
Autom Softw Eng (2010) 17: 5–31
DOI 10.1007/s10515-009-0056-x

Test input reduction for result inspection to facilitate
fault localization

Dan Hao · Tao Xie · Lu Zhang · Xiaoyin Wang ·
Jiasu Sun · Hong Mei

Received: 18 July 2008 / Accepted: 31 July 2009 / Published online: 19 August 2009
© Springer Science+Business Media, LLC 2009

Abstract Testing-based fault-localization (TBFL) approaches often require the
availability of high-statement-coverage test suites that sufficiently exercise the areas
around the faults. However, in practice, fault localization often starts with a test suite
whose quality may not be sufficient to apply TBFL approaches. Recent capture/replay
or traditional test-generation tools can be used to acquire a high-statement-coverage
test collection (i.e., test inputs only) without expected outputs. But it is expensive or
even infeasible for developers to manually inspect the results of so many test inputs.
To enable practical application of TBFL approaches, we propose three strategies to
reduce the test inputs in an existing test collection for result inspection. These three
strategies are based on the execution traces of test runs using the test inputs. With the
three strategies, developers can select only a representative subset of the test inputs for
result inspection and fault localization. We implemented and applied the three test-
input-reduction strategies to a series of benchmarks: the Siemens programs, DC, and

D. Hao · L. Zhang · X. Wang · J. Sun · H. Mei (�)
Key Laboratory of High Confidence Software Technologies, Ministry of Education, Institute of
Software, School of Electronics Engineering and Computer Science, Peking University, Beijing,
100871, People’s Republic of China
e-mail: meih@pku.edu.cn

D. Hao
e-mail: haod@sei.pku.edu.cn

L. Zhang
e-mail: zhanglu@sei.pku.edu.cn

X. Wang
e-mail: wangxy06@sei.pku.edu.cn

J. Sun
e-mail: sjs@sei.pku.edu.cn

T. Xie
Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
e-mail: xie@csc.ncsu.edu

mailto:meih@pku.edu.cn
mailto:haod@sei.pku.edu.cn
mailto:zhanglu@sei.pku.edu.cn
mailto:wangxy06@sei.pku.edu.cn
mailto:sjs@sei.pku.edu.cn
mailto:xie@csc.ncsu.edu

6 Autom Softw Eng (2010) 17: 5–31

TCC. The experimental results show that our approach can help developers inspect
the results of a smaller subset (less than 10%) of test inputs, whose fault-localization
effectiveness is close to that of the whole test collection.

Keywords Test suite reduction · Testing · Debugging · Fault localization

1 Introduction

Software debugging is usually an inevitable task in software development and main-
tenance as developers can hardly write faultless programs in the first place. Due to
the tediousness of debugging, various approaches have been proposed to help devel-
opers locate faults. Among them, testing-based fault-localization (TBFL) approaches
(Agrawal et al. 1995; Hao et al. 2008; Jones and Harrold 2005; Jones et al. 2002;
Renieris and Reiss 2003) are quite promising. Typical TBFL approaches use the exe-
cution information of many test runs to calculate the suspicion of each statement and
rank statements according to their suspicions. Intuitively, the suspicion of a statement
mainly comes from its involvement in failed test runs.1 Therefore, TBFL approaches
need both the coverage information and the information whether each test run is
passed or failed when calculating the suspicions.

Although TBFL approaches have shown to be effective in locating faults, these
approaches assume the availability of a large number of test runs that sufficiently ex-
ercise the areas around the faults together with the information whether each test run
is passed or failed. For example, TBFL approaches are popularly experimented using
test runs (Do et al. 2005) achieving near 100% statement coverage. Typically, these
approaches require a high-statement-coverage test suite composed of a large number
of test cases, each of which includes both the test input and expected output. With
such a test suite, it is convenient to acquire both the coverage information and the
information whether each test run is passed or failed. However, this high-statement-
coverage test suite with expected outputs is often not realistic in practice. Due to the
test oracle problem (Baresi and Young 2001), a developer can usually acquire only
a high-statement-coverage test collection2 containing test inputs without expected
outputs using capture/replay techniques (i.e., Saff et al. 2005) and/or test-generation
techniques (i.e., Sen et al. 2005). In such a circumstance, the developer has to man-
ually inspect3 the results of test runs using test inputs from such a test collection to
know whether the test runs are passed or failed. As a result, if the developer wants
to apply a TBFL approach efficiently, he or she needs to manually inspect the re-
sults of many test runs. This requirement may become a burden for applying TBFL
approaches in practice.

1When the result of one test run is expected, we refer to this test run as passed or successful; otherwise,
we refer to this test run as failed. However, in the field of testing, some researchers prefer to use posi-
tive/negative test runs rather than passed/failed test runs.
2In this paper, a “test collection” represents a collection of test inputs without expected outputs, to be
distinguished from a “test suite”, which is a collection of test cases, including both test inputs and their
expected outputs.
3In this paper, we use “check” and “inspect” interchangeably.

Autom Softw Eng (2010) 17: 5–31 7

To enable practical application of TBFL approaches when sufficient test cases (i.e.,
test inputs together with their expected outputs) are not available, we are required to
reduce the size of a test collection by selecting some test inputs (whose expected
outputs are not available) to retain from the test collection so that the developer can
apply a TBFL approach by inspecting only the results of these selected test inputs.
This problem is a test-reduction problem. Test reduction and test selection are two
popular problems in regression testing. Test reduction aims to remove the test cases
that become redundant in retesting a modified program, whereas test selection aims
to select test cases that are required in retesting a modified program by focusing on
the modified code. As this paper aims to reduce the size of a test collection so that
the reduced test collection can provide similar fault-localization effectiveness as the
whole test collection, the problem in this paper is more test reduction than test selec-
tion. However, as the reduced test collection is constructed by selecting and retaining
test inputs from the whole test collection, sometimes we use the word “select” in the
rest of the paper although the word “select” in our approach does not refer to test
selection in regression testing.

In this paper, we propose an approach to select test inputs (whose expected outputs
are not available) from an existing test collection for developers to check or inspect
their results before applying a TBFL approach. The major goal of our approach is
to reduce the developers’ effort on test-result checking. The basic idea is that for a
specific fault previously revealed by a test run, our approach selects some test inputs
for the developer to check their corresponding results. Thus, the developer can use
only the information associated with the test runs for the selected test inputs and the
failure-revealing test to locate the fault.

In particular, we propose three strategies to reduce the size of an existing test
collection by selecting a subset of test inputs whose corresponding results are to be
checked. In this way, less test-result checking can be performed to acquire informa-
tion for applying TBFL to locate faults. As our approach relies on coverage informa-
tion for this kind of selection, it is required that the execution traces of all the test
inputs in the test collection should be obtained before we apply the reduction strate-
gies. To investigate the effectiveness of our approach, we performed an experimental
study on various benchmarks. In the experiment, we compared our approach with the
test-suite reduction technique proposed by Harrold et al. (1993). The experimental
results show that all the three strategies select a substantially smaller subset of test
inputs from the original test collection. Among the three strategies, Strategy 1 and
Strategy 2 select as few test inputs as Harrold et al.’s technique. Moreover, the test
inputs selected by either of these two strategies are usually more effective in fault
localization than the test inputs selected by Harrold et al.’s technique.

This paper makes the following main contributions. (1) We propose three strate-
gies on reducing test inputs for result inspection to save effort of developers from
tedious test-result checking when applying TBFL approaches. (2) We experimentally
investigate the effectiveness of our three strategies compared with the test-suite re-
duction technique proposed by Harrold et al. (1993).

In the rest of the paper, for simplicity, we sometimes use a “test” to refer to a “test
input”.

The rest of the paper is organized as follows. Section 2 proposes our test-reduction
approach in detail and illustrates the three strategies. Section 3 discusses some issues

8 Autom Softw Eng (2010) 17: 5–31

in our work. Section 4 presents an experiment to investigate the effectiveness of our
approach. Section 5 discusses related work. Section 6 concludes our paper.

2 Approach

This section presents the details of our approach. We give a brief introduction of our
work (Sect. 2.1) and describe the details of three test-reduction strategies (Sect. 2.2).

2.1 Overview

As our approach aims at improving the test-result checking process for a specific
fault, the starting point of our approach is one fault-revealing or failed test.4 The
subsequent test-result checking process aims at collecting sufficient information for
locating the revealed fault by allowing the developer to check as few test results
as possible. Typically, there are already existing (passed) test cases where expected
outputs are already equipped or the developer may have checked some test results
before encountering the fault-revealing test. That is, encountering a failed test when
starting the test-result checking process would be a simplified situation. The actual
starting point would be one failed test together with several passed tests. However,
we can still assume that there is only one failed test in the beginning for convenience
of presenting our approach, because the situation where there are several passed tests
besides this failed test can be viewed as a situation occurring during the test-reduction
process.

Figure 1 depicts an overview of our approach. The input of our approach is a failed
test and a test collection, together with the corresponding execution traces of all these

Fig. 1 Overview of our
test-reduction approach

4The cases of multiple failing tests are also supported, for which any failed test can be used as the starting
point of our approach.

