
760 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

Test-Pattern Selection for Screening Small-Delay
Defects in Very-Deep Submicrometer

Integrated Circuits
Mahmut Yilmaz, Member, IEEE, Krishnendu Chakrabarty, Fellow, IEEE, and

Mohammad Tehranipoor, Senior Member, IEEE

Abstract—Timing-related defects are major contributors to
test escapes and in-field reliability problems for very-deep sub-
micrometer integrated circuits. Small delay variations induced
by crosstalk, process variations, power-supply noise, as well as
resistive opens and shorts can potentially cause timing failures
in a design, thereby leading to quality and reliability concerns.
We present a test-grading technique that uses the method of
output deviations for screening small-delay defects (SDDs). A new
gate-delay defect probability measure is defined to model delay
variations for nanometer technologies. The proposed technique
intelligently selects the best set of patterns for SDD detection
from an n-detect pattern set generated using timing-unaware
automatic test-pattern generation (ATPG). It offers significantly
lower computational complexity and excites a larger number
of long paths compared to a current generation commercial
timing-aware ATPG tool. Our results also show that, for the
same pattern count, the selected patterns provide more effective
coverage ramp-up than timing-aware ATPG and a recent pattern-
selection method for random SDDs potentially caused by resistive
shorts, resistive opens, and process variations.

Index Terms—Delay test, output deviations, process variations,
small-delay defects, test-pattern grading.

I. Introduction

VERY DEEP submicrometer (VDSM) process technolo-
gies are leading to increasing densities and higher clock

frequencies for integrated circuits (ICs). However, VDSM
technologies are especially susceptible to process variations,
crosstalk noise, power-supply noise, and defects such as resis-
tive shorts and opens, which induce small delay variations in
the circuit components. Such delay variations are referred to
as small-delay defects (SDDs) in the literature [1], [2].

Manuscript received October 17, 2008; revised February 10, 2009, Sep-
tember 15, 2009, and December 11, 2009. Current version published
April 21, 2010. The work of M. Yilmaz and K. Chakrabarty was sup-
ported in part by the Semiconductor Research Corporation (SRC), un-
der contract 1588, and by the National Science Foundation (NSF), un-
der Grant ECCS-0823835. The work of M. Tehranipoor was supported
in part by SRC, under contracts 1455 and 1587, and by NSF, under
Grant ECCS-0823992. This paper was recommended by Associate Editor,
R. D. (Shawn) Blanton.

M. Yilmaz is with the Design-for-Test Team, Advanced Micro Devices, Inc.,
Sunnyvale, CA 94085 USA (e-mail: mahmut.yilmaz@amd.com).

K. Chakrabarty is with the Department of Electrical and Computer Engineer-
ing, Duke University, Durham, NC 27708 USA (e-mail: krish@ee.duke.edu).

M. Tehranipoor is with the Department of Electrical and Computer
Engineering, University of Connecticut, Storrs, CT 06269 USA (e-mail:
tehrani@engr.uconn.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2043591

Although the delay introduced by each SDD is small, the
overall impact can be significant if the target path is critical,
has low slack, or includes many SDDs. The overall delay of the
path may become longer than the clock period, causing circuit
failure or temporarily incorrect results. As a result, the detec-
tion of SDDs typically requires fault excitation through least-
slack paths. The longest paths in the circuit, except false paths
and multi-cycle paths, are referred to as the least-slack paths.

The transition delay-fault (TDF) [3] model attempts to
propagate the lumped delay defect of a gate by logical
transitions to the observation points or state elements. The
effectiveness of the TDF model for SDDs has often been
questioned [1], [4] due to its tendency to excite transition
delay-faults through short paths [1].

Due to the growing interest in SDDs, the first commercial
timing-aware automatic test-pattern generation (ATPG) tools
were introduced recently, e.g., new versions of Mentor Graph-
ics FastScan, Cadence Encounter Test, and Synopsys TetraMax
[5]–[7]. These tools attempt to make ATPG patterns more
effective for SDDs by exercising longer paths or applying pat-
terns at higher-than-rated clock frequencies. However, only a
limited amount of timing information is supplied to these tools,
either via standard delay format (SDF) files (for FastScan and
Encounter Test) or through a static timing analysis (STA) tool
(for TetraMax). As a result, none of these tools can be easily
extended to take into account process variations, crosstalk,
power-supply noise, or similar SDD-inducing effects on path
delays. These tools simply rely on the assumption that the
longest paths (determined using STA or SDF data) in a design
are more prone to failure due to SDDs. Moreover, the test
generation time increases considerably when these tools are
run in timing-aware mode. Fig. 1 shows a comparison of the
run times of two current generation ATPG tools from the same
EDA company: 1) timing-unaware ATPG, i.e., a traditional
transition-delay-fault pattern generator; and 2) timing-aware
ATPG that takes timing information into account. The results
are shown for some of the International Workshop on Logic
and Synthesis (IWLS) 2005 benchmarks [8] and the absolute
run times are shown in [9]. It can be seen from Fig. 1 that,
when the benchmark is large, the timing-aware ATPG takes
significantly more central processing unit (CPU) time, e.g.,
as much as 209 times more for the “netcard” benchmark. The
CPU times in Fig. 1 reflect distributed ATPG results using

0278-0070/$26.00 c© 2010 IEEE

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

YILMAZ et al.: TEST-PATTERN SELECTION FOR SCREENING SMALL-DELAY DEFECTS IN VERY-DEEP 761

Fig. 1. Comparison of ATPG run times (CPU time): timing-aware ATPG
relative to timing-unaware ATPG for IWLS’2005 benchmarks.

eight processors, and the numbers are normalized such that
the run-time of timing-unaware ATPG is taken to be one unit.

The complexity of today’s ICs and shrinking process tech-
nologies are also leading to prohibitively high test-data vol-
umes. For example, the volume for TDFs is two to five times
higher than that for stuck-at faults [10], and it has been
demonstrated recently that test patterns for such sequence and
timing-dependent faults are more important for newer tech-
nologies [11]. The 2007 International Technology Roadmap
for Semiconductors predicted that the test data volume for
integrated circuits will be as much as 38 times larger and the
test application time will be about 17 times longer in 2015
than it was in 2007 [12]. Therefore, efficient pattern-selection
methods are required to reduce the total pattern count while
effectively targeting SDDs.

This paper presents the output deviation measure [13],
[14] as a surrogate coverage metric for SDDs and a test-
pattern grading method to select the best patterns for SDD
detection from a large repository test set. A flexible, but
general, probabilistic fault model is used to target defects. The
proposed method can be used with traditional, timing-unaware
ATPG tools to generate a high-quality and compact delay-fault
pattern set. It can also be used to select the most effective
patterns from large timing-aware test sets. Experimental results
show that the proposed method can effectively select the
highest quality patterns from large test sets that cannot be
used in their entirety for production test environments with
tight pattern-count limits. It also considers process-variability-
induced delay variations, unlike most previous methods. The
proposed approach requires significantly less CPU time than
a commercial timing-aware ATPG tool under pattern-count
limits. For various metrics, namely coverage of long paths,
detection of injected defects, and coverage ramp-up, it is
shown to outperform a commercial timing-aware ATPG tool.
We also compare the proposed method with the approach
proposed by Lee et al. [15], in which path-length calculations
are approximated for better run-time, and we highlight better
long-path coverage, lower run times, and faster coverage ramp-
up for injected faults.

In the remainder of this paper, Section II presents related
prior work in the area of SDDs. In Section III, we describe the
probabilistic fault model and the output deviations metric. Sec-
tion III-D presents the proposed pattern-selection procedures.
In Section IV, we evaluate the proposed method for benchmark
circuits and n-detection TDF test sets. We also conduct simu-
lated defect-injection experiments to evaluate the effectiveness
of the selected patterns for detecting small delays caused by
resistive shorts and opens. Section V concludes this paper.

