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TEST IDEALS IN NON-Q-GORENSTEIN RINGS

KARL SCHWEDE

Abstract. Suppose that X = SpecR is an F -finite normal variety in char-

acteristic p > 0. In this paper we show that the big test ideal τb(R) = τ̃(R)
is equal to

∑
Δ τ(R; Δ), where the sum is over Δ such that KX + Δ is Q-

Cartier. This affirmatively answers a question asked by various people, in-
cluding Blickle, Lazarsfeld, K. Lee and K. Smith. Furthermore, we have a
version of this result in the case that R is not even necessarily normal.

1. Introduction

Suppose that X = SpecR is a normal Q-Gorenstein variety in characteristic
zero. For any ideal sheaf a on X and any positive real number t > 0, we can define
the multiplier ideal J (X; at) which reflects subtle local properties of both X and
elements of a; see for example [Laz04, Chapter 9]. Furthermore, if one reduces
X and a to characteristic p ≫ 0, then the multiplier ideal J (Xp; a

t
p) agrees with

the big test ideal τb(Rp; a
t
p) = τ̃ (Rp, a

t
p) (the big test ideal is also called the non-

finitistic test ideal); see [Smi00], [Har01], [HY03], and [Tak04b]. However, while at
least classically, multiplier ideals need the Q-Gorenstein hypothesis in order to be
defined, big test ideals do not.

In characteristic zero, one way to get around this difficulty is to consider an
additional Q-divisor Δ on X such that KX +Δ is Q-Cartier. In that setting, one
can define the multiplier ideal J (X; Δ, at) of the triple (X,Δ, at). Unfortunately,
there is no canonical choice of Δ (although there can be quite “good” choices of
Δ; see [DH09]). On the other hand, Hara, Yoshida and Takagi defined the big test
ideal τb(R; Δ, at) of a triple (X,Δ, at) and showed it agreed with the multiplier
ideal J (X; Δ, at) after reduction to characteristic p ≫ 0; see [HY03] and [Tak04b].

Suppose now we work in a fixed characteristic p > 0. It is then very natural
to ask how the test ideal τb(R; at) is related to the test ideals τb(R; Δ, at), where
Δ ranges over all divisors such that KX + Δ is Q-Cartier. It is easy to see that
one has containments τb(R; Δ, at) ⊆ τb(R; at). Furthermore, for several years it has
been asked whether in fact one has

τb(R; at) =
∑

∆

τb(R; Δ, at),
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where the sum is over Δ such that KX +Δ is Q-Cartier. The main result of this
paper is an affirmative answer to this question. This result has been shown in the
toric case by [Bli04, Corollary to Theorem 3] (also see [HY03, Theorem 4.8]), and
Blickle asked whether it always holds. Another version of this question is found in
[LLS08, Remark 3.6]. A similar variant was asked by Lazarsfeld during the open
problems session at the “F -singularities and D-modules” conference held at the
University of Michigan in August 2007. In fact, we show somewhat more. We show
that one can restrict to only considering Δ so that KX +Δ is Q-Cartier with index
not divisible by p > 0. Therefore our main result is the following:

Corollary 5.2. Suppose that (X = SpecR, at) is a pair and that R is an F -finite
normal domain. Then

τb(R; at) =
∑

∆

τb(R; Δ, at),

where the sum is over effective Q-divisors Δ such that KX +Δ is Q-Cartier with
index not divisible by p > 0.

In fact, we even have a version of this result that works in the case that X =
SpecR is not necessarily normal; see Theorem 5.1. One can also obtain the follow-
ing, which may be of independent interest.

Corollary 5.4. Suppose that (X = SpecR, at) is a pair and that R is an F -finite
normal domain. Then there exist finitely many effective Q-divisors Δi such that
KX +Δi is Q-Cartier with index not divisible by p and also that

τb(R; at) =
∑

∆i

τb(R; Δi).

It should also be noted that changing the t in the previous corollary will change
the Δi in ways which we do not know how to control.

Recently de Fernex and Hacon have worked out a theory of multiplier ideals
J (X; at) for pairs (X, at), where X is not necessarily Q-Gorenstein; see [DH09].
In particular, it is known that J (X; at) =

∑
∆ J (X; Δ, at), where the sum ranges

over Δ such that KX +Δ is Q-Cartier (in fact, they show that there exists a single
Δ such that J (X; at) = J (X; Δ, at)). Therefore our result could be viewed as
additional justification for their definition.

To prove our main result, we use the fact that the non-zero elements φ ∈
HomR(F

e
∗R,R) induce Q-divisors Δ such that (KX + Δ) is Q-Cartier with in-

dex not divisible by p; see [Sch09] for details. Another key point in the proof is the
construction of an element c ∈ R◦ that is simultaneously a big sharp test element
for a (specially chosen) infinite collection of triples (R,Δα, a

t), where α ranges over
some indexing set; see Proposition 5.6. In proving our result, we also develop a
theory of pairs (R,T ), where T is a graded subalgebra of the non-commutative
algebra

⊕
e≥0 HomR(F

e
∗R,R) (which is Matlis-dual to the non-commutative alge-

bra F(ER(k)) as studied by Lyubeznik and Smith, [LS01]). In particular, our pairs
(R,T ) are strict generalizations of triples (R,Δ, at). See Remark 3.10.

We conclude the paper with an additional question related to the work of de
Fernex and Hacon, a brief discussion of the differences between the big test ideal
and the finitistic (classical) test ideal, and a comparison of the work done in this
paper with some of the results of [SS09].
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2. Preliminaries and notation

In this section we recall the basic definitions and notation we will study in this
paper. Throughout this paper, all rings will be assumed to be Noetherian. Unless
otherwise specified, all rings considered will be assumed to contain a field of char-
acteristic p > 0. Recall that there is the Frobenius action on any such ring R. This
is the ring homomorphism F : R → R that sends elements of R to their pth powers.

We can also iterate the Frobenius morphism e times, R
F

�� R
F

�� . . .
F

�� R ,
and we denote the composition by F e : R → R.

