26th IEEE VLSI Test Symposium

Test-Pattern Grading and Pattern Selection for Small-Delay
Defects:-

Mahmut Yilmaz, Krishnendu Chakrabarty
Duke University
Dept. of Electrical and Computer Engineering
{my, krish} @ee.duke.edu

Abstract

Timing-related defects are becoming increasingly impor-
tant in nanometer technology designs. Small delay vari-
ations induced by crosstalk, process variations, power-
supply noise, as well as resistive opens and shorts can po-
tentially cause timing failures in a design, thereby lead-
ing to quality and reliability concerns. We present a test-
grading technique to leverage the method of output devi-
ations for screening small-delay defects (SDDs). A new
gate-delay defect probability measure is defined to model
delay variations for nanometer technologies. The proposed
technique intelligently selects the best set of patterns for
SDD detection from an n-detect pattern set generated using
timing-unaware automatic test-pattern generation (ATPG).
It offers significantly lower computational complexity and
it excites a larger number of long paths compared to pre-
viously proposed timing-aware ATPG methods. We show
that, for the same pattern count, the selected patterns are
more effective than timing-aware ATPG for detecting small
delay defects caused by resistive shorts, resistive opens, and
process variations.

1 Introduction

Very deep sub-micron (VDSM) process technologies are
leading to increasing densities and higher clock frequencies
for integrated circuits (ICs). However, VDSM technologies
are especially susceptible to process variations, crosstalk
noise, power-supply noise, and defects such as resistive
shorts and opens, which induce small delay variations in
the circuit components. Such delay variations are referred
to as small-delay defects (SDDs) in the literature [1, 13].

Although the delay introduced by each SDD is small,
the overall impact can be significant if that path is criti-
cal, has low slack, or includes many SDDs. The overall
delay of the path may become larger than the clock period,

IThe work of M. Yilmaz and K. Chakrabarty was supported in part
by SRC under Contract no. 1588 and by an equipment grant from Intel
Corporation.

2The work of M. Tehranipoor was supported in part by SRC under Con-
tracts no. 1455 and 1587.

1093-0167/08 $25.00 © 2008 IEEE
DOI 10.1109/VTS.2008.32

233

Mohammad Tehranipoor
University of Connecticut

Dept. of Electrical and Computer Engineering
tehrani @engr.uconn.edu

causing circuit failure or temporarily incorrect results. As a
result, the detection of SDDs typically requires fault excita-
tion through shortest-slack paths. The longest paths in the
circuit, except false paths and multi-cycle paths, are referred
to as the least-slack paths.

As a result of growing industry concerns regarding
SDDs, commercial timing-aware ATPG tools have become
available, e.g., new versions of Mentor Graphics FastScan,
Cadence Encounter Test, and Synopsys TetraMax tools
[2,6,9]. However, the test generation time increases con-
siderably when these tools are run in timing-aware mode.
Fig. 1 shows a comparison of the run times of traditional
transition delay-fault ATPG and timing-aware ATPG (using
the commercial FastScan tool) for some of the IWLS’2005
benchmarks [5]. As seen, when the benchmark is large, the
timing-aware ATPG takes significantly longer CPU time,
e.g., as much as 19x more for the “wb_conmax” benchmark.
The CPU times in Figure 1 are normalized such that the run-
time of traditional transition delay-fault ATPG is taken to be
one unit.

Delay defects are commonly targeted using the transition
delay-fault (TDF) model [11]. The effectiveness of the TDF
model for SDDs has often been questioned [1, 10]. Classi-
cal ATPG tools tend to excite transition delay-faults through
short paths [1]. This results in test sets whose coverage is
inadequate for SDDs. If we can create a list of all the long
paths in a design and generate path delay-fault patterns for
all these paths, the pattern-set quality will be high in terms
of SDD coverage. However, the number of paths in a cir-
cuit increases exponentially with circuit size [7], and it is
not practical to identify all the long paths in a large circuit
using static timing analysis (STA) tools. Even with a list of
long paths, it is unlikely that an ATPG tool can find patterns
for all paths, mainly due to robust and non-robust pattern-
generation constraints.

The length of a sensitized path is a more effective mea-
sure of the quality of delay-fault patterns. However, “long
paths” alone do not completely address the effects of SDDs
if only nominal delay values are considered. As discussed
above, SDDs are often caused by process variations and
crosstalk, which introduce delay variations.