Autom Softw Eng (2010) 17: 5–31 9

tests. Here, an execution trace refers to which statements are executed by a test and
the trace is gathered with some instrumentation tool such as “gcov” command of
GNU C Compiler. Except for the failed test, it is unknown whether the result of any
test in the test collection is passed or failed at this initial stage. To be distinguished
from failed tests checked during the subsequent reduction process, the input failed
test is referred to as the initial failed test in this paper. With the given test collection
and the initial failed test, our approach selects tests from the test collection based on
some test-reduction strategies. Specifically, we propose three test-reduction strate-
gies in this paper, which are to be fully presented in the rest of this section. For any
strategy, the test-reduction process is as follows. One unchecked test is selected ac-
cording to the coverage information of all the tests and the information whether each
checked test is passed or failed. After the result of the selected test is checked, our ap-
proach evaluates whether checking the result of another unchecked test is needed. If
so, the test-reduction process continues. Otherwise, the test-reduction process stops.
After the process stops, the checked tests and the initial failed test are fed to a TBFL
approach, which can produce a ranked list of suspicious statements.

In this paper, we introduce our approach based on statement coverage. However,
this approach can be easily generalized to other kinds of coverage criteria such as
branch or definition-use pair coverage, which we plan to fully evaluate in our future
work.

2.2 Test-reduction strategies

This section presents the three test-reduction strategies, each of which selects a rep-
resentative set of tests for result inspection before applying fault-localization ap-
proaches.

2.2.1 Strategy 1

In TBFL, as the suspicion of each statement is calculated based on the information
of how many passed and failed tests cover5 the statement, statements executed by
exactly the same tests are not distinguishable from each other and are assigned the
same suspicion. Thus, a straightforward idea to reduce the number of tests fed to
TBFL is to find a small subset of the test collection that has the same capability
to distinguish the statements as the whole test collection. This idea motivates the
development of our first strategy.

Given a target program P , which consists of statements s1, s2, . . . , sn, and a set
of tests T = {t1, t2, . . . , tm}, two statements of program P are called “T-undistin-
guishable” if and only if each test in T either executes both statements or neither state-
ment. According to the traditional set theory, this binary relation
“T-undistinguishable” is an equivalence relation (Enderton 1977) because this re-
lation is reflexive, symmetric, and transitive.

If R is an equivalence relation, variable x belongs to the domain and the range
of R, then the equivalence class (Enderton 1977) of variable x is a set of variables y

satisfying the following conditions:

5In this paper, we use “cover”, “exercise”, and “execute” interchangeably.

10 Autom Softw Eng (2010) 17: 5–31

1. 〈x, y〉 ∈ R;
2. y belongs to the domain and the range of R.

Note that the equivalence class mentioned in this paper refers to the concept defined
in the traditional set theory. The equivalence relation refers to the equivalence relation
“T-undistinguishable”. Based on this equivalence relation, we have a partition of P .
That is, the equivalence relation “T-undistinguishable” partitions the statements of the
target program P into several equivalence classes. Each equivalence class consists of
statements that are executed by the same tests.

For the given set of tests T , we use Div(T) called division number to represent
the number of equivalence classes that the tests in T have partitioned the statements
of the target program into. Intuitively, the larger Div(T) is, the more powerful T is
to distinguish statements. In the simplest circumstance where T contains just one
test, it partitions the statements of program P into two equivalence classes: (1) those
covered by this test and (2) those not covered. Then Div(T) is two.

Using the division number, we have our first strategy: when the set of currently
selected tests is To, Strategy 1 always selects the next test t such that Div(To ∪ {t})
can be maximized. If there is more than one test satisfying this condition, Strategy 1
selects any of these tests. When Div(To ∪ {t}) is the same as Div(To) for any unse-
lected test t , no more tests are needed to be selected. This condition is the stopping
condition of Strategy 1.

In the implementation of Strategy 1, we maintain the existing equivalence classes
partitioned by currently selected tests (i.e., To). Note that To initially contains only
the initial failed test. When determining which test to be selected next, we can just
calculate how many existing equivalence classes can be further partitioned by each
unselected test. The test t that partitions the most existing equivalence classes can be
ensured to maximize Div(To ∪{t}). After t is selected, we need to update the existing
equivalence classes through replacing each equivalence class that can be partitioned
by t with its two sub-classes. When no unselected tests can further partition any
existing equivalence classes, the reduction process stops.

The equivalence classes based on the definition of “T-undistinguishable” in Strat-
egy 1 is similar to the concept of a “block” given by Baudry et al. (2006). Strategy 1
in this paper can be viewed as the mapping of Baudry et al.’s approach to the problem
identified in this paper. However, Baudry et al.’s approach aims at enhancing existing
test suites for fault localization, whereas our Strategy 1 aims at reducing test-result
inspection efforts for fault localization. Strategy 1 serves as the starting point of our
research. We further propose two more strategies considering some factors that pos-
sibly influence the number of reduced tests and the fault-localization effectiveness of
the reduced tests.

Here we use an example from Jones and Harrold (2002) to illustrate Strategy 1.
Table 1 shows the example program “Mid” and its execution traces. The functional-
ity of “Mid” is to find the median of the three input values. There are two faults in
Lines 7 and 12, respectively, where value m should be assigned with the value of x

rather than that of y. The program is in Column 1 of the table. The initial failed test
is t1. The test collection has four tests, denoted as T = {t2, t3, t4, t5}. Execution traces
are represented by •. Some statements are distributed in multiple lines. For example,
Lines 4 and 5 in Table 1 compose an if-statement. We take them as two statements

Autom Softw Eng (2010) 17: 5–31 11

Table 1 Program Mid and its
execution traces Mid() { Test Collection

int x, y, z,m; t1 t2 t3 t4 t5

2,3,1 3,3,5 1,2,3 5,5,5 5,5,3

1. read(x, y, z); • • • • •
2. m = z; • • • • •
3. if(y < z){ • • • • •
4. if(x < y) • •
5. m = y; •
6. else if(x < z) •
7. m = y;} •
8. else { • • •
9. if(x > y) • • •

10. m = y;

11. else if(x > z) • • •
12. m = y;} • •
13. print(m); } • • • • •

because either line is semantically complete and they are usually treated as two state-
ments during debugging. The faulty program consists of statements s1, s2, . . . , s12,
and s13. The initial failed test is t1, whose input is 2, 3, and 1, and covers statements
s1, s2, s3, s8, s9, s11, s12, and s13. For simplicity, we abbreviate the execution of this
test as t1:{s1, s2, s3, s8, s9, s11, s12, s13}. Similarly, we have t2:{s1, s2, s3, s4, s6, s7,
s13}, t3:{s1, s2, s3, s4, s5, s13}, t4:{s1, s2, s3, s8, s9, s11, s13}, and t5:{s1, s2, s3, s8,
s9, s11, s12, s13}.

The process of applying Strategy 1 to program “Mid” is summarized in Table 2.
The first column shows the steps of the test-reduction process. The second column
gives the existing To, which consists of selected tests. The third column lists the
equivalence classes of program “Mid” partitioned by the existing To. The fourth col-
umn shows the value of Div(To). The fifth column lists the value of Div(To ∪ {ti}),
where ti /∈ To.

Initially To contains only one test (i.e., t1). This test partitions the statements of
program “Mid” into two equivalence classes p1 = {s1, s2, s3, s8, s9, s11, s12, s13} and
p2 = {s4, s5, s6, s7, s10}. Div(To) = Div({t1}) = 2. If we choose test t2, t3, t4, or t5, the
corresponding division number is 4, 4, 3, or 2, respectively. That is to say, Div(To ∪
{t2}) = 4, Div(To ∪ {t3}) = 4, Div(To ∪ {t4}) = 3, and Div(To ∪ {t5}) = 2. We can
choose either t2 or t3 in this step according to Strategy 1. To ease the description,
we show only the process of choosing the test encountered earliest when more than
one tests maximize Div(To ∪ {ti}), which is shown by Table 2. That is, in this step
we select t2. This process is to be repeated until To contains tests t1, t2, t3, and t4,
with only t5 unselected. If we select this last test, the division number Div(To) will
not increase at all (i.e., Div(To ∪ {t5} = Div(To) = 7). So the test-reduction process
finishes without selecting t5. Thus, the output of this test reduction is {t1, t2, t3, t4}.
Moreover, if we select test t3 after Step 1, not test t2, the output of the test reduction
is still {t1, t2, t3, t4}.

12 Autom Softw Eng (2010) 17: 5–31

Table 2 Process of Strategy 1 for Program “Mid”

Steps To Existing Equivalence Classes Div(To) Div(To ∪{ti})

p1 = {s1, s2, s3, s8, s9, s11, s12, s13} t2 4

Step 1 {t1} 2 t3 4

p2 = {s4, s5, s6, s7, s10} t4 3

t5 2

p1 = {s1, s2, s3, s13} t3 5

Step 2 {t1, t2} p2 = {s4, s6, s7} 4 t4 5

p3 = {s5, s10} t5 4

p4 = {s8, s9, s11, s12}
p1 = {s1, s2, s3, s13}

Step 3 {t1, t2, t3} p2 = {s4} 5 t4 7

p3 = {s5, s10}
p4 = {s6, s7} t5 5

p5 = {s8, s9, s11, s12}
p1 = {s1, s2, s3, s13}
p2 = {s4}
p3 = {s5}

Step 4 {t1, t2, t3, t4} p4 = {s6, s7} 7 t5 7

p5 = {s8, s9, s11}
p6 = {s10}
p7 = {s12}

2.2.2 Strategy 2

In Strategy 1, we select the test that can divide statements into most equivalence
classes in each step without considering how the statements are divided. However,
tests can partition statements in different ways. That is to say, a test can divide state-
ments into several equivalence classes with similar or quite different sizes. Intuitively,
if an equivalence class is divided quite unevenly by an unselected test, one of its sub-
classes may be similar to the original equivalence class in size. Then more tests may
be needed to divide the existing equivalence classes into more sub-classes. Therefore,
this kind of division is often not desirable, as it could provide little help to distinguish
the statements in the existing equivalence class.