We can then view R as an R-module via the action of the e-iterated Frobenius.
We will use the notation F e

∗R to denote this module (which we will still sometimes
view as a ring in its own right). Note that this notation is justified, because if
X = SpecR and we abuse notation and use F e : X → X to denote the map of
schemes induced by F e, then F e

∗OX is the module corresponding to F e
∗R. Likewise,

for any R-module M , we use F e
∗M to denote M viewed as an R-module by the e-

iterated Frobenius action. This notation also lets us identify the Frobenius map F e

with an R-linear map R → F e
∗R, which we also denote by F e.

Definition 2.1. We say that R is F -finite if F e
∗R is finite as an R-module.

Remark 2.2. For example, any ring that is essentially of finite type over a perfect
field is F -finite; see [Fed83].

All rings in this paper will be assumed to be F -finite. In particular, since an
F -finite ring is excellent, all rings in this paper will be assumed to be excellent; see
[Kun76].

Throughout this paper, we will consider the module HomR(F
e
∗R,R). While we

will not need this directly, it may be useful for the reader to note that if X = SpecR
is normal, sufficiently local, and has a dualizing complex, then

HomOX
(F e

∗OX ,OX) ∼= F e
∗OX((1− pe)KX)

as F e
∗OX -modules; see [MR85] and [HW02].

Finally, we briefly remind the reader of the definition of Q-divisors. If X is
normal, then a Q-divisor on X is a formal sum of prime divisors on X with rational
coefficients. A Q-divisor D on X will be called Q-Cartier if and only if there exists
an integer n > 0 such that nD is an integral Cartier divisor (i.e., nD is locally
trivial in the divisor class group). Abusing notation, if X = SpecR is normal, and
D is any integral divisor on X, then we will use R(D) to denote the global sections
of OX(D).

3. An ultimate generalization of pairs

In this section we introduce a (perhaps ultimate) generalization of a pair in the
characteristic p > 0 setting. Our notion encompasses the triples (R,Δ, at); see
[HY03] [Tak04b], and [Tak08], and as a special case, see Remark 3.10. It also seems
well behaved for any F -finite ring (we, however, restrict to the reduced case).

Suppose that R is an F -finite and reduced ring. For each e ≥ 0, we can consider
the module HomR(F

e
∗R,R). We take the direct sum of these modules together to

form a non-commutative graded ring:

C (R) =
⊕

e≥0

HomR(F
e
∗R,R),
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5928 KARL SCHWEDE

where the multiplication for homogeneous elements

φ ∈ HomR(F
d
∗R,R) = C (R)d and ψ ∈ HomR(F

e
∗R,R) = C (R)e

is defined as follows:

φ · ψ = φ ◦ (F d
∗ψ) ∈ HomR(F

d+e
∗ R,R).

Definition 3.1. Given a φ ∈ HomR(F
e
∗R,R), we define the degeneracy locus of φ

(denoted DegenLocus(φ)) to be the subset of SpecR made up of primes Q ∈ SpecR
such that the image of φ in

HomR(F
e
∗R,R)Q ∼= HomRQ

(F e
∗RQ, RQ)

does not generate HomRQ
(F e

∗RQ, RQ) as an F e
∗RQ-module.

Remark 3.2. If R is normal and φ corresponds to a Q-divisor Δ as in [Sch09], then
DegenLocus(φ) = Supp(Δ).

We will now remark that the degeneracy locus is always a closed subset of SpecR.

Lemma 3.3. Given φ ∈ HomR(F
e
∗R,R), then DegenLocus(φ) is a closed subset of

X = SpecR.

Proof. This is obvious since HomR(F
e
∗R,R) is a finitely generated F e

∗R-module. �

Definition 3.4. A pair (R,T ) is the combined information of a reduced
F -finite ring R, and a graded subalgebra T ⊆ C (R) such that T0 = C (R)0 =
HomR(R,R) ∼= R. A triple (R,T , at) is the combined information of a pair (R,T ),
an ideal a ⊆ R and a positive real number t > 0.

Remark 3.5. Using the assumption that T0
∼= R, we immediately see that for each

i, Ti has the structure of an F i
∗R-module (note that F i

∗R is also a ring in its own
right).

Remark 3.6. When we consider a pair (R, at) we implicitly are referring to the
triple (R,C (R), at). Furthermore, while it is true that for any triple, (R,T , at),
there is a way to “absorb” a

t into T (and create a smaller subalgebra), see Remark
3.10, we will find it convenient to separate the terms at times.

Remark 3.7. One interesting and sometimes useful property of the algebra C (R) is
the fact that there are natural maps

ρi,j : C (R)i = HomR(F
i
∗R,R) → HomR(F

j
∗R,R) = C (R)j

for i > j, induced by the inclusion F j
∗R ⊆ F i

∗R. Our subalgebras are NOT as-
sumed to satisfy any analog of this property. However, we still have natural maps
Ti → HomR(R,R) ∼= R, for any graded subalgebra T ⊆ C (R). These maps are
induced by restricting the natural maps C (R)i → HomR(R,R) ∼= R to T ⊆ C (R).
Alternately, these are the maps defined by evaluation at 1.

Furthermore, suppose that some F i
∗R-submodule B ⊆ C (R)i is generated (as

an F i
∗R-module) by elements φ1, . . . , φn. Then notice that

Image(ρi,0|B) =
∑

i

Image(φi).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TEST IDEALS IN NON-Q-GORENSTEIN RINGS 5929

The containment ⊆ follows since each φ ∈ B can be written as a sum
∑

j(φj · xj)

for some xj ∈ F i
∗R. Then

φ(1) ∈ Image(φ) ⊆
∑

j

Image(φj · xj) ⊆
∑

j

Image(φj).

The containment ⊇ follows since if x ∈ Image(φ), then there exists some y ∈ F i
∗R

so that φ(y) = x, which implies that x = (φ · y)(1).

