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°	 TEST PARTICLE METHOD IN KINETIC THE, ORY

Or A. PLASMA

Kyoko Matsuda*

Laboratory for Theoretical Studies

ABSTRACT

A general relationship has been found between many body correlation func-

tions and the conditional probability functions which describe the sl-deld clouds

surrounding test particles. This is the generalization of Rostoker's superposi-

tion principle. The relationship is useful because the problem of Idnetic theory

is reduced to determining the conditional probability functions, which involves

essentially only the Xnasov equation. This method has been applied to obtain a

second order correction to the Lenard-Balescu collison integral.

*NRC — NASA Resident Research Associate.
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TEST PARTICLE METHOD IN KINETIC THEORY

OF A PLASMA

INTRODUCTION

Several years ago, Rostoker I found a relationship between the two-particle

correlation function G(X, X 2 t) and a conditional probability function P(X' I Xt )

which characterizes a shield cloud of field particles of coordinates X - (x, v)

surrounding a test particle of coordinates X' = (x, v') . It is

G(X 1 X2 t)	f(XI t)P(X 1 I X2 t) + f(X2 t)P(X2 I X 1 t)

* n f dX' f(X' t)P(X' I X 1 t)P(X' { X2 t)	(1)

This relation has been established without solving explicitly for anything and

has none of the usual restrictions such as spatial homogeneity, adiabatic time

behavior etc. usually necessary for obtaining explicit solutions. It is useful be-

cause the problem of Idnetic theory is reduced to determining P, which involves

only the Vlasov equation.

A similar relationship has been obtained by Rostoker and the author  to

higher order in the plasma parameter using the procedure of ensemble averages

of the singular distribution function for a system of initially uncorrelated

particles. The first two relations are, to second order in the plasma



parameter

G(X1 X2 t)	n	dX l ' F(X 1 ' ) P(X I' X i t) P(X I` 1 X2 t)

112+	dXIf dX2' F(XI' ) F(X2, ) Q( X 1
1
 X 2 ' 1 X 1 t ) Q(X; X2 t 1 X2 t)

T(123) = n fd l' F(1') P(1' j 1) T'(1' 1 2)(1' 1 3 )

+ IT, 
n z	d 1 1 d2' F(1' ) F( 2 1 ) (1'	1) ( 2' 1 2) '(1 ` 2' 1 3) (3)

P

where

G(12)	A(1, 2) f(1) + G(12)

T(123) = 6(1,2) A(2,3) f(1) + A(1,2) G(23) + 6(2,3) G(31)

+ 6(3, 1) G(12) + T(123)

Q(1, 2) = n b 0X 1 " x 2 ) b (vr `v2)

and G(X 1 X2 t ) is written as G(12). G and T are the usual two-particle and

three-particle correlation functions, and F is the one-particle function at

the initial time. P(1' 11) is the probability of finding a particle at X 1 = ( x 1 , v 
1)

2

(2)



at time t given a particle at X i` , (x I ' , v 1 ' ) at the initial time.	1' 1)

+ P(2' 1 1) + Q(I' 2' t 1) is the probability of finding a particle at (X, t) ,

given a pair of particles at (X i ' X 2' t n 0) . The equations for P and '^ are ob-
s

tained by carrying out averages on the Klimontovitch equation.

From the definition and also Equations (2) and (3), it is exTected that

p(1' 1) must have singularities. For ;instance, consider a uniform field.- free

system. Solving the equation of P, we obtain

1
P(1' ( 1) n S(v l -V I') 8(x 1 -x i' - v i t) * nonsingular terms . (4)

The first term is interpreted as the probability of finding the test particle while

the second represents a shielding particle. However this singular solution may

be criticized because the expansion itself breaks down in the vicinity of test

particles. In fact, using this solution Equations (2) and (3) do not give the proper

singularities of G and T. A further criticism of the singular function of Equation

(4) is given in Appendix.