II. Related Prior Work

SDDs were first alluded to in [16]. In recent years, high-
quality delay-fault pattern generation for SDDs has received
increasing attention. Most of the work is aimed at finding the
longest paths in a circuit. Gupta et al. [17] have proposed
the as late as possible transition fault model, which attempts
to launch one or more transitions at the fault site as late
as possible, i.e., through the least-slack path using robust
tests. This method suffers from the need for a complex,
time-consuming search procedure and robust test-generation
constraints. Qui et al. [18] attempt to find the k-longest paths
(referred to as KLPG) through the inputs and output of each
gate for slow-to-rise and slow-to-fall faults. Similar to [17], a
considerable amount of pre-processing is needed to search for
long paths. Furthermore, a long path through a gate may be a
short path in the circuit; thus, not all the paths determined by
the method are least-slack paths. Ahmed et al. [1] use STA
tools to find long, intermediate (IP), and short paths (SP) to
each observation point. Using a timing-unaware ATPG tool,
15-detect transition test patterns are generated. During pattern
generation, constraints are applied on IP and SP observation
points to mask them. In this way, the ATPG tool is forced
to generate patterns for LPs. In the post-processing phase,
a pattern-selection algorithm is used to pick patterns that
activate the largest number of end-points. Similar to previous
methods, a time-consuming search procedure is needed for
determining long paths and for path classification. A functional
delay-fault test generation method is proposed in [19]. This
method generates sequences of instructions for testing delay
faults. However, it requires a fault-free unit that can run the
instructions for the test program. Similar to earlier methods,
this scheme also involves a lengthy preprocessing step. In [20],
delay defects within slack intervals are detected by using a
clock frequency higher than the rated clock frequency. This
method uses a good neighboring die to test the surrounding
dies. The responses of the good die and the other dies are
compared with each other to find delay defects. A new
fault model, called the “transition path delay fault model,”
is described in [21]. This fault model relaxes the robustness
constraint required by the path-delay fault model, and aims to
excite paths that are missed by the path-delay fault model. [22]
presents a method to accurately determine the fault coverage
of path-delay tests by analyzing path reconvergences. This
method is applicable to the bounded gate-delay model.

As a result of increasing industry concern regarding SDDs,
companies such as Mentor Graphics, Cadence, and Synopsys
have recently released timing-aware ATPG tools [2], [5]–[7].
Lin et al. [2] use SDF files to guide ATPG to generate

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

762 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

transition test through long paths. In a pre-processing step,
the proposed method evaluates the delay for “activation” and
“propagation” paths for each gate to find longest paths. Test
generation is guided by the results of this pre-processing step.
Although approximation methods are used to decrease the
overhead associated with delay and path-length calculations,
this method still takes considerably more time compared to
timing-unaware ATPG tool. Kapur et al. [7] use STA tool-
generated pin slack information to guide timing-aware ATPG.
Although the pre-processing step is skipped by pushing the
slack data calculation to the STA tool, pattern generation takes
considerably more time than timing-unaware ATPG.

Statistical static timing analysis (SSTA) can generate
variability-aware delay data. It is demonstrated in recent papers
[23], [24] that traditional SSTA does not find sensitized paths
based on input vectors using statistical data. Furthermore, a
complete SSTA flow takes considerable computation time [25],
[26]. However, simplified-SSTA-based approaches can be used
for pattern selection, as shown in [27], [28]. In [27], authors
propose an SSTA-based test pattern quality metric for the
detection of SDDs. The computation of the metric requires
multiple dynamic timing analysis runs for each test pattern
using randomly sampled delay data from Gaussian pin-to-pin
delay distributions. The proposed metric is also used for pat-
tern selection. In [28], the authors focus on timing-hazards and
propose a timing-hazard-aware SSTA-based pattern selection
technique. A qualitative comparison of both of these SSTA-
based techniques to our method can be found in Section IV-D.

The “number of activated long paths” is a useful metric
for evaluating the quality of delay-fault pattern quality, but
a more computationally tractable method is clearly needed.
An alternative evaluation method, referred to as the statistical
delay quality model (SDQM), has been proposed by Sato et al.
[29]. This pattern-grading metric is based on a delay-defect
distribution function, which requires delay-defect statistics for
fabricated ICs. The method assigns a statistical delay quality
level to each test set to evaluate its quality. A drawback of
this metric is the need for delay-defect distributions for real
chips. This data is not available before volume production and
it is difficult and very expensive to obtain it during production
test. Another shortcoming of SDQM and similar metrics is
that they require knowledge of the longest sensitizable paths,
which is not accurately known before production test.

III. Probabilistic Delay-Fault Model and Output

Deviations for SDDs

In this section, we first introduce the concept of gate-
delay defect probabilities (DDPs) (Section III-A) and signal-
transition probabilities (Section III-B). These probabilities
extend the notion of confidence levels, defined in [13] for a
single pattern, to pattern-pairs. Next, we show how to use these
probability values to propagate the effects of a test pattern
to the test observation points (scan flip-flops/primary outputs)
(Section III-B). We describe the algorithm used for signal-
probability propagation (Section III-C). Finally, we describe
how test patterns can be ranked and selected from a large
repository (Section III-D).

TABLE I

Example DDPM for a 2-Input OR Gate

Initial Input State

OR prob 00 01 10 11

Inputs
IN0 0.5 0 0.5

0.1
IN1 0.2 0.2 0

A. Gate-Delay Defect Probabilities

DDPs are assigned to each gate in a design. DDPs for a gate
are provided in the form of a matrix called the delay defect
probability matrix (DDPM). The DDPM for a 2-input OR gate
is shown in Table I. The rows in the matrix correspond to each
input port of the gate and the columns correspond to the initial
input state during a transition.

Assume that the inputs are shown in the order of IN0,
IN1. If there is an input transition from “10” to “00,” the
corresponding DDPM column is “10.” Since the transition is
caused by IN0, the corresponding DDPM row is IN0. As a
result, the delay-defect probability (DDP) value corresponding
to this event is 0.5. 0.5, showing the probability that corre-
sponding output transition is delayed beyond a threshold.

For initial state “11,” both inputs should switch simulta-
neously to have an output transition. Corresponding DDPM
entries are merged due to this requirement. The entries in
Table I have been chosen arbitrarily for the sake of illustration.
The real DDPM entries are much smaller than the ones shown
in this example.

For an N-input gate, the DDPM consists of N · 2N entries,
each holding one probability value. If the gate has more than
one output, each output of the gate has a different DDPM. Note
that the DDP is 0 if the corresponding event cannot provide
an output transition. Consider DDPM(2, 3) in Table I. When
the initial input state is “10,” no change in IN1 can cause
an output transition, because the OR gate output is already at
high state, and even if IN1 switches to high (1), this will not
cause an output transition.

We next discuss how a DDPM is generated. Each entry in
DDPM indicates the probability that the delay of a gate is
more than a predetermined value, i.e., the critical delay value
(TCRT). Given the probability density function (PDF) of a delay
distribution, the DDP is calculated as

DDP = Prob(x > TCRT) =
∫ ∞

TCRT

PDF (x) dx. (1)

For instance, if we assume a Gaussian delay distribution
for all gates (with mean µ) and set the critical delay value to
µ + X, each DDP entry can be calculated by replacing TCRT

with µ + X and using a Gaussian PDF. Note that the delay for
each input-to-output transition may have a different mean (µ)
and standard deviation (σ). The selection of X is described in
Section IV-A.

The delay distribution can be obtained in different ways:
1) using the delay information provided by an SSTA-generated
SDF file; 2) using slow, nominal, and fast process corner
transistor models; and 3) simulating process variations. In
the third method, which is employed in this paper, transistor

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

YILMAZ et al.: TEST-PATTERN SELECTION FOR SCREENING SMALL-DELAY DEFECTS IN VERY-DEEP 763

parameters affecting the process variation and the limits of the
process variation (3σ) are first determined. Monte Carlo (MC)
simulations are next run for each library gate under different
capacitive loading and input slew rate conditions. Once the
distributions are found for the library gates, depending on
the layout, the delay distributions for each individual gate
can be updated. Once the distributions are obtained, TCRT

can be appropriately set to compute the DDPM entries.
The effects of crosstalk can be simulated separately and the
delay distributions of individual gates/wires can be updated
accordingly.

The generation of the DDPMs is not the main focus of this
paper. We consider DDPMs to be analogous to timing libraries.
Our goal is not to develop the most effective techniques for
constructing DDPMs; rather, we are using such statistical data
to compute deviations and use them for pattern grading and
pattern selection. In a standard industrial flow, statistical timing
data can be developed by specialized timing groups, so the
generation of DDPMs is a pre-processing step and an input to
the ATPG-focused test-automation flow.

We have also seen that small changes in the DDPM entries
have negligible impact on the pattern-selection results. We
attribute this finding to the fact that any DDPM changes affect
multiple paths in the circuits, so their impact is amortized
over the circuit and the test set. The absolute values of the
output deviations are less important than the relative values
for different test patterns. Detailed results are presented in
Section IV-G and in [9].

B. Propagation of Signal-Transition Probabilities

Since pattern pairs are required to detect TDFs, there can
be a transition on each net of the circuit for every pattern pair.
If we assume that there are only two possible logic values
for a net, i.e., LOW (L) and HIGH (H), the possible signal-
transitions are L → L, L → H , H → L, and H → H . Each
of these transitions has a corresponding probability, denoted
by PL→L, PL→H , PH→L, and PH→H , respectively, in a vector
form (< ... >): < PL→L, PL→H, PH→L, PH→H >. We refer
to this vector as the signal-transition probability (STP) vector.
Note that L → L or H → H implies that the net keeps its
value, i.e., no transition occurs.

