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Experimental tests of various trace formulas, which in general relate the density
of states for a given quantum mechanical system to the properties of the periodic
orbits of its classical counterpart, for spectra of superconducting microwave
billiards of varying chaoticity are reviewed by way of examples. For a two-dimen-
sional Bunimovich stadium billiard the application of Gutzwiller's trace formula is
shown to yield correctly locations and strengths of the peaks in the Fourier trans-
formed quantum spectrum in terms of the shortest unstable classical periodic
orbits. Furthermore, in two-dimensional billiards of the Limac� on family the transi-
tion from regular to chaotic dynamics is studied in terms of a recently derived
general trace formula by Ullmo, Grinberg and Tomsovic. Finally, some salient
features of wave dynamical chaos in a fully chaotic three-dimensional Sinai
microwave billiard are discussed. Here the reconstruction of the spectrum is not as
straightforward as in the two-dimensional cases and a modified trace formula as
suggested by Balian and Duplantier will have eventually to be applied.

1. INTRODUCTION

Quantum manifestations of classical chaos have received much attention in
recent years.(1) The spectral fluctuation properties of systems which are
fully chaotic in the classical limit were investigated both analytically and
numerically. Generically, it has been found that these properties coincide
with those of the ensembles from Random Matrix Theory (RMT) having
the proper symmetry.(2, 3) For time-reversal invariant systems, the relevant
ensemble is the Gaussian orthogonal ensemble (GOE), for a recent review
of RMT in quantum physics see Ref. 4.
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Due to the pioneering work of Martin Gutzwiller(5) the semiclassical
relationship between the density of states of a chaotic quantum system and
the properties of the periodic orbits (POs) of the corresponding classical
system is known for nearly 30 years.(5) The so-called Gutzwiller trace
formula expresses the density of states by a weighted sum over all indi-
vidual classical POs. Integrable, i.e., regular, systems can be described by
Einstein�Brillouin�Keller (EBK) quantization.(6) A trace formula for such
systems was also first derived by Gutzwiller(7) and later in a different way
by Berry and Tabor.(8) Beside these two limiting cases of chaotic and
regular dynamics respectively, systems with intermediate, mixed behavior
have attracted more and more attention recently.(9)

In the last few decades the theoretical investigation of two-dimensional
Euclidian and Riemannian geometries, so-called billiards, has led to a very
fruitful new discipline in non-linear physics.(10�13) Due to the conserved
energy of the ideal particle propagating inside the billiard's boundaries with
specular reflections on the walls, the plain billiard belongs to the class of
Hamiltonian systems with the lowest degree of freedom in which chaos can
occur and this does only depend on the given boundary shape. Because
of their simplicity two-dimensional billiards are in particular useful for
studying the behavior of the particle in the corresponding quantum
regime(3, 14, 15) where spectral properties are completely described by the
stationary Schro� dinger equation

H9(r� )=&
�2

2m
29(r� )=E9(r� ) (1)

inside the domain G with Dirichlet boundary conditions on the walls

9(r� )|�G=0 (2)

In this context the investigation of ``Quantum Chaos'' has become one of the
most fascinating goals of theoretical physics at the end of this century.(1, 16)

About ten years ago experimentalists have even found very effective
techniques to simulate the quantum billiard problem with the help of
macroscopic devices. Due to the equivalence of the stationary Schro� dinger
equation and the classical Helmholtz equation in two dimensions one
is able to model the billiard by a similarly shaped electromagnetic
cavity.(17�22) Former publications have demonstrated the high accuracy of
large ensembles of measured eigenvalues as well as of resonance line shapes
and their corresponding widths in two-dimensional superconducting cavities
formed like desymmetrized Bunimovich stadium and truncated Hyperbola
billiards(20, 23�25) and also in coupled Bunimovich stadium billiards.(26)
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But also three-dimensional superconducting billiards have been
investigated in the past.(27, 28) Due to the polarization properties of the elec-
tromagnetic fields E9 and B9 inside the cavity the full vectorial Helmholtz
equations(29)

\2+=+
|2

c2 + E9 (r� )=09 (3)

\2+=+
|2

c2 + B9 (r� )=09 (4)

have to be used with corresponding boundary conditions

E9 | | (r� )| �G=09 and B9 =(r� )| �G=09 (5)

on the walls which are assumed to be ideally conducting. Of course the
analogy with the corresponding scalar Schro� dinger equation in the same
geometry is fully lost. Instead of talking of the semiclassical limit one has
to describe the classical electromagnetic billiard in this region in terms of
ray-optical characteristics, where features of the periodic orbits inside the
geometry dominate the corresponding wave optical side.

Three-dimensional systems have so far only scarcely been investigated
experimentally. The first experiments with electromagnetic waves in cavities
simulating acoustic wave phenomena in rooms were performed by
Schro� der.(30) Acoustic model statistics in metal blocks have also been inves-
tigated.(31, 32) Very recently statistical properties of eigenfrequency distribu-
tions in asymmetrically shaped microwave cavities have been reported.(33)

Theoretically quantum effects as well as their electromagnetic counterparts
in three-dimensional systems were treated in Refs. 34�37.