Definition 3.8. Suppose that (R,T ) is a pair. Then, given any multiplicative
subset W of R, we can construct a new pair (W−1R,W−1T ) in the obvious way. A
homogeneous element φ ∈ Te will be called non-degenerate if its image in (Rη,Tη)
is non-zero for every minimal prime η of SpecR. We say that a pair (R,T ) is
non-degenerate if it contains a non-degenerate element φ ∈ Te for some e > 0.
We say that (R,T ) is non-degenerately generated if, for every e > 0 such that Te

is non-zero, we have that Te is generated as an F e
∗R-module by non-degenerate

elements.
We say that a triple (R,T , at) is non-degenerate if (R,T ) is non-degenerate and

in addition, a ∩ R◦ �= ∅. We say that (R,T , at) is non-degenerately generated if
(R,T ) is non-degenerately generated and a ∩ R◦ �= ∅. Note this also implies that
the subalgebra T ′ defined by T ′

e = Te ·
(
F e
∗ a

⌈t(pe−1)⌉
)
is also non-degenerately

generated.

Remark 3.9. Because R is a reduced ring, (R,T ) is non-degenerate if and only if
there exists some homogeneous φ ∈ T>0 such that X \DegenLocus(φ) is open and
dense. Also note that if (R,T , at) is reduced and φ ∈ T is a reduced homogeneous
element, then there exists some c ∈ a ∩R◦ such that Supp(φ) ⊆ V (c) ⊆ SpecR.

Remark 3.10. From the point of view of F -singularities, pairs (R,T ) (respec-
tively triples (R,T , at)) are generalizations of triples (R,Δ, b•) (respectively triples
(R,T , b• ·a

t)) as studied by several authors (here b• is a graded system of ideals1);
see for example [Tak04b], [HY03], [Har05], [BMS08], [Sch08a], [Sch09, Remark 2.8].
To construct the pair (R,T ) associated to (R,Δ, b•), proceed as follows: Define
Ti to be

Image

(
HomR(F

i
∗R((pi − 1)Δ), R) → HomR(F

i
∗R,R)

)
· (F i

∗bpi−1).

To see that
⊕

i Ti is a subalgebra of C (R), simply make the following two obser-
vations.

(1) If b ∈ bpi−1 and b′ ∈ bpj−1, then bp
j

b′ ∈ bpj(pi−1)+(pj−1) = bpi+j−1.

(2) If φ ∈ Ti and ψ ∈ Tj , then φ ◦ F i
∗ψ ∈ Ti+j (this follows since pj⌈(pi −

1)Δ⌉+ ⌈(pj − 1)Δ⌉ ≥ ⌈(pi+j − 1)Δ⌉).

This method also allows one to obtain triples (R,T , at) from other triples (R,T , b•·
a
t). As we will see, changing the triple in this way does not impact the associated
test ideals.

Note that if R is a normal domain and ai ∩R◦ �= ∅ for some i > 0, then the pair
(R,T ) constructed from the triple (R,Δ, a•) is non-degenerate.

1Associated with any at (an ideal a formally raised to a real power t > 0) there is a graded

system defined by bi = a⌈ti⌉.
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Definition 3.11 ([HR74], [HW02], [Sch08b], [Sch08a]). A pair (R,T ) is sharply
F -pure if there exists a homogeneous φ ∈ Te such that φ(F e

∗R) = R (that is, φ is
surjective). A triple (R,T , at) is called sharply F -pure if there exists a homogeneous
φ ∈ Te ·

(
F e
∗ a

⌈t(pe−1)⌉
)
such that φ(F e

∗R) = R.

Definition 3.12 ([HH94], [HW02], [Tak04a]). We call a triple (R,T , at) strongly
F -regular if for every d ∈ R◦, there exists an element φ ∈ Te ·

(
F e
∗ a

⌈t(pe−1)⌉
)
such

that 1 ∈ φ(F e
∗ (d)) = φ(F e

∗ (dR)) (here (d) = dR is the ideal generated by d). For
the definition for pairs (R,T ), set a = R.

Note that the element φ from the above two definitions is not necessarily an
element of the form cφe, where c ∈ F e

∗ a
⌈t(pe−1)⌉ and φe ∈ Te. In general it is a sum

of such elements.

Remark 3.13. It is clear that a strongly F -regular triple is sharply F -pure. Further-
more, if R is regular, a = R and T = C (R), then (R,T , at) is strongly F -regular
by the original definition of Hochster and Huneke.

Remark 3.14. If φ ∈ Te ·
(
F e
∗ a

⌈t(pe−1)⌉
)
is such that 1 ∈ φ(F e

∗ (dR)), then 1 ∈
φn(Fne

∗ (dR)) for all n > 0. This is because we have the containments:

1 ∈ φ(F e
∗ (dR))

⊆ φ(F e
∗φ(F

e
∗ (dR)))

= φ2(F 2e
∗ (dR))

⊆ . . . .

Note that φn ∈ Tne ·
(
Fne
∗ a

⌈t(pne−1)⌉
)
.

Definition 3.15 ([MR85], [Sch08a]). Given a triple (R,T , at), we say that an
ideal J ⊆ R is uniformly (T , at, F )-compatible if for all e ≥ 0 and all homogeneous
φ ∈ Te, we have that φ(F e

∗ a
⌈t(pe−1)⌉J) ⊆ J . Equivalently, for all e ≥ 0 and all

φ ∈ Te ·
(
F e
∗ a

⌈t(pe−1)⌉
)
, we can require that φ(F e

∗J) ⊆ J . Another equivalent

definition would be to require that for all e ≥ 0, all φ ∈ F e
∗Te and all a ∈ a

⌈t(pe−1)⌉,
we have that φ(F e

∗aJ) ⊆ J . For the definition for pairs (R,T ), set a = R.

Definition 3.16 ([HH90], [LS01], [Hoc07], [Sch08a]). The big test ideal τb(R;T , at)
of a triple (R,T , at), if it exists, is the unique smallest ideal J that satisfies two
conditions:

(1) J is uniformly (T , at, F )-compatible, and
(2) J ∩R◦ �= ∅.

The big test ideal τb(R;T ) of a pair (R,T ) is defined by setting a = R.

Remark 3.17. For a triple (X,T , at) constructed from (X,Δ, at) as in Remark 3.10,
it is obvious from the definition and from [HT04, Lemma 2.1] or [Sch08a, Theorem
6.3] that the test ideal of (X,Δ, at) agrees with the test ideal of (X,T , at), where
T is the algebra constructed from the pair (X,Δ) as above.