The nets that are directly connected to the test-application
points are called initialization nets (INs). These nets have
one of the STPs, corresponding to the applied transition test
pattern, equal to 1. All the other STPs for INs are set to 0.
When signals are propagated through several levels of gates,
the STPs can be computed using the DDPM of the gates.
Note that interconnects can also have DDPMs to account for
crosstalk. In this paper, due to the lack of layout information,
we only focus on variations’ impact on gate delay. The overall
deviation-based framework is, however, general and it can
easily accommodate interconnect delay variations if layout
information is available, as has been reported in [30].

Definition 1: Let PE be the probability that a net has the
expected signal-transition. The deviation on that net is defined
by � = 1 − PE. The following rules are applied during the
propagation of STPs.

1) If there is no output-signal-transition (output keeps its
logic value), then the deviation on the output net is 0.

2) If there are multiple inputs that can cause the expected
signal-transition at the output of a gate, only the input-
to-output path that causes the highest deviation at the
output net is considered. The other inputs are treated as
if they have no effect on the deviation calculation (i.e.,
they are held at the non-controlling value).

3) When multiple inputs are required to change at the
same time to provide the expected output transition,
all required input-to-output paths of the gate are con-
sidered. Only the unnecessary (redundant) paths are
discarded.

A key premise of this paper is that output deviations can be
used to compare path lengths. As in the case of path delays, the
net deviations also increase as the signal propagates through
a sensitized path, a property that follows from the rules used
to calculate STPs for a gate output. This claim is formally
proven next.

Lemma 1: For any net, let the STP vector be given by
< PL→L, PL→H, PH→L, PH→H >. Among these four prob-
abilities, i.e., < PL→L, PL→H, PH→L, PH→H >, at least one
is non-zero and at most two can be non-zero.

Proof: If there is no signal-value change (the event L →
L or H → H), the expected STP is 1 and all other probabilities
are 0. If there is a signal-value change, only the expected
signal-transition events and the delay-fault case have non-zero
probabilities associated with them. The delay-fault case for an
expected signal value change of L → H is L → L (the signal
value does not change because of a delay-fault). Similarly, the
delay-fault case for an expected signal value change of H → L

is H → H .
Theorem 1: The deviation on a net always increases or

stays constant on a sensitized path if the signal-probability
propagation rules are applied.

Proof: Consider a gate with K inputs and one output.
The signal-transition on the output net depends on one of the
following cases. From Lemma 1, we note that only two cases
need to be considered.

1) Only one of the input-port signal-transitions is enough
to create the output signal-transition.

2) Multiple input-port signal-transitions are required to
create the output signal-transition.

Let POUT,j be the probability that the gate output makes the
expected signal-transition for a given pair of patterns on input
j, where 1 ≤ j ≤ K. Let �OUT,j = 1−POUT,j be the deviation
for the net corresponding to the gate output.

1) Case (i): Consider a signal-transition on input j. Let
Qj be the probability of occurrence of this transition. Let dj

be the entry in the gate’s DDPM that corresponds to the given
signal-transition on j. The probability that the output makes a
signal-transition is given by

POUT,j = Qj(1 − dj). (2)

We assume here that an error at a gate input is independent
from the error introduced by the gate. Note that POUT,j ≤ Qj

since 0 ≤ dj ≤ 1. Therefore, the probability of getting

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

764 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

Fig. 2. Example to illustrate the propagation of STPs through the gates of
a logic circuit.

TABLE II

Example DDPM for AND, XOR, INV

Initial Input State

AND prob 00 01 10 11

Inputs
IN0

0.2
0.3 0 0.2

IN1 0 0.2 0.3

XOR prob 00 01 10 11

Inputs
IN0 0.3 0.4 0.1 0.2

IN1 0.3 0.4 0.2 0.4

INV prob 0 1

Inpus IN0 0.2 0.2

the expected signal-transition decreases and the deviation
�OUT,j = 1 − POUT,j increases (or does not change) as we
pass through a gate on a sensitized path. The overall output
deviation �∗

OUT on the output net is calculated as

�∗
OUT = max

i≤j≤K
{�OUT,j}. (3)

2) Case (ii): Suppose L input ports (L > 1), indexed 1,
2, . . . , L, are required to make a transition for the gate output
to change. Let d∗

max = max1≤j≤L{dj}. The output deviation for
the gate in this case is defined as

�∗
OUT =

L∏
i=1

POUT,i · (1 − d∗
max). (4)

Note that �∗
OUT ≤ POUT,i, 1 ≤ i ≤ L, since 0 ≤ d∗

max ≤ 1.
Therefore, we conclude that the probability of getting
the expected transition on a net either decreases or remains
the same as we pass through a logic gate. In other words, the
deviation is monotonically non-decreasing along a sensitized
path.

Example: Fig. 2 shows STPs and their propagation for
a simple circuit. The test stimuli and the expected fault-free
transitions on each net are shown in dark boxes. The calculated
STPs are shown in angled brackets (〈...〉). The DDPMs of
the gates (OR, AND, XOR, and INV) used in this circuit are
given in Tables I and II. The entries in both tables are chosen
arbitrarily.

In the following example, the deviations are calculated
based on the rules mentioned above for the example circuit
in Fig. 2.

1) Net E: There is no output change, which implies that E
has the STP 〈1, 0, 0, 0〉.

2) Net F: The output changes due to IN1 (net D) of XOR.
There is a DDP of 0.4. It implies that with a probability
of 0.4, the output will stay at LOW value, i.e., the STP
for net F is 〈0.4, 0.6, 0, 0〉.

3) Net G: Output changes due to IN0 (net D) of INV, i.e.,
the STP for net G is 〈0.2, 0.8, 0, 0〉.

4) Net H: Output changes due to IN1 (net F) of OR.

a) If IN1 stays at LOW, output does not change.
Therefore, the STP for net H is 0.4 � 〈1, 0, 0, 0〉,
where � denotes the dot product.

b) If IN1 goes to HIGH, output changes with a
DDP of 0.2, i.e., the STP for net H is 0.6 �
〈0.2, 0.8, 0, 0〉.

c) Combining all the above cases, the STP for net H
is 〈0.52, 0.48.0, 0〉.

5) Net J: Output changes due to both IN0 (net F) and IN1
(net G) of AND (both required).

a) If both stay at LOW, output does not change, which
implies that J has the STP 0.4 � 0.2〈1, 0, 0, 0〉.

b) If one of them stays at LOW, output does
not change, i.e., the STP for net J is 0.4 �
0.8〈1, 0, 0, 0〉 + 0.6 � 0.2〈1, 0, 0, 0〉.

c) If both go to HIGH, the output changes with
a DDP. Since both inputs change, we use the
maximum DDP, i.e., the STP for net J is 0.6 �
0.8 � 〈0.3, 0.7, 0, 0〉.

d) Combining all the above cases, the STP for net J
is 〈0.664, 0.336, 0, 0〉.

6) Net Q1: The output changes due to only one of the inputs
of OR. We need to calculate the deviation for both cases
and select the one that causes maximum deviation at the
output (Q1).

a) For IN0 (net H) of OR.

i) If IN0 stays at LOW, the output does not
change, i.e., the STP for net Q1 is 0.52 �
〈1, 0, 0, 0〉.

ii) If IN0 goes to HIGH, the output changes
with a DDP, i.e., the STP for net Q1 is
0.48 � 〈0.5, 0.5, 0, 0〉.

iii) Combining all the above cases, the STP for net
Q1 is 〈0.76, 0.24, 0, 0〉.

b) For IN1 (net J) of OR.

i) If IN1 stays at LOW, the output does not
change, i.e., the STP for net Q1 is 0.664 �
〈1, 0, 0, 0〉.

ii) If IN1 goes to HIGH, the output changes with
a DDP, i.e., the STP for net Q1 is 0.336 �
〈0.2, 0.8, 0, 0〉.

iii) Combining all the above cases, the STP for net
Q1 is 〈0.7312, 0.2688, 0, 0〉.

c) Since IN0 provided the higher deviation, we
finally conclude that the STP for net Q1 is
〈0.76, 0.24, 0, 0〉.

Hence, the deviation on Q1 is 0.76.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

YILMAZ et al.: TEST-PATTERN SELECTION FOR SCREENING SMALL-DELAY DEFECTS IN VERY-DEEP 765

Fig. 3. Signal-transition probability propagation algorithm for calculating
output deviations.

C. Implementation of Algorithm for Propagating Signal-
Transition Probabilities

A depth-first procedure is used to compute STPs for large
circuits. When we use a depth-first algorithm, only the nets
that are required to find the output deviation on a specific
observation point are processed. In this way, a smaller number
of gate pointer stacking is required compared to the alternative
of simulating the deviations starting from INs and tracing
forward.

We first assign STPs to all INs. Then, we start from
the observation points (outputs) and backtrace until we find
a processed net (PN). A PN has all the signal-transition
probabilities assigned. The pseudocode for the algorithm is
given in Fig. 3.