In Strategy 2, we try to select a test that can not only divide more existing equiv-
alence classes, but also divide them as evenly as possible. To quantify how evenly
a test t divides an equivalence class, we propose the concept of the even division
number. For an equivalence class p, which is induced by the existing selected tests,
an unselected test t may partition this equivalence class into two sub-classes. The
number of statements in the smaller sub-class is called the even division number of
equivalence class p by test t , which is denoted as Divm(t,p). For convenience of
presentation, if p is not divided by t , we define Divm(t,p) as 0.

Autom Softw Eng (2010) 17: 5–31 13

Furthermore, as the aim of our approach is to locate the fault revealed by the initial
failed test, we consider how to distinguish only the statements covered by the initial
failed test in Strategy 2. That is, the division target of Strategy 2 is the statements
covered by the initial failed test, not all the statements in the faulty program.

Based on the even division number, Strategy 2 is defined as follows: suppose that
we have the set of currently selected tests To that divides the statements covered by
the initial failed test f into several equivalence classes p1, p2, . . . , pw at a certain
stage of selection. Strategy 2 selects the test t that can maximize

∑w
j=1 Divm(t,pj)

among all the unselected tests. If more than one test satisfies this requirement, Strat-
egy 2 selects any of these tests. The stopping condition of Strategy 2 is the same as
Strategy 1.

When implementing Strategy 2, we can use the same mechanism for implement-
ing Strategy 1. That is, we always maintain the existing equivalence classes and do
some replacement to update them when a new test is selected. Moreover, we can use
Divm(t,p) to describe the identical stopping condition of Strategy 2 presented ear-
lier. That is, when

∑w
j=1 Divm(t,pj) = 0 for all unselected tests, no more tests are

needed to be selected.
To illustrate how Strategy 2 works, also consider the example in Sect. 2.2.1, whose

test-reduction process is shown by Table 3. Different from Table 2, the last column
of Table 3 gives the value of division number

∑w
j=1 Divm(ti ,pj), not Div(To ∪ {ti}).

The initial failed test t1 divides the program into one equivalence class p1 =
{s1, s2, s3, s8, s9, s11, s12, s13}. Then we calculate the sum of Divm(t,p1) for each test
in the test collection. The results are 4, 4, 1, and 0 for t2, t3, t4, and t5, respectively.∑w

j=1 Divm(t2,pj) = ∑1
j=1 Divm(t2,pj) = Divm(t2,p1) = 4,

∑w
j=1 Divm(t3,pj) =

4,
∑w

j=1 Divm(t4,pj) = 1, and
∑w

j=1 Divm(t5,pj) = 0. Although tests t2, t3, and
t4 all divide the equivalence class p1 into two equivalence classes, t2 and t3
both divide it into {s1, s2, s3, s13} and {s8, s9, s11, s12}, whereas t4 divides it into
{s1, s2, s3, s8, s9, s11, s13} and {s12}. The former two divisions are more even than

Table 3 Process of Strategy 2 for Program “Mid”

Steps To Existing Equivalence Classes
∑w

j=1 Divm(ti ,pj)

t2
∑1

j=1 Divm(t2,pj) = 4

Step 1 {t1} p1 = {s1, s2, s3, s8, s9, s11, s12, s13} t3
∑1

j=1 Divm(t3,pj) = 4

t4
∑1

j=1 Divm(t4,pj) = 1

t5
∑1

j=1 Divm(t5,pj) = 0

Step 2 {t1, t2} p1 = {s1, s2, s3, s13} t3
∑2

j=1 Divm(t3,pj) = 0

p2 = {s8, s9, s11, s12} t4
∑2

j=1 Divm(t4,pj) = 1

t5
∑2

j=1 Divm(t5,pj) = 0

p1 = {s1, s2, s3, s13} t3
∑3

j=1 Divm(t3,pj) = 0

Step 3 {t1, t2, t4} p2 = {s8, s9, s11} t5
∑3

j=1 Divm(t5,pj) = 0

p3 = {s12}

14 Autom Softw Eng (2010) 17: 5–31

the latter. So the former two sums of Divm are bigger than the latter. As a result, we
select t2 or t3 rather than t4 and t5 in this step. To ease the description, Table 3 gives
only the following test-reduction process on choosing t2 in this step. Following Strat-
egy 2, we repeat the preceding process until To contains t1, t2, and t4. At this stage,
there is no need to select any more tests because the two remaining tests (i.e., t3 and
t5) cannot divide any existing equivalence classes. That is to say, the process of test
reduction finishes, and the output of this process is {t1, t2, t4}. If we choose test t3
rather than t2 after Step 1, the output of test-reduction process will be {t1, t3, t4}.
2.2.3 Strategy 3

In a typical TBFL approach such as TARANTULA (Jones and Harrold 2005;
Jones et al. 2002), statements executed by different numbers of failed tests and dif-
ferent numbers of passed tests may be assigned with various suspicions, and thus
are distinguishable for the developer. However, two statements covered by differ-
ent sets of tests may still be undistinguishable from each other if these two state-
ments are covered by the same numbers of passed tests and failed tests. To deal
with this situation, Strategy 3 extends the definition of the binary relationship “T-
undistinguishable”. Given a target program P , whose statements are s1, s2, . . . , sn,
and a set of tests T = {t1, t2, . . . , tm}, two statements of program P are called “ex-
tended T-undistinguishable” if and only if these two statements are covered by the
same numbers of passed tests and failed tests.

Similar to “T-undistinguishable”, this binary relationship is also an equivalence
relationship. Based on the definition of “extended T-undistinguishable”, the state-
ments covered by the initial failed test are partitioned into several equivalence classes
(Enderton 1977). Note that the equivalence classes in Strategy 3 are different from
the equivalence classes in Strategy 1 and Strategy 2, because the former equivalence
classes are based on the binary relation “extended T-undistinguishable” whereas the
latter equivalence classes are based on the binary relation “T-undistinguishable”.

If two statements are executed by the same number of passed tests and that
of failed tests, these statements are “extended T-undistinguishable” in Strategy 3,
even if they are executed by different sets of tests. That is, if two statements are
“T-undistinguishable”, then these statements are “extended T-undistinguishable”.
However, two “extended T-undistinguishable” statements cannot be guaranteed to be
“T-undistinguishable”.

In TBFL, the more failed tests one statement is involved in, the more suspicious
this statement is. Therefore, when selecting a new test, statements covered by more
failed tests should be paid more attention to. As all the statements in an equivalence
class are covered by the same number of failed tests, an unselected test that could
divide the existing equivalence classes whose statements are covered by many failed
tests should be paid more attention to. That is to say, the priority for one existing
equivalence class to be further divided could be different from the priority for an-
other equivalence class: An equivalence class whose statements are covered by more
failed tests should be assigned a higher priority. During the test-reduction process,
Strategy 3 calculates the priority of an equivalence class p by Pri(p) = Tf (s)/Tf ,
where Tf denotes the number of failed tests that have already been selected, and
Tf (s) denotes the number of selected failed tests that cover a statement s in p.

Autom Softw Eng (2010) 17: 5–31 15

Thus, the reduction process of Strategy 3 is as follows. Suppose that the set of
currently selected tests To divides the statements covered by the initial failed test into
the following equivalence classes ep1, ep2, . . . , epw at a certain stage of selection.
Strategy 3 selects the test t that maximizes

∑w
j=1 Divm(t, epj) ∗ Pri(epj) among all

the unselected tests. When more than one test satisfies this requirement, Strategy 3
selects any of these tests. The stopping condition of Strategy 3 is similar to that of
Strategy 1 or 2. The only difference is that the stopping condition in Strategy 3 is
based on the concept of “extended T-undistinguishable”.

Similar to the preceding two strategies, we can use the same mechanism to facil-
itate the implementation of Strategy 3. After t is selected, we need to replace each
equivalence class that can be divided by the selected test. If t divides an equivalence
class ep into two sets of statements denoted as st1 and st2, we replace ep with st1
and st2. After replacing all the divided equivalence classes, we also need to do some
merging to ensure that we still have a series of equivalence classes based on “extended
T-undistinguishable”.

We next explain the process of Strategy 3 by applying it to “Mid”, which is shown
by Table 4. Initially, To has only one test t1, which divides “Mid” into one equiva-
lence class ep1 = {s1, s2, s3, s8, s9, s11, s12, s13}. As now To has only one failed test,
and all the preceding statements are executed by this failed test. Thus, Pri(ep1) is
1 and

∑1
j=1 Divm(t2, epj) ∗ Pri(epj) = Divm(t2, ep1) ∗ Pri(ep1) = 4. Similarly, we

have
∑1

j=1 Divm(t3, epj) ∗ Pri(epj) = 4,
∑1

j=1 Divm(t4, epj) ∗ Pri(epj) = 1, and
∑1

j=1 Divm(t5, epj) ∗ Pri(epj) = 0. These results indicate that we should select t2 or
t3. Table 4 lists the test-reduction process when t2 is chosen at this stage. We repeat
the preceding process until the set of existing selected tests To contains {t1, t2, t4}.
When we examine whether we need to set another test, we find that the stopping con-
dition is satisfied. Thus, Strategy 3 stops and the output is {t1, t2, t4}. If we select test
t3 rather than t2 after Step 1, the output will be {t1, t3, t4}.