Furthermore, given a triple (R,T , at), one can likewise construct a pair (R,T ′)
which has the same test ideal as the triple (R,T , at). Simply define T ′

i := Ti ·(
F i
∗a

⌈t(pi−1)⌉
)
.

We will show that the big test ideal exists under the assumption that (R,T ) is
non-degenerate.
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Theorem 3.18. Suppose that (R,T ) is a non-degenerate pair (respectively, that
(R,T , at) is a non-degenerate triple). Then the big test ideal τb(R;T ) (respectively
τb(R;T , at)) exists.

In order to prove this we need several preliminary results. But first we give a
definition.

Definition 3.19. Suppose that (R,T , at) is a non-degenerate triple. An element
c ∈ a ∩ R◦ is called a homogeneously defined big sharp test element (or simply a
HDBS test element) for the triple (R,T , at) if for every d ∈ R◦ there exists a

φ ∈ Ti, i > 0 such that c ∈ φ(F i
∗a

⌈t(pi−1)⌉(d)). One can also make an analogous
definition for pairs.

Remark 3.20. If c is an HDBS test element, then for any c′ ∈ R◦, c′c is also an
HDBS test element.

Once we prove that HDBS test elements exist, Theorem 3.18 follows quickly.

Proof of Theorem 3.18 modulo HDBS test elements. Suppose that c ∈ a∩R◦ is an
HDBS test element for a non-degenerate triple (R,T , at), and that J is uniformly
(T , at, F )-compatible with J ∩R◦ �= ∅. Then clearly c ∈ J . On the other hand, it
is easy to see that the sum

I :=
∑

e≥0

∑

φ∈Te

φ(F e
∗ a

t(pe−1)(c)) ⊆ J

is the smallest uniformly F -compatible ideal containing c. Therefore we obtain that
I = τb(R;T , at). �

Therefore, we will prove that an HDBS test element exists. The idea is exactly
the same as the usual construction of test elements; see [HH90, Section 6], [Tak04b,
Lemma 2.5], [Hoc07], [Sch09, Section 6].

Proposition 3.21. Suppose that (R,T , at) is a non-degenerate triple with non-
degenerate homogeneous element φ ∈ Te. Then there exists an HDBS test element
for (R,T , at).

We first need a lemma.

Lemma 3.22. Assuming the hypotheses of Proposition 3.21. Suppose that c ∈
a ∩R◦ is such that Rc is strongly regular (for example, if Rc regular) and

DegenLocus(φ) ⊆ V (c) ⊆ X = SpecR.

Then (Rc,Tc, a
t
c) is strongly F -regular. Furthermore, for every d ∈ R◦, there exist

positive integers m,n > 0 such that cm ∈ φn(Fne
∗ (d)a⌈t(p

ne−1)⌉).

Proof. We see that φ generates HomRc
(F e

∗Rc, Rc) as an F e
∗Rc-module by the hy-

pothesis about the degeneracy locus of φ. This then implies that φn generates
HomRc

(Fne
∗ Rc, Rc) as an Fne

∗ Rc-module (since Rc is regular; see [Sch09, Lemma
3.8, Corollary 3.9]). In other words, (Tc)ne = (C (Rc))ne. Therefore, since Rc is
strongly F -regular, there exists some n > 0 and ψ ∈ HomRc

(Fne
∗ Rc, Rc) such that

1 ∈ ψ(Fne
∗ (d)a

⌈t(pne−1)⌉
c ) (note ac = R). But then

1 ∈ φ
n
(Fne

∗ (d)a⌈t(p
ne−1)⌉

c )

as desired since ψ is obtained from φ
n
by premultiplication by an element of R.

By clearing denominators, the second result is obtained. �
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Proof of Proposition 3.21. Fix notation as in the statement of Lemma 3.22. In
particular, choose some non-degenerate φ. Choose c as in Lemma 3.22. Setting
d = 1 in Lemma 3.22, we see that there exist some positive integers m1, n1 so that
cm1 ∈ φn1(Fn1e

∗ (1)a⌈t(p
n1e−1)⌉). Furthermore, we have

c2m1 ∈ cm1φn1

(
Fn1e
∗ (1)a⌈t(p

n1e−1)⌉
)

= φn1

(
Fn1e
∗ (cp

n1em1)a⌈t(p
n1e−1)⌉

)

⊆ φn1

(
Fn1e
∗ (c2m1)a⌈t(p

n1e−1)⌉
)

⊆ φn1

(
Fn1e
∗ a

⌈t(pn1e−1)⌉cm1φn1

(
Fn1e
∗ (1)a⌈t(p

n1e−1)⌉
))

⊆ φ2n1

(
F 2n1e
∗ (c2m1)a⌈t(p

2n1e−1)⌉
)

⊆ . . . ⊆ φnn1

(
Fnn1e
∗ (c2m1)a⌈t(p

nn1e−1)⌉
)

for every integer n > 0. Therefore c2m1 ∈ φnn1
(
Fnn1e
∗ a

⌈t(pnn1e−1)⌉
)
for every

integer n > 0. We will show that c3m1 is an HDBS test element.
Now fix any d ∈ R◦. Again by Lemma 3.22, we can find some positive integers

md, nd such that cmd ∈ φnd(Fnde
∗ (d)a⌈t(p

nde−1)⌉). If md is less than 3m1, then we
are done. Otherwise, we may assume that md = pnn1em1 for some n > 0 (since
making md larger is harmless). But then

c3m1 ∈ cm1φnn1

(
Fnn1e
∗ a

⌈t(pnn1e−1)⌉
)

= φnn1

(
Fnn1e
∗ cp

nn1em1a
⌈t(pnn1e−1)⌉

)

⊆ φnn1

(
Fnn1e
∗ a

⌈t(pnn1e−1)⌉φnd(Fnde
∗ (d)a⌈t(p

nde−1)⌉)
)

⊆ φnn1+nd

(
Fnn1e+nde
∗ (d)a⌈t(p

nn1e+nde−1)⌉
)
,

which completes the proof. �

We now list some basic properties of test ideals.