If the number of test patterns is Ns and the number of nets
in the circuit is Nn, the worst-case time-complexity of the
algorithm is O(Ns · Nn). However, since the calculation for
each pattern is independent of other patterns (we assume full-
scan designs in this paper), the algorithm can easily be made
multi-threaded. In this case, if the number of threads is T , the
complexity of the algorithm is reduced to O(Ns·Nn

T
).

D. Pattern-Selection Method

In this subsection, we describe how to use output deviations
to select high-quality patterns from an n-detect transition-fault
pattern set. The number of test patterns to be selected is a user
input, e.g., S. The parameter S can be set to the number of
1-detect timing-unaware patterns, the number of timing-aware
patterns, or any other value that fits the user’s test budget.

In our pattern-selection method, we target topological cov-
erage as well as long-path coverage. As a result, we attempt
to select patterns that sensitize a wide range of distinct long
paths. In this process, we also discard low quality patterns to
find a small set of high quality patterns.

For each test observation point POj , we keep a list of
Np most effective patterns in EFFj (Fig. 4, lines 1–3). The
patterns in EFFj are the best unique-pattern candidates for
exciting a long path through POj . During deviation computa-
tion, no pattern (ti) is added to EFFj if the output deviation
at POj is smaller than a limit ratio (DLIMIT) of the maximum
instantaneous output deviation (Fig. 4, line 10). (DLIMIT) can
be used to discard low quality patterns. If the output deviation

Fig. 4. Deviation-computation algorithm for pattern selection.

is larger than this limit, we first check whether we have
added a pattern to EFFj with the same deviation (Fig. 4,
line 11). It is unlikely that two different patterns will create
the same output deviation on the same output POj while
exciting different non-redundant paths. Since we want a higher
topological path-coverage, we skip these cases (Fig. 4, line
11). Although this assumption may not necessarily be true,
we assume for the sake of completeness that it holds for most
cases. If we observed a unique deviation on POj , we first
check whether EFFj is full (already includes Np patterns);
see Fig. 4, line 12. Pattern ti is added to EFFj along with its
deviation if EFFj is not full or if ti has a larger deviation than
the minimum deviation stored in EFFj (Fig. 4, lines 12–17).
The effectiveness of a pattern is measured by the number of
occurrences of this pattern in EFFj for all values of j. For
instance, if at the end of deviation computation, pattern A was
included in the EFF list for ten observation points, and pattern
B was listed in the EFF list for eight observation points, we
conclude that pattern A is more effective than pattern B.

Once the deviation computation is completed, the list of
pattern effectiveness is generated and the final pattern filtering
and selection is carried out (Fig. 5). First, pattern effectiveness
is generated (Fig. 5, lines 1–9). Since Max Dev is updated
on the fly, we may miss some low quality patterns. As a result,
we need to filter by Max Dev (DLIMIT) again to discard low
quality patterns from the final pattern list (Fig. 5, line 5).
Setting DLIMIT to a high value may result in discarding most of
the patterns, leaving only the best few patterns. Depending on
DLIMIT, the number of remaining patterns can be less than S. In
the next stage, the patterns are re-sorted by their effectiveness
(Fig. 5, line 10). Finally, until the selected pattern number
reaches S or all patterns are selected, the top patterns are
selected (Fig. 5, line 11). The computational complexity of
the selection algorithm is O(Nsp), where Ns is the number of
test patterns and p is the number of observation points. This
procedure is very fast since it only includes two nested for
loops and a simple list-item existence check.

E. Alternative Approach
The two most significant inputs required by the proposed

output deviations method are the gate and interconnect delay

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

766 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

Fig. 5. Pattern selection algorithm.

variations, and TCRT for gates. Defining a TCRT for individual
gates may not be feasible for all projects. The proposed work
is more directly applicable to microprocessor designs with
shallow logic depth. For designs with a large number of gates,
e.g., more than 15, on a path, the output deviation metric
saturates and equal output deviations (close to 1) are obtained
for both long and intermediate paths. Both of these drawbacks
can be overcome with slight modifications to the proposed
approach as shown in [31]. Deviation-driven pattern selection
can also propagate Gaussian distributions instead of defect
probabilities. This adds no extra cost since propagation of
Gaussians is simply the addition of means and variance (from
the central limit theorem of statistics) [31]. In this approach,
the dependence of gate level TCRT is eliminated. TCRT can be
defined for the circuit as a fraction of the functional clock
period of the circuit. For each case, the output deviation is
defined as the probability that the calculated delay on an
observation point (scan flip-flops or primary outputs) is larger
than TCRT.

IV. Experimental Results

In this section, we present experimental results obtained
for the IWLS benchmark circuits. We first describe how
we obtained DDPs for the logic gates in these benchmarks
(Section IV-A). Next, we provide details for the benchmark
circuits. Then, we provide details for the experimental setup
(Section IV-C). Before presenting the simulation results (Sec-
tions IV-F and IV-G), we provide a summary of the dynamic-
timing simulation method proposed in [15], which will be
compared with our proposed deviation-based method (Section
IV-E).

A. Finding Gate-Delay Defect Probabilities

To determine the gate DDPs, we ran 200 HSpice MC sim-
ulations on each gate, for all possible input signal-transitions,
using 45 nm process-technology BSIM4 predictive transistor
models. We verified that 200 MC simulations are sufficient
for generating DDPMs. We observed very little change in
the DDPM entries well before we reach 200 MC simulations.
Therefore, we conclude that running more MC simulations will
not lead to any significant difference in the DDPM entries.

For each gate type, we simulated the schematic under
various loading capacitance and input slew rate conditions to

account for spatial correlations. Next, we used interpolation
to find the mean and standard deviation of gate delays for
individual gate instances. We have seen that interpolation
is possible and it is accurate. For instance, the mean delay
value approximately linearly changes with the load capacitance
and further accuracy can be achieved by using third-order
polynomial curve fitting.

MC simulations were carried out using the following re-
alistic process-variation parameters (obtained from a current
VDSM technology from industry) for a Gaussian distribution.
Transistor gate length L: 3σ = 10%, threshold voltage
VTH : 3σ = 30%, and gate-oxide thickness tOX: 3σ = 3%. For
each configuration, MC simulations were performed for each
possible input transition. For each gate, the probability that
the transition-delay value is greater than TCRT = NOM + Xs

constitutes the DDP value for the respective input transition
(where NOM refers to the nominal delay value). The param-
eter X is selected in such a way that all the gate instances
have at least one non-zero DDPM entry. Note that X is
the minimum of all MAX delays (among all gates) for each
benchmark. This corresponds to the maximum delay of an
inverter driving a single-inverter load. Note that selecting too
large a value for X may cause many DDPMs to have all-zero
entries, simply because the gate would never have a delay
larger than NOM + X. As an alternative, X can be set to the
MAX delay specified by an STA tool that does not consider
process variation effects.

B. Benchmarks

In this section, we present the details of the IWLS’2005
benchmark circuits. We do not consider the ISCAS bench-
marks because these circuits are small and it is easier for an
ATPG tool to excite all long paths with a small number of
patterns.

IWLS benchmark circuit statistics are shown in Table III.
As seen, IWLS benchmarks represent a wide range of applica-
tion areas, including memory controllers and microprocessors.
Note that IWLS benchmarks are provided in the Verilog RTL
format, and the statistics given in Table III may slightly change
depending on the synthesis tool and synthesis optimization
options. For our experiments, we selected a subset of the IWLS
benchmarks: systemcaes, usb funct, ac97 ctrl, aes core,
pci bridge32, wb conmax, and ethernet. The largest bench-
marks require a prohibitive amount of computing resources for
the collection of simulation data for pattern quality evaluation
(sensitized paths and coverage ramp-up), therefore we do not
report results for them.

C. Experimental Setup

All experiments were performed on a pool of state-of-
the-art servers with at least eight processors available at all
times, 16 GB of memory, and running Linux. The program
to compute output deviations was implemented using C++. A
commercial tool was used to perform Verilog netlist synthesis
and scan insertion for the IWLS benchmark circuits. We used a
commercial ATPG tool to generate n-detect TDF test patterns
and timing-aware TDF patterns for these circuits. The ATPG

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

YILMAZ et al.: TEST-PATTERN SELECTION FOR SCREENING SMALL-DELAY DEFECTS IN VERY-DEEP 767

TABLE III

Benchmark Statistics

Benchmark # I/O # Gates # Flip-Flops Function
wb−dma 942 7619 563 WISHBONE DMA/Bridge IP Core
tv80 103 13 326 359 TV80 8-Bit Microprocessor Core
systemcaes 387 17 817 670 SystemC AES
mem−ctrl 208 22 015 1083 WISHBONE Memory Controller
usb−funct 167 25 531 1746 USB function core
ac97−ctrl 115 28 083 2199 WISHBONE AC 97 Controller
aes−core 267 29 186 530 AES Cipher
dma 120 41 026 2189 Direct Memory Access (DMA) Controller
pci−bridge32 361 43 907 3359 PCI Interface
wb−conmax 388 59 484 770 WISHBONE Conmax IP Core
ethernet 45 153 948 10 544 Ethernet IP core
vga−lcd 222 252 302 17 079 WISHBONE rev.B2 compliant Enhanced VGA/LCD Controller
netcard 186 1 356 533 97 831 Network Card Controller
leon3mp 2546 1 452 517 108 839 32-bit processor compliant with SPARC V8 architecture

tool was forced to generate launch-on-capture transition fault
patterns. The primary input change during capture cycles
and the observation of primary outputs was prevented to
simulate realistic test environments. The path delays were
calculated using an in-house dynamic path-timing simulator.
All simulations were run in parallel on eight processors.