Since the main object of Reference 2 is to make the relationship clear be-

tween kinetic theory and weak turbulence theory, the inconsistency of the solu-

tion P does not affect the discussion. A correction should be arcade to the dis-

cussion concerned with discrete particle effects. Of course, by the termination

of the hierarchy, the approach in Reference 1 also breaks down in the vicinity

of the test particle. In both approaches, we are not free from the problem of

{	 cut-off at short distances. However this is not our present problem. The ap-

proach in Reference 1 is selfconsistent. The difficulty in Reference 2 is that due

3



to the Inconsistency, the restriction to a system of Initially uncorrolated particles

is not able to be removed. Besides the physical pictures of i ( V 1 1),

q(1' 2' 1 1), - • - are less clear than that of P( 1' ( 1).

In this paper, the direct generalization of Reference 1 to higher order 
in 

the

plasma parameter Is presented. The general relation as well as Equation (1) has

none of the usual restrictions, which we have stated below Equation (1), Hos-

toker's superposition principle, that is, Equation (1) has been often misunder-

stood at this point 3 - Through this relation, the Bogoliubov-Born-Greon-

I1,1rkwood-Yvon hierarchy is reduced to the hierarchy of the test particle func-

tions which involves essentially only the Vlasov equation.

As an application of this method, a second order correction to the Lenard-

Balescu. collision term has been calculated. The correction is significant for a

system with a one dimensional, velocity distribution such as a plasma with an

extremely strong magnetic field, for which the Lenard-Balescu term vanishes.

KINETIC THEORY

We consider a gas of charged particles interacting only through Coulomb

forces. The system may be described by the B - 33 - G - K - Y Merachy. If we

introduce an additional charged particle into the system, the field particles form

a cloud surrounding t^e test particle. To first order in the plasma parameter

the cloud is characterized by the perturbation P(X l ' I X 1
 t) of the one-particle

4

4.



distribution function III (X,i t) wlAch is governed byl

{

(7 1	1 C 2 a f ( X I t)

	

' 0 '(X j' t) #O(X j t) n(X 1 
X 1 t)	m r v	

'- ,	x '	(a)

where

0 t (X 1 I	 V	°•	F (}(' t) • 
c

-^^ -r-

	

^ x i	m M	
rV1

and

O(X 1 t)	V 1 ' OX1 - FM (X1 t)

nee Of (X 1 t ) a
.^ m --- x 

i '
	cIX2 X I _

X 2

FM (Xt) is the macroscopic force, that is, the external_ electrom.arg tic force

plus the macroscopic Coulomb force

n  .	dX2
^(X2 t

(X "X24

Infinite mass ,randomly distributed ions are assumed since the generalization

including ion distributions is Trivial In Reference 1, the relation expressed by

Equation (1) has been proved between the solution of Equation (5) and the two-

particle correlation function.

In second order theory, we are concerned with a new quantity W(X 
1' 

I X 
1 

X
2 

t)
f

which is the perturbation of the two-particle correlation function G(X 1 X,2
 
t)

5



6

due the the test particle. To save space, we introduce singular functions

P(1' 11)	P( V 1 1) `f° A(1 1)

w(1' 1 12) .' w(V 1 12) 1 A( 1, 2) P(. 1' 11)

P(1' 11) and W(1' 112) oboy the equations

YE 
11, 0 1 (1 1 ) + 0(1)1 P(1' 1 1)

ne e ' I.)V.
l	

0 

f d2 OXi. I xi -,x

ne e al'(.1' ()	 1 _.. m	
av

i	d2 x 
i x ^=x` I P(al 1 2 )

nm	a2 
aXi 

I X i X	i 49^ W( 1
, 

112)
x

2

nm	
d2 x x xW'(1' 112)	(6)

i (	i	21	1
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+ 0'(1 1 ) + 0(1) + 0(2)} W(1' 1 12)

ne aP(1 ` 1)	a	1a. m --	 d3	
I'l l -131 ,

x3 G( 23)avi

ne? aP(1' 1 1)	
d3 . 