IEEE
computer
psouety

20 300,000
E=dTraditional transition delgy-fault ATPG g
18 ¥
g T Timing-aware ATPG » | 250,000
E i —o—Number of cells [-
t - 200,000 @
= — =
o -
- =]
g 10 — — 150,000 5
N
= r - -2
m O Ty E
E ¢ - 100,000 3
: i 2
= | || (=&] (] |—
= g - 50,000
2 ~ - - 1
5 Al 3 o
~ s
ﬁé‘g ‘::Qé? & ‘?& 3’,"6@*&} AFP} <
SR FS o @
<3 L S Sl A
-i;v ég‘ ‘:';P LA \? =14 s
L] {i' £

Figure 1. Comparison of FastScan run times
(CPU time) for traditional TDF ATPG and
timing-aware ATPG on IWLS 2005 bench-
marks.

The complexity of today’s ICs and shrinking process
technologies are also leading to prohibitively high test data
volumes. The 2005 ITRS document predicts that the test
data volume and test application time for integrated circuits
will be as much as thirty times larger in 2010 than they are
today [4]. Therefore, novel TDF pattern selection methods
are required to reduce the total pattern count while effec-
tively targeting SDDs.

Test-pattern reordering methods, which rank test patterns
and place the most effective test patterns at the top of the
reordered test sequence, promise reductions in both testing
time and test data volume [8, 12]. Applying the most effec-
tive patterns first during volume ramp-up increases the like-
lihood of detecting manufacturing defects in less time. If
highly effective test patterns are applied first in a reordered
test set, defective chips will fail earlier, reducing test appli-
cation time in an abort-at-first-fail environment. Test pat-
tern reordering is also important for time-constrained and
wafer-sort environments. The reordered test set can be sim-
ply truncated to fit test-data-volume and test-time budgets.

This paper uses the output deviation measure [12] as a
surrogate coverage-metric for SDDs and a test-pattern grad-
ing method to select the best patterns for SDD detection
from a large repository test set. A flexible, but general,
probabilistic fault model is used to generate a probability
map for the circuit, which is subsequently used for pattern
reordering. The proposed method can be used with tradi-
tional, “no-timing” ATPG tools to generate a high-quality
delay-fault pattern set. We start with an initial set of pat-
terns (without loss of generality, we consider n-detection
transition-fault test patterns) and apply our pattern-grading
method to calculate output deviations for each pattern. We
then sort the patterns according to their ability to detect

234

SDDs effectively. The number of patterns in the final pat-
tern set is determined by the user depending on test-time
budget and target fault coverage. Experimental results show
that the proposed method can effectively select the highest-
quality patterns. It also considers delay variations, unlike
most previously proposed methods.

The remainder of this paper is organized as follows. In
Section 2, we describe the probabilistic fault model and the
output deviations metric. Section 2.4 presents the proposed
pattern-selection procedure. In Section 3, we evaluate the
proposed method for benchmark circuits and n-detection
TDF test sets. We also conduct simulated defect injection
experiments to evaluate the effectiveness of the selected pat-
terns for detecting small delays caused by resistive shorts
and opens. Section 4 concludes the paper.

2 Probabilistic Delay-Fault Model and Out-
put Deviations for SDDs

In this section, we first introduce the concept of gate-
delay defect probabilities (DDPs) (Section 2.1) and signal-
transition probabilities (Section 2.2). These probabilities
extend the notion of confidence levels, defined in [12] for
a single pattern, to pattern-pairs. Next, we show how to use
these probability values to propagate the effects of a test pat-
tern to the test observation points (scan flip-flops/primary
outputs) (Section 2.2). We describe the algorithm used for
signal-probability propagation (Section 2.3). Finally, we
describe how test patterns can be ranked and selected from
a large repository (Section 2.4).

2.1 Gate-Delay Defect Probabilities

Each gate in a design is assigned DDPs based on the
schematic/layout information. DDPs for a gate are provided
in the form of a matrix called the Delay Defect Probability
Matrix (DDPM). The DDPM for a 2-input OR gate is shown
in Table 1. The rows in the matrix correspond to each input
port of the gate and the columns correspond to the initial
input state during a transition. Each entry in the matrix de-
notes the probability that corresponding output transition is
delayed beyond a threshold. For instance, the entry in the
first row and the third column for the DDPM in Table 1
shows that there is 50% probability that there will be a de-
lay defect because of the transition on INO when the output
makes a (H — L) transition starting with the initial input
state of ‘10°. For initial state ‘11”, we consider simultane-
ous transition on INO and IN1. The entries in Table 1 have
been chosen arbitrarily for the sake of illustration.