D. Comparison to SSTA-Based Techniques

In this section, we qualitatively compare the proposed work
to SSTA-based pattern selection methods proposed in [27]
and [28]. The summary of this comparison is illustrated
in Table IV. Both [27] and the proposed work presents a
transition-test pattern quality metric for the detection of SDDs
in the presence of process variations. The main focus of [28],
on the other hand, is to present a timing-hazard-aware SSTA
based technique for the same target defect group. Timing-
hazards are not covered by [27] or the proposed work. The
formulation is different in these methods. In [27], dynamic
timing analysis is run multiple times, for each test pattern, to
create a delay distribution. Simple operators, e.g., +/−, are
used while propagating the delay values. In [28], statistical
dynamic timing analysis is run once for each test pattern.
Similar to [27], simple operators are used for delay propaga-
tion, but the analysis of timing hazards adds complexity to the
formulation. Both of these methods assume a Gaussian delay
distribution. On the other hand, in the proposed work there is
no assumption regarding the shape of delay distribution. This
is because we use probability values instead of distributions.
The metric is computed using probability propagation. The
drawback of the proposed method is that its effectiveness drops
if the combinational depth of the circuit is very large, i.e.,
greater than ten. In contrast, both [27] and [28] can handle
large combinational depths, and using central limit theorem
(CLT), it can even be argued that their accuracy may increase
with the increased combinational depth. The run-time of SSTA
based approaches [27] and [28] is expected to be a limiting
factor in the applicability to industrial size designs. Further
optimization may eliminate this shortcoming. On the other

hand, the proposed method is quick and its run-time increases
less rapidly with increase in circuit size.

E. Dynamic Timing Simulation

In this paper, we compare our proposed method with the one
presented in [15]. Two methods for estimating the path delays
for a given test vector are proposed in [15]. In particular, a
path-based and a cone-based delay estimation scheme were
provided. The estimated delays are called “metrics” associated
with the test vectors. Two different delay models are used
during the estimation process: 1) unit delay model, each gate
has a unit delay, no spatial correlations are considered; and
2) differential delay model, the gate type and the number of
fanouts are considered.

For the path-based scheme, it is assumed that a set of critical
paths is given. Non-robustly excited critical paths and their
corresponding delays are found using either the unit or the
differential delay model. The largest delay caused by the test
pattern is assigned as the “metric” for the pattern. If there is
no non-robust transition on a gate, zero delay is assumed on
that gate. Because of the non-robust restriction, delay accuracy
is lost. For the cone-based method, there are no non-robust
restrictions, but delays are calculated for small cones of logic,
and then the delays of cones are added to approximate the
overall delay. Once all test vectors are associated with a
“metric,” the patterns are ordered by the “metric” and the top
1/3 of the patterns are selected.

To compare our work to the dynamic-timing simulation
based method, we implemented the cone based scheme us-
ing the differential delay model. Instead of the number of
fanouts, we used capacitive loading of fanout gates to update
the delay associated with each gate instance. The capacitive
loading of gate ports is found by running HSpice simulations
on transistor-level gate models. Note that in the absence
of layouts, this data does not include layout-extracted data
such as resistances and capacitances. Once the “metrics” are
computed, we selected the top 1/3 of the patterns as proposed
by Lee et al. [15].

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

768 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

TABLE IV

Comparison to SSTA-Based Approaches

Subject Chao et al. [27] Lee et al. [28] Proposed Work
Main topic Presents an SSTA-based coverage

metric for estimating test quality of
transition-test patterns under process
variation effects.

Presents a timing-hazard-aware statis-
tical timing method that can be ap-
plied to transition-test patterns under
process variation effects.

Presents a deviation-based coverage
metric for estimating test quality of
transition-test patterns under process
variation effects.

Pattern
selection

Proposes a pattern selection proce-
dure based on the defined metric.

Proposes a pattern selection method
based on signal slacks.

Proposes a pattern selection proce-
dure based on the defined metric.

Timing hazards Cannot handle timing hazards. Can handle timing hazards. Cannot handle timing hazards.
Metric
computation

Monte-Carlo based dynamic timing
simulation.

Timing-hazard-aware statistical
dynamic timing simulation.

Probability propagation.

SSTA based. SSTA based. Signal probability based.
Requires pin-to-pin timing for each
cell as a Gaussian PDF.

Requires pin-to-pin timing for each
cell as a Gaussian PDF.

Requires pin-to-pin delay defect
probability for each cell. It can
handle any type of distribution since
the actual probability value is used
rather than the distribution.

Formulation is simple and effec-
tive since only simple operators are
needed.

Although formulation for +/−/min/
max operators is simple, taking haz-
ards into account requires more com-
plicated analysis for each test pattern.

Formulation is more complicated than
[27] due to probability propagation,
but simpler than [28].

Requires running dynamic timing
analysis multiple times for each pat-
tern, hence the expected run-time is
longer.

Requires running statistical dynamic
timing analysis once for each pattern,
but timing hazard analysis increases
the run-time considerably.

Requires a single pass of probability
propagation for each pattern, hence
run-time is short.

Applicability It can handle very large combina-
tional depths.

It can handle very large combina-
tional depths.

The effectiveness of the method de-
creases for very large combinational
depths due to saturation of de-
fect probabilities along the sensitized
paths.

Application to industrial designs may
require further optimization due to
long run time.

Application to industrial designs may
require further optimization due to
long run time.

Application to industrial circuits is
possible because the run time is linear
with circuit size.

F. Correlation Between Output Deviations and Path Lengths

We ran correlation analysis to determine the relationship be-
tween output deviations and sensitized path lengths. For each
benchmark, we calculated output deviations and path lengths
for n-detect transition-fault test-patterns (n = 1, 3, 5, 8, 10).
We simulated these patterns using the in-house dynamic timing
simulator and determined the signal delays at the observation
points of the benchmarks. Next, we used MATLAB to compute
the Kendall’s correlation coefficients [32] for each pattern set.
The Kendall’s correlation coefficient is a measure between
0 and 1, where 0 indicates no correlation and 1 indicates
perfect correlation. Table V shows the average correlation
coefficients for the patterns in a 1-detect test set of the
IWLS’2005 benchmarks [8]. The results for other values of
n are similar. The minimum and maximum values of the
correlation coefficients are also given. As seen in Table V,
there is a strong positive correlation (close to the perfect
correlation measure of 1) between output deviations and path
lengths. Thus, the method of output deviations is a promising
metric for evaluating the capability of transition delay-test
patterns to sensitize long paths.

It can be argued that instead of output deviations, a dynamic
timing simulator can be used to obtain high correlation to
path lengths. However, the method based on output deviations

TABLE V

Kendall’s Coefficients for Evaluating the Correlation of

Path Lengths to Output Deviations

Benchmark (Ave, Min, Max) Benchmark (Ave, Min, Max)
systemcaes (0.96, 0.82, 1) pci bridge32 (0.93, 0.85, 0.99)
usb funct (0.97, 0.85, 0.99) wb conmax (0.93, 0.89, 0.98)
ac97 ctrl (0.98, 0.93, 1) ethernet (0.89, 0.77, 0.95)
aes core (0.97, 0.9, 0.99)

is flexible and general, and it can be used during pattern
selection to account for process variations and many phys-
ical defects. Dynamic timing simulation can only provide
variability-unaware timing information. The method of output
deviations is also expected to reveal unique problematic paths
that may be hidden from dynamic timing analysis.

G. Pattern Selection Results

In this section, we present the pattern-selection results for
the proposed deviation-based method (dev) and the dynamic-
timing simulation based method (dts) [15] for a production
test environment with pattern-count limits.

We first generated 5-detect (n5), 8-detect (n8), and timing-
aware (ta) transition-test patterns for each benchmark using a

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

YILMAZ et al.: TEST-PATTERN SELECTION FOR SCREENING SMALL-DELAY DEFECTS IN VERY-DEEP 769

Fig. 6. Comparison of CPU time for dev and dts. The CPU times used for each step are shown in a different color. The values are normalized by the
timing-aware ATPG CPU time for each benchmark. The normalization point (timing-aware ATPG CPU time) is shown as a red line.