Proposition 3.23. Suppose that (R,T , at) is a non-degenerate triple. Further
suppose that T ′ ⊆ T is a graded subalgebra such that the triple (R,T ′, at) is also
non-degenerate. Then the following hold:

(i) τb(R;T , at) ⊇ τb(R;T ′, at).
(ii) For any multiplicative set W , we have

W−1τb(R;T , at) = τb(W
−1R;W−1

T ,W−1
a
t).

(iii) (R,T , at) is strongly F -regular if and only if τb(R;T , at) = R.

Proof. Part (i) is obvious. Part (ii) is easy once we observe that an HDBS test
element remains an HDBS test element after localization. But this follows since if
W is a multiplicative set, every element of (W−1R)◦ can be written as a fraction
r/w for w ∈ W and r ∈ R◦; see for example [Hoc07, Page 57].

The (⇒) direction of (iii) is obvious. Thus we prove the (⇐) direction. Since
we can absorb the a

t term into T as in Remark 3.10, we may assume that a = R.
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Fix d ∈ R◦, choose c to be an HDBS test element and write

R = τb(R;T ) =
∑

e

∑

φ∈Te

φ(F e
∗ (cR)).

First we do the case where R is local with maximal ideal m. In that case, since a
sum of ideals contained in m is still contained in m, there must be some e > 0 and
φ ∈ Te such that φ(F e

∗ (cR)) � m, which implies that 1 ∈ φ(F e
∗ (cR)). Thus since

for every d ∈ R◦ we have that c ∈ ψ(F i
∗(dR)) for some i > 0 and ψ ∈ Ti, we have

1 ∈ (φ · ψ)(F e+i
∗ (dR)), as desired.

Now assume that R is no longer necessarily local. Choose some maximal ideal
m. By (ii) and the above work, we see that there exists some φ ∈ Te such that
φ(F e

∗ (dR))m = Rm. Thus this also holds in a neighborhood U = SpecRb of m.
We can cover SpecR by a finite number of such neighborhoods Uj = SpecRbj =

SpecR[b−1
j ] with associated φj ∈ Tej such that φj(F

ej
∗ dRbj ) = Rbj . By replacing

φj with self-compositions, and using Remark 3.14, we may assume that all the ej
are equal to the same e. Consider I :=

∑m

j=1 φj(F
e
∗ (dR)) ⊆ R. Now Ibj = Rbj by

construction. This implies that I :=
∑m

j=1 φj(F
e
∗ (dR)) = R.

Note that by Remark 3.7, there is a natural map Te → R (the evaluation map).
Thus we also have a natural map Φ : Te · (F e

∗ (dR)) → R by restriction. The
image of Φ certainly contains I. In particular, there exists a φ ∈ Te such that
1 ∈ φ(F e

∗ (dR)), as desired. �

4. Log-Q-Gorenstein pairs

In this section, we consider special pairs (R,T ) that behave essentially like pairs
(R,Δ), where R is normal and KR + Δ is Q-Cartier with index not divisible by
p > 0.

Definition 4.1. A non-degenerate pair (R,T ) (or non-degenerate triple (R,T , at))
will be called pseudo-Q-Gorenstein if there exists an integer e0 > 0 such that the
following holds:

(i) Te0 is isomorphic (as an F e0
∗ R-module) to F e0

∗ R.
(ii) For every e > 0, write e = ne0 + r for some n, r ≥ 0 (note that we do not

require r < e0). Then the natural map

Tne0 ⊗F
ne0
∗ R Fne0

∗ Tr
�� Te

φ⊗ Fne0
∗ ψ ✤

�� φ ◦ (Fne0
∗ ψ)

induced by composition is an isomorphism of F e
∗R-modules.

Remark 4.2. Note that (i) and (ii) imply that Tme0
∼= Fme0

∗ R for all m ≥ 0.

Remark 4.3. Given a non-degenerate φ ∈ C (R)i, the subalgebra T = R〈φ〉 gener-
ated by φ and R = C (R)0 is pseudo-Q-Gorenstein.

Remark 4.4. It follows from [Sch09, Corollary 3.9] that if R is a normal domain
and Δ is an effective Q-divisor such that R((pe0 − 1)(KR + Δ)) is free,2 then the
associated pair (R,T ) is pseudo-Q-Gorenstein.

2This always happens locally for pairs (X,Δ) such that KX + Δ is Q-Cartier with index not
divisible by p > 0. It follows because if (pe − 1)Δ is integral, then HomR(F e

∗R((pe − 1)Δ),R) ∼=
R((1− pe)(KX +Δ)).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5934 KARL SCHWEDE

Remark 4.5. Note that if (R,T ) is pseudo-Q-Gorenstein, then T is also finitely
generated as an algebra (over T0).

Proposition 4.6 ([HH90, Lemma 8.16], [Tak08, Proposition 3.5], [Sch09, Proposi-
tion 4.7]). Suppose that (R,T , at) is pseudo-Q-Gorenstein with associated e0 > 0.
Consider the graded subalgebra

T
′ =

⊕

n≥0

Tne0 ⊆ T .

Then τb(R;T , at) = τb(R;T ′, at).

Proof. We may select a c ∈ a ∩ R◦ that is an HDBS test element for (R,T ′, at).
Choose d ∈ R◦ such that

da⌈t(p
ne0+k−1)⌉ ⊆ (a⌈t(p

ne0−1)⌉)[p
k]

for all n ≥ 0 and all k < e0 (we can do this due to [Sch09, Lemma 4.6, Proposition
4.7]). Then dcp

e0
is also an HDBS test element for both (R,T ′, at) and (R,T , at).

