
[z +  (x[, ... , x'd)] £ %dm{R)  if and only if z 6 (x\, ... , x'd)R*, so since
cz £ (x\, ..., x'd)R, we have en = 0.

Conversely, when R is Cohen-Macaulay, given any system of parameters
xx, ... ,xd and z £(xx, ... , xd)R*, we wish to show that cz £ (xx, ... , xd)R
whenever c £ Ann/^O^ . ). But if z £ (xx, ... , xd)*, then [z + (xx, ... , xd)]
£ 0*Hd(R) > whence c[z + (xx, ... , xd)] — 0. Because the Cohen-Macaulayness
of R implies that the limit system

US   (x',...,x'd)-

lim   —t-—
V   \xx, ■■■ ,xd)

defining Hm(R)  is injective, we have that cz £ (xx, ... , xd)R, and hence
c £ J.

(iii) This is immediate from the proof of (ii).   □

4.5. Proposition. The parameter test ideal of a Cohen-Macaulay local ring is an
F-ideal.
Proof. The parameter test ideal of a   ¿/-dimensional Cohen-Macaulay ring
(R, m) is AnnRO*,,     , by Proposition 4.4.   We need to show 0* d      is F-
stable. But if n £ 0* d     , then there exists c £ R not in any minimal prime

**m\"-J

such that cn[q] = 0 (cf. Definition 1.1). So c(np)[qX, which is cn[qp] is zero for
all q , whence rf £ 0*H¡¡{R). D
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One may also take the annihilator of 0* d      in (oR instead of R , and think
of this as a "parameter test module" for R. A similar argument shows that
the "parameter test module" is an F-submodule of a>R . In fact, because one
can show that 0*fíd.R. is the unique maximal F-stable submodule of Hm(R), it
follows from the remarks at the end of Section 3 that this test module is the
unique minimal F-submodule of (oR .

5.   Parameter test ideals under localization

We will soon prove the main localization result (Theorem 5.2), which states
that parameter test ideals behave well under localization for complete Cohen-
Macaulay rings. This was proven for Gorenstein rings in [SI], using the ma-
chinery of F-ideals. To prove the more general result, we must consider both
F-ideals and the related machinery of F-submodules of a>R . We first need to
prove that F-stable submodules of Hm(R) are preserved under "colocalization."

5.1. Lemma. Let (R, m) be a complete local Cohen-Macaulay ring.  If N c
pHm(R) is F-stable, then Nv™      is also F-stable.

v     VP
In other words, functor (-) m is an exact covariant functor from left R[F]

submodules of Hm(R) to left RP[F] submodules of HhPRpp(RP) (cf. Remark
3.2).
Proof. We use the the facts presented in Lemma 2.1. Let W = Ann^A, so
that AnnHd,^W = N. We have the exact sequence

.  0 —+ A —► Hm(R) ^Wv—^0,

which, by dualizing into E, yields the exact sequence

0 <— Av <— coR<— W <— 0

and thus
0 <— Nv ®RP <— cor®Rp <— W ® Rp <— 0.

Dualizing over RP into ERp ( £$- ), we get

0^NvmVp _> h^Rp) ^ (W ® RP)V —^0.

Therefore, by definition,  AnnH>,,p ,RJW ® RP)  is an F-stable submodule of

H-p'r (Rp) ' because W®RP is an F-submodule of corp . But AnnHhlp (W ® RP)

= NVmVp by Lemma 2.1 (iv).   D

Finally, armed with Lemma 5.2 and the duality lemmas of Section 2, we can
prove that parameter test ideals are well behaved under localization.

5.2. Theorem. Let (R, m) be a complete local reduced Cohen-Macaulay ring
with parameter test ideal J. The ideal JU~XR is then the parameter test ideal
for the ring U~XR, where U is any multiplicative system in R.
Proof. We first assume that the multiplicative system is the complement, in R,
of some prime ideal P.
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We first prove that JRp is contained in the parameter test ideal for Rp.
Say j £ JRp. Fix any system of parameters xx, ... ,xd for R such that
^,..., y* is a system of parameters for Rp (here dimension RP — height
P = i). By Proposition 4.4, to check that f is a parameter test element for
Rp , it is enough to check that f (^ , ... , ^)* c (^ , ... , f )RP for all /tN.