TABLE VI

Number of Test Patterns Generated by the Commercial ATPG

Tool for Various n-Detect TDF and Timing-Aware ATPG (ta)

Benchmarks n5 n8 ta
systemcaes 1939 2821 2997
usb funct 3802 5797 3683
ac97 ctrl 1907 2866 1643
aes core 2734 3995 8277
pci bridge32 4789 7383 4571
wb conmax 21 230 32 189 6418
ethernet 25 221 36 855 13 544

commercial ATPG tool. Next, dev and dts are used to select
patterns from these base pattern sets. The motivation for also
using timing-aware patterns as a base pattern-set lies in our
observation that the pattern counts resulting from timing-aware
ATPG for large industrial circuits are often prohibitively high.
Test-set truncation is therefore necessary in practice. In order
to obtain the same TDF coverage as 1-detect patterns, we ran
top-off timing-unaware ATPG over the selected patterns.

The number of patterns generated by the commercial ATPG
tool is given in Table VI. When dts is used as the pattern
selection scheme, the top 1/3 patterns (ranked on the basis of
the “metric”) of the base patterns (n5, n8, and ta) are selected
as in [15]; see Table VII. The number of patterns after top-off
ATPG for TDFs is given in parentheses.

For dev, we used a range of DLIMIT values for pattern
selection. The results for DLIMIT = 0.6 and DLIMIT = 0.8
are shown in Table VIII. We see that an increase in DLIMIT

resulted in a lower pattern count in the selected pattern
set, but increased the number of top-off ATPG patterns. We
observe that for most benchmarks, the selected pattern count
is significantly smaller than the number of base timing-aware
ATPG patterns, and even smaller than the number of patterns
selected by dts. For the rest of the experimental results
presented in this section for dev, we used the patterns selected
with DLIMIT = 0.8.

The CPU time required by timing-aware ATPG is an
important concern, especially for large industrial designs
under time-to-market constraints. We have seen that for large

TABLE VII

Number of Test Patterns (One-Third of Base Set) Selected by

the Dynamic-Timing Simulation Based Scheme (dts)

Benchmarks n5* n8* ta*
systemcaes 646 (784) 940 (991) 999 (1151)
usb funct 1267 (1474) 1932 (2010) 1226 (1695)
ac97 ctrl 635 (815) 955 (1019) 551 (783)
aes core 911 (1097) 1331 (1384) 2759 (2766)
pci bridge32 1596 (1951) 2461 (2693) 1507 (2069)
wb conmax 7076 (7831) 10 729 (10 961) 2142 (5713)
ethernet 8407 (10 213) 12 284 (12 877) 4514 (9708)

*Numbers in parenthesis refer to the pattern count after top-off timing-
unaware ATPG.

industrial circuits, timing-unaware TDF ATPG itself can take
a couple of days to complete. Therefore, the CPU time for
timing-aware ATPG can be prohibitive, as shown in Fig. 1
for benchmark circuits. We evaluated the total CPU time
used by dev and dts and compared it to the CPU time used
by the base timing-aware ATPG. The results are shown in
Fig. 6. We find that, even with CPU time for top-off ATPG,
for n-detect pattern sets, dev consistently has lower CPU
time compared to both base timing-aware ATPG and dts.
For the ta pattern group, the CPU time used for pattern
selection and fault-grading is significantly smaller than the
base timing-aware ATPG run time.

In order to evaluate the effectiveness of selected patterns
in terms of long-path sensitization, we ran timing simulations
for the selected patterns and found the number of sensitized
distinct long paths. Two paths are assumed to be distinct if
there is at least one net that is not shared by them. A path
is assumed to be a long path if the corresponding delay is
higher than the specified long path limit (LPL). We ran the
analysis for a range of LPL values, starting from 50% of
the clock period to 90% of the clock period. The results for
90% LPL is shown in Fig. 7. The results for other values of
LPL follow the same trend. The contribution of the selected
patterns and the top-off patterns is shown in different colors.
Note that the number of patterns for the base timing-aware
ATPG is much larger than any of the pattern selection methods.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

770 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

TABLE VIII

Number of Test Patterns Selected by the Deviation-Based Scheme (dev) When DLIMIT = 0.6 and DLIMIT = 0.8

DLIMIT = 0.6* DLIMIT = 0.8*
Benchmarks n5 n8 ta n5 n8 ta
systemcaes 974 (1054) 1135 (1210) 1245 (1417) 938 (1027) 1097 (1174) 1205 (1374)
usb funct 1171 (1360) 1330 (1494) 1298 (1751) 659 (1110) 742 (1149) 744 (1390)
ac97 ctrl 614 (740) 699 (805) 575 (801) 281 (589) 246 (582) 63 (544)
aes core 1104 (1214) 1232 (1309) 1379 (1479) 1060 (1182) 1179 (1277) 1294 (1413)
pci bridge32 1069 (1525) 1287 (1683) 1432 (2005) 408 (1319) 459 (1341) 504 (1452)
wb conmax 2434 (5588) 2572 (5608) 1949 (5648) 2091 (5575) 2275 (5535) 1525 (5651)
ethernet 11 967 (13 740) 13 448 (14 606) 8877 (11 472) 11 479 (13 453) 12 911 (14 304) 8493 (11 351)

*Numbers in parenthesis refer to the pattern count after top-off timing-unaware ATPG.

Fig. 7. Number of sensitized distinct long paths for dev and dts (LPL = 90%). (a) ac97 ctrl (1643). (b) pci bridge32 (4571). (c) wb conmax (6418).
(d) ethernet (13544). The number of sensitized distinct long paths for the trimmed timing-aware ATPG patterns is shown as a horizontal line. The number of
sensitized distinct long paths for the full timing-aware ATPG pattern set is shown in parentheses next to benchmark names.

Therefore, we trimmed the base timing-aware ATPG patterns
and selected the first P patterns (ranked by the ATPG tool) as
a baseline where P is the maximum of the number of selected
patterns (including top-off patterns) either by dev or dts.
The results for the trimmed timing-aware ATPG patterns are
shown as horizontal lines. The results for other benchmarks
can be found in [9]. As seen in Fig. 7, dev consistently excites
more long paths than dts. We also note that the proposed
method sensitizes more long paths than the timing-aware
ATPG baseline with P patterns for three circuits—ac97 ctrl,
pci bridge32, and wb conmax. It sensitizes nearly the same
number of long paths for ethernet. Recall that in all cases, the
CPU time for timing-aware ATPG is much higher (Fig. 6).

To further evaluate the long path sensitization capability
of the selected patterns, we determined the delay distribution
of the excited distinct long paths. We set LPL to 80% of
the rated clock period. The results are shown in Fig. 8.
The results shown in this figure are for the base 8-detect
pattern set [n8(base)], dts-based selected patterns and
top-off patterns [n8(dts)], and dev-based selected patterns
with DLIMIT = 0.8 and top-off patterns [n8(dev)]. To draw
appropriate conclusions, it is necessary to examine the pattern
counts in Table VI (column n8), Table VII (column n8), and
Table VIII (column n8 under DLIMIT = 0.8). Note that the
base pattern set has a much larger pattern count compared
to selected pattern sets with additional top-off patterns. Fur-
thermore, dev-based selection leads to lower pattern count
than dts for all benchmarks except systemcaes and ethernet.
The difference in pattern count is especially significant for
pci bridge32 and wb conmax, where dev-based selection
has almost half of the pattern count of dts. We find that dev-

based selection clearly outperforms dts-based selection for
most benchmarks, even with fewer patterns. For wb conmax,
dev-based selection is almost as effective as dts-based
selection even though the pattern count is only half. Another
important observation is that dev-based selection successfully
extracted almost all of the long path sensitizing patterns from
the base pattern sets for most benchmarks. The results for
other benchmarks can be found in [9].

To evaluate the effect of DDPM perturbations on the se-
lected pattern quality, we ran perturbation analysis simulations.
Fig. 9 shows the results for three representative benchmarks.
For each benchmark, we injected random variations to DDPM
entries using three different maximum variation values: 10%
(p:0.1), 20% (p:0.2), and 30% (p:0.3). The injected variations
are uniformly distributed between BASE-p and BASE+p,
where BASE shows the original DDPM entry (corresponding
bar is named as p:0). The number of distinct long paths
excited by the selected patterns is shown as a pattern quality
metric. The number of excited distinct long paths for the
corresponding full ATPG pattern sets (n5, n8, and timing-
aware) are shown as a red horizontal line. These lines simply
show the maximum achievable limit for each selected pattern
set (the blue bars under them). As seen in Fig. 9, the pattern-
selection results and test quality are relatively insensitive to
small changes in the DDPM entries. We attribute this finding
to the fact that any DDPM changes affect multiple paths in
the circuits, hence their impact is amortized over the circuit
and the test set. It is usually very difficult to estimate close-to-
real timing variations. The robustness of the deviation-based
pattern selection against timing estimation errors can provide
great flexibility in this aspect.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

YILMAZ et al.: TEST-PATTERN SELECTION FOR SCREENING SMALL-DELAY DEFECTS IN VERY-DEEP 771

Fig. 8. Distribution of sensitized distinct paths (LPL = 80%) for base
8-detect patterns, dts-based selection, and dev-based selection. (a)
wb conmax. (b) ethernet.