Fix ψ ∈ Te0 to be a generator of Te0 as an F e0
∗ R-module. Then ψn is a generator of

Tne0 as an Fne0
∗ R-module. Furthermore, if e = ne0+ k, then every element φ ∈ Te

can be written as ψn ◦ Fne0
∗ φ′ for some φ′ ∈ Tk. Therefore,

τb(R;T , at) =
∑

e≥0

∑

φ∈Te

φ(F e
∗ (dc

pe0
)a⌈t(p

e−1)⌉)

=
∑

n≥0

e0−1∑

k=0

∑

φ∈Tne0+k

φ(Fne0+k
∗ (dcp

e0
)a⌈t(p

ne0+k−1)⌉)

=
∑

n≥0

e0−1∑

k=0

∑

φ′∈Tk

ψn(Fne0
∗ φ′(F k

∗ (dc
pe0

)a⌈t(p
ne0+k−1)⌉))

⊆
∑

n≥0

e0−1∑

k=0

∑

φ′∈Tk

ψn(Fne0
∗ φ′(F k

∗ (c
pk

)(a⌈t(p
ne0−1)⌉)[p

k]))

=
∑

n≥0

e0−1∑

k=0

∑

φ′∈Tk

ψn(Fne0
∗ (c)(a⌈t(p

ne0−1)⌉)φ′(F k
∗ (R)))

⊆
∑

n≥0

e0−1∑

k=0

∑

φ′∈Tk

ψn(Fne0
∗ (c)(a⌈t(p

ne0−1)⌉)R)

=
∑

n≥0

ψn(Fne0
∗ (c)(a⌈t(p

ne0−1)⌉)) = τb(R;T ′, at).

Note that the final equality occurs because ψn generates Tne as an Fne
∗ R-module.

�

Remark 4.7. This result is closely related to the fact that if czp
e

∈ I [p
e] for all

e = ne0, then z ∈ I∗; compare with [Sch09, Proposition 4.7], [Tak08, Proposition
3.5] and [HH90, Lemma 8.16]. In fact, those previous results all had related proofs.
However they all relied on (Matlis-dual) analogs of the fact that there are natural
maps HomR(F

e+k
∗ R,R) → HomR(F

e
∗R,R). We took a slightly different approach

above in the proof of Proposition 4.6.
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We also link the test ideals of pseudo-Q-Gorenstein triples (R,T , at) with the
test ideals of triples (R,Δ, at).

Corollary 4.8. Suppose that R is a normal domain and that (R,T , at) is a pseudo-
Q-Gorenstein triple with associated e0. Then there exists an effective Q-divisor Δ
such that (pe0 − 1)(KR +Δ) is Cartier and such that

τb(R; Δ, at) = τb(R;T , at).

Proof. Choose φ ∈ Te0 which generates Te0 as an F e0
∗ R-module. Then by [Sch09,

Theorem 3.10], φ corresponds to an effective Q-divisor Δ. The result then follows
immediately from Definition 3.16, Proposition 4.6 and [Sch09, Proposition 4.7]. �

5. Proof of the main theorem

In this section we prove our main result, which is stated below.

Theorem 5.1. Suppose that (R,T , at) is a non-degenerately generated triple.
Then there exist graded subalgebras T 1, . . . ,T n ⊆ T such that each (R,T i, at)
is pseudo-Q-Gorenstein and such that

τb(R;T , at) =

n∑

i=1

τb(R;T i, at).

We obtain the following corollaries.

Corollary 5.2. Suppose that (R, at) is a pair and that R is an F -finite normal
domain. Then

τb(R; at) =
∑

∆

τb(R; Δ, at),

where the sum is over effective Q-divisors Δ such that KX +Δ is Q-Cartier with
index not divisible by p > 0 and X = SpecR.

Proof. The containment ⊇ follows from the fact that τ (R; Δ, at) ⊆ τb(R; at) for
every effective Δ. The containment ⊆ follows from Corollary 4.8. �

Remark 5.3. The actual correspondence from [Sch09] between φ’s and Δ’s identifies
φ (modulo some equivalence relation) with Δ such that (pe−1)(KX +Δ) is Cartier
and that OX((pe− 1)(KX +Δ)) ∼= OX . Thus we may further restrict our sum in
the previous corollary to be over such a Δ.

Corollary 5.4. Suppose that (R, at) is a pair and that R is an F -finite normal
domain, X = SpecR. Then there exist finitely many effective Q-divisors Δi such
that KX +Δi is Q-Cartier with index not divisible by p and that

τb(R; at) =
∑

∆i

τb(R; Δi).

Proof. Out of the pair (R, at), one may create a graded subalgebra T ⊆ C (R)
which has the same test ideal as the pair (R, at); see Remark 3.10. Then one can
apply Theorem 5.1 and Corollary 4.8. �
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The proof of Theorem 5.1 is rather technical. So we first outline the strategy we
will use. There are three steps.

(i) Find non-degenerate homogeneous φi ∈ T , i = 1, . . . ,m such that if T ′

is the subalgebra of T generated by T0 and the φi, then τb(R;T , at) =
τb(R;T ′, at). This can be done by the Noetherian property of R.

(ii) Find an element d ∈ R◦ that is simultaneously an HDBS test element for
all triples (R,S , at), where S = R〈ψ〉 ranges over all pseudo-Q-Gorenstein
subalgebras of T generated by T0 and a single product ψ of the φi.

(iii) Observe that τb(R;T , at) can be generated elements which are contained
in the test ideals τb(R;S , at) for various S as in step (ii).

We first prove step (i).

Proposition 5.5. Suppose that (R,T , at) is a non-degenerately generated triple.
Then there exists a subalgebra T ′ generated by R ∼= T0 and finitely many addi-
tional homogeneous φi such that τb(R;T , at) = τb(R;T ′, at). Furthermore, we
can assume that the φi’s are non-zero at every minimal prime of R and thus that
(R,T ′, at) is also non-degenerately generated.