c?	1	G 23M	av '	ax ' x' -- X	̂(

	

1	 1	1	3

ne e aP(.1' 2)	a	1+ m	av2	d3	x2 - x3[ G(1,3)

,cI O; 2 aP(1' 2)	d3 a	
1

M	av l '	axle xII -XI G(13)^

net aG(12)	 a	1

* m	av^	d3 axi 1 X i -X31 
P(1' 3)

ne e aG(12)	a	1
+ m
	a 	d3Zx2 I x 2 -X3 P(1' j 3)

2 f

In the right hand side of Equation (6), the first two terms are effects of Coulomb

forces due to the dressed test particle; the third and fourth term are perturba-

tions of the collision integral due to the test particle. The function W' is not

obvious at this stage.

(7)



The solution of Equation (7) may be given by making use of Equation (1).

Using the singular functions Equation (1) is written as

	

G(12) = n	d2' f(2')P(2' 11)P(2' 12)
	

(8)

The test particle at X i ' produces the perturbation

W(1') 12)	n	d2' P(1' 1 2') P(2' 
1 1) P(2' 12)

+	d2' f(2)  Q( 1 ' 2 1 1 1) P̂(2' 12 )

+ n	d2' f(2') P(2' ( 1) Q(1 1 2 ' 2)	 (9)

Q(1' 2' 11) describes the cloud surrounding a pair of particles, in other

words, the perturbation of f(X i t)due to a pair of test particles at X 1 ' axed X2

and obeys the equation

at + 0'(1') + 0 ' ( 2 ') + 0( 1 ) Q( 1 ' 2' 11)

net a^(.111)	a	1	,.
M	avi	d2 axi Ixi -x?I P(2' 2)

+ nm 2 aP(1' 11)	
d2 

a 
^	̂ 1	P(2' 12)a^ i	axi I xl -- x 2)

8



9

	

ne e (I'(2' 1 1'j	 1
M dVI	d2 ^ x

l "X 2 1 g(il 
2)

	

+ 
2e 2 

aP(2' 11)	d2 	1	P(1' 
R 

2)	(10)M	
0v2'	 0X2' ! ^2 `x21

This equation is much easier to solve than Equation (7), and the quantity Q has

much simpler meaning than the quantity W does.

It is straightforward although tedious to show that relationships exist be-

tween the first two correlation functions of the hierarchy and the functions P and

Q, provided that the quantity W' is given by

W'(1' 1 12) = W(1' 1 12) - n	d2' f ( 21 ) k' ( 2 ' 1 1 ) Q( 1 ' 2' 1 2)	(^1)

that is, W' (l.' 1 12) does not contain the term of W(1' 112) in which the test

particle interacts only with the shielding particle. The relationships are

G(12) = n	dl' f(1') P(1' 1 1) P(1' ( 2)

* n 2	d1' d2' p(1' 12') P(2' 1 1') P(1' 1 1) P(2' 1 2)

3



+ 2	d 1' d2' f(1 1 ) f(2 1 ) Q( 1 ' 2' 1 1) Q( 1 ' 2' ( 2)

+	n2 f d1' d2' f (1') P(1' 12 1 ) P( 2 ' 1 1) Q(1' 2 ' 1 2)

P

T(123) = n	dl' f(1') P(1' 1 1 ) P( 1 ' 12) P(1' 1 3)

+ T, n2	d1' d2' f(1') P(1' (2 1 ) P(1' 1 1) P(2' 1 2) P(2' 1 3)

P

+ L n 2	d1 ' 42' f ( 1 ') f(2') P ( 1 ' 1 1 ) P(2' 12) Q( 1 ' 2' 13) (13)
P

where

P

means the sum over all cyclic permutations of particles involved. Each term

in Equations (12) and (13) is shown schematically in Figures I and II in the same

order.