The present article rests very much upon but updates a previous
review.(38) It is organized as follows. In Sec. 2 a description of the experi-
mental methods used to measure the resonance frequencies of the micro-
wave resonators is given. By using a quarter of a Bunimovich stadium
billiard, which was measured with highest resolution of all superconducting
billiards so far, two approaches towards the description of quantum
systems are discussed in Sec. 3. The first approach relies on the analysis of
the eigenfrequency spectra with methods of the Random Matrix Theory
followed by the comparison with the behavior of the corresponding classi-
cal system. The second approach is based on the Periodic Orbit Theory
where the knowledge of the properties of the classical periodic orbits
enables one to reconstruct the quantum mechanical spectrum. In this con-
text the trace formula of Gutzwiller plays the prime role in the application
to the experimental data. In Sec. 4 the semiclassical description of quantum
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spectra with trace formulas is extended to near-integrable systems. This
investigation is performed with billiards of the Limac� on family.(39) The
experimental study of spectral properties of a three-dimensional Sinai
billiard in Sec. 5 allows to investigate the vectorial Helmholtz equation, i.e.,
a non-quantum wave equation for classically totally chaotic systems, and
to generalize some aspects of quantum chaos. Furthermore, some results
on polarization features of electromagnetic waves and important experi-
mental facts in case of three-dimensional cavities are gained. Finally, an
outlook is given in Sec. 6.

2. EXPERIMENTAL MATTERS

The electromagnetic cavity is characterized by the stationary Helmholtz
equation

2E9 =&k2E9 (6)

with the eigenvalue k=(2?f )�c, f denoting the frequency (measured in
cycles per second, i.e., in Hz) and c stands for the velocity of light, and the
electromagnetic field E9 vanishes on the boundary. In case of a sufficiently
flat cavity E9 is always perpendicular to the bottom and the top, i.e., one
has

E9 =|E9 | e� z (7)

In the two-dimensional case the Helmholtz equation is of the form of the
stationary Schro� dinger equation (1) rewritten as

29(r� )=&k29(r� ) (8)

with the eigenvalue k=(2mE)1�2��, m and E denoting the mass and the
energy of the particle, respectively, and where 9 vanishes on the boundary.

This means that Eqs. (6) and (8) are identical and have identical
eigenvalues and eigenfunctions. Therefore, in a cavity with height d�
*min �2=c�2fmax with *min being the minimum wavelength accessible in
the experiments��such a cavity is called two-dimensional��the quantum
mechanical motion of a particle in a potential can be simulated with electro-
magnetic waves.

The solutions of Eq. (6), or equivalently Eq. (8), are discrete eigen-
values k2 with corresponding eigenfunctions 9 and E9 , respectively. The
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chaotic behavior of billiards is thus characterized by the distribution of
those quantities.

For a precise test of the spectra of eigenmodes in terms of the various
statistical measures as discussed further on, a highly accurate measurement
of the resonances, i.e., their locations and widths, is necessary. Therefore
superconducting niobium cavities built in the CERN workshops at Geneva
are used, yielding quality factors Q= f �2f r105 to 107 compared with a Q
of about 103 for normal conducting cavities.(38) The first measurements
were done in the cryostats of the superconducting Darmstadt electron
linear accelerator S-DALINAC, (40) but soon the construction of a new LHe
bath cryostat became necessary. This cryostat, dedicated to experiments on
chaos, offers on the one hand very stable measurement conditions (no dis-
turbance of pressure fluctuations) and on the other hand permanent access
to the billiards in contrast to the accelerator, which is opened usually only
once or twice a year. Also measurements in which cavity parameters can be
varied became possible.(26, 41)

As has been described and shown in Ref. 38 in more detail the cavities
are put into a copper box which is completely bathed within the liquid
helium, so that the box is at very constant temperature of 4.2 K. The
microwave power to excite the cavities is generated by the test set radio-fre-
quency source of an HP-8510B network analyzer and is fed by semi-rigid
copper cables into one antenna of the billiard and transmitted by another
or reflected by the same antenna. The capacitively coupling dipole antennas
sit in small holes on the niobium surface and penetrate only up to a maxi-
mum of 0.5 mm into the cavity to keep perturbations of the electromagnetic
field inside the resonator as small as possible. In frequency steps as small as
1 Hz over the frequency range 45 MHz� f �20 GHz, the analyzer
measures the ratio of the outcoming to the ingoing microwave power.

In Fig. 1 a small sequence of the eigenmode spectrum of a Limac� on
billiard discussed in Sec. 4 is plotted. One sees the very sharp resonances in
the lower part of the figure where the billiard is superconducting, distinctly
different with respect to the wider resonances in the normal conducting
case in the upper part of the picture. The width reduction of the resonances
by a factor of about 1000 in the superconducting case allows to resolve
even very close resonances (2f <100 kHz) compared to the mean level
spacing of about several MHz in this part of the spectrum. The closest
resonances observed have a spacing of about 300 MHz so that we are sure
not have missed modes by overlapping spacings. On the other hand there
is the possibility that one might miss modes which have nearly no elec-
tromagnetic field at the position of the antennas. To reduce this possibility,
measurements are always made with differently placed antennas. Thereby,
the number of missed modes is dramatically reduced below three to five in
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Fig. 1. Small sequence of the eigenmode spectrum of a Limac� on billiard (see
Sec. 4) in the frequency range 17.75 GHz� f �18.00 GHz, where the density of
eigenmodes is already very high. In the upper half a spectrum of a Niobium
cavity taken at room temperature is shown, in the lower part a spectrum at
4.2 K, where the billiard cavity is superconducting. Note the excellent resolution
of the spectrum at low temperature as compared to the one at room temperature
and the frequency shift of the eigenmodes due to the contraction of the cavity
at 4.2 K.

a typical case of a measurement of one thousand eigenmodes as can, e.g.,
be estimated from the area and the perimeter with the help of the Weyl
formula (see Sec. 3).

