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Abstract

Recent years have seen the emergence of droplet-
based microfluidic systems for safety-critical biomedical

applications. In order to ensure reliability, microsystems
incorporating microfluidic components must be tested

adequately. In this paper, we investigate test planning

and test resource optimization methods for droplet-
based microfluidic arrays. We first outline a 

methodology based on integer linear programming (ILP)

that yields optimal solutions. Due to the NP-complete
nature of the problem, we develop heuristic approaches

for optimization. Experimental results indicate that for

large array sizes, heuristic methods yield solutions that
are close to provable lower bounds. These heuristics

ensure scalability and low computation cost.

1  Introduction 

Next-generation system-on-chip designs are

expected to be composite microsystems with

microelectromechanical and microfluidic components

[1, 2]. These mixed-signal and mixed-technology

systems monolithically integrate microelectronics with

microsensors and microactuators, thereby leading to 

chips that can not only compute and communicate, but

also sense and actuate. This high level of integration is 

enabling a new class of microsystems targeted at health

care, environmental monitoring, biomedical analysis,

harmful agent detection for countering bio-terrorism,

and precision fluid dispensing [3].

In recent years, novel droplet-based microfluidic

systems have been developed to analyze nanoliter

volumes of agents [4]. These systems reduce the rate of 

reagent consumption, thereby enabling continuous

sampling and analysis for on-line, real-time

biological/chemical analysis. By scaling down the

concentration of the samples, simple sensing techniques

can be utilized to replace conventional, costly, and time-

consuming practices involving batch analysis, sample

pre-treatment and frequent calibration. Droplet-based

microfluidic systems therefore offer a promising

platform for massively parallel DNA analysis and real-

time molecular detection and recognition.

As microfluidic systems become widespread in

safety-critical biomedical applications, system reliability

emerges as an essential performance parameter. In order

to ensure the reliability, composite microsystems

incorporating microfluidic components must be tested

adequately. Therefore, there is a pressing need for 

efficient testing methodologies for these microsystems.

The ITRS 2001 document recognizes the need for new

test methods for disruptive device technologies that

underly microelectromechanical systems and sensors,

and highlights it as one of the five difficult test

challenges beyond 2007 [5].

Recently, a fault classification and a unified test 

methodology for droplet-based microfluidic systems has 

been developed [6]. Faults are classified into 

catastrophic and parametric categories, and techniques

are developed to detect these faults by electrostatically

controlling and tracking droplet motion. This cost-

effective test methodology facilitates concurrent testing,

which allows fault testing and biomedical assays to run

simultaneously on a microfluidic system. Test planning

and test resource optimization are motivated by the need

for concurrent testing.

In this paper, we investigate test planning and test

resource optimization problems for droplet-based

microfluidic arrays. We first outline an optimal solution

based on integer linear programming (ILP). Due to the

NP-complete nature of the problem, the ILP model is

not applicable to large microfluidic arrays. We therefore

develop heuristics to solve this problem in a 

computationally efficient manner. Experiments show

that for large array sizes, the results obtained from the

heuristic method are close to provable lower bounds.

________________________________________

*This research was supported in part by the National Science

Foundation under grant number EIA-0312352.

The organization of the remainder of the paper is as

follows. In Section 2, we present an overview of a

droplet-based microfluidic system. Related prior work is 

discussed in Section 3. Section 4 describes the problem

of test planning and test resource optimization. An

optimal solution based on integer linear programming is 

outlined and the problem is shown to be NP-complete.

Section 5 presents several heuristic algorithms, which

are evaluated through simulation experiments in Section

6. Finally, conclusions are drawn in Section 7.
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Ground Electrode

2 Background: Droplet-Based 

Microfluidic Systems 

The operation of droplet-based microfluidic systems

is based on the principle of electrowetting actuation. By 

varying the electrical potential along a linear array of

electrodes, electrowetting can be used to move liquid

droplets of nanoliter volume along this line of electrodes

[4]. Droplets can also be transported, in user-defined

patterns under clocked-voltage control, over a two-

dimensional array of electrodes without the need for

pumps and valves.