Table 4 Process of Strategy 3 for Program “Mid”

Steps To Existing Equivalence Classes
∑w

j=1 Divm(t, epj) ∗ Pri(epj)

t2
∑1

j=1 Divm(t2, epj) ∗ Pri(epj) = 4

Step 1 {t1} ep1 = t3
∑1

j=1 Divm(t3, epj) ∗ Pri(epj) = 4

{s1, s2, s3, s8, s9, s11, s12, s13} t4
∑1

j=1 Divm(t4, epj) ∗ Pri(epj) = 1

t5
∑1

j=1 Divm(t5, epj) ∗ Pri(epj) = 0

t3
∑2

j=1 Divm(t3, epj) ∗ Pri(epj) = 0

Step 2 {t1, t2} ep1 = {s1, s2, s3, s13} t4
∑2

j=1 Divm(t4, epj) ∗ Pri(epj) = 1

ep2 = {s8, s9, s11, s12} t5
∑2

j=1 Divm(t5, epj) ∗ Pri(epj) = 0

ep1 = {s1, s2, s3, s13} t3
∑3

j=1 Divm(t3, epj) ∗ Pri(epj) = 0

Step 3 {t1, t2, t4} ep2 = {s8, s9, s11} t5
∑3

j=1 Divm(t5, epj) ∗ Pri(epj) = 0

ep3 = {s12}

16 Autom Softw Eng (2010) 17: 5–31

Although the result produced by Strategy 3 is the same as that produced by Strat-
egy 2 for this example, Strategy 2 and Strategy 3 do not always produce the identical
results. In fact, Strategies 2 and 3 behave quite differently for general circumstances;
such different behaviors are shown by the results of our experiment in Sect. 4.

3 Discussion

In this section, we first discuss the relation between the problem in this paper and
test-suite reduction in Sect. 3.1. Then we discuss the characteristics of our approach
(Sect. 3.2)and application of our approach (Sect. 3.3).

3.1 Test-suite reduction

In the literature, there are already many test-selection (Graves et al. 2001; Rothermel
and Harrold 1997, 1998) and test-suite reduction (Jeffrey and Gupta 2005; Rothermel
et al. 2002; Sprenkle et al. 2005) techniques, which deal with the situation where there
are too many tests for the tester to use in a round of testing, especially regression
testing. In fact, as the purposes of previously proposed test-reduction techniques are
totally different from the purpose of our approach, the tests selected by the existing
test-suite reduction techniques may not be as effective as the ones selected by our
strategies for fault localization.

The existing test-suite reduction techniques may select tests that may be unlikely
to improve fault-localization effectiveness. If we apply the technique for test-suite
reduction proposed by Harrold et al. (1993) for example “Mid”, the reduced test col-
lection is {t1, t2, t3} or {t2, t3, t5}. As t1 is the specified initial failed test, it must
be included in the selected test set. So the result of this test-reduction technique is
{t1, t2, t3}. These selected tests partition the suspicious statements, which are re-
ferred as to the statements executed by the initial failed test t1, into two equivalence
classes {s1, s2, s3, s13} and {s8, s9, s11, s12}. Based on either the binary relation
“T-undistinguishable” or “extended T-undistinguishable”, we get the identical equiv-
alence classes. However, either {t1, t2} or {t1, t3} partitions the suspicious statements
into the same preceding equivalence classes. Therefore, this traditional test-suite re-
duction technique may induce redundant tests, which do not distinguish more state-
ments and thus may be unlikely to improve fault-localization effectiveness.

The tests selected by the existing test-suite reduction techniques may not be as
effective as the tests selected by our approach in fault localization if fed to some
TBFL approaches. When applying TARANTULA (Jones and Harrold 2005; Jones
et al. 2002) on the selected test sets of program “Mid”, we can get the result described
below. For any test sets selected by our strategies, the faulty statement (i.e., s12) is
uniquely ranked with the highest suspicion. For the test set selected by Harrold et al.’s
technique for test-suite reduction, statements s8, s9, s11, and s12 have the same highest
suspicion. In this example, the tests selected by our approach are better than the tests
selected by Harrold et al.’s technique in fault localization. In fact, test t4 plays a key
role in this example. If t4 is not selected, the best result is just to rank statements
s8, s9, s11, and s12 as top suspects with the same highest suspicion. However, test t4

Autom Softw Eng (2010) 17: 5–31 17

would not be selected by Harrold et al.’s technique because this technique selects a
test that could cover more statements and the statements executed by t4 are already
covered by test t1. That is, this test-suite reduction technique selects tests that could
cover more statements, but not necessarily distinguish more statements; such selected
mechanism makes it less suitable to address the problem proposed in this paper. We
will demonstrate this point later by the experimental results in Sect. 4.

3.2 Characteristics of our approach

In this section, we discuss some issues involved in the approach. First, the process of
selecting tests for result inspection can be essentially adaptive. Each step of selection
can be dependent on the result of the previous steps. The main advantage of using
an adaptive process is that newly acquired information can be immediately used in
the subsequent step. Strategy 3 is adaptive. The information acquired when checking
whether a selected test is passed or failed is used in Strategy 3 when we calculate the
priority of an equivalence class in the subsequent step. Of course, neither Strategies 1
nor 2 is adaptive as they always ignore the information newly acquired in previous
steps.

Second, from the descriptions of the three strategies, we hypothesize that Strat-
egy 1 might select more tests than Strategy 2, and Strategy 3 might select more tests
than the other two strategies. Because Strategy 2 selects tests that tend to divide the
existing equivalence classes more evenly, Strategy 2 may partition statements more
quickly than the other two strategies. In Strategy 3, statements are partitioned based
on the number of failed tests and that of passed tests. However, the numbers of failed
and passed tests continuously change during the reduction process. Thus, two “ex-
tended T-undistinguishable” statements may be not “extended T-undistinguishable”
any more after a new test is selected. For example, statement s1 is covered by one se-
lected passed test and one selected failed test, whereas statement s2 is covered by two
selected passed tests and one selected failed test. Then based on the existing selected
tests, these two statements are not “extended T-undistinguishable”, and they belong
to different equivalence classes. If another test t is selected and checked to be passed,
and it covers statement s1 but does not cover statement s2, then these two statements
are “extended T-undistinguishable” because these statements are both covered by the
same numbers of failed tests and passed tests. Thus, these two statements belong
to an equivalence class after test t is selected. We validate this hypothesis with the
experimental results in Sect. 4.

3.3 Application of our approach

In this section, we discuss some issues that potentially influence the application of
our approach.

First, our approach requires to separate the process of executing tests and check-
ing their results to make coverage information available for our reduction strategies.
However, sometimes it is difficult or even impossible to separate this process. For
example, when testing an interactive GUI-based application, developers may have to
enter the corresponding data of a test and check the output interactively during the ex-
ecution of the test. To address the issue, our approach can be carried out in two-phase

18 Autom Softw Eng (2010) 17: 5–31

test execution: in the first phase, all tests are executed to collect coverage information;
in the second phase, the selected tests are re-executed for result checking. Indeed, the
re-execution of the selected tests may induce some extra cost for fault localization.
Moreover, our approach in this paper cannot be used directly in a circumstance that
the test execution process is not repeatable, such as non-deterministic parallel appli-
cations. We plan to investigate this problem in our future work.

Second, neither Strategy 1 nor strategy 2 is specific to any particular TBFL ap-
proaches, but Strategy 3 is specific to a category of TBFL approaches such as
TARANTULA (Jones and Harrold 2005; Jones et al. 2002). In Strategy 3, statements
covered by the same number of failed tests and the same number of passed tests
are viewed as inseparable. This design decision aims at TBFL approaches where the
suspicion of a statement is calculated based on only the number of failed tests and
the number of passed tests that cover the statement. TARANTULA is a typical ap-
proach in this category. However, it is probably not applicable or effective for other
approaches that do not use the number of passed tests and the number of failed tests,
such as the nearest neighbor queries approach (Renieris and Reiss 2003). This ap-
proach calculates the suspicions of statements based on the distance measurement of
passed tests and failed tests. That is to say, besides the strategies that are applicable to
general TBFL approaches, there exist many specific strategies that are applicable to
only particular TBFL approaches. Developing specific strategies for specific TBFL
approaches may be a future direction of research.

Third, a faulty program may have more than one fault in practice. If a test col-
lection contains only tests revealing fault A, then this test collection is effective in
fault-localization of the fault A. However, if the test collection contains both tests
revealing fault A and tests revealing a different fault B . Then this test collection may
be uneffective in fault localization of either fault A or B because the tests revealing
A and the tests revealing B impact each other. Our test-reduction strategies might
exclude the impacts of one fault from the others because our strategies are targeted
at selecting tests only for locating the fault revealed by the initial failed test, which
might contain only one fault (either A or B).