Here a general remark is in order. Often the statement is made, that
the eigenmode spectrum of any billiard (of a not too extraordinary shape)
��a so-called ideal billiard��can nowadays with modern computers be
simulated with high precision, i.e., with a very small uncertainty in the
position of a given eigenvalue. To the contrary in the experiment always a
real billiard is studied which naturally might have smaller or larger
mechanical imperfections, shrinks in size when cooled down to low tem-
peratures and is excited by antennas reaching into the volume of the
resonator. This explains why there might be slight shifts between simulated
and measured eigenvalues for any given billiard. They are, however,
generally understood as has been shown for several of the billiards dis-
cussed here(23, 42) and it can be stated firmly, that the high quality factor Q
up to about 107 obtained in our superconducting billiards is sufficient to
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resolve all eigenmodes up to a frequency of 20 GHz and even higher. The
typical area of the two-dimensional billiards is Ar103 cm2, which results
in about 103 eigenmodes. Furthermore, an example for a detailed com-
parison of a length spectrum of periodic orbits in a real Bunimovich
stadium deduced from measurements of eigenmodes and of a corresponding
computed one from an ideal stadium will be presented at the end of the
next section.

3. FIRST EXAMPLE: THE BUNIMOVICH STADIUM BILLIARD

In this section results are discussed��reported in detail in Ref. 20��
obtained with a superconducting niobium cavity, which has the shape of a
quarter Bunimovich stadium billiard with inner dimensions r=200 mm
(radius of the quarter circle), a=360 mm (length of the straight part of the
rectangle) and height d=8 mm corresponding to #=a�r=1.8 (see Fig. 2)
at room temperature. The relative uncertainties in those dimensional
measures of the cavities due to their fabrication are less than 1 percent.
With only a quarter of a stadium, one is restricted to a single symmetry
class of the full problem.(43) As indicated in Fig. 2, three antennas were
located in small holes (4 mm diameter). To keep their influence on the field

Fig. 2. Flat niobium resonator with the shape of a quarter of a Bunimovich stadium. Three
input microwave connectors feeding the antennas are mounted on the top of the billiard (from
Ref. 38).
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distributions negligibly small but guaranteeing at same time signals of a
detectable level they were adjusted to penetrate less than 500 +m into the
cavity. To ensure the two-dimensionality of the cavity the analysis of the
spectra has been confined to f <17.5 GHz. Up to this frequency 1060
eigenmodes were counted.

The three major steps in the analysis of the data according to the
methods of RMT are described in the following: From the eigenvalue
sequence (``stick'' spectrum) a level density \( f )=�i $( f & fi ) is calculated
and a staircase function N( f )=� \( f $) df $ is constructed which fluctuates
around a smoothly varying part (defined as the average of \( f )). The latter
usally is related to the volume of the classical energy-allowed phase space,
and for billiards an improved version is given by the Weyl formula, (44, 45)

which also includes surface corrections

NWeyl( f )=
A?
c2 f 2�

C
2c

f +const. (9)

where A is the area of the billiard, C its perimeter and c the velocity of
light. The minus and plus signs correspond to Dirichlet and von Neumann
boundary conditions, respectively. The remaining fluctuating part of the
staircase function N fluc( f )=N( f )&N Weyl( f ) oscillates around zero. While
Eq. (9) does not contain any information regarding the character of the
underlying classical dynamics of the system, the fluctuating part of the
density does. In order to perform a statistical analysis of the given eigen-
value sequence independently from the particular size of the resonator,
the measured spectrum has to be first unfolded, i.e., from the measured
sequence of eigenfrequencies [ f1 , f2 ,..., fi ,...] the spacings si=( f i+1& f i )�s�
between adjacent eigenmodes have been obtained by calculating the local
average s� from Eq. (9).

The proper normalization of the measured 1060 spacings of eigenmodes
then yields as a first statistical measure the nearest neighbour spacing dis-
tribution (NND) which is given as P(s) in Fig. 3 in form of a histogram.
By comparing P(s) to theoretical expressions one notes that it is not
Poissonian but rather GOE like and hence characteristic for a chaotic
system. However, the agreement of the data with the GOE prediction is far
from being perfect. This can be quantified, e.g., in terms of an ansatz by
Brody(46) or by a model of Berry and Robnik(47) which interpolate between
the two limiting cases of pure Poissonian and pure GOE behavior for a
classical regular and a chaotic system, respectively. In the Berry�Robnik
model, a mixing parameter q is introduced, which is directly related to the
relative chaotic part of the invariant Liouville measure of the underlying
classical phase space in which the motion takes place. For q=0 one has a
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Fig. 3. Nearest neighbour spacing distribution of 1060 eigenvalues measured in the quarter
of a superconducting Bunimovich stadium billiard (histogram) compared with a Poisson and
GOE distribution, respectively (from Ref. 38).

regular and for q=1 a chaotic system. The best fit to the data shown in
Fig. 3 yields q=0.87\0.03. Since the classical stadium is a fully chaotic
system this deviation of q from unity is at first surprising.

The reason for this deviation can already be seen, however, in the fluc-
tuating part N fluc( f ) of the integrated eigenvalue density (see the figure
displayed over the whole measured frequency range in the upper part of
Fig. 4). A strong increase in the amplitude of the fluctuations��a charac-
teristic feature of regular or integrable systems��is observed as well as a
periodic gross structure of 750 MHz. This behavior of N fluc is caused by a
family of marginally stable periodic orbits, which bounce between the two
straight segments of the billiard as indicated in the inset of the upper part
of Fig. 4. The presence of these orbits manifests in the spectrum in two
different ways: First, there is an approximate quantization rule given by
kj r= j?. The experimental data agree with this rule astonishingly well. We
were able to identify all predicted values kj=2?fj �c, within a precision of
1�1000, a consequence of the extraordinary resolution of the superconduct-
ing measurement. Second, there exists an additional smooth effect in \( f )
not accounted for by the Weyl formula, which can be seen in Fig. 4. The
cumulative level density, N( f )=� df $\( f $), shows smooth periodic oscilla-
tions (with fixed period 2?�r) around the value given by the Weyl formula.
These facts can be understood(48) by the semiclassical analysis of the
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Fig. 4. The histogram in the upper part displays the cumulative level density
N( f )&NWeyl ( f ). The full line shows the semiclassical prediction of Eq. (10)
expressed in terms of the frequency f for the bouncing ball (bb) orbits indicated
in the inset. There is excellent agreement between experiment and theory. The
lower part expresses N fluc( f ) with the contribution from the bouncing ball
orbits substracted (from Ref. 38).

contribution of the bouncing ball orbits to the spectrum, which gives (written
in k=2?f �c instead of frequency f )

NBBO(k)=
a
r \ :

1�n�X

- X2&n2&
?
4

X4+
1
2

X+ (10)

with X=kr�?. This formula very nicely reproduces the experimental data
as shown in the upper part of Fig. 4. Only after addition of this smooth
correction to the Weyl formula is the proper fluctuating part of the level
density obtained from the data which is plotted in the lower part of Fig. 4.