Proof. Begin by choosing any homogeneous φ1 that is non-zero at every minimal
prime of R and set T 1 to be the subalgebra of T generated by R and φ1. Note
that τb(R;T 1, at) is the smallest ideal J such that J ∩ R◦ �= ∅ and such that
φ(F e

∗ a
⌈t(pe−1)⌉) ⊆ J for all e ≥ 0 and φ ∈ T 1

e . Therefore, since T 1 ⊆ T ,
τb(R;T 1, at) ⊆ τb(R;T , at). If we have equality, we are done; set T ′ = T 1.
Otherwise choose some homogeneous φ2 ∈ Te2 such that φ2(F

e2
∗ τb(R;T 1, at)) �

τb(R;T 1, at). We also assume that φ2 is non-zero at every minimal prime at R
(note that this is possible since (R,T , at) is non-degenerately generated). Set T2

to be the subalgebra of T generated by T1 and φ2.
Note that by hypothesis, τb(R;T 1, at) � τb(R;T 2, at). Again, if τb(R;T 2, at)

is equal to τb(R;T , at), we are done; set T ′ = T 2. Otherwise, we can continue
the process. However, this must stop eventually since R is Noetherian. �

We now need to find an element that is simultaneously an HDBS test element
for all triples (R,R〈ψ〉, at) as in (ii).

Proposition 5.6. Suppose that (R,T ′, at) is a triple and that T ′ is generated
by finitely many homogeneous φi each of which is non-zero at all of the minimal
primes of R. We will use φi1,...,in to denote the product φi1 ·· · · ·φin . Set S i1,...,in =
R〈φi1,...,in〉 to be the subalgebra of T ′ generated by R and φi1,...,in and suppose that
ci ∈ a ∩ R◦ is an HDBS test element for (R,S i, at). Then there exists a single
c ∈ a ∩R◦ that is an HDBS test element for every triple (R,S i1,...,in , at).

Before proving this we need a lemma.

Lemma 5.7. Suppose that (R,R〈φ〉, at) is a triple, where φ is a homogeneous
element of HomR(F

e
∗R,R). Further suppose that c ∈ a∩R◦ is an element such that

Rc is regular, DegenLocus(φ) ⊆ V (c) and that c ∈ φ(F e
∗ (c)a

⌈t(pe−1)⌉). Then c2 is
an HDBS test element for (R,R〈φ〉, at).

Proof. Choose d ∈ R◦. Since Rc is regular and DegenLocus(φ) ⊆ V (c) we have that
Rc is strongly F -regular and φ generates HomRc

(F e
∗Rc, Rc) as an F e

∗Rc-module;
see Lemma 3.22. Therefore there exists an n so that 1 ∈ φn(Fne

∗ dRc). By clearing
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denominators we see that cm ∈ φn(Fne
∗ (d)a⌈t(p

ne−1)⌉) (note c was in a). Roughly
speaking, our goal is now to reduce m to a number which is independent of d.

On the other hand, by induction, we claim for all l ≥ 1 that

c ∈ φl(F le
∗ (c)a⌈t(p

le−1)⌉).

This is because

φl
(
F le
∗ (c)a⌈t(p

le−1)⌉
)

⊆ φl
(
F le
∗ a

⌈t(ple−1)⌉φ(F e
∗ (c)a

⌈t(pe−1)⌉)
)

= φl
(
F le
∗ φ(F e

∗ (c)(a
⌈t(ple−1)⌉)[p

e]
a
⌈t(pe−1)⌉)

)

⊆ φl+1
(
F

(l+1)e
∗ (c)(a⌈t(p

(l+1)e−1)⌉)
)
.

We now show that there exists an l such that c2 ∈ φl(F le
∗ (cm)a⌈t(p

le−1)⌉). Choose
l such that ple + 1 ≥ m. Then

c2 ∈ c · φl(F le
∗ (c)a⌈t(p

le−1)⌉) ⊆ φl(F le
∗ (cp

le+1)a⌈t(p
le−1)⌉)

⊆ φl(F le
∗ (cm)a⌈t(p

le−1)⌉),

as desired. But then we have that

c2 ∈ φl(F le
∗ cma

⌈t(ple−1)⌉)

⊆ φl
(
F le
∗ a

⌈t(ple−1)⌉φn(Fne
∗ (d)a⌈t(p

ne−1)⌉)
)

= φl+n
(
F

(l+n)e
∗ (d)(a⌈t(p

le−1)⌉)[p
ne]

a
⌈t(pne−1)⌉)

)

⊆ φl+n
(
F

(l+n)e
∗ (d)a⌈t(p

(l+n)e−1)⌉)
)
,

which completes the proof. �

Proof of Proposition 5.6. For each φi, we claim we can choose ci ∈ a∩R◦ such that
the following conditions hold:

(a) Rci is regular.
(b) DegenLocus(φi) ⊆ V (ci).
(c) ci is an HDBS test element for (R,S i, at).
(d) ci ∈ φi(F

ei
∗ (ci)a

⌈t(pei−1)⌉).

Notice that finding a ci that satisfies (a), (b) and (c) is easy. Therefore, fix a c′i
satisfying the first three conditions. To find a ci also satisfying condition (d), first
we note that there exists some m > 0 such that

(1) c′mi ∈ φi(F
ei
∗ (c′i)a

⌈t(pei−1)⌉).

To see this, localize at c′i. Then Rc′
i
is F -pure so that 1 ∈ ψ(F ei

∗ Rc′
i
) for some

ψ ∈ C (Rc′
i
)ei . But any such ψ can be expressed as φi precomposed with some

element of Rc′
i
. Therefore 1 ∈ φi(F

ei
∗ Rc′

i
). Clearing denominators proves that
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equation (1) holds for some m. Note that this is a slight improvement over Lemma
3.22 since we need not raise φi to a power. We then have that

c′2mi ∈ c′mi φi(F
ei
∗ (c′i)a

⌈t(pei−1)⌉)

= φi(F
ei
∗ (c′1+mpei

i )a⌈t(p
ei−1)⌉)

⊆ φi(F
ei
∗ (c′2mi )a⌈t(p

ei−1)⌉).

Set ci to be c′2mi .
Also notice that if ci satisfies condition (d), then for every d ∈ R, dci also satisfies

condition (d) since

dci ∈ dφi(F
ei
∗ (ci)a

⌈t(pei−1)⌉)

= φi(F
ei
∗ (dp

e

ci)a
⌈t(pei−1)⌉)

⊆ φi(F
ei
∗ (dci)a

⌈t(pei−1)⌉).