The rule governing the general relationship between any higher order cor-

relation function and the test particle function P(1' 1 1), Q(1' 2' 1 1),

R(1' 2' 3' 1) etc. can be obtained from these diagrams. A dot indicates a test

10

(12)
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particle and a circle indicates a shielding cloud. Each (lot counts as order 1A,

each circle surrounding one center counts as order c, each circle surrounding

two centers counts as order 6 2 , etc., where C- is the plasma, parameter. In each

diagram, every center is surrounded by the same number of circles and the

total, order of a diagram is given by the product of orders for circles and (lots

in the diagram. It should be noted that the interaction between additional par-

ticles which will be averaged always comes in as a nonsingular function.

If we rewrite the relationship in terms of nonsingular functions, for the two-

particle correlation function

G(12)	f(l) P(1 1 2) + f(2) P(2 1 1) + n	d1' f ( l ') P(1' 1 1) P(1' (2)

+ P(1 12) P(2 1 1) +	, n f d1' P(1 1 1') P(1' 1 1) P(1' 2)

P

+ n2	d1' d2' P(1' 1 2 1 ) P(2' 11') P(1' 1 1) P(2' 1 2)

+	n	dl' f (1') P( 1 ' 1 1 ) Q( 1 ' 11 2)

P f

+ 2	dl' d2' f(1') f(2') Q(l ^ 2 ' 1 1) Q(1' 2'	2

+
 T n2	

dl' d2' f(1') P(1' 2') P( 2 ' 1 ) Q(1' 2 ' 2)	14
P	f

11



This is schematically expressed in Figure III and the three particle correlation

is shown in Figure IV. The rule governing these diagrams is the same as before.

The differences are as follows. An open dot indicates one of particles involved

which itself acts as a test particle and has order c °. There is no restriction

on the number of circles surrounding this kind of dot.

The relationship always exists provided it is satisfied at the initial time,

Now kinetic theory is reduced to the determination of P(1' ( 1) Q( 1' 2 ' 1 1) ,

R(1' 2'3' 11) , etc. The equations for these quantities are essentially the Vlasov

equation.

Rostoker has shown that the first order superposition principle gives the

Imown two-particle correlation function for an equilibrium. system,. In the

second order theory, we also obtain the equilibrium two- and three-particle

correlation functions which have already been obtained by other methods. The

entire procedure is considerably more complicated than that in the first order

theory and the details will be omitted in this palter. However it may be worthy

to notice that we obtain some integrals which are hardly calculated by a straight-

forward way. They are, for instance

du
F(u)	 1

--	,
-CO	1E(k, -iku) 12	

E(k, 0)

Ek1p	drPIM	1
( 1' ) —ao	 E(k2' `iT	_) E(kV	ir)

12

4

^.	 a	 i'xati '.h "'Mat'X''.z•e ,-'^'k.R.'xhN	
y	xT..



dT 
P 

IM

	

(k 2 , 0)	7'	c- ( k	̂-iT) C ( k l , ^' i ''' )_M

1	 P	 1

	

+ ^(k300)
	dT T IM e(kl, -iT) C(k 2 , -iT)

K 4	K4	K 4	2/, 6

k 12 k 22	k 22 k 32 
	

It 
32 

k 12 " k 12 k 22 k 32

^.	 c(ki , 0) c ( k 2 ' 0) e( k3 '0)

for finite positive k 1, k 2 , k 
3 , 

where F(u) is the one dimensional maxvc ell function

F(u)	i	ex	
2

u tt^	- 
2Vtl,

K - WP/Vt
11
, 

and

K2 f du u F(u)
e(k, -ir )	1 + 

k2	
_ T T

They are obtained by changing order of integrations in

dv l dv 2 Gk (VI, V2)

or

dvi dv 2 dV 3 Tk ik 2 (V 1 , V 2 , V3)

13



where Gk and Tk k are the Fourier transform of correlation functions and ex-

pressed in terms of the test particle functions.