Returning to the NND discussed above it can be stated that after the
contributions of the bouncing ball orbits are removed from the measured
eigenvalue density the experimental result is in perfect agreement with the
GOE prediction expressed through a mixing parameter q=0.97\0.02.
Another standard statistical test, the 23 or Dyson�Metha statistics, which
measures long-range correlations of eigenvalues in the spectrum (i.e., its
``stiffness'') shows also the striking effects of the bouncing ball orbits (Fig. 5).
Their presence changes the rigidity of the spectrum for large values of the

336 Richter



File: 825J 699511 . By:XX . Date:24:01:01 . Time:09:37 LOP8M. V8.B. Page 01:01
Codes: 1851 Signs: 1447 . Length: 44 pic 2 pts, 186 mm

Fig. 5. Upper part: 23(L) statistics of the experimental data set (crosses with
error bars) derived from the unfolded spectrum with the bouncing ball (bb)
contributions compared with theoretical predictions. Lower part: without the
bouncing ball contributions (from Ref. 38).

length L (measured in terms of the mean level spacing). Proper handling of
these orbits��as described above��brings the spectrum near the expected
GOE-like behavior of classically chaotic systems. Moreover, the 23(L)
statistics very closely follows the GOE prediction up to L=20, where it
saturates, as predicted by Berry.(49) This value of L=Lmax defines also the
shortest periodic orbit and hence a characteristic time (Lmaxt1�{min), in
which the system becomes chaotic.

After the short discussion of the eigenfrequency spectrum of the
Bunimovich stadium billiard in terms of the Random Matrix Theory we
return now to another important approach towards quantum systems, the
Periodic Orbit Theory introduced by Gutzwiller.(1) In general, the chaotic
behavior of a classical billiard system expresses itself in the orbits of a
point-like particle. If one waits long enough the orbits cover finally the
whole phase space. The quantum mechanical analogue, however, does not
know orbits anymore but only eigenstates, i.e., wave functions and discrete
eigenenergies. The dynamics of the eigenstates then reflects the behavior of
the classical orbits.
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The semiclassical theory of Gutzwiller assumes that a chaotic system
is fully determined through the complete set of its periodic orbits. An orbit
is called periodic if a particle after one revolution of length l+ always
returns to the same point in phase space. The effect of the isolated periodic
orbits of a billiard is most instructively displayed in the Fourier transformed
(FT) spectrum of the eigenvalue density \fluc(k),

\~ fluc(l )=|
kmax

kmin

dk eikl[\(k)&\Weyl(k)] (11)

where k=2?f �c, with [kmin , kmax] being the wave number interval in
which data were taken. The result of this FT of the measured spectrum of
eigenvalues in the quarter of a superconducting Bunimovich stadium
billiard is shown in the upper part of Fig. 6. The sharp lines correspond to
the lengths l of periodic orbits and the heights of the peaks are a measure
for the stability of an orbit. Particularly noticeable is the bouncing ball
orbit labeled �1 which occurs at l=0.4 m, i.e., twice the width of the
billiard, and repeatedly at 0.8, 1.2, 1.6, 2.0,... m. Examples of other promi-
nent periodic orbits that could be identified from the measured spectrum
and reconstructed geometrically are also displayed in the figure.

According to the Gutzwiller trace formula, (1, 5) which represents a
semi-classical approximation to the quantal density, the fluctuating part of
the eigenvalue density is given in terms of the POs, the only elements of the
classical dynamics that manifestly survive quantization and are seen in the
spectrum.

\G(S )=Re :
+

A(S, M+) exp \iS
�

&i'+
?
2+

=
1

�?
:
+

T+

|det(M+&1)|1�2 cos \S
�

&'+
?
2+ (12)

Here the index + labels the periodic orbits and their recurrences, M+ their
monodromy matrix, T+ their period, S their action, which is given for the
billiard problem through �kl+ , and '+ their Maslov index, where all +'s are
isolated. It is Eq. (12) that carries information regarding the chaotic (or
regular) character of the classical dynamics and the instability (or stability)
of trajectories. This trace formula provides the fundamental relationship
between quantum mechanical level density \(S ) on the left side and the
sum over periodic orbits of the corresponding classical system involving
their properties on the right hand side.
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Fig. 6. Fourier transform of the fluctuating part \fluc(k) of the spectrum. The particular
orbits labeled with numbers that could be associated with the peaks in the Fourier spectrum
up to the length of 2.0 m are also shown (from Ref. 38).

However, the Gutzwiller trace formula is not applicable to all orbits of
the stadium billiard. As we know from the discussion above, there is a
family of non-isolated marginally stable periodic orbits, that bounce
between the two straight segments of the billiard, and those cannot be
accounted for by Eq. (12). In Fig. 7 the experimental power spectrum
|\~ fluc(l )| 2 of \fluc(k) is compared to the theoretical results (inset) using
Eq. (12).
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Fig. 7. The same experimental length spectrum as in Fig. 6 but now extending to orbit
lengths of 3.0 m compared to a theoretical power spectrum (inset) reconstructed with the help
of Gutzwiller's trace formula, Eq. (12) in the main text (from Ref. 38).