4 Experiment

This section presents an experiment that we have conducted to evaluate the effective-
ness of our proposed approach. In particular, we investigate two research questions
(Sect. 4.1) by applying our approach to the subject programs (Sect. 4.2). Then we de-
scribe two typical TBFL approaches used by our experiment in Sect. 4.3. We describe
the process of conducting the experiment in Sect. 4.4. We present the experimental
results and analysis in Sect. 4.5. Finally we discuss the threats to validity of our ex-
periment in Sect. 4.6.

4.1 Research questions

As our test-reduction approach is to reduce the number of tests whose results are ex-
amined by developers, our experiment investigates whether our test-reduction tech-
nique can reduce the size of the test collection for inspection by selecting a small

Autom Softw Eng (2010) 17: 5–31 19

subset of tests from the test collection. Moreover, as the tests selected by our ap-
proach are used for fault localization, not fault revealing, our experiment also investi-
gates whether the selected tests decrease the fault-localization effectiveness of TBFL
approaches.

Therefore, in our experiment, we try to answer the following research questions:
(1) Can our test-reduction strategies choose a small subset of tests from the test col-
lection? (2) Can the tests selected by our approach decrease the fault-localization
effectiveness of TBFL approaches compared with the whole test collection?

4.2 Subject programs

In our experiment, we use the Siemens programs (Hutchins et al. 1994; Rothermel
and Harrold 1998), the desk calculator program (abbreviated as DC6) (Hao et al.
2005a), and the tiny C compiler (abbreviated as TCC)7 as the subject programs to
evaluate the effectiveness of our approach. All the programs are written in C. The
details of these subject programs are in Table 5. In the table, the “Program” col-
umn gives the names of the seven Siemens programs and the other subject programs.
The “Description” column gives the functionality of these programs. “LOC” presents
lines of code for each program. “Version” presents the number of faulty versions of
each program. The “Test” column presents the number of tests for each program.

The Siemens programs are a suite of seven small programs, which were first col-
lected and used by Hutchins et al. (1994) and later enhanced by Rothermel and Har-
rold (1998). Each program has several faulty versions, each of which contains a single
fault that was gathered from real experience. Every program has exactly or more than
1,000 tests.

DC is an arbitrary precision calculator8 of GNU, whereas TCC is an open source
program, whose source code can be downloaded from http://bellard.org/tcc/. Because

Table 5 Experimental subject programs

Program Description Version LOC Test

print_tokens lexical analyzer 7 565 4072

print_tokens2 lexical analyzer 10 510 4057

replace pattern replacer 32 563 5542

schedule priority scheduler 9 412 2627

schedule2 priority scheduler 10 307 2683

tcas altitude separator 41 173 1592

tot_info info measurer 23 406 1026

DC desk calculator 17 2700 1000

TCC C compiler 10 19000 1000

6Our experiment used bc-1.06.
7Our experiment used tcc-0.9.20.
8http://www.gnu.org/software.

http://bellard.org/tcc/
http://www.gnu.org/software

20 Autom Softw Eng (2010) 17: 5–31

neither DC nor TCC originally had faulty versions, a graduate student, the first author
of this paper manually injected some faults9 into the DC program and the TCC pro-
gram. When the student injected the faults, she used different mutation operators for
the C language to mutate the statements in DC and TCC. There are about 70 mutation
operators for the C language reported in the literature (Barbosa et al. 2001). During
the fault-seeding process, the student randomly selected a subset of these operators
to generate 17 faulty versions for DC (9 versions of buggy programs with two faults,
and the other 8 versions with three faults) and 10 faulty versions for TCC (5 versions
of buggy programs with two faults, and the other 5 versions with three faults). As
DC did not have a test collection, the same student produced 1,000 tests for DC. For
TCC, we selected 1,000 C programs10 distributed in GCC 3.3.2 and GCC 3.4.0 as the
tests.

As a faulty version of the Siemens programs contains only one fault, we used the
faulty versions of the Siemens programs to represent programs with single faults.
However, each faulty version of DC or TCC contains two or three faults, we used the
faulty versions of DC and TCC to represent programs with multiple faults.

4.3 Two typical TBFL approaches

To evaluate the fault-localization effectiveness of the selected tests, we apply the
output of test reduction to two typical TBFL approaches, including TARANTULA
(Jones and Harrold 2005) and our modified Dicing approach (Agrawal et al. 1995).

Originally, TARANTULA is proposed as a visualization tool (Jones et al. 2002)
for fault localization, but it is naturally adapted to produce a ranked list of suspicious
statements for the ease of evaluation (Jones and Harrold 2005). Moreover, it has been
empirically investigated (Jones and Harrold 2005) to be better than other TBFL ap-
proaches. In our experiment, we reimplemented TARANTULA proposed by Jones
and Harrold (2005).

The Dicing approach is first proposed by Agrawal et al. (1995) based on the con-
cept of a dice. A dice is the set of statements that are in the execution slice of a
failed test (denoted as Slicefailed) but not in the execution slice of a passed test (de-
noted as Slicepassed), i.e., dice = Slicefailed −Slicepassed . The original dicing approach
locates the faults to the statements in a dice. However, the faults may lie in the com-
mon statements of Slicepassed and Slicefailed . Moreover, the statements in the dice are
equally suspicious. Thus, it may still be a burden for developers to check whether
the statements in the dice are suspicious one by one. To address these two problems,
we modify the original Dicing approach by computing the dices between any failed
test and any passed test, and rank each statement according to the number of dices
that contain this statement. For convenience, we use “Dicing” to refer to our modified
Dicing approach in the rest of this paper.

9These faulty programs were generated (Hao et al. 2008) to evaluate the fault-localization effectiveness of
some TBFL approaches.
10These programs are small because almost each of them occupies 1 KB storage.

Autom Softw Eng (2010) 17: 5–31 21

4.4 Experimental process

Before applying our strategies, developers may have some checked tests, whose re-
sults are passed or failed. The number of these passed or failed tests can be arbitrary
in practice. To provide a dependable comparison, here we assumed that the number
of passed or failed tests selected before the initial failed test is zero.

In our experiment, our approach took a test collection and a failed test as the input,
and the aim was to help locate the fault revealed by the initial failed test. The initial
failed test would influence the effectiveness of the reduction strategies and also the
results of fault localization. To reduce the influence of the selection of the initial failed
test on the validity of our experiment, for each faulty version, we randomly selected
30 failed tests and used each of them as the input initial failed test. When a test was
selected as the initial failed test, the other tests in the test collection were treated as
the input test collection. The results of the tests in the input test collection were not
checked initially and the information of whether each test is passed or failed became
available only after it was selected and checked. The average experimental results
of using these 30 input initial failed tests were then treated as the corresponding
experimental results for that faulty version. The average experimental results of all
the faulty versions of a program were treated as the final experimental results for that
program.

Given a faulty version and an initial failed test for this faulty version, the experi-
mental steps are as follows. First, we applied the proposed three reduction strategies
to the faulty version with the initial failed test and the test collection that consists of
the other tests. When no new test could be selected by a reduction strategy, the exist-
ing selected tests would be taken as the output of that strategy and fed to TARAN-
TULA (Jones and Harrold 2005) and Dicing (Agrawal et al. 1995). The number of
the existing selected tests was recorded. The number of statements that have to be
scanned before finding the first fault if TARANTULA or Dicing is applied is recorded
as the result of TARANTULA or Dicing. That is to say, for each strategy, we recorded
the following data: (1) the number of selected tests, (2) the number of statements that
have to be scanned if TARANTULA was applied to the selected tests, and (3) the
number of statements that have to be scanned if Dicing was applied. For compari-
son, we also applied the test-reduction technique proposed by Harrold et al. (1993) to
the test collection guaranteeing that the initial failed test is selected, and then fed the
selected tests to TARANTULA and Dicing. We also recorded the results of apply-
ing TARANTULA and Dicing to the original test collection. The fault-localization
results based on the original test collection are not specific to the initial failed test.

As the correct version of each subject program is available, the expected output of
any test can be acquired by executing it on the correct version. In this regard, all the
tests are actually test cases (i.e., test inputs with expected outputs). However, in our
experiment, we assumed that the expected outputs are not available when applying
our three strategies, and the information whether a test is passed or failed is available
only after it is selected and checked. When applying TARANTULA and Dicing to
the original test collection, we assumed that all the tests in the test collection have
been checked before applying these two techniques.

22 Autom Softw Eng (2010) 17: 5–31

For comparison, we applied a test-reduction technique named as the HGS algo-
rithm proposed by Harrold et al. (1993) as well as the random test-reduction tech-
nique to the subject programs. Based on the preceding experiment, we recorded the
number of tests selected by each of the three strategies, and randomly selected the
same number of tests. Specifically, the random test-reduction technique based on the
number of tests selected by Strategy 1 is denoted by R1, whereas the corresponding
Strategy 1 is denoted by S1 in our experiment. Then, the random test-reduction tech-
nique based on the number of tests selected by Strategy 2 (denoted as S2) is denoted
by R2, whereas the random test-reduction technique based on the number of tests se-
lected by Strategy 3 (denoted as S3) is denoted by R3. Moreover, in our experiment
we use HGS to represent the HGS algorithm proposed by Harrold et al. (1993).