Fig. 9. Number of sensitized distinct long paths (LPL = 70%) for se-
lected patterns, under different DDPM perturbation limits: (a) usb funct.
(b) ac97 ctrl.

Fig. 10. Number of defects detected by the selected patterns for dev, dts,
the trimmed timing-aware ATPG patterns (ta trimmed), and full set of
timing-aware ATPG patterns (ta) (ta is a super-set of all selected patterns).
(a) wb conmax. (b) ethernet.

To evaluate the fault coverage ramp-up provided by dev,
dts, and timing-aware ATPG, we ran fault injection simula-
tions. For each benchmark, we inserted 50 000 delay defects on
randomly chosen nets. We assumed that the additional delay
introduced by the injected defects has a distribution of e−Ax as
used in [10] and [29], and we injected random delay defects
using the method described below.

We let A = 5
TCLK

, where TCLK corresponds to the rated clock
period of the circuit under test. The delay-defect distribution
used in [10] and [29] is similar to this function. We use the
distribution

y = e
−5x

TCLK 0 < y < 1. (5)
If (5) is solved to determine x (additional delay) in terms

of y (uniformly distributed random number), the following
equation results:

x = − ln y · TCLK

5
. (6)

A total of 50 000 uniformly distributed random numbers
were generated and corresponding delay defects were injected
in the circuit under test. In our experiments, 70% of the
injected delay defects are less than 20% of the clock period.
Thus, our defect-injection mechanism injected more small-
delay defects than gross-delay defects, as is the case for
VDSM technology [10].

The number of detected faults for all the benchmarks is
presented as Venn diagrams in Fig. 10. Although it is only
expected that dev patterns will not catch all detectable faults,
we find that, for most cases, dev missed less faults compared
to both dts and timing-aware ATPG.

Early detection of defects is also important in an abort-
on-first-fail methodology, and it can save considerable test
time. Furthermore, if the test-time budget is limited, whereby
truncation is necessary and only a small portion of the patterns
can be used for production test, it is important to apply the
most effective patterns before less effective ones. Fig. 11
shows how the fault coverage increases with the number of
patterns for representative benchmark circuits. Each plot in
these figures shows results for the base timing-aware ATPG
patterns [ta(base)], the patterns selected or sorted by dev
[n8(dev) and ta(dev)], and the pattern selected and sorted
by dts [n8(dts) and ta(dts)]. We find that the coverage
rises more steeply for the proposed method (dev) compared
to both dts and the base timing-aware ATPG patterns.

Finally, we have obtained results on long-path coverage and
defect detection for the full timing-aware test sets, i.e., without
truncation. The results are shown in [9]. As expected, the full

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

772 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 5, MAY 2010

Fig. 11. Fault coverage ramp-up using the selected patterns of dev and dts,
and the base timing-aware ATPG patterns. (a) usb funct. (b) pci bridge32.
(c) ethernet.

timing-aware test sets provide higher coverage, but these test
sets are much longer in length. For several benchmarks, com-
parable or even better coverage is achieved using the proposed
method with much smaller test sets. For a range of smaller
pattern counts, the proposed method clearly outperforms the
full timing-aware test sets.

V. Conclusion

We have presented a test-grading technique, based on
output deviations, for screening SDDs. We have defined the
concept of output deviations for pattern-pairs and shown that
it can be used as an efficient surrogate metric to model the
effectiveness of TDF patterns for SDDs. We have introduced
a gate-delay defect probability measure to model delay
variations for nanometer technologies. Experimental results
for the IWLS’2005 benchmark circuits show that the proposed
method intelligently selects the best set of patterns for SDD
detection from an n-detect or timing-aware TDF pattern set,
and it excites a larger number of long paths compared to a
current generation commercial timing-aware ATPG tool. We
have also shown that the selected patterns are considerably
more effective than a recently proposed method for detecting
SDDs caused by resistive shorts, resistive opens, and process
variations.

Acknowledgment

We would like to thank J. Rearick, J. Fitzgerald, and other
colleagues at AMD for valuable discussions and for providing
us with access to computing resources. We would also like to
thank S. Patil from Intel for valuable discussions.

References

[1] N. Ahmed, M. Tehranipoor, and V. Jayaram, “Timing-based delay test for
screening small delay defects,” in Proc. IEEE Design Autom. Conf., 2006,
pp. 320–325.

[2] X. Lin, K.-H. Tsai, C. Wang, M. Kassab, J. Rajski, T. Kobayashi, R.
Klingenberg, Y. Sato, S. Hamada, and T. Aikyo, “Timing-aware ATPG for
high quality at-speed testing of small delay defects,” in Proc. IEEE Asian
Test Symp., 2006, pp. 139–146.

[3] J. A. Waicukauski, E. Lindbloom, B. Rosen, and V. Iyengar, “Transition
fault simulation,” IEEE Design Test Comput., vol. 4, no. 2, pp. 32–38, Mar.
1987.

[4] R. Putman and R. Gawde, “Enhanced timing-based transition delay testing
for small delay defects,” in Proc. IEEE Very Large Scale Integr. Test Symp.,
2006, pp. 336–342.

[5] Cadence, Inc. “Encounter test: Test generation and simulation reference,”
product Version 3.0, 2005.

[6] Mentor Graphics. “Understanding how to run timing-aware ATPG,” Appli-
cation Note, 2006.

[7] R. Kapur, J. Zejda, and T. W. Williams, “Fundamentals of timing informa-
tion for test: How simple can we get?” in Proc. IEEE Int. Test Conf., Oct.
2007, pp. 1–7.

[8] IWLS 2005 Benchmarks [Online]. Available: http://iwls.org/iwls2005/
benchmarks.html

[9] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-pattern selection
for screening small-delay defects in very-deep submicrometer integrated
circuits,” Duke University, Tech. Rep. ECE-2009-02 [Online]. Available:
http://hdl.handle.net/10161/1376

[10] B. Keller, M. Tegethoff, T. Bartenstein, and V. Chickermane, “An economic
analysis and ROI model for nanometer test,” in Proc. IEEE Int. Test Conf.,
2004, pp. 518–524.

[11] F.-F. Ferhani and E. J. McCluskey, “Classifying bad chips and ordering test
sets,” in Proc. IEEE Int. Test Conf., Oct. 2006, pp. 1–10.

[12] Semiconductor Industry Association. (2007) International techno-
logy roadmap for semiconductors (ITRS) [Online]. Available: http://
www.itrs.net/links/2007itrs/home2007.htm

[13] Z. Wang and K. Chakrabarty, “Test-quality/cost optimization using output-
deviation-based reordering of test patterns,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 27, no. 2, pp. 352–365, Feb. 2008.

[14] Z. Wang and K. Chakrabarty, “An efficient test pattern selection method
for improving defect coverage with reduced test data volume and test
application time,” in Proc. IEEE Asian Test Symp., 2006, pp. 333–338.

[15] H. Lee, S. Natarajan, S. Patil, and I. Pomeranz, “Selecting high-quality
delay tests for manufacturing test and debug,” in Proc. IEEE Int. Symp.
Defect Fault Tolerance Very Large Scale Integr. Syst., 2006, pp. 59–70.

[16] E. S. Park, M. R. Mercer, and T. W. Williams, “Statistical delay fault
coverage and defect level for delay faults,” in Proc. IEEE Int. Test Conf.,
1988, pp. 492–499.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

YILMAZ et al.: TEST-PATTERN SELECTION FOR SCREENING SMALL-DELAY DEFECTS IN VERY-DEEP 773

[17] P. Gupta and M. S. Hsiao, “ALAPTF: A new transition fault model and the
ATPG algorithm,” in Proc. IEEE Int. Test Conf., 2004, pp. 1053–1060.

[18] W. Qiu, J. Wang, D. M. H. Walker, D. Reddy, X. Lu, Z. Li, W. Shi,
and H. Balachandran, “K longest paths per gate (KLPG) test generation
for scan-based sequential circuits,” in Proc. IEEE Int. Test Conf., 2004,
pp. 223–231.

[19] S. Gurumurthy, R. Vemu, J. A. Abraham, and D. G. Saab, “Automatic
generation of instructions to robustly test delay defects in processors,” in
Proc. IEEE Eur. Test Symp., 2007, pp. 173–178.