Because tight closure is known to commute with localization for elements
generated by a regular sequence (Theorem 6.9 of [AHH]), we see that if f G
(^-, ... , ^-)Rp , then uz £ (x{, ... , x\)R* for some u £ R- P. Since c is a
test element for R, we see that cuz £ (x\, ... , xf)R . This implies that

C   Z       ,X\ X
V1S(-f,...,^)Kf

for all / £ N and hence y is in the parameter test ideal for Rp .
To prove the reverse inclusion, we again use Proposition 4.4, which en-

sures that the parameter test ideal for RP  is AnnA(,(0*     ,p ,), where  i =
"PRp\Kp>

height/3. Thus, we need to show that

(5.2.1) AnnÄ,(0^   ,R))cJRP,
PRPK-    ?!

where J - Ann«(0^ R.) is the parameter test ideal for R. Consider

(°k(R)m) P = HomR" {HomR(°kw 'E) ' EWp)) ■

By Proposition 5.1, this module is an F-stable submodule of HPR (Rp). By
Lemma 2.2 (iii), we know that

Ann^(0^(R)Vm) P = JRp,

so it will be enough to show that

<5-2-2) (0kwm)P^°kp.Pi«ry
Since the (honest) test ideal of R is contained in the parameter test ideal J
and since R has a test element (all complete local reduced rings do [HH3]), we
conclude that there exists some c £ R not in any minimal prime of R such
that c £ J. But then f e JRp is not in any minimal prime of Rp and kills

'p
every element of the F-stable submodule  (p*Hd,R)     )      of HPRp(RP).  This

/ v     \VP / v     \VP
means that for any n £ [0*Hd{R) m)     , also nq £ [0*Hd{R) m)     , and cnq = 0

V p

for all such n. It follows that every element of [0*Hd{R) m)      is contained in
0«'   to \>   completing the proof of 5.2.2 and hence 5.2.1.  We conclude that
JRp is the parameter test ideal for Rp .

We now complete the proof by showing that the theorem remains true when
we localize at an arbitrary multiplicative system U . We first show that JU~XR
is contained in the parameter test ideal for U~XR. Say that / is an arbitrary
parameter ideal in UXR, and that z £ I* in U~XR. These hypotheses are
preserved when we localize at any prime ideal of U~XR. If c £ JU~XR, then
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after passing to RP , f £ JRP , and by the above argument is a test element for
Rp. Because f e (IRp)* for all prime ideals P of U~XR, we thus see that
Y y € IRp for all primes P in U~XR. But then cz £ IU~XR as well, whence
c is a parameter test element for U~XR.

Conversely, if c is a parameter test element for U~XR, then using the ar-
gument presented in the first three paragraphs of this proof, we see that the
image of c (denoted f ) in RP is a parameter test element in every local ring
of U~XR. As we have already seen that JRp is the parameter test ideal for
Rp, it follows that f e JRp for all primes P in Spec R disjoint from U.
But then c £ JU~XR as well.   □

We next record a few immediate corollaries of Theorem 5.2. The first ap-
peared originally in [SI].

5.3. Corollary. If R is a complete local reduced Gorenstein ring with test ideal
J, then JU~XR is the test ideal for U~XR.
Proof. When R is Gorenstein, the parameter test ideal is the same as the
test ideal, as evidenced by the fact that E(R/m) = Hm(R), and therefore
AnnR(Q*Lg ) - AnnR(CV¡/?). By Proposition 4.4, the former is the parame-
ter test ideal for R and by Proposition 4.2 the latter is the test ideal for R.   D

Corollaries 5.4 and 5.5 below are simple consequences of Theorem 5.2.

5.4. Corollary. The non-F-rational locus of a complete local ring R is a closed
set defined by the parameter test ideal of R.
Proof. Let J be the parameter test ideal for R. Then Rp is F-rational if and
only if the parameter test ideal for Rp (= JRp) is the unit ideal. So Rp is
non-F-rational if and only if P contains J .   D

5.5. Corollary. If c £ R, a complete reduced local Cohen-Macaulay ring, is such
that Rc is F-rational, then c has a power which is a parameter test element.
Proof. Let J be the parameter test ideal for R. If Rc is F-rational, then its
parameter test ideal, JRC must be the unit ideal. But then cN £ J for some
power A.    D

Corollary 5.5 can be thought of as an analog of Theorem 5.10 of [HH3]
which states that any element c (not in any minimal prime) of a reduced ring
R (which is assumed to be finite over its subring of pth powers) such that Rc
is strongly F-regular (e.g. regular) has a power which is a test element for R.
Velez [V] develops the concept of "strong F-rationality" and proves that (under
weak hypothesis) if Rc is strongly F-rational, then c has a power which is a
parameter test element for R. Thus Corollary 5.5 is also proven in [V] (by
different methods) for the more general setting of Cohen-Macaulay excellent
rings. Velez uses Höchster and Huneke's "Gamma Construction" [HH3] and
Neron desingularization to conclude the excellent case from the complete case.
It is possible that the same technique would enable one to prove Theorem 5.2
in greater generality, but we do not pursue that here. Of course, Theorem 5.2
is asserting something much stronger than any of the above corollaries.
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6.   Some final remarks on test ideals

We now point out a few interesting properties of F-ideals (and the parameter
test ideal in particular) and compute the test ideal in an example.