Table 1. Example DDPM for a 2-input OR gate

Initial Input State
prob | 00 | 01 | 10 | 11

INO |02] 0 | 05
Tnputs i To1toz o0 | &

For an N-input gate, the DDPM consists of N - 2V en-
tries, each holding one non-zero probability value. If the
gate has more than one output, each output of the gate has a
different DDPM, which depends on the inputs affecting the
output. Note that the DDP is O if the corresponding final
input state cannot provide the expected output transition.

We next discuss how a DDPM is generated. Each entry
in DDPM indicates the probability that the delay of the gate
is more than a predetermined value, i.e., the critical delay
value (Tcrr). Given the probability density function (pdf)
of a delay distribution, the DDP is calculated as:

DDP = Prob(x > Tcrr) = /

Tcrr

pdf(z)dx (1)

For instance, if we assume a Gaussian delay distribution
for all gates (with mean 1) and set the critical delay value
to 1+ X ps, each DDP entry can be calculated by replacing
Teorr with g + X and using a Gaussian pdf. Note that the
delay for each input-to-output transition delay may have a
different mean (1) and standard deviation (o).

The delay distribution can be obtained in different ways:
(i) using the delay information provided by the Standard
Delay Format (SDF) file; (i7) using slow, nominal, and fast
process corner transistor models; (iif) simulating process
variations. In the third method, which is employed in this
paper, transistor parameters affecting the process variation
and the limits of the process variation (3¢0) are first deter-
mined. Monte Carlo simulations are next run for each li-
brary gate under different capacitive loading and input slew
rate conditions. Once the distributions are found for the
library gates, depending on the layout, the delay distribu-
tions for each individual gate can be updated. Once the dis-
tributions are obtained, Tcrr can be appropriately set to
compute the DDPM entries. The effects of crosstalk can be
simulated separately and the delay distributions of individ-
ual gates/wires can be updated accordingly.

2.2 Propagation of

Probabilities

Signal-Transition

Since pattern pairs are required to detect TDFs, there can
be a transition on each net of the circuit for every pattern-
pair. If we assume that there are only two possible logic
values for a net, i.e., LOW (L) and HIGH (H), the possi-
ble signal transitions are L — L, L — H, H — L, and
H — H. Each of these transitions has a corresponding
probability, denoted by Pr,—.1,, Pr—m, Pn—1,and Py,
respectively: < Pr_.r,Pr—pg,Pyg_r,Pgu_g > . Note
that L — L or H — H implies that the net keeps its value,
i.e., no transition occurs.

The nets that are directly connected to the test-
application points are called initialization nets (INs). These
nets have one of the signal-transition probabilities, corre-
sponding to the applied transition test pattern, equal to 1.

235

<0.52, 0.48, 0, 0>

<0,1,0, 0>
<0,0,0,1> a Q1

<0.76, 0.24, 0, 0>
<0.664, 0.336, 0, 0>

<0.2,0.8, 0, 0>

Figure 2. An example to illustrate the
propagation of signal-transition probabilities
through the gates of a logic circuit.

All the other signal-transition probabilities for INs are set
to 0. When signals are propagated through several lev-
els of gates, the signal-transition probabilities can be com-
puted using the DDPM of the gates. Note that interconnects
can also have DDPMs to account for crosstalk. In this pa-
per, due to the lack of layout information, we assumed that
there are no delay variations on interconnects. The overall
deviation-based framework is however general and it can
easily accommodate interconnect delay variations if layout
information is available.

Definition 1. Let Py be the probability that a net has the
expected signal-transition. The deviation on that net is de-
fined by A = 1 — Pg. The following rules are applied
during the propagation of signal-transition probabilities:

1. If there is no output-signal transition (output keeps its
logic value), then the deviation on the output net is 0.

2. If there are multiple inputs that can cause the expected
signal-transition at the output of a gate, only the input-
to-output path that causes the highest deviation at the
output net is considered. The other inputs are treated
as they have no effect on the deviation calculation (i.e.,
they are held at the non-controlling value).