The latter has been obtained by identifying the 30 shortest periodic
orbits of the system and by calculating their length and monodromy
matrix.(50) The monodromy matrix is the matrix which connects a solution
of linearized classical equations of motion in the plane perpendicular to the
periodic trajectory per period.(43) One is able to reproduce most of the
amplitudes up to the length of l=2.3 m, where one starts to miss periodic
orbits. For the peak at l=1.32 m corresponding to the so-called ``whispering
gallery'' orbits(43) the contribution of the 10 most stable orbits has been
summed. For this family of orbits tr M increases fast with the number of
collisions with the circular part, so that orbits approaching the circle give
a small contribution to the power spectrum. However, one fails to
reproduce the amplitude at l=1.37 m, possibly because it is due to a slight
geometry imperfection in the experimental set-up at the point where the
rectangular part is connected to the half circle.(51) Experimentally a more
quantitative statement cannot be made, however, since the microwave
cavity is electron beam welded and cannot be opened without destroying
it. The two peaks in the theoretical power spectrum correspond to very
close trajectories (``whispering gallery-shaped'' closed trajectories), they
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should be experimentally resolved if the actual shape would exactly coin-
cide with the stadium billiard. For other peaks this small imprecision (if
this is the correct explanation) does not imply a sizeable effect. In any case
it can be safely stated that the semiclassical analysis is in good agreement
with the very precise data measured with high resolution and provides a
new scheme for the statistical analysis and comparison with predictions
based on the GOE.

At this point it is certainly instructive to return to the point made at
the end of Sec. 2, viz. what are the differences in length spectra obtained
from a set of measured eigenfrequencies of a superconducting microwave
resonator (real system) compared to a set calculated numerically (ideal
system). For this a #=1 Bunimovich stadium has recently been studied.(23)

In Fig. 8 the Fourier transform of the fluctuating part \fluc(k) of the eigen-
value density��i.e., the same quantity as in Fig. 6 but with the bouncing
ball orbits removed��for the experimental (upper part) and numerical
(lower part) data are compared. It can be seen that in addition to the posi-
tions of the peaks (length of the POs) also their heights (stability of the
POs) are almost identical in the two spectra. Similar conclusions can be
drawn from investigations of Ref. 42 for billiards of various shapes also

Fig. 8. Fourier transform of the fluctuating part of the level density \(k)&
\Weyl(k)&\BBO(k) for the #=1 Bunimovich stadium billiard of the shape and
with the positions of the antennas shown in the inset. The experimental and
numerical results are displayed as mirror images. Remnants of the BBOs at
l=0.4 m, 0.8 m, and, to a lesser extent at 1.2 m, are still visible (from Ref. 23).
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measured at Darmstadt. So, it is evident from such a comparison that
possible small imperfections (like weldseams, antennas, mechanical defor-
mations,...) of the real systems have negligible influence on both the statisti-
cal analysis (RMT) and the analysis in terms of Periodic Orbit Theory
(POT) of the system. To obtain information about two-dimensional
billiards, such as presented for the #=1.8 and #=1 stadiums in this sec-
tion, numerical calculations might have an advantage over measurements,
e.g., if one is interested only in eigenvalues. To simulate fairly complex
problems numerically such as coupled billiards(26) or the measurement
of eigenfunctions(18, 25, 41, 52) is still a different matter. Furthermore, for
problems where one is interested in billiards with scatterers inside, billiards
with fractal boundaries or three-dimensional billiards, etc., the experiment
clearly offers a very convenient way to obtain large sets of eigenvalues
quickly.

In summary, the question asked initially in this section, how the
behavior of the classical system is transformed into the quantum system,
has the following answer for the stadium billiard: There exists a one to one
correspondence between the two systems, i.e., after elimination of the (non-
generic) bouncing ball orbits in the classical system the analogous quantum
mechanical system behaves like the quantal counterpart of a typical chaotic
system.

4. SECOND EXAMPLE: THE LIMAC� ON BILLIARDS

In this section the semiclassical description of microwave spectra taken
from billiards of the Limac� on family will be discussed. The shape of these
billiards (also known in mathematics as Pascalian snails) has already been
mentioned by the famous German painter Albrecht Du� rer in 1525.(53) By
varying one control parameter, *, the system changes from an integrable
regular billiard, the circle, (54) through the whole range of billiards with
mixed dynamics to a fully chaotic billiard, the cardioid.(55) For a proper
description of the billiards with regular and mixed behavior, respectively,
another trace formula is necessary, because Gutzwiller's trace formula,
discussed in Sec. 3, is only applicable to fully chaotic systems. Such a trace
formula for near-integrable systems has recently been derived by Ullmo,
Grinberg, and Tomsovic.(9) Their expressions as they remark, however, are
being correct to the extent that the Gutzwiller trace formula is valid for
large 2S�� and will hold even for very large classical perturbations in spite
of a derivation whose starting point is first-order classical perturbation
theory. As it is shown below in an experimental test using superconducting
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billiards of the Limac� on family(39) this trace formula indeed seems to work
remarkable well even in case of mixed dynamics.

Before applying the trace formula to the experimental spectra the
salient features of it are briefly recalled. One starts with an integrable
system, where the contribution of classical periodic orbits with topology
M=(M1 , M2) specifying the individual winding number of the POs on the
tori to the density of states is given by the Berry�Tabor formula, (8) which
is based on the EBK quantization,

\BT
M (S )=

T
?�3�2M 3�2

2 | g"E |1�2 cos \S
�

&
'?
2

&
?
4+ (13)

with T being the period of the periodic orbit, g"E the curvature of the line
of constant energy H(I1 , I2)=E, S the action of the PO and ' its Maslov
index.