The basic component of a droplet-based microfluidic

system is shown in Figure 1. The droplet, usually

containing biomedical samples, and the filler medium,

such as silicone oil, are sandwiched between two 

parallel glass plates. The bottom plate contains a

patterned array of individually controllable electrodes,

while the top plate is coated with a ground electrode. 

The hydrophobic dielectric insulator is added to the top 

and bottom plates to decrease the wettability of the

surface and to add capacitance between the droplet and

the control electrode.

The basic principle underlying droplet transportation

is the electrostatic control of the interfacial tension at the

droplet/insulator interface. A control (actuating) voltage

is applied to an electrode adjacent to the droplet and, at

the same time, the electrode just under the droplet is 

deactivated. This causes an accumulation of charge in 

the droplet/insulator interface, resulting in a surface

tension gradient across the gap between the adjacent

electrodes, which consequently causes the transportation

of the droplet. The velocity of the droplet can be

controlled by adjusting the actuation voltage (0~90V),

and droplets can be moved at speeds of up to 20 cm/s.

Based on this principle, microfluidic droplets can be 

moved freely to any location of a two-dimensional array;

see Figure 2. This design, which has been fabricated on 

PCBs at Duke University [4], is ideally suited for a

large-scale integrated microfluidic system. Such a 

system is expected to be common in the near future for

various biomedical applications, such as DNA

sequencing and bimolecular detection. A droplet  can  be

Top Plate 

Droplet Diameter:

 ~500 m

Volume (each):

 ~20 nl

Hydrophobization Droplet Filler Fluid 

 Insulator 

Bottom Plate
Control Electrode

Figure 1: Basic components of a droplet-based microfluidic system.

Figure 2: Droplet transport in a two-dimensional array.

(detailed video available at http://www.ee.duke.edu/Research/microfluidics)

easily detected using the capacitive sensing circuit

shown in Figure 3.

3 Related Prior Work

Over the past decade, the focus in testing research

has broadened from logic and memory test to include the

testing of analog and mixed-signal circuits. MEMS is a

relatively young field compared to IC design, and 

MEMS testing is still in its infancy. Recently, fault

modeling and fault simulation in surface micromachined

MEMS has received attention [7, 8, 9]. Researchers in

Carnegie Mellon University are developing a 

comprehensive testing methodology for a class of

MEMS known as surface micromachined sensors.

However, test techniques for MEMS cannot be

directly applied to microfluidic systems, since the 

techniques and tools currently in use for MEMS testing

do not handle fluids. Hence they are of limited use for

testing microfluidic devices. Most recent work in this

area has been limited to the testing of continuous-flow

microfluidic systems [10, 11, 12]. Researchers at the

MESA+ Research Institute of the University of Twente

have applied mixed-signal testing techniques to the

problem of testing a microanalysis system. Also, a

design-for-testability (DFT) technique for Flow-FET-

based microfluidic systems has been proposed [12].

Similar to the MOSFET, a Flow-FET has source and 

drain electrodes over which a relatively large voltage

(~100V) is applied. Due to the principle of electro-

Ground

Sink Electrode
R

To frequency

counter

Output: Periodic

square waveform
Schmitt Trigger 

Figure 3:  Simple capacitive sensing circuit. 
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osmotic flow, the electric field moves the charge

accumulated between the fluid and the surface of

channel, dragging the bulk liquid through the channel.

Optimal strategies for moving droplets in a

microfluidic system are proposed in [13]. The A*

algorithm from artificial intelligence is used as the basis

of a systematic search, which is performed to generate a 

sequence of control signals for moving one or multiple

droplets from the start to the goal positions in the

shortest number of steps. This method is closely related

to the optimization problem of motion planning with

multiple moving robots [14, 15]. There are two different

groups of path planning problems for moving robots.

Navigation problem attempts to find a path from a start 

position to a goal position through the shortest path,

whereas coverage problem focuses on finding the path

of coverage of an environment by mobile robots.

Figure 4: Optimal partitioning for a 4x4 array.

in [17]. An integer linear programming (ILP) model can

be formulated to solve this optimization problem exactly

for a microfluidic array of modest size. However, due to

the inherent complexity of the model, there is a need for

heuristic algorithms that can be applied to a large array. 