4.5 Experimental results and analysis

Figure 2 summarizes the average results of our experiment and compares our three
test-reduction strategies with the HGS algorithm (Harrold et al. 1993). This figure
consists of three sub-figures. Figure 2(a) depicts the test-reduction results, which
show the ratio between the number of selected tests and the total number of tests in
the corresponding test collection. Figure 2(b) shows the fault-localization results by
applying the selected tests to TARANTULA. Figure 2(c) shows the fault-localization
results by applying the selected tests to Dicing. The horizontal axis of each sub-
figure is the subject programs in our experiment, which are numbered in the horizon-
tal axis following the order of their appearance in Table 5. Specifically, the number

Fig. 2 Comparison with HGS

Autom Softw Eng (2010) 17: 5–31 23

1,2, . . . ,7,8, and 9 in the horizontal axis denotes print_tokens, print_tokens2, re-
place, schedule, schedule2, tcas, tot_info, DC, and TCC, respectively. The vertical
axis of Fig. 2(a) is the ratio between the average number of selected tests and the
total number of tests in each test collection, whereas the vertical axis of Figs. 2(b)
and (c) is the average number of statements examined before finding the faulty state-
ment when applying the reduced test suite to the corresponding fault-localization ap-
proaches (i.e., TARANTULA and Dicing). The compared test-reduction approaches
in this figure are the three proposed test-reduction strategies (S1, S2, and S3) and the
HGS algorithm proposed by Harrold et al. (1993). For further comparison, we give
the fault-localization results of applying the whole original test suite to TARAN-
TULA or Dicing, which are abbreviated as “Origin” in the figure.

From Fig. 2(a), we observe that less than 10% of the tests in the original test col-
lection are selected by our three strategies and Harrold et al.’s approach (Harrold et al.
1993). Moreover, except for the test-reduction results for DC and TCC (the eighth and
ninth subject programs in this figure), our proposed test-reduction strategies reduce
the scale of the test collection effectively as does the test-suite reduction technique
proposed by Harrold et al. (1993). The results show that these techniques can effec-
tively reduce effort for inspecting test results. Specifically, Strategy 3 is mostly less
effective than Strategy 1, Strategy 2, and HGS in test-suite reduction, as it selects
more tests than the other techniques in each of the ten subject programs except for
the last two subject programs DC and TCC. Moreover, Strategy 2 is usually more
effective than Strategy 1 as well as Strategy 3, and is usually as effective as HGS in
test-suite reduction. From Fig. 2(b) and 2(c), we observe that the tests selected by
any of our three strategies are more effective than HGS in fault localization in most
subjects. Moreover, the fault-localization effectiveness of the tests selected by our
strategy is close to whole test collection in most subjects except for the last subject
program TCC.

Furthermore, we draw Fig. 3 to compare the three proposed test-reduction strate-
gies (Si, i = 1, 2, and 3) with the corresponding random test-reduction strategies (Ri,
i = 1, 2, and 3) on the fault-localization effectiveness of their selected tests since each
pair (Si and Ri) selects the same number of tests from a test collection. Bars in various
colors denote our three proposed test-reduction strategies, whereas curves with var-
ious symbols denote the corresponding three random test-reduction strategies. From
this figure, we can observe that most of the bars are below the curves except for the
last subject program (i.e., TCC). That is, mostly our test-reduction strategy is more
effective than the corresponding random test-reduction strategy in fault localization
since the fault-localization results of tests selected by our test-reduction strategy are
mostly smaller than that by the corresponding random test-reduction strategies.

To further confirm the difference of these test-reduction strategies on reducing
tests as well as fault localization, we performed a sign test (Joseph 1992) on the av-
erage results of these strategies. The results of the sign test is shown by Table 6,
where “Fault Localization” represents that we compared the corresponding two test-
reduction strategies on fault-localization effectiveness and “Test Reduction” repre-
sents that we compared the corresponding two test-reduction strategies on the test-
reduction effectiveness. For each row in this table, “X vs. Y” denotes the compari-
son is between strategy X and strategy Y, where X and Y are one of the following

24 Autom Softw Eng (2010) 17: 5–31

Fig. 3 Comparison with Random Test Selection

Table 6 Sign Test (α = 0.05)

Comparison n− n+ p-value Result

R1 vs. S1 Fault Localization 14 4 0.0154 Reject

R2 vs. S2 Fault Localization 13 5 0.0481 Reject

R3 vs. S3 Fault Localization 16 2 <0.0001 Reject

S1 vs. S2 Test Reduction 9 0 0.0020 Reject

S2 vs. S1 Fault Localization 12 3 0.0176 Reject

S3 vs. S1 Test Reduction 7 2 0.0898 Not reject

S1 vs. S3 Fault Localization 13 4 0.0245 Reject

S3 vs. S2 Test Reduction 9 0 0.0020 Reject

S2 vs. S3 Fault Localization 14 3 0.0064 Reject

S1 vs. HGS Test Reduction 9 0 0.0020 Reject

HGS vs. S1 Fault Localization 17 1 <0.0001 Reject

S2 vs. HGS Test Reduction 7 2 0.0898 Not reject

HGS vs. S2 Fault Localization 14 3 0.0245 Reject

S3 vs. HGS Test Reduction 9 0 0.0020 Reject

HGS vs. S3 Fault Localization 18 0 <0.0001 Reject

strategies: our proposed three strategies S1, S2, S3, the corresponding random test-
reduction strategies R1, R2, R3, and the HGS algorithm. The third and fourth columns
n− and n+ denote the number of comparisons that Y wins X and the number of com-

Autom Softw Eng (2010) 17: 5–31 25

parisons that X wins Y. The fifth column lists the computed p-value and the sixth
column gives the result of the sign test. In this table, we use “< 0.0001” to represent
that the corresponding p-value is much smaller. According to Table 6, we draw the
following conclusions.

1. In the effectiveness of test suite reduction: The HGS algorithm is significantly
more effective than S1 and S3, and more effective than S2 in most cases. S2 is
significantly more effective than S1 and S3, but S1 is more effective than S3 in
most cases.

2. In the effectiveness of fault localization: The three proposed test-reduction strate-
gies are significantly more effective than the corresponding random test-reduction
strategies and the HGS algorithm. S3 is significantly more effective than S1, and
S1 is significantly more effective than S2.

Besides the preceding analysis on average results, we compute the standard de-
viations (shown in Table 7) on the experimental results. In Table 7, the first column
shows whether the standard deviations are based on the number of reduced tests (ab-
breviated as Test), or the fault-localization results based on TARANTULA (abbrevi-
ated as TAR), or the fault-localization results based on Dicing (abbreviated as Dic-
ing). We abbreviated the names of some subject programs in this table. For example,

Table 7 Standard Deviations

print1 print2 replace sche sche2 tcas tot DC TCC

S1 1.71 1.26 1.10 0.87 1.37 0.56 1.09 2.94 84.53

S2 1.81 2.67 4.41 0.59 1.14 1.05 3.93 4.02 26.04

S3 14.27 22.03 42.29 16.45 11.69 7.00 9.78 18.98 104.30

Test R1 1.71 1.26 1.10 0.87 1.37 0.56 1.09 2.94 84.53

R2 1.81 2.67 4.41 0.59 1.14 1.05 3.93 4.02 26.04

R3 14.27 22.03 42.29 16.45 11.69 7.00 9.78 18.98 104.30

HGS 2.54 0.83 0.54 0.00 0.00 0.00 0.41 1.60 23.62

S1 21.45 26.45 41.85 24.88 27.35 21.47 33 131.59 355.67

S2 23.46 26.73 43.08 22.14 24.49 21.48 30.29 117.59 453.57

S3 8.07 25.88 38.82 21.62 33.28 21.79 29.14 139.80 405.49

TAR R1 22.19 42.49 41.92 31.28 38.14 21.16 35.57 143.39 335.31

R2 21.56 51.34 43.18 30.86 38.33 21.25 34.45 134.63 373.04

R3 21.90 39.03 38.84 22.60 38.97 21.57 33.65 155.67 354.07

HGS 22.51 40.67 45.54 41.47 10.24 20.77 41.81 157.58 433.09

S1 22.75 25.77 40.84 24.88 27.34 21.49 39.99 131.92 456.86

S2 24.93 26.89 42.26 22.14 24.46 21.49 37.04 148.42 1112.04

S3 7.55 29.65 38.71 22.10 33.79 21.88 38.09 163.96 904.16

Dicing R1 22.18 48.54 42.93 31.89 42.00 23.49 47.41 160.15 1180.91

R2 21.67 58.47 50.25 31.77 42.31 23.28 44.68 158.41 1336.91

R3 21.77 42.24 42.58 23.61 43.17 23.70 45.89 180.19 1262.08

HGS 23.74 40.82 45.49 41.47 0.86 20.77 53.46 175.77 1284.41

26 Autom Softw Eng (2010) 17: 5–31

print1 denotes print_tokens1, print2 denotes print_tokens2, sche denotes schedule,
sche2 denotes schedule2, and tot denotes tot_info. On test-reduction effectiveness,
the standard deviations of S1, S2, and HGS are usually small, but the standard devia-
tions of S3 are much bigger. However, on fault-localization effectiveness, the standard
deviations of S1, S2, S3, R1, R2, R3, and HGS are close.

4.6 Threats to validity

The main threat to construct validity deals with whether the experiment is measured
in a correct way. In our experiment, we measured only the effectiveness of test re-
duction by the number of selected tests, without the cost and effort spent in test
reduction. Moreover, the fault-localization effectiveness of the selected tests is mea-
sured based on the evaluation framework proposed by Renieris and Reiss (2003).
Although this measurement is widely used (Cleve and Zeller 2005; Hao et al. 2005a;
Liu et al. 2005) in the literature of fault localization, such measurement ignores the
difference of statements by counting the number of statements. In future work, we
will design a novel measurement for our test-reduction approach by considering the
preceding factors.