By moving from the regular into the near-integrable case, Ozorio de
Almeida(56) added a small perturbation to an integrable system, which
changes the density of states \BT

M of the regular system in such a way, that
a first order correction to the action has to be added. Introducing a pertur-
bation to a regular system means that the resonant tori, on which the peri-
odic orbits of the regular system exist, are getting destroyed, and only two
periodic orbits per torus will survive: one stable (s) and one unstable (u)
periodic orbit (according to the Poincare� �Birkhoff theorem). Thus for
near-integrable systems Ozorio de Almeida(56) found a modified Berry�
Tabor expression for the density of states

\O
M(S )=\BT

M J0(2S��) (14)

where 2S is the difference of the action of the stable and unstable orbit,
respectively.

In a typical case the unperturbed Hamiltonian and the perturbation of
the system are not known. Thus, a generalization of formulae (13) and (14)
and also a method to evaluate the parameters entering these formulae is
needed.

Ullmo et al.(9) started in their evaluation of a trace formula for near-
integrable systems also with the Berry�Tabor expression. However, they
did not use the propagator formalism of Ref. 8, but instead the energy
dependent Green's function and also the result of Ozorio de Almeida.
Nevertheless, they went one step further. Instead of truncating the Fourier
expansion of the corrected actions, which results in the damping Bessel
term in Eq. (14), they mapped the problem onto the pendulum. They intro-
duce an action which is a composition of the mean action S� and the
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difference action 2S of the two periodic orbits (stable and unstable),
2S=(Su&Ss)�2 and S� =(Su+Ss)�2. The actions Su and Ss and also the
monodromy matrices Mu and Ms of the two periodic orbits can be easily
computed. Entering these relations into the integral which describes the
dephasing of the PO contribution of the family M under a perturbation
(see Ref. 9), one is able to modify the expression of the density of states for
the integrable case (Berry�Tabor description, Eq. (13)). This yields the
following contribution to the density of states for each pair, the stable and
the unstable PO,

\U
M(S )=

1
? |�3M 3

2 g"E | 1�2 Re {exp \iS�
�

&
i'?
2

&
i?
4 +

__T� [J0(s)&ia~ J1(s)]+i 2T _J1(s)+
ia~
2

[J0(s)&J2(s)]&&=
(15)

with s=2S�� being the normalized correction to the action, T� the averaged
period (half of the sum of two periods) and 2T their difference. The quan-
tities J0(z), J1(z) and J2(z) are the standard Bessel functions. The value a~
is the ratio of the determinants of the monodromy matrices of the stable
and the unstable PO. For a~ � 0 one obtains the result of Ozorio de
Almeida (Eq. (14)). The Maslov index is denoted by ' and for the evalua-
tion of g"E see, e.g., Ref. 57. A detailed description of these results can be
found in Ref. 9.

To apply Eq. (15) small replacements are necessary: The action is
given by S=�kl, with k the wave number and l the length of the PO. The
period of the PO can be expressed by its length and the term M 3

2g"E be
evaluated by using expressions from Ref. 9. Ullmo et al. have tested their
trace formula numerically by applying it to a quartic oscillator for which
they have calculated the first 12000 eigenvalues. They found good agree-
ment between the simulated quantum spectrum and its reconstruction with
Eq. (15). The two limiting cases, the Berry�Tabor result for integrable
systems (Eq. (13)) and the Gutzwiller result for chaotic systems (Eq. (12)),
are easily reproduced from Eq. (15). One obtains the first one for 2S � 0,
while the other results from the asymptotic expression for the Bessel functions.

For a test of the trace formula for near-integrable systems, Eq. (15),
we studied experimentally a one-parameter family of superconducting two-
dimensional microwave resonators. In Fig. 9 the shapes of the measured
billiards are shown. They all belong to the family of Limac� on billiards,
which have been numerically studied in Ref. 58. Their boundary is defined
as the quadratic conformal mapping of the unit disc onto the complex
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Fig. 9. Shapes of the investigated billiards of the Limac� on family. All billiards are desym-
metrized, except the first one.

w-plane: w=z+*z2, where * # [0, 1�2] controls the chaoticity of the
system. In detail we have investigated four billiards of different chaoticity
with parameters *=0, *=0.125, *=0.15 and *=0.3. All billiards, except
the first one, are desymmetrized. For *=0 we have a circle, which is
known to be integrable, i.e., regular. Investigations of the classical Poincare�
surface of section of the other configurations have shown, that the fraction
of the chaotic phase space is 550 (*=0.125), 660 (*=0.15) and nearly
1000 (*=0.3), see Ref. 38.

The billiard cavities were excited with frequencies up to 20 GHz, so
that a total number of more than 1000 resonances for each billiard (about
660 resonances for the circular billiard) has been detected. The high quality
of the experimental spectra can be inferred from the example shown in
Fig. 1 earlier. These eigenvalue sequences [k1 , k2 ,..., kn] form the basis for
the following test of the trace formula (15) on the experimental side.
Statistical studies of the microwave spectra have shown, that the quantum
mechanical counterpart in terms of RMT of the classical Limac� on billiards
exhibit the same degree of chaoticity so that these four billiards cover the
full range from regular through mixed to chaotic dynamics.(38)

By applying the trace formula, Eq. (15), to the investigated systems,
we restrict ourselves to the first periodic orbits up to a length of 1.4 m since
then the length spectrum gets complicated due to interfering contributions
from the so-called ``whispering gallery'' orbits (see Ref. 39 for details). The
reconstruction of the spectrum of the circular billiard was done with the
help of the Berry�Tabor formalism, one limiting case of Eq. (15), using a
symbolic code which easily determines all periodic orbits.(59) For the three
other billiards the properties of each PO (length, number of reflections,
curvature of the boundary at the reflection point, Maslov index) were
calculated numerically. The so found characteristic values for each PO
form the basis for the reconstruction of the experimental spectra on the
theoretical side.