4 Problem Definition 5 Heuristic Algorithms 
In the test methodology proposed in [6], test stimuli

droplets are dispensed into the microfluidic system from

the droplet source and transported through the array

(traversing the cells) by following the designed testing

scheme. For the faulty case, the test stimuli droplet is 

stuck at an intermediate point during motion. On the

other hand, the detection of all test stimuli droplets at the

droplet sink indicates fault-free operation. This

methodology allows fault testing and biomedical assays 

to run concurrently on a microfluidic system. An

efficient test plan not only ensures that the testing

operation does not conflict with the normal biomedical

assay, but it also guides test stimuli droplets to cover all

the cells available for testing. This test plan can be

optimized to minimize the total testing time cost for a

given test hardware overhead, which refers here to the

number of droplet sources and droplet sinks.

One possible heuristic method is motivated by the

similarity of the test planning problem for a microfluidic

array to the robot motion planning problem, where we

view every test stimuli droplet as a mobile robot.

However, there are a number of important differences:

(1) The test planning problem can be considered as 

a combination of both the navigation problem and

the full coverage problem. It attempts to minimize

the total time cost from the starting point (droplet

source) to the end point (droplet sink), while it also 

requires all available cells to be covered in the

droplet path. Therefore it is more complicated than

either the navigation problem or the coverage

problem alone.

(2) A major constraint in the application of multiple

test stimuli droplets is that droplets can never be in 

a cell directly adjacent or diagonally adjacent to 

another droplet except in the case of mixing of two

droplets. This restriction increases the complexity of

the problem of test planning and resource

optimization.

We can formulate the test planning problem in terms

of graph partitioning and the Hamiltonian path problem

from graph theory. The key idea underlying this

optimization approach is to model the two-dimensional

microfluidic array as a directed graph, and then partition

it into non-overlapping subgraphs. The test plan

obtained from this method allows multiple tests to run in

different non-overlapping parts of the microfluidic array

in parallel, which results in the reduction of test

application time. Figure 4 shows an example of a test

plan, where the white cells are available for testing, and 

the black cells are in use by a biomedical assay and 

therefore temporarily unavailable for testing.

5.1 Simple Monte-Carlo Search Algorithm (SMC)

Monte-Carlo based search algorithms have been

proposed in the literature for problems with a large

number of constraints [18]. The key idea underlying

these algorithms is that random points are generated in 

the search space and the point with the lowest value for

the objective function is taken to be the global optimum.

In this modified random walk method, a large number of 

simulation runs are carried out to generate enough

samples. First we apply the simple Monte-Carlo search

algorithm to heuristically solve the problem of test 

planning and optimization. In each run, the test stimuli

droplet starts from the cell directly adjacent to the

droplet source and ends in the droplet sink. It randomly

This optimization problem can be proven to be NP-

complete. The analysis of computational complexity is

based on the reduction from the problem of determining

a Hamiltonian cycle in grid graphs, which is known to

be NP-complete [16]. Details of this proof can be found

Proceedings of the Ninth IEEE European Test Symposium (ETS’04) 
0-7695-2119-3/04 $ 20.00 IEEE 



moves to the neighboring cell with some probability p.

We mark the cell if it has been visited, then the larger p
is assigned to the motion towards the unmarked cell. 

After randomly selecting the new positions of test

stimuli droplets, the procedure checks if no two droplets

are directly adjacent or diagonally adjacent in their new

positions. If this restriction is satisfied, test stimuli

droplets move to these new positions. Otherwise the new

positions are selected again. If all available cells have

been visited and test stimuli droplets have reached the

droplet sinks, the test process is concluded. Here we

assume that each droplet move only once in each time

slot. Therefore, the test plan with the smallest number of

total time slots, i.e. total test time is selected as the

optimal solution.