COLLISION INTEGRAL

In this section, we calculate a second order correction to the 'Lenard-

Balescu collision torm. To this end adiabatic time behaviour and homogeneity

of the system are assumed.

The basic technique used here is the Fourier--Laplace transformation.

From Equation (5), the asymptotic solution Pk (1' 1 1) is easily obtained to first

order in the plasma parameter. Incidentally making use of Equation (1), this

solution gives the Lenard-Balescu term. When we lmow the right hand side of

Equation (10) and note that

	

dv 2 Pk (1' 1 2) = r
	

1 ,
e(k, -ik vi')

where

e(k, -ik • v i ') - 1 -
	k 2	A (v --v , ') + b

and damping terms are neglected, we may obtain Qk lk 2 (1' 2' 1 1) . The right

hand side of Equation (6) is now known to obtain the second order solution fc-

P( V 1 1). We note that we may use only time independent terms of the asymptotic

14

,Y
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s

solutions for the right hand sides of Equation (G) and (10), since all others are

damped after the integrations over velocities of shielding particles.

We thus obtain

f

(2)	 f(2) 
P_(2)

3 (2 1 1)

f
Ck (12) dv2	Cy2 e(k, -ik v2)

+ 
n dv f( 1'

) P-k1) (1' 1)	2 Pk( 2) (1' 1 2)

dk',	) ,	Pk+k^' 
(1 r 

2) PI ' 1
) 

( 2 11 ' )1 ' )

(27T 
) 3 n dv P-k (1 1} dv2	c(k, -i.k v2)

Pk+k) ( 11 1 2') Qk-k' , k' (1' 2' 11)
n dv t' f (1' )	dv2	E(k, _ik , v2)

n2
	

d 1, dv2r 
f(1 

/ P-k . k' (1^ 1 2^) P-k1 (2, 11) f
d'`2 Qk +k' , -k' (l. '21 1 2)

[12
+2	dv 1'dv2' f(1') f(2') Q-k^-kr,k' (1' 2 ' 1)	dv2 

Qk+k',-^k'(1' 2' 12	(16)

where Pk 0 ^ (1' ] 1) , Pk (2) (1' ( 1) and Qk 
r , 

k 
z (1' 2' 11) are the time inde-

pendent parts of the corresponding asymptotic solutions

fik^ 7
	

_2 ^
v

	

e(k, -ik • v) ik (vi _ V1 	+

15
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•`°^	ti•^,;, ,,tea ..	̂ 	.,,^	 ^



Qk * (1'2' 1 1) = n L(kl ,^k v^, k 1 v' k.^ v ")	
Al
^

	P ^^ 2^ ^	 ^ ^ (k ^^ 1 . 
v 1 ) ki ^^v

1 k 2 ( 1

ik

e(k2 , °^ik2 ` V2 ) k2	1	i

A  . , 0 ,, P 1
r, (k ^-ik2 ^ V2) k2 ^v

1	k i+k 2 (^ 1 1)

	((k 1 , -ik, , v^ l ) k 12 ' OV % Pk l +k 2 ( 2 1 1)	(18)

A'Pk(2) (1, 
1 1

^ ,, 
n 

L(k, v1	̀ k , v1r )	.. dk A'

(27)3k'

e(k', --ik' • v
1 
')) avi Pk-k ' (^, 1) + is( 

k'' -ik' , v
i) 

av
1
' PkA 

(ir 
1)

5v Pk (1 1 1) 	_ik, v	1
(,s(k',

1

1 	ik v1

a	Pk(1) (1 12) Pk'^ (211)	f(2) Qk, A ( 1 ' 21 1)
+ 
Ovi 

n fdv2	
e(k' , -,Ik' - v2)	+ n 

&2	e(k' , -ik' v2 )