3. When multiple inputs are required to change at the
same time in order to provide the expected output tran-
sition, all required input-to-output paths of the gate are
considered. Only the unnecessary (redundant) paths
are discarded.

A key premise of this paper is that output deviations can
be used to compare path lengths. As in the case of path
delays, the net deviations also increase as the signal propa-
gates through a sensitized path. This claim can be proven on
the basis of the rules used to propagate the signal-transition
probabilities.

Example: Fig. 2 shows signal-transition probabilities
and their propagation for a simple circuit. The test stimuli
and the expected fault-free transitions on each net are shown
in dark boxes. The calculated signal-transition probabilities
are shown in angled brackets ((...)). The DDPMs of the

Table 2. Example DDPM for AND, XOR, INV

Initial Input State
AND | prob | 00 | 01 | 10 | 11
INO 03] 0 |02
tnputs 1571 92 5 (02 03
XOR | prob | 00 | 01 | 10 | 11
Inputs INO | 03 | 04 | 0.1 | 0.2
IN1 (0304|0204
INV | prob 0 1
Inpus | INO | 0.2 | 0.2

gates used in this circuit are given in Table 2. The entries in
Table 2 are chosen arbitrarily.

The deviations are calculated based on the rules men-
tioned above for the example circuit in Fig. 2. For in-
stance, there is no output change for net E. Thus for E,
we have (1,0, 0,0). On the other hand, on net F, the output
changes due to IN1 (net D) of XOR. There is a delay-defect
probability of 0.4. It implies that with a probability of 0.4,
the output will stay at LOW value. Therefore, for F', we
have (0.4,0.6,0,0). When the calculations are continued
until the primary output net Q1, one can find the deviation
on Q1 as 0.76.

2.3 Implementation of Algorithm for
Propagating Signal-Transition Proba-
bilities

A depth-first procedure is used to compute signal-
transition probabilities for large circuits. When we use a
depth-first algorithm, only the nets that are required to find
the output deviation on a specific observation point are pro-
cessed. In this way, a smaller number of gate pointer stack-
ing is required compared to the alternative of simulating the
deviations starting from INs and tracing forward.

We first assign signal-transition probabilities to all INs.
Then, we start from the observation points (outputs) and
backtrace until we find a Processed Net (PN). A PN has all
the signal transition probabilities assigned. The pseudocode
for the algorithm is given in Algorithm 1.

If the number of test patterns is k£ and the number of nets
in the circuit is IV, the worst-case time-complexity of the al-
gorithm is O(kN). However, since the calculation for each
pattern is independent of other patterns, the algorithm can
easily be made multi-threaded. In this case, if the number
of threads is 7, the complexity of the algorithm is reduced
to O(&Y).

2.4 Pattern-Selection Method

In this subsection, we describe how to use output
deviations to select high-quality patterns from n—detect

transition-fault patterns. The pattern-selection procedure is
as follows:

e Determine the number of patterns to be selected. This
can be a user input, e.g., S. The parameter S can be set

236

Algorithm 1 Propagate_Signal_Transition_Probability

1: Input: Tran_Fault_Patterns{Po, ..., Py}
2: Output: Output_Deviations

3: fori =0to kdo

4: reset all signal-transition probabilities

5 read pattern P;

6: assign signal-transition probabilities to I/ Ns
7 reset stack
8
9

for all O P =Observation Point do

: if OP is processed then

10: go to next OP

11: end if

12: trace backward until a processed net is found

13: add unprocessed gates on the traced path to the stack

14: trace forward

15: for all G =gate in stack do

16: find signal-transition probabilities of the output net of
G

17: remove G from the stack

18: end for

19: find signal-transition probabilities of O P

20: end for

21: end for

to number of 1-detect patterns, the number of timing-
aware patterns, or any value that fits the user’s test bud-
get.

e Until the selected pattern number reaches 5, select the
largest-deviation patterns for each observation point
one by one. If a pattern is previously selected, do not
select it again.

o After selection, sort the patterns by the maximum de-
viation they create at an observation point (This step
called pattern re-ordering).

e Run top-off transition delay-fault ATPG to increase the
fault coverage if necessary.