5.2 Modified Real-Time Algorithm (MRT)

We can further leverage real-time search algorithms

and incorporate them into the heuristic algorithm for test

planning. While the previous Monte-Carlo search

algorithm simply marks the cell with a binary variable

(0/1) based on whether it has been visited, this modified

algorithm associates an evaluation function U with each

cell. It always decides which neighboring cell to move

to based only on the U- values of its neighbors. That is,

the droplet always greedily moves to an adjacent cell 

with the smallest U-value. Ties due to same U-value

neighbors are broken randomly. Similar to the Monte-

Carlo search algorithm, the new positions of test stimuli

droplets should be verified to satisfy the physical

restriction. Then the U-value of the current cell is

updated according to a predefined rule. We study four 

different U-value update rules, which been used

successfully in robot motion planning, as listed in Table

1. Each rule assigns a different meaning to the U-value.

For example, Node Counting interprets the U-value as

the number of times the location has been visited, while

LRTA* interprets U-value as approximations of the goal

distances of the location [15, 19]. The introduction of

the evaluation function U decreases the arbitrariness of

the selection of new positions in the Monte-Carlo search

algorithm and therefore increases the possibility of

finding a better solution for the same number of

simulation runs.

Loop: For n = 1 to N (the maximum number of simulation
runs)
  Initialization: Status initialization:
              All cells available for testing are set to ‘0’;
              All cells not available for testing are set to ‘2’.
  (Here ‘0’ denotes that the cell is not visited yet. 

‘1’ denotes that the cell has been visited 
‘2’ denotes that the cell is not available for testing) 

Evaluation function value initialization:
               The U values of all cells are set to 0. 

 Starting point:
 The cell adjacent to source is set to be ‘1’ when t = 1 

Loop: For t = 2 to T (maximum index of time-slot)
 1. Select new location of test stimuli droplet:
     Droplet moves to its neighbor cell with smallest U-value. 
That is, U(new location)=min(U(neighbors of current location). 

When there are ties, we evaluate P between two droplets.

  2. Verify relative distance between new locations:
We select the new locations which satisfy the restriction 

and have lowest P.
3. Update U-value of current location, then go on to next 

time-slot.

   If all available cells have been visited and test stimuli
droplets have reached the sink, (Test finished)
      Record the time cost;
      Record test planning;
      Break; End; 
End

   If time cost < minimum cost 
         minimum cost = time cost.
         Record the best test planning.
End

Figure 5: Sketch of the improved heuristic algorithm.

5.3 Proposed Improved Heuristic Algorithm for

Multiple Droplets  (PIH-MD)

When multiple test droplets are used, the above

heuristic algorithms might move two droplets closer to

each other. Additional effort may therefore be needed to 

prevent droplets from being directly or diagonally

adjacent to each other. Moreover, if these two droplets

are too close, the overlap of their coverage areas might

increase, consequently leading to low efficiency in 

searching. Therefore we modify the heuristic algorithm

for multiple test droplets by attempting to separate two 

droplets. We add a new evaluation function P to 

approximate the relative distance between two droplets.

When ties for new positions with the lowest U-value are

encountered, we evaluate the P function for every two

possible positions of these droplets and select the new 

positions with smallest value of P. Instead of breaking

such ties arbitrarily as in MRT, this approach adds more

guidance to heuristically find the near-optimal solution

for test planning. Simulation results presented in the

next section show that it provides better performance

than the simple Monte-Carlo search algorithm and the

modified real-time search algorithm for multiple test

stimuli droplets. The procedure is outlined in Figure 5.

Value-Update Rules  Real-time search

algorithms

U(current) = 1 + U(current)  Node counting [14]

U(current) = 1 + U(New)  Learning Real-time A*

(LRTA*) [15]

 If U(current)  U(New),

U(current) = 1 + U(current)

 Wagner’s value-update 

rule [19]

U(current) = max(1 + U(current),

1 + U(New))

 Thrun’s value-update

rule [20]

Table 1: Different U-value update rules.
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6. Experimental Results 
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In this section, we report experimental simulation

results on test planning and resource optimization for 

droplet-based two-dimensional microfluidic arrays. We

attempt to minimize the test application time for a given

test hardware overhead, i.e., the number of droplet

source/sink pairs. In the following experiments, two sets

of cases are analyzed: Array Size

(1) One single source and one single sink; Figure 6: Comparison of various heuristic approaches. 