Set c′ =
∏

i ci. Consider φi1,...,in = φi1 · · · · · φin . Set U = SpecRc′ ⊆ SpecR.
Note that U is regular. Also note that at each (possibly non-closed) point Q ∈ U ,
φi generates HomRQ

(F ei
∗ RQ, RQ) as an F ei

∗ RQ-module. Therefore φi1,...,in also

generates HomRQ
(F

ei1+···+ein
∗ RQ, RQ) as an F

ei1+···+ein
∗ RQ-module (this follows

from [Sch09, Lemma 3.8]). In particular, DegenLocus(φi1,...,in) ⊆ V (c′).
Finally, note that we have

c′ ∈ φi1(F
ei1
∗ a

⌈t(p
ei1 −1)⌉(c′))

⊆ φi1(F
ei1
∗ a

⌈t(p
ei1 −1)⌉φei2

(F
ei2
∗ a

⌈t(p
ei2 −1)⌉(c′)))

⊆ φi1,i2(F
ei1+ei2
∗ a

⌈t(p
ei1

+ei2 −1)⌉(c′)))

⊆ . . .

⊆ φi1,...,in(F
ei1+···+ein
∗ a

⌈t(p
ei1

+···+ein −1)⌉(c′))).

Now apply Lemma 5.7 and set c = c′2. �

We are now in a position to prove Theorem 5.1 (that is, prove (iii) in the outline).

Proof of Theorem 5.1. The containment ⊇ is trivial, so we will prove the other con-
tainment. Use Proposition 5.5 to find finitely many non-degenerate homogeneous
φi ∈ T generating a subalgebra T ′ such that τb(R;T , at) = τb(R;T ′, at). By
Proposition 5.6, we can choose a c ∈ a ∩ R◦ that is an HDBS test element for
(R,T i1,...,in , at) for each subalgebra T i1,...,in = R〈φi1,...,in〉 of T . Again we use
φi1,...,in to denote the product φi1 · · · · · φin .

Now,

τb(R;T ′, at) =
∑

e≥0

∑

φ∈T ′

e

φ(F e
∗ (c)a

⌈t(pe−1)⌉)

=
∑

e≥0

⎛
⎝

∑

φi1,...,in∈T ′

e

φi1,...,in(F
e
∗ (c)a

⌈t(pe−1)⌉)

⎞
⎠ .

Therefore we can choose generators for τb(R;T , at) = τb(R;T ′, at) that are ele-
ments of φi1,...,in(F

e
∗ (c)a

⌈t(pe−1)⌉) for various φi1,...,in . But any such generator is
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also contained clearly in

τb(R;S i1,...,in , at) = τb(R;R〈φi1,...in〉, a
t)

since c is also an HDBS test element for (R;S i1,...,in , at). This completes the
proof. �

6. Further remarks and questions

Remark 6.1 (Big versus finitistic test ideals). The reader may have noticed that, in
this paper, we dealt exclusively with the big (aka non-finitistic) test ideal τb(R; at)
and not the usual (aka finitistic) test ideal τ (R; at). Roughly speaking, the big test
ideal is made up of elements which “test” tight closure for all submodules of all
modules, whereas the usual test ideal is made up of elements which “test” tight
closure for all submodules of finitely generated modules; see [Hoc07] and [Sch08a].
The big test ideal and the usual test ideal are known to agree in many situations,
see for example [LS99], [LS01], [AM99], [HY03], and are conjectured to coincide
in general (in particular, one always has the containment τb(R; at) ⊆ τ (R; at)).
Furthermore, if KX +Δ is Q-Cartier, then τb(R; Δ, at) = τ (R; Δ, at); see [Tak04b,
Theorem 2.8(2)], [HY03, Definition–Theorem 6.5].

The big test ideal is known to be much better behaved than the finitistic test
ideal in general (for example, its formation is known to commute with localization
and completion). Finally, it is believed by experts that if it is discovered that
τb(R; at) � τ (R; at) for some example, then the big test ideal is the “correct”
notion in general.

Of course, it follows from this paper that if the finitistic test ideal τ (R; at) is
equal to the same sum ∑

KX+∆ Q-Cartier

τb(R; Δ, at),

then τb(R; at) = τ (R; at).

Remark 6.2 (Relation with de Fernex and Hacon’s multiplier ideal). Suppose that
X = SpecR is a normal variety in characteristic zero but X is not necessarily Q-
Gorenstein. It has been asked whether J (X, at) (the multiplier ideal of de Fernex
and Hacon) agrees with the (big) test ideal τb(Rp; a

t
p) after reduction to character-

istic p ≫ 0. Initially, one might hope that the results of this paper might imply
this result. However, the author believes that this paper only provides (strong)
evidence that this is indeed the case. The problem is that the Δi constructed in
Corollary 5.2 seem to rely heavily on the particular characteristic we are working
in, and so are probably not reduced from characteristic zero as well (at least not in
a way in which their properties can be controlled).

Consider the following question.

Question 6.3. Suppose that (X, at) is a pair in characteristic p > 0. Then does
there exist a single effective Q-divisor Δ such that KX +Δ is Q-Cartier with index
not divisible by p > 0 and so that τb(X; Δ, at) = τ (X; at)?

The work of de Fernex and Hacon suggests this may be true. This question was
also asked by the author and Karen Smith in [SS09] and was affirmatively answered
in the case that X is strongly F -regular and a = R (although the version where
a �= R can also be easily obtained from the methods of this paper).
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Finally, there are certain similarities between the methods employed in this paper
and the methods of [SS09, Theorem 4.3(i)]. The goal in [SS09, Theorem 4.3(i)] was
also to find a map φ such that (R,R〈φ〉) was strongly F -regular (although we
phrased things in terms of finding the divisor associated to φ, instead of R〈φ〉, as in
[Sch09]). One consideration that makes the setting of [SS09] easier to work in is that
one must only find a single φ such that 1 ∈ τb(R;R〈φ〉). This φ is obtained explicitly
by composing several potential such φ (but again, viewing them as divisors instead
of maps). The proof is thus somewhat more geometric. Furthermore, much of the
work we have to do in terms of keeping track of various test elements is unnecessary
in the setting of [SS09].
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