The main threats (Trochim 2007; Wohlin et al. 1999) to internal validity are as
follows. The first threat is the TBFL approaches used in this experiment. To reduce
this threat, we chose two typical approaches in our experiment. Strategy 3 is to some
extent specific to TARANTULA and Dicing, and the results of Strategy 3 is to some
extent specific to these two approaches. We can further reduce this threat by conduct-
ing experiments on other TBFL approaches.

The second threat is the assumption that the number of passed and failed tests
selected before the initial failed test is zero. However, we do not think that this as-
sumption can seriously impact the main conclusions of our experiment. With more
initially selected tests, all the three strategies should select fewer tests during the re-
duction process. If these initially selected tests can harm fault localization, we can
use the three strategies to exclude those harmful ones. Moreover, the initial failed test
can also impact the conclusion of our experiment. We reduced this threat by randomly
choosing the initial failed test 30 times. Generally speaking, the second internal threat
can also be reduced by conducting more experiments. In these experiments, we can
simulate the situation by using different sets of initially selected tests and record the
average results. These experiments would be much more complicated, left as our
future work.

The third threat comes from the order of tests in each test collection, because our
experiment selects the first appearing test when more than one test satisfies the test-
reduction requirement. To reduce this threat, we kept the original orders of these tests
in the test collection, which are independent of our strategies. Moreover, tests for the
Siemens programs were ordered by their providers, tests for TCC are ordered by their
names in the dictionary order, and tests for DC are generated by a student unaware
of our strategies. We plan to reduce this threat by experiments with random order of
tests and reverse order of tests in future work.

The fourth threat comes from the manually produced test collection of DC and
the faults of DC as well as TCC, because the experimental results of DC and TCC

Autom Softw Eng (2010) 17: 5–31 27

may be affected by the performance of the student who conducted the manual work.
This threat was reduced when the faults were seeded using standard procedures and
the tests used in the experiment can be viewed as those generated by an ordinary
software engineer. This threat can be further reduced by more experiments involving
more different software engineers.

Finally, a threat lies in the compared test-suite reduction technique used in our ex-
periment. In our experiment, we implemented the HGS algorithm and made a com-
parison between our three strategies with this algorithm, although in the literature
of test-suite reduction, there are some other algorithms such as greedy algorithms
(Ma et al. 2005). In future work, we plan to compare our three strategies with other
algorithms to reduce this threat.

The main threats to external validity lie in the subject programs used in the exper-
iment. The subject programs are not large, and the languages for these programs are
all C. These threats can be reduced by applying our approach to other larger programs
written in different languages.

5 Related work

Our approach is related to test selection, reduction, minimization and prioritization
because our approach provides strategies on test reduction also based on statement-
coverage information. However, the aim of our test reduction is to select tests as
input to TBFL approaches, and then locate faults. So our work is also related to
testing-based fault-localization approaches.

5.1 Test selection and prioritization

Test selection and prioritization, test-suite reduction and minimization are extensively
discussed research topics in the literature. Test selection aims at selecting some tests
from a given test suite for some specific purpose, whereas test prioritization schedules
tests for execution in an order to achieve some specific goal. Test-suite reduction and
minimization in the literature aim at eliminating redundant test cases from a test suite
during software maintenance.

The random technique is a straightforward way to test selection and prioritiza-
tion, but this technique could not guarantee the quality of selected tests. Besides this
technique, most of the existing test selection and prioritization approaches are based
on structural coverage such as coverage of statements and branches (Jones and Har-
rold 2003; Rothermel and Harrold 1998). Recently, researchers focus on empirical
studies of test selection and prioritization. Graves et al. (2001) presented an empir-
ical study of several test-selection techniques on their costs and benefits. Rothermel
et al. (2001) summarized some criteria of test prioritization, which are based on state-
ment coverage, branch coverage, and fault-exposing potential, respectively. Further-
more, Elbaum et al. (2002) investigated other research questions on test prioritization
such as the effectiveness of coarse-granularity techniques and fine-granularity tech-
niques by a family of empirical studies. Srivastava and Thiagarajan (2002) proposed
a test-prioritization technique based on programs in binary forms. Moreover, their

28 Autom Softw Eng (2010) 17: 5–31

technique prioritizes tests according to the test coverage on the affected program,
but does not eliminate any tests. Walcott et al. (2006) proposed a genetic algorithm
to prioritize tests based on a given time constraint. Jeffrey and Gupta proposed to
select redundant test cases (Jeffrey and Gupta 2007) to increase the fault detection
effectiveness of the reduced test suite.

Our work can be viewed as test reduction, as our strategies are to select tests from
the given test collection and reduce the size of the test collection. However, traditional
test selection and test-suite reduction aim at facilitating testing, such as regression
testing whereas our approach aims at facilitating debugging. Our approach is similar
to test prioritization as both adopt an adaptive process. However, our approach is an
adaptive process that uses information such as failed and passed information about
the tests, but test prioritization aims at optimizing the execution order of the selected
tests for a specific goal, such as detecting a fault earlier.

Without test oracles for automatically generated tests, it is infeasible for devel-
opers to inspect the result of each generated test in order to detect failures beyond
program crashes or uncaught exceptions. Xie and Notkin (2006) as well as Pacheco
and Ernst (2005) developed approaches for selecting the most suspicious subset of
generated tests for result checking. Different from their approaches, our reduction’s
purpose is not to detect unknown failures but to locate faults based on known failures.

Besides the preceding research on the traditional test selection and prioritization,
we attempted to investigate how the test cases influence the fault-localization effec-
tiveness of TBFL approaches. Our previous work on test reduction (Hao et al. 2005b)
assumed that redundant test cases might harm the effectiveness of TBFL approaches,
and proposed to use traditional test-reduction techniques before applying TBFL ap-
proaches. Recently, Yu et al. (2008) further investigated the relation between test
cases and TBFL approaches with an empirical study.

5.2 Fault localization

The aim of our approach is to facilitate testing-based fault localization (TBFL),
and we have applied our approach to two typical fault-localization approaches (i.e.,
TARANTULA, Jones and Harrold 2005; Jones et al. 2002 and Dicing, Agrawal et al.
1995) in our experiment. Besides these two approaches, there are also some other
testing-based fault-localization approaches in the literature. Our previous work (Hao
et al. 2005a) took into consideration the influence of the distribution of tests on TBFL,
and proposed an approach based on the fuzzy set theory. The nearest neighbor query
approach (Renieris and Reiss 2003) measures the distance between failed test cases
and passed tests, and uses this distance to calculate the suspicions of statements.
The main common characteristic of TBFL approaches is that they take the execu-
tion information of tests as input to calculate the suspicions, but they employ differ-
ent strategies for the suspicion calculation. Different from the preceding research on
TBFL approaches, our approach focuses on reducing efforts on test-result checking
for TBFL.

Our previous work proposed an interactive approach for fault localization (Hao
2006; Hao et al. 2006, 2009), which aims at combining the benefits of TBFL ap-
proaches and manual debugging. Based on statements’ suspicions, this approach se-

Autom Softw Eng (2010) 17: 5–31 29

lects checking points (program execution points) for developers to inspect, and mod-
ifies suspicions according to the developers’ estimation on the correctness of internal
program states at checking points. Our new approach focuses on selecting tests for
manual test-result checking rather than manual internal-program-state checking re-
quired by the previous interactive approach. Compared to manual test-result check-
ing, manual internal-program-state checking is more challenging and less practical
because the developers need to have deep knowledge of the internal program imple-
mentation to estimate the correctness of internal program states.

The Delta Debugging approach (Cleve and Zeller 2005) focuses on identifying
the portion of one failed test that eventually causes the failure, and this approach has
been demonstrated to be effective for finding the failure-causing state and helpful for
fault localization. Besides these dynamic approaches (Agrawal et al. 1995; Cleve and
Zeller 2005; Hao et al. 2005a; Jones and Harrold 2005; Jones et al. 2002; Liblit et al.
2003; Liu et al. 2005; Renieris and Reiss 2003), there are also static fault-localization
approaches (Xie and Engler 2003), which usually focus on identifying anomalies in
source code, which can often be used to infer faults.

Some other researchers focus on generating tests to locate faults. Wang and Roy-
choudhury (2005) proposed a technique to construct a “passed” execution for a faulty
program based on a “failed” one and generate a bug report by the comparison of these
two executions. Later, Guo et al. (2006) proposed to select a “passed” execution from
a “passed” execution pool by their defined measurement and use this passed execu-
tion with the original failed one to generate a bug report. These two approaches only
construct or choose a passed execution, whereas our approach selects tests without
knowing whether they are passed or failed. Furthermore, when selecting new tests,
our approach is not concerned about whether they are passed or failed.

The research most related to ours is done by Baudry et al. (2006), who proposed
some diagnosis criteria on generating new tests to improve test suites for efficient
fault localization. Their approach aims at using the criteria to guide the process of
generating new tests to enhance the existing test suite, whereas our approach aims at
obtaining a subset of the existing test collection. Specifically, our Strategy 1, which
is also the starting point of our research, can be viewed as mapping their Test-for-
Diagnosis criterion to our target problem. Besides Strategy 1, our approach includes
two other strategies that consider more factors than Strategy 1 in selecting tests for
result checking. According to our experimental results reported in Sect. 4, both Strate-
gies 2 and 3 often win over Strategy 1 in fault-localization effectiveness, and Strat-
egy 2 also wins over Strategy 1 in selecting fewer tests.