6.1. Proposition. Let (R,m) be a Cohen-Macaulay local ring. The parameter
test ideal for R is not contained in any ideal generated by any system of param-
eters for R. In fact, the only F-ideal contained in a parameter ideal is the zero
ideal.
Proof. It suffices to prove the latter claim. If J is an F-ideal, and J c
(xi, ... , xd)R where xx, ... , xd is a system of parameters for R, then

/ C (Xi , ... , xd)

implies (by Lemma 3.6, applied with z = 1 )

I c (xp , xP, ... , xpd)R.

Repeating we see that
/C(x?,x?,...,x*)/?.

for all q = pe. But then

/c Q(xf , xf, ... ,xqd) =0.
_

From this property of the parameter test ideal, we see that regular local rings
are always F-rational, since the maximal ideal is generated by a system of param-
eters. Of course, we already know that that regular rings are in fact (strongly)
F-regular, but it is interesting to note that the parameter test ideal is forced to
be fairly "large" in general.

A Cohen-Macaulay local ring (R, m) of dimension d is said to be F-injective
is the action of Frobenius on Hm(R) (as described in Section 3) is injective.

6.2. Proposition. Let (R,m) be an F-injective Cohen-Macaulay local ring. Ev-
ery F-ideal of R is radical. In particular, the parameter test ideal is radical.
Proof. Assume / is an F-ideal and that yN £ J . We might as well assume that
A = q = pe for some natural number e . By definition,  W = AnnHd(K)J is F-
stable. With notation as in Section 1, suppose that n = [z + (x{°, ... , xd)R]£
W c— Hd(R) = lim    ,, R   .. , where xx, ... , xd is a fixed system of param-
eters for R. Then rf = [zq + (x[oq , ... , x'do9)R] is also in W, hence killed by
/. Thus (yn)q = yqnq = 0 in Hm(R) and since Frobenius acts injectively on
Hm(R) it follows that yn — 0. Because this argument applies to any n £ W,
we conclude that y £ J. D

A similar result is that for F-pure rings, the test ideal is always radical [FW].
The computation of tight closure can be quite difficult, even in very simple

rings. Knowing the test ideal is often very useful. In the following example,
we prove that the test ideal of a certain ring is the maximal ideal. This means
that in order to compute the tight closure of an ideal /, one need only check
elements which are in the socle of R/I.
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6.3. An example. The test ideal of

R=    k[x,y,z]
(x3 + y3 + z3)

is the maximal ideal in all characteristics p (except possibly p — 2, 3 ).

This is easy when p = 1 mod 3 : one may check that R is F-injective, so
the test ideal (which is the parameter test ideal in this case) is radical. On the
other hand, since R has an isolated singularity, the test ideal is m primary (cf.
Corollary 5.5). This argument will not work when p = 2 mod 3, so we give a
characteristic free proof.

Proof. Let J denote the test ideal ideal of R. First note

(x3, y3) c J

by Theorem 8.23 of [HH4]. This theorem states that if R is module finite and
generically smooth over a regular subring A , then any element of A which is
in the Jacobian ideal for the extension A c R is a test element. Applying this
with A = k[x, y], where the Jacobian ideal is generated by 3z2 , we see that
So -z3 = x3 + y3 is in the test ideal. Likewise x3 + z3 and y3 + z3 are in the
test ideal, so x3, y3 are in the test ideal.

From Proposition 4.4, we see that an element c is in J if and only if
c(xt,yt)* c (x', y') for all t » 0. So say w £ (x',y')*, where t > 4.
Then both x3w and y3w are in (x', y'), so using the fact that R is Cohen-
Macaulay, we see that

w £(x' ,y', (xy)'~3).

Write w = ax' + by' + i>(xy)/_3. Since w £ (x', y')*, one uses "colon-
capturing" ([HH1]) to check that v £ (x3,y3)*. But now cw £ (x', y') if
and only if cv £ (x3, y3). This says that c is a test element if and only if

c(x3, y3)* c (x3, y3).

So what is (x3, y3)* ? We know that all 6-forms are in here (for instance, by
Proposition 3.1 of [S3]). I claim that that's it: there are no forms of lower degree
except for the elements already in (x3, y3). If there were, there'd be a 5-form.
But the 5-forms not in (x3, y3) are spanned over k by x2y2z, x2yz2, xy2z2.
Say

Xxx2y2z + X2x2yz2 + X^xy2z2 £ (x3, y3)*.

Using "colon capturing," we can divide out xy to get

u — Xxxyz + X2XZ2 + X^yz2 £ (x2, y2)*.

We leave it to the reader to check (the methods of [S3] are useful) by brute force
that (x2, y2)* = (x2, y2, xyz2), whence (x3, y3)* = (x3, y3) + (x, y, z)6 .
But m(x, y, z)6 c (x3, y3), so J = m . D

In fact, the maximal ideal in the preceding example is the only F-ideal of R .
For Gorenstein rings R, the test ideal is the (unique) minimal F-ideal of R,
as indicated in the remarks following Proposition 4.5.
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