(2) Two sources and two sinks.

and 5 5. When the array size increases, the results for

heuristic algorithms are still contained between the

lower bound and upper bound of the optimal solution.

The results for modified real-time algorithm are much

closer to the lower bound than the simple Monte-Carlo

algorithm; see Figure 6. These experimental results

highlight the advantage of adding the evaluation

function U-value.

For arrays of modest size, optimal solutions can be

obtained using ILP model. Therefore, we can compare

the result of the heuristic algorithms with the optimal

solution (OPT). However, for arrays of the larger size,

optimal solutions are not available. The performance of

heuristic algorithms in these cases can only be compared

with a lower bound (LB) and an upper bound (UB) on 

the optimal solution as described next.

In the second set of experiments for multiple test

stimuli droplets (Case 2), we compare the modified real-

time algorithms (MRT) to the proposed improved

heuristic algorithm (PIH-MD).  Here the arrays of larger

sizes are considered. Simulation result shows that the

improved heuristic algorithm significantly outperforms

the modified real-time algorithm for larger array sizes;

see Figure 7. The ratio of the actual testing time to the

lower bound is always under 1.8 for the improved

heuristic algorithm, while this ratio for the modified

real-time algorithm increases with the array size; see

Figure 8.

In an ideal case, the available cells of the array can

be partitioned evenly. In each partition, there exists a 

Hamiltonian path from one droplet source to one droplet

sink. Multiple tests can be run in non-overlapping parts

in parallel without violating the restriction on droplet

motion. Therefore, we have a lower bound LB on 

optimal solution of [n/k], where n is the number of

available cells in the system and k is the number of

source-sink pairs. The tightness of this lower bound is 

determined by the topological configuration of the

microfluidic array. In addition, an upper bound on the

optimal solution can be shown to be 2 n, which results

from the depth-first search on a grid graph [21]. Finally, we study the number of available solutions

for each heuristic algorithm when the number of

simulation runs is fixed, i.e., 500. Figure 9 shows that

the proposed improved heuristic algorithm (PIH-MD)

generates many more available solutions than the

modified real-time algorithm (MRT). This advantage

results from adding a new evaluation function P to 

reduce the overlap between the coverage areas of the

two test stimuli droplets, and it leads to a better solution

for test planning and resource optimization.

In the first set of experiments, we determined the test

time for two different heuristic algorithms, i.e., the

simple Monte-Carlo algorithm and the modified real-

time algorithm (four different U-value update rules) for

Case (1). We assigned 10,000 runs to the simple Monte-

Carlo algorithm and 1,000 runs to the modified real-time

algorithm. Table 2 shows the simulation results. Some

optimal solutions obtained from the ILP model, as well

as lower bounds and upper bounds, are also listed. The

results show that heuristic algorithms provide close-to-

optimal solutions for small array sizes, such as 3 3, 4 4
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OPT 8 12 14 23 N/A N/A N/A N/A

LB 8 10 14 22 30 41 52 64

UB 16 20 28 44 60 82 104 128

SMC 8 12 14 30 39 54 84 91

NC 8 12 14 23 34 47 66 77

LRTA* 8 12 14 25 34 47 66 81

Wagner 8 12 14 25 34 49 70 78

Thrun 8 12 14 23 32 47 62 77
Array Size

Figure 6: Simulation results for Case (2).
Table 2: Simulation results for Case (1). The entries in the

table denote testing time (in time-slots).
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7 Conclusions 

In this paper, we have presented an analysis of the

test planning and test resource optimization problems for

droplet-based microfluidic systems. Due to NP-complete

nature of the problem, heuristic approaches are needed.

We have developed heuristic algorithms that are

applicable to droplet-based microfluidic arrays of large

sizes. Experiment results have shown that the heuristic

solutions are close to the lower bounds on the optimal

solutions. The advantage of the improved heuristic

algorithm for multiple test stimuli droplets has been

evaluated. In our ongoing work, we are investigating

fault tolerance techniques based on the concurrent

testing and reconfigurability of the droplet-based

microfluidic systems.
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