[20] H. Yan and A. D. Singh, “A new delay test based on delay defect detection
within slack intervals (DDSI),” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 14, no. 11, pp. 1216–1226, Nov. 2006.

[21] I. Pomeranz and S. M. Reddy, “Transition path delay faults: A new path
delay fault model for small and large delay defects,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 16, no. 1, pp. 98–107, Jan. 2008.

[22] S. Bose, H. Grimes, and V. D. Agrawal, “Delay fault simulation with
bounded gate delay mode,” in Proc. IEEE Int. Test Conf., Oct. 2007, pp.
1–10.

[23] V. Iyengar, J. Xiong, S. Venkatesan, V. Zolotov, D. Lackey, P. Habitz, and
C. Visweswariah, “Variation-aware performance verification using at-speed
structural test and statistical timing,” in Proc. IEEE Int. Conf. Comput.-
Aided Design, 2007, pp. 405–412.

[24] V. Zolotov, J. Xiong, H. Fatemi, and C. Visweswariah, “Statistical path
selection for at-speed test,” in Proc. IEEE Int. Conf. Comput.-Aided Design,
2008, pp. 624–631.

[25] C. Forzan and D. Pandini, “Why we need statistical static tim-
ing analysis,” in Proc. IEEE Int. Conf. Comput. Design, 2007,
pp. 91–96.

[26] I. Nitta, S. Toshiyuki, and H. Katsumi, “Statistical static timing analysis
technology,” Fujitsu Sci. Tech. J., vol. 43, no. 4, pp. 516–523, Oct.
2007.

[27] C.-T. M. Chao, L.-C. Wang, and K.-T. Cheng, “Pattern selection for testing
of deep submicron timing defects,” in Proc. IEEE Design Autom. Test Eur.,
vol. 2. 2004, pp. 1060–1065.

[28] B. Lee, H. Li, L.-C. Wang, and M. Abadir, “Pattern selection for testing of
deep submicron timing defects,” in Proc. IEEE Int. Test Conf., vol. 2. 2005,
pp. 1060–1065.

[29] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama, and S. Kajihara,
“Invisible delay quality: SDQM model lights up what could not be seen,”
in Proc. IEEE Int. Test Conf., 2005, 9 p. 1210.

[30] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Interconnect-aware and
layout-oriented test-pattern selection for small-delay defects,” in Proc.
IEEE Int. Test Conf., 2008, pp. 1–10.

[31] M. Yilmaz, “Automated test grading and pattern selection for small-delay
defects,” Ph.D. dissertation, Dept. Electr. Comput. Eng., Duke Univ.,
Durham, NC, Apr. 2009.

[32] R. R. Wilcox, Fundamentals of Modern Statistical Methods: Substantially
Improving Power and Accuracy, 2nd ed. New York: Springer, 2010,
pp. 179–180.

Mahmut Yilmaz (S’07–M’09) received the B.S.
degree in electrical and electronics engineering from
Bogazici University, Istanbul, Turkey, in 2004, and
the M.S. and Ph.D. degrees, both in electrical
and computer engineering, from Duke University,
Durham, NC, in 2006 and 2009, respectively.

Since 2006, he has been with Advanced Micro
Devices, Inc., Sunnyvale, CA. He is currently a Se-
nior Design Engineer with the Design-for-Test Team,
Advanced Micro Devices, Inc. His current research
interests include design for testability, physical-

aware and timing-aware automatic-test-pattern generated for industrial digital
circuits.

Dr. Yilmaz is the recipient of the Test Technology Technical Council Best
Doctoral Thesis Award for 2009.

Krishnendu Chakrabarty (S’92–M’96–SM’02–
F’08) received the B.Tech. degree from the Indian
Institute of Technology Kharagpur, Kharagpur, In-
dia, and the M.S.E. and Ph.D. degrees from the
University of Michigan, Ann Arbor, in 1990, 1992,
and 1995, respectively, all in computer science and
engineering.

From 1995 to 1998, he was an Assistant Professor
of electrical and computer engineering with Boston
University, Boston, MA. He is currently a Professor
of electrical and computer engineering with the De-

partment of Electrical and Computer Engineering, Duke University, Durham,
NC. He is a Member of the Chair Professor Group (honorary position) in

Software Theory with the School of Software, Tsinghua University, Beijing,
China. He has authored nine books on these topics (including two in press),
published over 320 papers in journals and refereed conference proceedings,
and has given over 130 invited, keynote, and plenary talks. His current research
interests include testing and design-for-testability of integrated circuits, digital
microfluidics and biochips, circuits and systems based on deoxyribonucleic
acid self-assembly, and wireless sensor networks.

Dr. Chakrabarty is a recipient of the National Science Foundation Early
Faculty (CAREER) Award, the Office of Naval Research Young Investigator
Award, the Humboldt Research Fellowship from the Alexander von Humboldt
Foundation, Germany, and several best paper awards at the IEEE conferences.
He is a Golden Core Member of the IEEE Computer Society, and a Distin-
guished Engineer of the Association for Computing Machinery (ACM). He is a
2009 Invitational Fellow of the Japan Society for the Promotion of Science. He
is a recipient of the 2008 Duke University Graduate School Dean’s Award for
excellence in mentoring. He has served as a Distinguished Visitor of the IEEE
Computer Society from 2005 to 2007, and as a Distinguished Lecturer of the
IEEE Circuits and Systems Society from 2006 to 2007. Currently, he serves
as an ACM Distinguished Speaker. He is an Associate Editor of the IEEE
Transactions on Computer-Aided Design of Integrated Circuits

and Systems, the IEEE Transactions on VLSI Systems, and the IEEE
Transactions on Biomedical Circuits and Systems. He also serves as
an Editor of the Journal of Electronic Testing: Theory and Applications. He
is the Editor-in-Chief of the IEEE Design and Test of Computers, and
the ACM Journal on Emerging Technologies in Computing Systems.

Mohammad Tehranipoor (S’02–M’04–SM’07) re-
ceived the B.S. degree from the Amirkabir Univer-
sity of Technology (Tehran Polytechnic University),
Tehran, Iran, the M.S. degree from the University of
Tehran, Tehran, Iran, and the Ph.D. degree from the
University of Texas at Dallas, Dallas, in 1997, 2000,
and 2004, respectively, all in electrical engineering.
He is currently an Assistant Professor of electrical
and computer engineering with the Department of
Electrical and Computer Engineering, University of
Connecticut, Storrs. He has published over 85 jour-

nal articles and refereed conference papers in the area of very large scale
integration (VLSI) design, test, and hardware security and trust. He has
published two books entitled Nanometer Technology Designs High-Quality
Delay Tests (Berlin, Germany: Springer) and Emerging Nanotechnologies Test,
Defect Tolerance and Reliability (Berlin, Germany: Springer), in addition to
three book chapters. His current research interests include computer-aided
design and test for complementary metal–oxide–semiconductor VLSI designs,
design-for-testability, at-speed test, secure design, and integrated circuit trust.

Dr. Tehranipoor is a recipient of the Best Paper Award at the 2005 VLSI
Test Symposium (VTS), the Best Paper Award at the 2008 North Atlantic
Test Workshop (NATW), the Best Paper Award at NATW in 2009, honorable
mention for Best Paper Award at NATW in 2008, Best Paper candidate at the
2006 Design Automation Conference (DAC), Best Paper candidate at the 2005
Texas Instrument Symposium on Test, the Best Panel Award at VTS in 2006,
and top ten paper recognition at the 2005 International Test Conference (ITC).
He is also a recipient of the 2008 IEEE Computer Society Meritorious Service
Award, the 2009 NSF CAREER Award, and the 2009 UConn ECE Research
Excellence Award. He serves on the program committee of several leading
conferences and workshops. He served as the Guest Editor for the Journal
of Electronic Testing: Theory and Applications (JETTA) on “Test and Defect
Tolerance for Nanoscale Devices” and the Guest Editor for the IEEE Design

and Test of Computers on “IR-Drop and Power Supply Noise Effects
on Very Deep-Submicrometer Designs.” He served as the Program Chair of
the 2007 IEEE Defect-Based Testing Workshop, the Program Chair of the
2008 IEEE Defect and Data Driven Testing (D3T), the Co-program Chair of
the 2008 International Defect and Fault Tolerance in VLSI Systems (DFT),
and the General Chair for D3T in 2009 and DFT in 2009. He co-founded a
new workshop called the IEEE International Workshop on Hardware-Oriented
Security and Trust (HOST) and served as the HOST-2008 and HOST-2009
General Chair and Chair of Steering Committee. He is currently an Associate
Editor for the JETTA, an Associate Editor for the IEEE Design and Test of

Computers, and an Editor for the TTTC Newsletter. He is a Member of
Association for Computing Machinery (ACM) and the ACM Special Interest
Group on Design Automation.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on April 27,2010 at 13:55:59 UTC from IEEE Xplore. Restrictions apply.