Y

+ n2fdv' Af(2') k( k)' ( 2' ( 1 )	'2 Qrc,k' -k ( 1 ' 2' x)

16
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it	 dv 
Pk+k	

f_1 
2) Pk 

1) 
(21 1)	 f(2) Qktk ` A ( 1 ' 21 1)n

v,	
(k' } -°ik' , v2)	

n f%AT2	r (k, ,	
k` . v2)	

(1)

rho operator L is defined as

L(k, vi; k v x`) e(vi)

lk of
z	 n k2 7)lvi

+	(:(k,	ik • v i )	A • (v Y11)

The kinetic equation is written as

(J (1) ( V I) + J(2) ( ,V,)
)
	 (21)

where J	is the Lenard-Balescu collision integral and

J(2)  ( v i)	Err	
dk	

im i	riv 2 Gk
(2)  

(12 )
(2rr) k f 

The imaginary part of Equation (16) can not be expressed in a simpler way un-

!ess the one-particle function f is specified. In a system of one dimensional

velocity distribution where

IM.	dv2 GK (V1 V2)

17



vanishes, we may observe that this second order correction does not vanish In

general. For this conclusion, it is enough to check that the term with a particu-

la • power of functions F(u i ), cry F/au lf (7 2 ro /ci " 12 1 * ' ' does not vanish for

a given k where F(u	is the one dimensional velocity distribution function.

For instance, the terms containing (74 17/8111 , which is the highest derivative

involved here, result from the first, second and last term of -Equation (10), and

have nonvaniabing coefficients.

DISCUSSION

The superposition principle revetils the structure of many body correlation

functions.

An interesting application of the higher order theory is a systematic study

of mode coupling for an unstable plasma. Recentky Price s and Harris 
6 

have

shown that for the time behavior of the distribution function f, many other effeots

are involved than those considered by quasi-linear theory. Price's work is based

on Dupree's method and the long time evolution is treated as a succession of

initial value problems. The limitation of his work is its restriction to a homo-

geneous plasma and the neglect of three particle effects. The first order test

particle method gives the same result as Price's for a homogeneous plasma. It

is expected that a sy-3tematic study of three particle effects yields a much different

result* than that given by mode coupling in quasi-linear theory.

18
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Since the higher order equations are still complicated, some simplification

is desirable to apply them to actual problems. To this object, the characteristic

of each term will be studied in a future paper.
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APPENDIX

We show another example in, which the singular distribution of Equation (4)

fails. Using a singular distribution function

?(X, t) - n
	

a(X - X i (t)) 

+

i

we have the well known relations

d{XjDN ((X i), t) f (X, (XJ) = f(X, t)	 (A-1)

d{XJDiv ({Xi) , t) ?(Xl, (XJ) f (X2, {XJ) = A (1, 2) f (Xt, t) T f 2(X1 X,, t) 	(A.-2)

etc., DN is a solution of the Liouville equation. By Liouville I s theorem the left;

hand sides are equivalent to

CI{X i o) DN (( X i 0) 't 
= 0),f  X+	

i({X i0) 1t)1)) (A-11)

d
{X i o)DN ({Xi o) + 0) 

f X t + jXi ({X
i o) + t, 

f X2, fXi ({Xi 
0) , t)	(A-2')

etc., where Xi o is the initial position of the i t " particle in the phase space. For

convenience, consider a uniform field-free system. Equation (4) is a<.p V,V,Ivalent

21
y



to setting

f
(X, fXi (N 

0),t)j_ n
1 Z]S (v-vlo) ^(x•-xlo-vlo t) + nonsingular teim	(A--3)

 t

,Although this function is often used in the literature 7 , -this function reduces

f = ^•') (A-2 1 ) etc. to f(X, t = o) + . •	A (1, 2) f(X i , t G: o) + nonsingular

terms, etc.

Thus we may claim that the singularity of f or P can not he expressed in

any simple way with functions of initial coordinates (X,,,) and time.
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