6 Conclusion and future work

In this paper we proposed a test-reduction approach (including three strategies),
which selects some tests from the given test collection based on the execution traces
of the test collection. Thus, developers check the results of only the selected tests
and feed these selected tests to TBFL approaches. The experimental results show that
the three strategies can help developers select a small subset of tests, which can still
achieve effective fault-localization results.

30 Autom Softw Eng (2010) 17: 5–31

In future work, we plan to investigate other test-reduction strategies based on other
structural coverage such as branch coverage and condition coverage.

Acknowledgements This effort is sponsored by the National Basic Research Program of China (973)
under Grant No. 2009CB320703, the Science Fund for Creative Research Groups of China under Grant
No. 60821003, the National Natural Science Foundation of China under Grant No. 60803012, and the
National Natural Science Foundation of China under Grant No. 90718016. Tao Xie’s work is supported in
part by NSF grants CCF-0725190, CCF-0845272, and ARO grants W911NF-07-1-0431 and W911NF-08-
1-0105.

References

Agrawal, H., Horgan, J., London, S., Wong, W.: Fault localization using execution slices and dataflow. In:
Proc. 6th International Symposium on Software Reliability Engineering, pp. 143–151, October 1995

Barbosa, E., Maldonado, J., Vincenzi, A.: Toward the determination of sufficient mutant operators for C.
Softw. Test. Verif. Reliab. 11(2), 113–136 (2001)

Baresi, L., Young, M.: Test oracles. Technical Report CIS-TR-01-02, University of Oregon, Dept. of Com-
puter and Information Science, Eugene, Oregon, USA, August 2001

Baudry, B., Fleurey, F., Traon, Y.L.: Improving test suites for efficient fault localization. In: Proc. 28th
International Conference on Software Engineering, pp. 82–91, May 2006

Cleve, H., Zeller, A.: Locating causes of program failure. In: Proc. 27th International Conference on Soft-
ware Engineering, pp. 342–351, May 2005

Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with testing techniques: An
infrastructure and its potential impact. Emp. Softw. Eng. 10(4), 405–435 (2005)

Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: A family of empirical studies.
IEEE Trans. Softw. Eng. 28(2), 159–182 (2002)

Enderton, H.B.: Elements of Set Theory. Academic Press, San Diego (1977)
Graves, T.L., Harrold, M.J., Kim, J.-M., Porter, A., Rothermel, G.: An empirical study of regression test

selection techniques. ACM Trans. Softw. Eng. Methodol. 10(2), 184–208 (2001)
Guo, L., Roychoudhury, A., Wang, T.: Accurately choosing execution runs for software fault localization.

In: Proc. International Conference on Compiler Construction, pp. 80–95, Mar. 2006
Hao, D.: Testing-based interactive fault localization. In: Proc. 28th International Conference on Software

Engineering, Doctoral Symposium Track, pp. 957–960, May 2006
Hao, D., Pan, Y., Zhang, L., Zhao, W., Mei, H., Sun, J.: A similarity-aware approach to testing based

fault localization. In: Proc. 20th IEEE International Conference on Automated Software Engineering,
pp. 291–294 (2005a)

Hao, D., Zhang, L., Zhong, H., Mei, H., Sun, J.: Eliminating harmful redundancy for testing-based fault
localization using test suite reduction: An experimental study. In: Proc. 21st IEEE International Con-
ference on Software Maintenance, pp. 683–686 (2005b)

Hao, D., Zhang, L., Mei, H., Sun, J.: Towards interactive fault localization using test information. In: Proc.
13th Asia Pacific Software Engineering Conference, pp. 277–284 (2006)

Hao, D., Zhang, L., Pan, Y., Mei, H., Sun, J.: On similarity-awareness in testing-based fault localization.
Autom. Softw. Eng. J. 15(2), 207–249 (2008)

Hao, D., Zhang, L., Zhang, L., Sun, J., Mei, H.: VIDA: Visual interactive debugging. In: Proc. 31st Inter-
national Conference on Software Engineering, Formal Research Demonstrations, pp. 583–586, May
2009

Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a test suite. ACM Trans.
Softw. Eng. Methodol. 2(3), 270–285 (1993)

Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments on the effectiveness of dataflow- and
control-flow-based test adequacy criteria. In: Proc. 16th International Conference on Software En-
gineering, pp. 191–200, May 1994

Jeffrey, D., Gupta, N.: Test suite reduction with selective redundancy. In: Proc. 21st IEEE International
Conference on Software Maintenance, pp. 549–558, Sept. 2005

Jeffrey, D., Gupta, N.: Improving fault detection capability by selectively retaining test cases during test
suite reduction. IEEE Trans. Softw. Eng. 33(2), 108–123 (2007)

Autom Softw Eng (2010) 17: 5–31 31

Jones, J.A., Harrold, M.J.: Test-suite reduction and prioritization for modified condition/decision coverage.
IEEE Trans. Softw. Eng. 29(3), 195–209 (2003)

Jones, J.A., Harrold, M.J.: Empirical evaluation of tarantula automatic fault-localization technique. In:
Proc. 20th International Conference on Automated Software Engineering, pp. 273–282 (2005)

Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist fault localization. In: Proc.
24th International Conference on Software Engineering, pp. 467–477, May 2002

Joseph, N.: Statistics and Probability in Modern Life. Saunders, Philadelphia (1992)
Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via remote program sampling. In: Proc.

ACM SIGPLAN 2003 Conference on Programming Languages Design and Implementation, pp. 141–
154 (2003)

Liu, C., Yuan, X., Fei, L., Han, J., Midkiff, S.P.: SOBER: Statistical model-based bug localization. In: Proc.
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 286–
295, September 2005

Ma, X.y., He, Z.f., Sheng, B.k., Ye, C.q.: A genetic algorithm for test-suite reduction. In: Proc. the Inter-
national Conference on Systems, Man and Cybernetics, pp. 133–139, October 2005

Pacheco, C., Ernst, M.D.: Eclat: Automatic generation and classification of test inputs. In: Proc. 19th
European Conference on Object-Oriented Programming, pp. 504–527 (2005)

Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: Proc. 18th International
Conference on Automated Software Engineering, pp. 30–39 (2003)

Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique. ACM Trans. Softw. Eng.
Methodol. 6(2), 173–210 (1997)

Rothermel, G., Harrold, M.J.: Experimental studies of a safe regression test selection technique. IEEE
Trans. Softw. Eng. 24(6), 401–419 (1998)

Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for regression testing. IEEE
Trans. Softw. Eng. 27(10), 929–948 (2001)

Rothermel, G., Harrold, M.J., von Ronne, J., Hong, C.: Empirical studies of test-suite reduction. Softw.
Test. Verif. Reliab. 12(4), 219–249 (2002)

Saff, D., Artzi, S., Perkins, J.H., Ernst, M.D.: Automatic test factoring for Java. In: Proc. 20th International
Conference on Automated Software Engineering, pp. 114–123, November 2005

Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In: Proc. 13th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pp. 263–272 (2005)

Sprenkle, S., Sampath, S., Gibson, E., Pollock, L., Souter, A.: An empirical comparison of test suite reduc-
tion techniques for user-session-based testing of web applications. In: Proc. 21st IEEE International
Conference on Software Maintenance, pp. 587–596, Sept. 2005

Srivastava, A., Thiagarajan, J.: Effectively prioritizing tests in development environment. In: Proc. 2002
International Symposium on Software Testing and Analysis, pp. 97–106, July 2002

Trochim, W.M.K.: Research Methods Knowledge Base. Thomson Custom Pub., New York (2007)
Walcott, K.R., Kapfhammer, G.M., Soffa, M.L., Roos, R.S.: Time-aware test suite prioritization. In: Proc.

International Symposium on Software Testing and Analysis, pp. 1–12 (2006)
Wang, T., Roychoudhury, A.: Automated path generation for software fault localization. In: Proc. 20th

International Conference on Automated Software Engineering, pp. 347–351 (2005)
Wohlin, C., Runeson, P., Host, M.: Experimentation in Software Engineering: An Introduction. Springer,

Berlin (1999)
Xie, T., Notkin, D.: Tool-assisted unit-test generation and selection based on operational abstractions.

Autom. Softw. Eng. J. 13(3), 345–371 (2006)
Xie, Y., Engler, D.: Using redundancies to find errors. IEEE Trans. Softw. Eng. 29(10), 915–928 (2003)
Yu, Y., Jones, J.A., Harrold, M.J.: An empirical study of the effects of test-suite reduction on fault local-

ization. In: Proc. 30th International Conference on Software Engineering, pp. 201–210, May 2008

	Test input reduction for result inspection to facilitate fault localization
	Abstract
	Introduction
	Approach
	Overview
	Test-reduction strategies
	Strategy 1
	Strategy 2
	Strategy 3

	Discussion
	Test-suite reduction
	Characteristics of our approach
	Application of our approach

	Experiment
	Research questions
	Subject programs
	Two typical TBFL approaches
	Experimental process
	Experimental results and analysis
	Threats to validity

	Related work
	Test selection and prioritization
	Fault localization

	Conclusion and future work
	Acknowledgements
	References