3 Experimental Results

In this section, we present experimental results obtained
for the IWLS and ISCAS89 benchmark circuits. We first
describe how we obtained DDPs for the logic gates in these
benchmarks (Section 3.1). Next, we provide details of the
experimental setup (Section 3.2). Finally, we present the
simulation results (Sections 3.3 and 3.4).

3.1 Finding Gate-Delay Defect Proba-
bilities

In order to determine the gate-DDPs, we ran HSpice
Monte Carlo (MC) simulations using 45 nm process-
technology BSIM4 predictive transistor models. For each
gate type, we simulated the schematic under various load-
ing capacitance and input slew rate conditions to account
for spatial correlations.

MC simulations were done using the following realis-
tic process-variation parameters (obtained from a current
technology) for a Gaussian distribution: Transistor gate
length L : 30 = 10%, threshold voltage Vryr : 30 = 30%,
and gate-oxide thickness tox : 30 = 3%. For each config-
uration, 50 MC simulations were performed for each possi-
ble input transition. For each gate, a transition-delay value
greater than Torr = NOM + 2ps constitutes a DDP value
for the respective input transition. The parameter X = 2ps
is selected in such a way that all the gate instances have
at least one non-zero DDPM entry. X is the minimum of
all MAX delays (among all gates). This corresponds to the
maximum delay of an inverter driving a single inverter load.
Note that selecting too large a value for X may cause many
DDPMs to have all-zero entries, simply because the gate
would never have a delay larger than NOM + X. Ideally,
X can be set to the M AX delay specified by a Static Tim-
ing Analysis tool, which does not consider process variation
effects.

3.2 Experimental Setup

All experiments were performed on a state-of-the-art
server with 8 processors running Linux at 3 GHz frequency
and 12GB memory. The program to compute output de-
viations was implemented using C++. Perl scripts were
used to generate the simulation input files. Mentor Graphics
FastScan [9] was used to generate n-detect and the timing-
aware transition delay-fault test patterns. Path delays are
calculated using an in-house dynamic path-timing simula-
tor. All the flip-flops in the benchmarks were replaced with
muxed-DFF scan flops. FastScan was forced to generate
Launch-on-capture (LOC) transition fault patterns. The PI
change during capture cycles and the observation of POs is
prevented in order to simulate realistic test environments.
For timing-aware ATPG, the SDF file was generated using
the results of the MC simulations. At this point, all wire
delays were ignored. For all simulations and during pattern
generation, only one CPU was used, i.e., multi-threading
was not enabled.

3.3 Correlation Between Output Devia-
tions and Path Lengths

We ran correlation analysis to determine the relation-
ship between output deviations and sensitized path lengths.
For each benchmark, we found output deviations and path
lengths for m-detect transition-fault test-patterns (n
1,3,5,8,10). We simulated these patterns using the in-
house path-length calculator and determined the signal de-
lays at the observation points of the benchmarks. Next,
we used Matlab to compute the Kendall’s correlation co-
efficients [3] for each pattern set. Table 3 shows the av-
erage correlation coefficients for the patterns in a 1-detect
test set of the ISCAS’89 and IWLS’2005 benchmarks [5].

237

Table 3. Kendall’s coefficients for evaluating
the correlation of path lengths to output de-
viations

Benchmark| (Ave,Min,Max) |(|Benchmark | (Ave,Min,Max)
$9234 0.97,0.87, 1) des_perf (0.98, 0.97, 0.99)
s13207 (0.96, 0.92,0.99) ||mem_ctrl (0.96, 0.91, 0.99)
s15850 (0.97,0.91,0.99) ||pci-bridge32| (0.93, 0.85, 0.99)
$35932 (0.90, 0.72,0.94) ||systemcaes | (0.96,0.82, 1)
s38417 (0.98, 0.96, 0.99) |[tv80 0.95,0.81, 1)
$38584 (0.96, 0.86, 0.99) || usb_funct (0.97, 0.85, 0.99)
ac97 _ctrl (0.98,0.93, 1) aes_core (0.97, 0.9, 0.99)

The results for other values of n are similar. The minimum
and maximum values of the correlation coefficients are also
given. As seen in Table 3, there is a strong positive correla-
tion (close to the perfect correlation measure of 1) between
output deviations and path lengths. Thus, the method of
output deviations is a promising metric for evaluating the
capability of transition delay-test patterns to sensitize long
paths.