A view at the square of the Fourier transformed fluctuating part of
the spectral density of states is given in Fig. 10. Here a comparison between
the experimental data and the numerical reconstruction for the four
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Fig. 10. Comparison between the measurement (solid line) and the reconstruc-
tion (dashed line) of length spectra with the help of the trace formula given by
Eq. (15). The insets for the *=0.125 and *=0.15 billiard show a magnification of
the first periodic orbit at lr0.47 m (from Ref. 39).

investigated systems is presented. For the circle the reconstruction is in
very good agreement with the measurement. The reconstruction for the two
billiards belonging to the regime with mixed dynamics (*=0.125 and
*=0.15 billiard) is for the shortest periodic orbits also in good agreement
with the measured data, whereas for the following periodic orbits with
length l�1.3 m small deviations become visible. These deviations do not
occur in the positions of the periodic orbits but in the height of the
reconstructed peak. The same situation is found for the fully chaotic *=0.3
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billiard, where the predictions of Gutzwiller's trace formula, Eq. (12), have
been compared to the data.

The small deviations we found for the billiard systems with mixed
dynamics (*=0.125 and 0.15) could be explained by two reasons: Equa-
tion (15) has been derived for the case of small perturbations of a regular
system, i.e., the near-integrable case, while the two investigated billiards
already constitute mixed systems. Furthermore the number of eigenvalues
considered in the comparison (around 1000) are much smaller than Ullmo
et al. have used for their numerical test (around 12000) with a quartic
oscillator, so that we are probably still away from the semiclassical regime.
Uncertainties of the experimental setup can be excluded for the deviations.
Numerical simulations of the ideal system(42) show that the measured spectra
agree very well with simulated ones, which allows a one-by-one comparison
of the levels in the ideal and the real systems, respectively. The quantitative
comparison shows that the measured sets of about 103 eigenfrequencies
each are almost complete, with about 1 percent misinterpreted levels. Thus
we can state that the data of the real system are accurate enough. Further-
more, as expected the results for the mixed systems obtained with the trace
formula of Ullmo et al. is much more satisfying than using Gutzwiller's
trace formula straightforwardly without taking the Poincare� �Birkhoff
theorem into account. Finally, the small deviations found for the chaotic
case (*=0.3) are indeed due to mechanical imperfections of the microwave
cavity. In the manufacturing process the shaping of the boundary, in
particular of the cusp at the lower left corner, caused some problems.
Especially properties of the boundary, e.g., its curvature, determine the
amplitude of the peak in the length spectrum.

5. THIRD EXAMPLE: THE THREE-DIMENSIONAL SINAI
BILLIARD

Up to now, the semiclassical analysis of the measured spectra has been
restricted to 2D-billiards; however, three-dimensional billiards are also of
particular interest for realistic models of physical systems. Within the field
of chaotic 3D-billiards the majority of experiments has been performed
with electromagnetic (e.g., Refs. 27, 33, and 60) and acoustic (e.g., Ref. 32)
waves, whereas the hardly feasible numerical modelling was restricted to very
special geometries of high symmetry for the pure Schro� dinger problem.(35)

Here we review briefly the results from an analysis(28) of the fully
chaotic 3D-Sinai billiard respectively its desymmetrized version given by
1�48 of a cube with a sphere in its center, see Fig. 11. According to the
experimental setup the system has to be described by the time-independent,
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Fig. 11. Geometry of the desymmetrized 3D-Sinai billiard (boldface line)
which constitutes one-sixth of the dashed cube. Eight of those cubes form the
full system.

fully vectorial Helmholtz equation with electromagnetic boundary condi-
tions (E9 | | | �G=09 and B9 = | �G=09 ), see Eqs. (3)�(5). As the 2D-billiards
discussed in this article, the electromagnetic resonator was also made of
niobium and measured at 4.2 K. A detailed and accurate comparison of all
measured spectra with different antenna combinations yielded a total set of
approximately 1900 experimental resonances within the measured range.
They formed the base of a statistical analysis in terms of RMT.

After rescaling the frequency axis to a mean level spacing of unity (as
described in Sec. 3) we have examined the short-range correlations in the
spectrum by calculating the nearest neighbor spacing distribution P(s). As
Fig. 12 shows the experimental data are very close to the GOE prediction
for totally chaotic systems. Furthermore, we analyzed the spectrum on a
larger scale in order to investigate long-range correlations. For this purpose
we calculated 72(L), which expresses the variance of a number of reso-
nances inside an interval of length L on the unfolded scale, as well as the
related Dyson�Mehta statistics, 23(L), also sensitive up to L, i.e., several
mean level spacings. The result for both properties is given in Fig. 12
(l.h.s.). Here, two observations can be made: First, the experimental curves
rapidly deviate from the GOE prediction and lie between the regular and
the chaotic case. This behavior has also been observed in other experiments
on three-dimensional systems.(32, 33) Second, above a certain value Lmax ,
which is different for both statistics (L7 2

maxr40, L23
maxr150), the experimental

curves run into saturation. This last feature��not seen in Refs. 32 and 33��
is exactly what is expected from theory,(49) displaying the fact that for
increasing L the given statistics is more and more sensitive to specific, i.e.,
non-universal features of the system.
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Fig. 12. Short- and long-range statistical measures before (left side) and after
(right side) the extraction of fluctuations due to 3D-bouncing ball orbits. As can
be seen, the strong deviation from the GOE curve is eliminated after the
contribution of the bouncing ball orbits are extracted.(28)

Thus, although the system is fully ergodic on the classical side without
any stable islands in phase space, the wave dynamical side pretends their
existence. To understand this phenomenon, we analyzed the classical
analogue in more detail. Therefore, we continued our investigation on a
more specific scale which is a bridge between the classical chaotic features
and their impact on the electromagnetic spectrum. This scale is given by
the length spectrum of the billiard, which is obtained through the Fourier
transform of the spectral level density. The resulting spectrum shows peaks
at the classical periodic orbits of the billiard. Figure 13 exhibits the lower
part of this spectrum up to a length l=1.5 m. Here a rich structure of
peaks can be observed above a minimum length lmin=0.34 m. The first
peak belongs to the shortest 3D bouncing ball orbit (3D BBO) of the
billiard, propagating along one edge of the desymmetrized cube without
striking the sphere, see sketch in the inset.