3.4 Pattern Selection Results

In this section, we present the pattern-selection results
using the number of excited long paths as an evaluation
metric. For each benchmark, we found the longest path de-
lay and ranked any path with a delay of at least 70% of
the clock period as a long path. Fig. 3 shows the normal-
ized number of excited long paths for the ISCAS’89 and
IWLS’2005 benchmarks for a range of n-detect and the
timing-aware ATPG patterns. It can be easily seen that,
as n increases, a larger number of long paths are excited.
Timing-aware ATPG pattern-set does only marginally bet-
ter than the 1-detect pattern-set, and for some benchmarks
(s13207, s38417), even worse than 1-detect pattern set. This
is not completely unexpected because the pattern counts
for large values of n are higher than that for timing-aware
ATPG.

We applied the pattern selection algorithm described in
Section 2.4 and selected S patterns from each n-detect
pattern-set, where S is equal to the number of timing-aware
patterns. The results are shown in Fig. 4. For many bench-
marks, the output-deviation-based selection method finds
patterns that excite a larger number of long paths compared
to a proprietary timing-aware ATPG method. For the bench-
mark systemcaes, the patterns selected from a 10-detect
timing-unaware test set excite 1.6x more long paths than
timing-aware ATPG. For s15850, this ratio is 1.4. Note that
the pattern count is the same in each case. As an alternative
selection method, we used randomly selected test patterns
from 10-detect TDF pattern sets. The results for the ran-
dom selection are also shown in Fig. 4. Deviation-based
pattern selection clearly outperforms random selection. For
most circuits, patterns selected on the basis of output de-
viations excite more long paths than timing-aware ATPG

B n=10

Etiming-aware

MNormalized # of excited long paths

Benchmarks

Figure 3. Normalized number of excited long paths for each benchmark for the original pattern-sets.

Nn

=8

®n=10 Atiming-aware @random

MNormalized # of excited long paths

o

o

o

£ 4eo

Benchmarks

Figure 4. Normalized number of excited long paths for each benchmark for the pattern-sets selected

using the algorithm described in Section 2.4.

patterns. For example, for s13207, timing-aware ATPG
patterns excite 58 out of the 86 long paths, whereas the
the deviation-based patterns excite 70 long paths. For the
larger tv80 benchmark, timing-aware ATPG patterns excite
only 1482 out of the 5965 long paths; the proposed method
does significantly better, exciting 1632 long paths, but ob-
viously more patterns are needed to detect SDDs on more
long paths. The proposed method, which offers the flexibil-
ity of pattern selection from larger repositories, can there-
fore be used to increase the “long path” coverage.

In order to evaluate the fault-detection performance of
our selection method and the timing-aware ATPG, we ran
fault injection simulations. For each benchmark, we in-
serted 1000 delay faults on randomly chosen long paths
to model resistive shorts and opens. The additional delay
caused by each fault is slightly more than the slack for the
corresponding path. The percentage of detected faults is
given in Fig. 5 for the selected patterns from various n-
detect pattern sets and timing-aware ATPG. Fig. 6 shows
how the fault coverage increases with the number of pat-
terns for three benchmark circuits. Similar results are ob-
tained for the other benchmarks, but they are not included
here because of lack of space. For the deviation-based
method, the patterns are ordered on the basis of the devi-
ation metric, while for timing-aware ATPG, they are con-
sidered in the same order as reported by the ATPG tool.
We find that the coverage rises more steeply for the pro-
posed method; moreover, higher cumulative fault coverage

238

is obtained over all the patterns (for the same pattern count).
Fig. 5 also shows that the coverage provided by timing-
aware ATPG is very low for circuits such as pci_bridge32
and systemcaes. For example, it is less than 20% for
pci_bridge32.

The total CPU time for timing-unaware n-detect TDF
ATPG, deviation computation, and deviation-based pattern-
selection is expected to be much less for large circuits com-
pared to timing-aware TDF ATPG. As shown in Fig. 1, the
ATPG time is much higher for timing-aware ATPG, and the
procedures for deviation computation and pattern selection
are polynomial in circuit size. For the much smaller bench-
mark circuits considered in this paper, the CPU times for
the two approaches are comparable, but we are comparing
an unoptimized academic implementation to a highly opti-
mized commercial tool. For similar optimized implementa-
tions, the method will need less CPU time because, unlike
timing-aware ATPG, it does not perform path enumeration.

4 Conclusions

We have presented a test-grading technique, based
on output deviations, for screening small-delay defects
(SDDs). We have defined the concept of output deviations
for pattern-pairs and shown that it can be used as an effi-
cient surrogate metric to model the effectiveness of tran-
sition delay-fault (TDF) patterns for SDDs. We have in-
troduced a gate-delay defect probability measure to model
delay variations for nanometer technologies. Experimental

()
T TTTTFFFFS

% of detected faults

i
> c’cﬂ =

o

2277

Benchmarks

Figure 5. The percentage of faults that are detected using the selected patterns and timing-aware

ATPG patterns.

650 1000 1000
— | timing-aware, sorted by ATPG
600 - & 000 4
.- & g sesssene timing-aware, random sort
vl ‘ 800
550 I 5 F.
/ s, — - - timing-aware, deviation-based 800 / 7
500 : P sort .'rll
] /]] : @ e
= S = deviation-based selection,n=5 £ 44q S
e 600 = o)
& o &
£ [
T 450 H g - . ’}
] i g T 00 A
3 ! 3 a i~ T
3400] z 3 -
- I _ w 400 - A i
f& b ameTy timing-aware, sorted by ATPG ; S 500 - P
150 #* 7 | ====-timing-aware, sorted by ATPG
i .]
R ST LT timing-aware, random sort /: 4 o
! 400 i J eeneeenee timing-aware, random sort
300 ! i
PN 4 = o & 200 i
! timing-aware, deviation-based o — - — timing-aware, deviation-based
- (- sort 300 J i
! devistion-based selection, n=3 j deviation-based selection, n=5
200 1 0 T T T 1 200 F
a 20 40 60 B8O 100 0 200 400 600 80O o 200 400 600 800 1000 1200

of patterns

of patterns

of patterns

(a) (b)

(©)

Figure 6. Fault detection results for: (a) s15850; (b) systemcaes; (c) usb_funct.

results for the ISCAS’89 and the IWLS’ 2005 benchmark
circuits show that the proposed method intelligently selects
the best set of patterns for SDD detection from an n-detect
TDF pattern set generated using a timing-unaware ATPG
tool, and it excites a larger number of long paths compared
to previously proposed timing-aware ATPG methods. We
have also shown that, for the same pattern count, the se-
lected patterns are more effective than timing-aware ATPG
for detecting small delay defects caused by resistive shorts,
resistive opens, and process variations.

References

[1] N. Ahmed, M. Tehranipoor, and V. Jayaram. Timing-based
delay test for screening small delay defects. In Proc. of IEEE

Design Automation Conf., pages 320-325, 2006.

[2] Cadence Inc. Encounter test - test generation and simulation
reference. Product Version 3.0, 2005.

[3] B.J. Chalmers. Understanding Statistics. CRC Press, 1987.
[4] ITRS. http://www.itrs.net/reports.html.

[5] IWLS 2005 Benchmarks.
http://iwls.org/iwls2005/benchmarks.html.

239

[6] R.Kapur, J. Zejda, and T. Williams. Fundamentals of timing
information for test: How simple can we get? In Proc. of
IEEE ITC, 2007.

[7] H.Li, Z.Li, and Y. Min. Reduction of number of paths to be
tested in delay testing. JETTA, 16(5):477-485, 2000.

[8] X. Lin, J. Rajski, I. Pomeranz, and S. Reddy. On static test
compaction and test pattern ordering for scan designs. In
Proc. of IEEE ITC, pages 1088-1097, 2001.

[9] Mentor Graphics. Understanding how to run timing-aware
ATPG. Application Note, 2006.

[10] R.Putman and R. Gawde. Enhanced timing-based transition
delay testing for small delay defects. In Proc. of IEEE VTS,
pages 336-342, 2006.

[11] J. Waicukauski, E. Lindloom, B. Rosen, and V. Iyengar.
Transition fault simulation. IEEE Design and Test of Com-
puters, pages 32-38, 1987.

[12] Z. Wang and K. Chakrabarty. Test-quality/cost optimiza-
tion using output-deviation-based reordering of test patterns.
IEEE Tran. on CAD, 27:352-365, Feb 2008.

[13] X. Lin et al. Timing-aware ATPG for high quality at-speed
testing of small delay defects. In Proc. of IEEE ATS, pages
139-146, 2006.