As a matter of fact, the obtained length spectrum is totally dominated
by BBOs of all possible dimensions, not only in the quantum case, (35) but
also in the electromagnetic counterpart. To demonstrate this, we considered
the contribution of the leading 3D BBOs to the given length spectrum.
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Fig. 13. Experimental length spectrum of the billiard (full line) and the semi-
classical reconstruction using only 3D BBOs (dashed line). The picture in the
inset show the first unstable and the first 3D BBO, respectively (from Ref. 28).

Therefore, we used a lattice vector description of Berry(61) to label and
generate all 3D BBOs up to a certain length and determined their contribu-
tion through Eq. (10), but now adapted to the 3D-problem,(27)

NBBO(X )=
2?S BBO

l 2
BBO \ :

0<n<X

(X 2&n2)&
2
3

X3+
1
2

X2+ (16)

with X=lBBO f �c. Here, the length of a given 3D BBO, lBBO , was deduced
directly from the lattice vector, and S BBO, the perpendicular area on which
this orbit exists, was fixed in a Monte-Carlo simulation. In the given range
up to l=1.5 m, we obtained 55 3D BBOs of different degeneracies and with
positive S BBO; their superimposed semiclassical reconstruction due to
Eq. (16) is given by the dashed line in Fig. 13. It is highly remarkable that
nearly the full structure of the given length spectrum can be reproduced
using only 3D BBOs, whereas the influence of the enormous number of
unstable periodic orbits (approximately 36000 up to l=1.5 m) is hidden in
the background. Discrepancies between the experimental length spectrum
and the reconstruction can be predominantly found at the locations of the
3D BBOs themselves and arise because of the existence of the subdimen-
sional and tangential BBO manifolds.(35)

To demonstrate the influence of the considered fluctuations due to 3D
BBOs on the long-range measures 72 and 23 , we repeated our statistical
analysis using a modified unfolding procedure in which the contribution of
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the 3D BBO is included. The result is given in Fig. 12 (r.h.s.) displaying,
now also for 72 and 23 , nearly perfect agreement with the GOE prediction
in the universal regime up to Lmax , which is r75 for 72. Therefore, satura-
tion for 23 is expected(62) at Lmaxr300.

For a proper reconstruction of the length spectrum with extracted
BBO contribution of the here discussed electromagnetic case the trace for-
mula of Gutzwiller is not applicable due to the polarization properties of
the electromagnetic wave in the 3D-system. So, Balian and Duplantier(34)

suggested a modified trace formula for this case, which takes these properties
into account and reads as follows

\em(S )rRe :
+, even

2 cos 9+A(S, M+) exp \iS
�

&i'+
?
2+ (17)

It is very similar to \G(S ) of Eq. (12),but the amplitude A has to be multi-
plied by a factor of 2 cos 9+ , which takes into account the rotation angle
9+ of the polarization vector of a planar electromagnetic wave along the
given unstable periodic orbit +. Furthermore only orbits with an even
number of reflections are considered in the leading order.

For an experimental test of this semiclassical description of electro-
magnetic problems the investigated 3D-Sinai billiard, however, is not a
good candidate due to the large number of different BBOs which dominate
the length spectrum. A 3D-stadium billiard,(63) see left side of Fig. 14,
should show no (or only a few) BBOs. By reducing it to a quarter and with

Fig. 14. Left side: full geometry of the 3D-stadium billiard. The quantities R
and r are the radii of the two half-cylinders, respectively, and a is the distance
between the two parts. Right side: desymmetrized version with vanishing length a.
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a vanishing length a (right part of Fig. 14), only two BBO will survive and
a test of the trace formula (Eq. (17)) by performing a microwave experi-
ment should be possible, and we are in fact in the process of preparing such
an experiment with a niobium cavity, whose dimensions are characterized
by R=200 mm and r=141 mm.

6. CONCLUSION

Studying billiards modelled in form of microwave resonators is a
powerful experimental technique for the investigations of quantum chaos
and classical chaotic phenomena. For the particular subject of the present
article �a test of trace formulas for spectra of billiards of varying degree of
chaoticity �a prerequisite to this is a spectral resolution and a very good
signal-to-noise ratio in the measured spectrum of eigenmodes, which can
effectively be achieved by the use of superconducting microwave cavities. It
is the quality of the spectra which assures the completeness of the obtained
sequences of eigenvalues. Only then the statistical methods (RMT and
POT) applied in the analysis to the data provide results of the necessary
reliability. This becomes obvious in particular in the semiclassical analysis
of Secs. 3 and 4 where the application of the trace formulas of Gutzwiller,
Berry and Tabor and Ullmo, Grinberg and Tomsovic, to quantum spectra
of billiards in the fully chaotic, regular and mixed regime, respectively, led
to a theoretical reconstruction of the measured spectra. As pointed out in
Sec. 5 it will certainly be a challenge to extend those investigations of trace
formulas also to three-dimensional superconducting microwave billiards
and are presently in the process of doing this.
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